
Motivic invariants of character stacks
Vogel, J.T.

Citation
Vogel, J. T. (2024, June 13). Motivic invariants of character stacks. Retrieved
from https://hdl.handle.net/1887/3762962
 
Version: Publisher's Version

License:
Licence agreement concerning inclusion of doctoral
thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/3762962
 
Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3762962


Chapter 1

Stacks

Algebraic stacks were first introduced by Deligne and Mumford to study the

moduli space of curves [DM69], and later their definition was generalized by

Artin [Art74]. Roughly speaking, an algebraic stack can be thought of as a gen-

eralization of a scheme. If we view a scheme as a functor of points, its points

form a set, whereas for an algebraic stack they form a groupoid. In other words,

the points of a stack are allowed to have automorphisms. The notion of a stack

is not specific to algebraic geometry, that is, stacks can also be defined in the

context of manifolds, analytic spaces, topological spaces, or, in general, for any

site, that is, category with a Grothendieck topology.

The goal of this chapter is to give a concise overview of (algebraic) stacks, with

a focus on quotient stacks, which should be sufficient to understand the later

chapters. For the curious reader who wishes to read more in-depth expositions

of (algebraic) stacks, we refer to [Fan01, Beh14, Ols16, LM00, Stacks], in order

from introductory and intuitive to detailed and rigorous.

1.1 Groupoids

Crucial to the subject of stacks is the concept of a groupoid, that is, a category

in which every morphism is an isomorphism.

Definition 1.1.1. A groupoid is finite if it has finitely many morphisms. A

groupoid is finitely generated if there exists a finite collection of morphisms,

called generators, such that every morphism of the groupoid can be written as

a composite of generators and inverses of generators. In particular, any finite or

finitely generated groupoid has finitely many objects, because every object has

at least an identity morphism. A groupoid is essentially finite if it is equivalent
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2 CHAPTER 1. STACKS

to a finite groupoid, and similarly, a groupoid is essentially finitely generated if

it is equivalent to a finitely generated groupoid.

Denote by Grpd the 2-category of groupoids, whose objects are groupoids, 1-

morphisms are functors, and 2-morphisms are natural transformations. Similarly,

denote by FinGrpd and FGGrpd the full sub-2-categories of essentially finite

groupoids and essentially finitely generated groupoids, respectively.

Definition 1.1.2. Let G be a group acting on a set X. The action groupoid,

denoted [X/G], is the groupoid whose objects are elements of X, morphisms

x→ y are given by elements g ∈ G such that y = g · x. Composition of g : x→ y

and h : y → z is given by hg : x→ z.

Definition 1.1.3. Let Γ be an essentially finite groupoid. The groupoid cardi-

nality of Γ is defined as

|Γ| =
∑

[x]∈Γ/∼

1

|Aut(x)|
∈ Q

where Γ/ ∼ denotes the set of isomorphism classes of Γ.

Example 1.1.4. Let G be a finite group acting on a finite set X. Then the

groupoid cardinality of the action groupoid Γ = [X/G] is |X|/|G|. Indeed, from
the orbit-stabilizer theorem it follows that

|Γ| =
∑

[x]∈[X/G]/∼

1

|Aut(x)|
=
∑
x∈X

1

|Gx|
1

|Aut(x)|
=
∑
x∈X

1

|G|
=
|X|
|G|

.

Definition 1.1.5. Let f : B → A and g : C → A be morphisms of groupoids. The

fiber product of B and C over A, denoted B×AC, is the groupoid whose objects

are triples (x, y, α) with x an object of B, y an object of C and α : f(x)→ g(y)

a morphism in A. A morphism from (x′, y′, α′) to (x, y, α) is given by a pair of

morphisms (β : x′ → x, γ : y′ → y) such that g(γ) ◦ α′ = α ◦ f(β).

Note that the diagram

B ×A C C

B A

πB

πC

g

f

with πB and πC the obvious projections, does not strictly commute whenever

there are non-trivial morphisms α : f(x) → g(y). However, there is a natural

isomorphism f ◦ πB ⇒ g ◦ πC , whose component at (x, y, α) is given by α. This

is the correct notion of commutativity for 2-categories, and we say this diagram

2-commutes.
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This also shows what the correct universal property of the fiber product is. For

every groupoid D with morphisms i : D → B and j : D → C such that f ◦ i is
naturally isomorphic to g ◦ j, there exists, up to a unique natural isomorphism,

a unique morphism h : D → B ×A C and natural isomorphisms πB ◦ h ∼= i and

πC ◦ h ∼= j. One can easily verify that the above definition of the fiber product

for groupoids satisfies this universal property.

Definition 1.1.6. Let f : A→ B be a functor between groupoids, and let b be

an object of B. The fiber of f over b is the groupoid

f−1(b) = A×B {b}

where {b} is the groupoid with a single object b and one (identity) morphism,

and {b} → B the natural map.

1.2 Categories fibered in groupoids

Throughout the following sections, let S be a site, that is, a category equipped

with a Grothendieck topology.

Definition 1.2.1. A category over S is a category X with a functor p : X→ S.

An object x of X is said to lie over an object S of S, or x is said to be a lift of

S, if p(x) = S, and similarly for morphisms. If S is an object of S, the fiber of

X over S, denoted XS , is the subcategory of X of objects over S and morphisms

over idS . A morphism of categories over S is a functor that respects the functor

to S. If p : X→ S and q : Y→ S are categories over S, and f and g morphisms

from X to Y, then a 2-morphism f → g is a natural transformation µ : f ⇒ g

such that all components µx : f(x)→ g(x) lie over idp(x). The categories over S

form a 2-category. An isomorphism of categories over S is a morphism which is

an equivalence of categories.

Definition 1.2.2. A category X over S is called a category fibered in groupoids

over S if for any morphism f : T → S in S and object x lying over S, there

exists a lift f : y → x of f which is unique up to unique isomorphism. That is,

for any other lift f
′
: y′ → x of f , there exists a unique isomorphism α : y′ → y

such that f
′
= f ◦ α.

y′

y x

T S

f
′

α
f

f

As a motivation for the terminology, consider the following lemma.
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Lemma 1.2.3. Let X be a category fibered in groupoids over S. Then every

morphism φ : y → x of X that lies over an isomorphism f : T → S of S, is

an isomorphism as well. In particular, for every object S of S the fiber XS is

groupoid.

Proof. Write g for the inverse of f , and choose a lift g : z → y of g. As φ◦g : z → x

lies over f ◦ g = idS , it is a lift of idS with target x. Since idx is so as well, there

exists a (unique) isomorphism α : z → x such that φ ◦ g = α. Now ψ = g ◦ α−1

is a right inverse of φ which lies over g. Repeating the argument, replacing φ by

ψ, one shows ψ also has a right inverse, which must be φ.

In particular, every 2-morphism between morphisms of categories over S is au-

tomatically an isomorphism.

Example 1.2.4. Any object X of S can be regarded as a category fibered in

groupoids p : X→ S where X is the slice category S/X and p simply forgets the

morphism to X. Indeed, for any f : T → S in S and x : S → X in X, there is a

unique lift of f , given by T
x◦f−−→ X. Hence, we can think of a category fibered in

groupoids (and as we shall see later, a stack) X over S as a generalization of an

object of S, and the fibers XS can be interpreted as the groupoid of S-points of

X.

For convenience, we usually assume that for every morphism f : T → S in S and

object x over S, we have chosen a lift f∗x→ x of f with target x. Depending on

the context, this can be done either by direct construction, or by using a suitable

version of the axiom of choice. Note that it is not required that g∗(f∗x) equals

(f ◦ g)∗x, but the two are naturally isomorphic. While such a choice of lifts is

not necessary, it makes it easier to write down the definition of a stack. We refer

to the object f∗x as the pullback of x along f . When the morphism f : T → S

is clear from context, we will also write x|T for f∗x.

Remark 1.2.5. Let α : x′ → x be a morphism in the fiber over some object S

of S (in particular, α is an isomorphism). Given a morphism f : T → S, there

exists a unique isomorphism f∗α : f∗x′ → f∗x such that the diagram

f∗x′ x′

f∗x x

f∗α α

commutes. Namely, f∗x′ → x′ → x is also a lift of f with target x. When the

morphism f is clear from context, we will also write α|T for f∗α.
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Notation 1.2.6. Let X and Y be two categories fibered in groupoids over S.

Note that the morphisms from X toY form a category, which we denote byY(X),

where morphisms between morphisms are given by 2-morphisms. Moreover, since

every 2-morphism is an isomorphism, this category is a groupoid. When X =

S/X for an objectX ofS, as in Example 1.2.4, this groupoid is in fact equivalent

to the fiber YX .

Definition 1.2.7. Let f : X → Z and g : Y → Z be morphisms of categories

fibered in groupoids over S. The fiber product of X and Y over Z is the following

category fibered in groupoids. Its objects over S are triples (x, y, α) with x an

object of XS , y an object of YS and α : f(x) → g(y) an isomorphism in the

fiber ZS . Given a morphism f : S′ → S, a morphism from (x′, y′, α′) to (x, y, α)

over f is given by a pair of morphisms (β : x′ → x, γ : y′ → y) over f such that

g(γ) ◦ α′ = α ◦ f(β). The induced diagram

X×Z Y Y

X Z

πX

πY

g

f

with πX and πY the projections, need not strictly commute, but it 2-commutes.

That is, the two composites X ×Z Y → Z are related by a natural 2-morphism.

Observe the similarity with Definition 1.1.5, the fiber product for groupoids.

1.3 Descent data and stacks

Informally speaking, a stack is a category fibered in groupoids where objects can

be glued uniquely from local data. Let {Si → S} be a covering of an object S ofS,

and let x be an object over S. Denote by xi the pullback of x to Si, and by Sij the

intersection Si×SSj , and similarly for Sijk. The object x cannot be reconstructed

solely from the xi, also the induced isomorphisms αij : xi|Sij
→ xj |Sij

, which

satisfy the cocycle condition on Sijk, are needed. In a stack, we want to be

able to glue the xi on the intersections via the αij . This motivates the following

definition.

Definition 1.3.1. Let X be a category fibered in groupoids over S. A descent

datum for X over an object S of S is given by

(i) a covering {Si → S},

(ii) for every i a lift xi of Si in X,

(iii) for every i and j an isomorphism αij : xi|Sij → xj |Sij in XSij , satisfying the

cocycle condition αik|Sijk
= αjk|Sijk

◦ αij |Sijk
in XSijk

.
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Such a descent datum is called effective if there exists a lift x of S in X together

with isomorphisms αi : x|Si
→ xi in XSi

such that αij = αj |Sij
◦ αi|−1

Sij
in XSij

.

In this case, one says that the xi over Si descend to x over S.

Furthermore, in a stack, we want such a gluing to be unique (up to unique

isomorphism). That is, for any other gluing (x′, α′
i) there should be a unique

isomorphism β : x′ → x such that α′
i = αi ◦ β|Si over Si. To have this property,

we will require that isomorphisms in fibers can be reconstructed uniquely from

local data. This idea is expressed in the following definition.

Definition 1.3.2. Let X be a category fibered in groupoids over S. We say

that isomorphisms are a sheaf for X if, for any object S of S, any objects x

and y in XS , every covering {Si → S} of S, and every collection of isomor-

phisms αi : x|Si
→ y|Si

in XSi
such that αi|Sij

= αj |Sij
, there exists a unique

isomorphism α : x→ y such that αi = α|Si .

Remark 1.3.3. Alternatively, the above definition can be expressed as follows.

For any two objects x and y in X lying over an object S in S, one can define a

presheaf

Isom(x, y) : (S/S)op → Set

on the slice category S/S, by assigning to f : T → S the set HomXT
(f∗x, f∗y)

of isomorphisms from f∗x to f∗y in XT , and to a morphism g : T ′ → T from

f ′ : T ′ → S to f : T → S the map that is given by pullback along g, that is,

HomXT
(f∗x, f∗y)→ HomXT ′ (g

∗f∗x, g∗f∗y) ∼= HomXT ′ ((f
′)∗x, (f ′)∗y),

where the latter isomorphism is induced by the natural isomorphisms g∗f∗x ∼=
(f ′)∗x and g∗f∗y ∼= (f ′)∗y. Now, saying that isomorphisms are a sheaf for X is

equivalent to saying that Isom(x, y) is a sheaf for all x, y and S. Note that, while

it looks as if Isom(x, y) depends on the choice of f∗x and f∗y, any other choice

would yield a presheaf that is naturally isomorphic.

Definition 1.3.4. A stack over S is a category fibered in groupoids X over S

such that every descent datum for X is effective and isomorphisms are a sheaf

for X. A morphism of stacks over S is simply a morphism of categories over S,

and similarly for 2-morphisms and isomorphisms. Fiber products of stacks can

be computed as fiber products of categories over groupoids.

Remark 1.3.5. As in Example 1.2.4, any object X of S can be considered a

category fibered in groupoids overS as the slice categoryS/X, whereS/X → S

forgets the morphism to X. Unfortunately, this does not always give a stack, it

depends on the topology on S. However, for most of the examples of interest it
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will give a stack and will be easy to prove, e.g. for schemes, manifolds, analytic

spaces, topological spaces, etc. with the usual topologies [Fan01].

Definition 1.3.6. A stack X over S is representable if it is isomorphic to the

stack S/X for some object X of S. A morphism of stacks X → Y is repre-

sentable if, for every morphism S → X with S in S, the fiber product S ×Y X is

representable.

Intuitively, this says that a morphism of stacks is representable if all of its fibers

are representable.

From now on, we will simply write X for the category S/X as well.

1.4 Algebraic stacks

An algebraic stack, over a fixed base scheme S, is a special type of stack over the

site S = SchS , where S is usually equipped with the étale or fppf topology. To

give a precise definition, one needs the notion of an algebraic space. Informally

speaking, whereas a scheme is locally an affine scheme in the Zariski topology, an

algebraic space is locally an affine scheme in the étale topology. For an in-depth

treatment on algebraic spaces, see [LM00, Ols16, Stacks]. For our purposes, it

suffices to think of an algebraic space as a geometric object slightly more general

than a scheme, and to know that, just as for schemes, any algebraic space over

S can naturally be considered as a category fibered in groupoids over S (recall

from Remark 1.3.5 that any scheme X over S can be identified with the slice

category S/X). A morphism f : X → Y is said to be representable by algebraic

spaces if for every scheme T and morphism T → Y, the fiber product T ×Y X is

representable by an algebraic space.

Before giving the definition of an algebraic stack, we first need to introduce some

properties of representable morphisms.

Definition 1.4.1. Let f : X→ Y be a morphism of categories fibered in groupoids

over S which is representable by algebraic spaces. Let P be a property of mor-

phisms of algebraic spaces which is stable under base change and fppf-local on the

base, such as being smooth, étale, unramified, flat, surjective, (quasi-)separated,

affine, proper, (locally) of finite type, (locally) of finite presentation, or an (open

or closed) immersion. Then f is said to have the property P if for every scheme

T over S and T → Y the base change T ×Y X→ T has the property P .

Definition 1.4.2. A stack X over S is an Artin stack (resp. Deligne–Mumford

stack) if the diagonal ∆X/S : X → X ×S X is representable by algebraic spaces

and there exists a smooth (resp. étale) and surjective morphism X → X for some

scheme X. Such a morphism X → X is called a presentation of X.
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An algebraic stack over S will simply be an Artin stack over S.

Remark 1.4.3. Note that, in Definition 1.4.2, ∆X/S being representable auto-

matically implies the morphism X → X is representable, so that it makes sense

to talk about this morphism being surjective, smooth or étale. Indeed, for every

scheme T and morphism T → X, we have that T ×X X ∼= X×X×SX (X ×S T ) is
representable by an algebraic space.

What follows now is a list of definitions of properties for algebraic stacks and for

morphisms thereof. The general philosophy is that the common properties for

schemes or algebraic spaces (and morphisms thereof) translate directly to the

setting of algebraic stacks by making use of some kind of representability and

the way these properties behave (e.g. often they are local on the source or target

in some topology). We adopt the definitions as used by [Stacks], as indicated in

the definitions. This list is by far not complete, but should cover all properties

that are needed in the later chapters. For a more elaborate discussion on these

properties, we refer to [Beh14, LM00, Ols16, Stacks].

Definition 1.4.4 ([Stacks, Tag 04YF]). Let P be a property of schemes which is

local in the smooth topology, such as being reduced, locally noetherian, normal or

regular. An algebraic stack X is said to have P if there exists a smooth surjective

morphism X → X with X a scheme having property P .

Definition 1.4.5 ([Stacks, Tag 04YC, Tag 050U]). An algebraic stack X is

quasi-compact if there exists a smooth and surjective morphism X → X with X

a quasi-compact scheme.

A morphism of algebraic stacks f : X → Y is quasi-compact if for every quasi-

compact algebraic stack Z and morphism Z → Y, the fiber product Z ×Y X is

quasi-compact.

Definition 1.4.6 ([Stacks, Tag 0CHQ, Tag 0CHU, Tag 04YL]). Let P be any

of the properties of being affine, finite, or an (open or closed) immersion. Then

a morphism of algebraic stacks f : X→ Y is said to have the property P if it is

representable and has property P in the sense of Definition 1.4.1.

Definition 1.4.7 ([Stacks, Tag 06FM, Tag 0CIF]). Let P be a property of

morphisms of algebraic spaces which is local on the source and target in the

smooth (resp. étale) topology, such as being locally of finite type, locally of finite

presentation, flat, or smooth (resp. or unramified or étale). Then a morphism

f : X → Y of algebraic stacks is said to have the property P if there exists a
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commutative diagram

U V

X Y

f ′

f

with U and V algebraic spaces such that the vertical morphisms are smooth,

U → X×Y V is smooth (resp. étale) and f ′ has the property P .

Definition 1.4.8 ([Stacks, Tag 04YW, Tag 06FS, Tag 06Q2]). A morphism of

algebraic stacks f : X→ Y is

■ separated if the diagonal is proper in the sense of Definition 1.4.1,

■ quasi-separated if the diagonal is quasi-compact and quasi-separated in the

sense of Definition 1.4.1,

■ of finite type if it is locally of finite type and quasi-compact,

■ of finite presentation if it is locally of finite presentation, quasi-compact and

quasi-separated.

1.5 Quotient stacks

A rich source of examples of algebraic stacks is given by quotients of schemes by

group actions. For example, many moduli spaces are constructed in this way: one

first describes a scheme X overparametrizing the objects of interest, and then

describes an equivalence relation on the objects via the action of a group G on

X. The moduli space should then be the quotient of X by G.

To get an intuition for what this quotient should look like, imagine a group

G acting on some kind of geometric object X (e.g. a manifold or topological

space). If the group action is sufficiently nice (i.e., free), the quotient X → X/G

is expected to be a G-torsor, also known as a principal G-bundle. In particular,

the pullback of X along any map T → X will be a G-torsor over T , and the

projection X×X/GT → X will be G-equivariant. Moreover, any G-torsor P → T

with an equivariant map to X conversely induces a map from T to the quotient

X/G. This motivates the following definition.

Definition 1.5.1. Let G be a smooth group scheme acting on a scheme X over

S. The quotient stack of X by G, denoted [X/G], is the category over S whose

objects over T are diagrams

P X

T

p

ϕ
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where P
p−→ T is a G-torsor and P

ϕ−→ X is a G-equivariant morphism. The

morphisms from T ′ p′←− P ′ ϕ′

−→ X to T
p←− P

ϕ−→ X over f : T ′ → T are G-

equivariant morphisms α : P ′ → P such that p ◦ α = f ◦ p′ and ϕ ◦ α = ϕ′. Since

G-torsors can be glued from local data, it is easy to verify that [X/G] is indeed

a stack over S. There is a natural quotient map π : X → [X/G] corresponding

to the diagram

G×X X

X

πX

σ

More generally, one can replace the scheme X by an algebraic stack X to define

the quotient stack [X/G].

Example 1.5.2. The quotient stack [S/G] corresponding to the trivial action

of G on S is also known as the classifying stack of G and is denoted BG.

Remark 1.5.3. For any morphism T
f−→ [X/G], the corresponding G-torsor

over T with G-equivariant map to X can be recovered via pullback along π, as

depicted in the following diagram.

P X

T [X/G]

p

ϕ

π

f

Indeed, by definition of the fiber product, the objects of T ×[X/G] X over T ′ are

triples of morphisms (f : T ′ → T, h : T ′ → X,α : G×T ′ → P ×T T ′) with α being

G-equivariant such that

G× T ′

T ′ X

P ×T T ′

α

σ◦(idG×h)

ϕ◦πP

commutes. Since α is G-equivariant, it must be of the form α(g, t′) = (g ·β(t′), t′)
for β : T ′ → P given by β(t′) = πP (α(1, t

′)). But then f = p ◦ β, h = ϕ ◦ β and

α can all be expressed in terms of β. Hence, (T ×[X/G] X)(T ′) = P (T ′) and this

provides a canonical isomorphism T ×[X/G] X ∼= P .

Remark 1.5.4. The above remark shows that the quotient stack [X/G] is an

Artin stack with presentation π : X → [X/G]. Indeed, the morphism π is smooth

and surjective since P
p−→ T is smooth and surjective, as G was assumed to be

smooth. Similarly, if G is a finite group, one shows that the quotient stack [X/G]
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is a Deligne–Mumford stack. For representability of the diagonal, see [Ols16,

Example 8.1.12].

Remark 1.5.5. The quotient stack [X/G] indeed satisfies the quotient property,

that is, for any G-invariant morphism f : X → Y there is an induced morphism

f : [X/G] → Y . Indeed, for any diagram T ← P
ϕ−→ X, the composite f ◦ ϕ is

G-invariant, so there is an induced morphism T → Y , which defines a T -point

of Y .

Remark 1.5.6. The quotient stack construction is functorial in the following

sense. Let G and H be smooth group schemes acting on schemes X and Y ,

respectively, over S. Suppose f : X → Y is a morphism of schemes over S, and

φ : G→ H a morphism of group schemes over S, such that f(g ·x) = φ(g) · f(x).
Then there is an induced morphism of quotient stacks f : [X/G] → [Y/H] such

that the diagram

X Y

[X/G] [Y/H]

f

f

2-commutes. The morphism f is given by sending a diagram T
p←− P ϕ−→ X to the

diagram T
p◦πP←−−− H ×G P

ψ−→ Y where ψ(h, p) = h · f(ϕ(p)). The commutativity

of the diagram follows from the natural isomorphism H ×G (G× T ) ∼= H × T of

H-torsors over T .

Lemma 1.5.7. Let G and H be smooth group schemes acting on schemes X and

Y , respectively, over S. Then there is a natural isomorphism [X/G] × [Y/H] ∼=
[X×Y/G×H] given by sending a pair of diagrams T ← P

ϕ−→ X and T ← Q
ψ−→ Y

to the diagram T ← P ×Q ϕ×ψ−−−→ X × Y .

Proof. The described map is clearly functorial. Conversely, for any (G × H)-

torsor R over T , the natural isomorphism R ∼= R/H ×T R/G of (G×H)-torsors

over T yields an inverse.

Lemma 1.5.8. If G acts freely on X, then [X/G] is representable by an algebraic

space.

Proof. To prove this, we will use the characterization of an algebraic space as

an algebraic stack whose objects all have trivial automorphism groups [Stacks,

Tag 03YR]. Any point of [X/G] over any T corresponds to a G-torsor over T

with an equivariant morphism ϕ : P → X. An automorphism of this point is an

automorphism α : P → P over T such that ϕ ◦ α = ϕ. Étale-locally, P ∼= G× T ,
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and ϕ is determined by its restriction ϕ′ : S × T → X along the unit e : S → G.

Furthermore, α : G × T → G × T is given by multiplication by some element

g ∈ G. Now g · ϕ′(t) = ϕ′(t) for all t ∈ T , and since G acts freely on X we have

g = 1, that is, α = idP . Since this holds étale-locally, we also have α = idP
globally, and thus this automorphism is trivial.

Remark 1.5.9. As is reflected in the notation, the quotient stack can be thought

of as a geometric analogue of the action groupoid. However, in general we have

[X/G](T ) ̸≃ [X(T )/G(T )].

For example, the classifying stack BG of G = Z/2Z has up to isomorphism

precisely two Fq-points: the trivial G-torsor Fq → (Fq)2 and the non-trivial G-

torsor Fq → Fq2 whose G-action is given by the Frobenius automorphism, both

having an automorphism group of Z/2Z. On the other side, the action groupoid

has only one object with automorphism group Z/2Z.

In special cases, this discrepancy can be resolved.

Proposition 1.5.10. Let G be an algebraic group acting on a scheme X over

a field k. If (i) k is separably closed, or (ii) k is finite and G is connected, then

there is an equivalence of groupoids

[X/G](k) ≃ [X(k)/G(k)].

Proof. In both cases, any G-torsor over Spec k is trivial. For (i) because Spec k

does not have a non-trivial étale cover, and for (ii) by Lang’s theorem [Lan56].

Hence, the objects of the groupoid [X/G](k) are G-equivariant morphisms G
ϕ−→

X, which are completely determined by the value ϕ(1) ∈ X(k), and morphisms

ϕ→ ϕ′ are given by an element g ∈ G(k) such that ϕ(1) = ϕ′(g) = g · ϕ′(1). But
this is precisely (equivalent to) [X(k)/G(k)].

1.6 Stabilizers

Definition 1.6.1. Let X be an algebraic stack over S, and x : SpecK → X a

K-point of X for some field K. The stabilizer of x is the fiber product

StabX(x) = SpecK ×X SpecK

as a group scheme (or more precisely, group algebraic space) over K. Indeed,

for any T → SpecK, the T -points of StabX(x) can be identified with the au-

tomorphism group in X of the T -point T → SpecK
x−→ X. We say X has affine

stabilizers if StabX(x) is an affine group scheme for every x. We say X has finite

stabilizers if StabX(x) is a finite group scheme for every x.
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Lemma 1.6.2. Let G be a smooth group scheme acting on a scheme X. The

quotient stack X = [X/G] has affine stabilizers (resp. finite stabilizers) if G is

affine (resp. finite).

Proof. A point x : SpecK → X corresponds to a G-torsor P
p−→ SpecK with

a G-equivariant map P
ϕ−→ X. As P is étale-locally trivial, we have P ×SpecK

SpecL ∼= G × SpecL for some finite separable field extension L/K. The G-

equivariant morphism G × SpecL
ψ−→ X induced by ϕ corresponds to a point

x′ = ψ(1) ∈ X(L). Now consider the base change StabX(x) ×SpecK SpecL. Its

T -points are given by G-equivariant isomorphisms α : G × T → G × T over T

such that ψ ◦ α = ψ. Hence, we obtain a fiber product:

StabX(x)×SpecK SpecL SpecL

G× SpecL X

x′

ψ

This shows that StabX(x)×SpecK SpecL is a subgroup of G× SpecL, which is,

just like G× SpecL, affine (resp. finite). Since being affine (resp. finite) is local

in the étale topology [Stacks, Tag 02L5, Tag 02LA], it follows that StabX(x) is

also affine (resp. finite).

Lemma 1.6.3. Let f : X → Z and g : Y → Z be morphisms between algebraic

stacks with affine (resp. finite) stabilizers. Then the fiber product X ×Z Y also

has affine (resp. finite) stabilizers.

Proof. Pick any point (x, y, α) ∈ (X ×Z Y)(K). An automorphism of (x, y, α)

consists of morphisms β : x → x and γ : y → y such that α ◦ f(β) = g(γ) ◦ α.
That is, the automorphism group of (x, y, α) is precisely the stabilizer of α for

the action of AutX(x) × AutY(y) on HomZ(f(x), g(y)), given by (β, γ) · α =

g(γ) ◦α ◦ f(β). Also note that HomZ(f(x), g(y)) ∼= AutZ(z) for any object z of Z

isomorphic to f(x) ∼= g(y). This reasoning shows that the stabilizer of (x, y, α)

can be identified as the fiber product in the following cartesian square

StabX×ZY(x, y, α) SpecK

StabX(x)× StabY(y) StabZ(z)

α

where z is again any object of Z isomorphic to f(x) ∼= g(y). By assumption, all

of StabX(x), StabY(y) and StabZ(z) are affine (resp. finite), and therefore, the

fiber product StabX×ZY(x, y, α) is also affine (resp. finite).
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Definition 1.6.4. Let S be an algebraic stack with affine stabilizers. Let StckS

be the full subcategory of algebraic stacks of finite type over S with affine sta-

bilizers. By Lemma 1.6.3, this category is closed under pullbacks.

The algebraic stacks that appear in this thesis all have affine stabilizers. The

following proposition shows that we can think of such algebraic stacks, at least

locally, as quotient stacks of quasi-projective schemes by linear groups.

Proposition 1.6.5 ([Kre99, Proposition 3.5.9]). Let X be a reduced Artin stack

of finite type over a field with affine stabilizers. Then X admits a stratification

by quotient stacks [Xi/GLni
] where Xi is a quasi-projective scheme.




