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Introduction

The theory of representations of groups is a rich and fascinating subject in math-

ematics. For certain classes of groups, the representation theory is fairly well

understood. For example, for finite groups, the representation theory is largely

described by their character table, and for connected compact Lie groups, the

representation theory is given by the theorem of the highest weight. However,

the representation theory of finitely generated groups, lying somewhere in be-

tween, is not so easily described. For a finitely generated group Γ, the set of

n-dimensional representations ρ : Γ→ GLn(C), denoted

Hom(Γ,GLn(C)),

defines a complex variety, called the representation variety of Γ. Recall that

two representations ρ, ρ′ : Γ → GLn(C) are isomorphic if ρ′(γ) = gρ(γ)g−1 for

some g ∈ GLn(C) and all γ ∈ Γ. In other words, the group GLn(C) acts by

conjugation on the representation variety Hom(Γ,GLn(C)), and the quotient

Hom(Γ,GLn(C))/GLn(C), known as the character variety of Γ, can be thought

of as a geometric analogue of the character table. A subtle point is that it is

not completely clear how to take this quotient. Using geometric invariant theory

[Mum65], one arrives at the classical definition of the character variety. Another

possibility is to enter the realm of algebraic stacks, to arrive at the quotient stack

[Hom(Γ,GLn(C))/GLn(C)],

known as the character stack of Γ, for which the character variety is a coarse

moduli space. More generally, one may replace C by any field k, and GLn by any

algebraic group G over k. As an example, when Γ = Z, a representation from Γ

into G is simply the choice of an element of G, so the representation variety is

isomorphic to G, and the character variety, or character stack, is the appropriate

quotient of G by the action of G by conjugation on itself. In general, the geometry

of these spaces can be quite complicated and is a wide field of study. The goal of

this thesis is to provide a better understanding of the geometry of these spaces.
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Many finitely generated groups arise as the fundamental group Γ = π1(M, ∗) of a
connected compact manifold M with a basepoint ∗. In this case, representations

of Γ into G correspond to G-local systems onM , and isomorphic representations

correspond to isomorphic local systems [Sza09, Corollary 2.6.2]. In this sense,

the character variety (or stack) of Γ can be seen as the moduli space of G-local

systems on M , and is in the literature also known as the Betti moduli space

of M . In the particular case that M is the underlying manifold of a complex

smooth projective curve C, this space appears in the geometric Langlands pro-

gram [BD96, BN18] and plays a major role in non-abelian Hodge theory [Cor88,

Don87, Sim91, Sim94], where it is strongly related to a moduli space of Higgs

bundles on C and a moduli space of flat connections on C. The study of these

moduli spaces motivated the P = W conjecture [CHM12], which was recently

proved [MS22, Hau+22]. The main focus of this thesis will be the case where M

has dimension 2. Such manifolds M are either orientable and classified by their

genus, or non-orientable and classified by their demigenus.

The geometry of the representation variety (and of its quotients) can be studied

in many ways, for instance by computing their invariants. When k is a finite

field, one could count the number of k-rational points, and when k = C, one
could compute the singular cohomology of the analytification. In this thesis,

we focus on invariants χ that are additive and multiplicative in the sense that

χ(X) = χ(Z) + χ(X \ Z) and χ(X × Y ) = χ(X)χ(Y ) whenever X and Y are

varieties over k and Z ⊆ X a closed subvariety. We call these motivic invariants,

and they include the point count when k is finite, and the Euler characteristic

of the analytification when k = C. Another such invariant for k = C, which is

central in this thesis, is the E-polynomial, a refinement of the Euler characteristic.

The E-polynomial of a complex variety is a polynomial in two variables whose

coefficients reflect the mixed Hodge structure on its cohomology. In this thesis

we discuss various such invariants, and develop tools for computing them. In

particular, we focus on the universal such invariant, called the virtual class,

which takes values in the Grothendieck ring of varieties.

The computation of motivic invariants for representation varieties of orientable

surfaces started with Hausel and Rodriguez-Villegas [HR08], who studied the

representation variety by counting the number of points over finite fields Fq.
They could express these counts in terms of the representation theory of the finite

groups G(Fq), and moreover, infer from these counts the E-polynomial of the

representation variety. This approach, which we will call the arithmetic method,

has led many to study the E-polynomials of character varieties for various Γ and

G [HLR11, Mer15, Let15, MR15, Cam17, BH17, LR22, BK22].

A few years later, Logares, Muñoz and Newstead [LMN13] initiated the geometric
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method : a geometric approach to compute the E-polynomial of the representa-

tion variety, making use of its additive and multiplicative property and clever

stratifications. González-Prieto, Logares and Muñoz [GLM20] showed that the

geometric method can be phrased in terms of a Topological Quantum Field The-

ory (TQFT), a concept originating from physics. In particular, an orientable

surface of genus g can be considered as a composite of manifolds with bound-

aries, known as bordisms, as follows:

Σg = ◦ ◦ · · · ◦︸ ︷︷ ︸
g times

◦

In short, a TQFT (over some commutative ring R) assigns to every boundary

(possibly empty) an R-module, and to every bordism between boundaries a linear

map between the corresponding modules, such that composition of bordisms

corresponds to composition of the linear maps. In other words, a TQFT is a

certain functor from the category of bordisms to the category of R-modules. Now,

the idea of the geometric method is that the E-polynomial of the representation

variety corresponds to the image of Σg under the TQFT, and so the computation

of this E-polynomial can be broken down into a simpler computation for each

bordism. It was shown later [Gon20] that the same construction can be used to

compute the virtual class of the representation variety in the Grothendieck ring

of varieties.

Both the arithmetic and geometric method are discussed in detail in Chapter 4.

One of the main results of this chapter, which is based on [GHV23], is that the two

methods can be unified into a single framework. In particular, we show how the

arithmetic method can be translated into the language of TQFTs, and moreover,

we show that the TQFTs, for the geometric and arithmetic method, are related

through natural transformations. As a consequence, we describe how parts of

the character tables of the finite groups G(Fq), specifically the dimensions of the

irreducible representations of G(Fq), are related to the eigenvalues of the image

of the bordism under the TQFT corresponding to the geometric method.

Another aim of this thesis, besides giving theoretical descriptions, is to apply the

above methods to explicitly compute invariants of the representation varieties

and character stacks of surfaces, for certain algebraic groups G. In Chapter 5 we

focus on the group G = SL2, generalizing the results of [LMN13, MM16, LR22]

where the E-polynomials of the representation varieties were computed. Lifting

these computations from E-polynomials to the Grothendieck ring of varieties in-

troduces many subtle problems that have to be dealt with. In Chapter 6, based on

[HV22, Vog24], we concentrate on the groups of n×n upper triangular matrices

and unipotent upper triangular matrices. By means of computer-assisted calcu-
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lations, we compute the virtual classes of the character stacks of Σg for n ≤ 5

through the geometric method, and their E-polynomials for n ≤ 10 through the

arithmetic method.

Finally, in Chapter 7, we turn our attention to the representation varieties and

character stacks of the free groups Fn and free abelian groups Zn. These spaces,

parametrizing tuples (resp. commuting tuples) of elements of G, have also been

widely studied [Bai07, AC07, FL11, PS13, FL14, RS19, FS21]. When consider-

ing the homology of these spaces, an interesting phenomenon emerges: as shown

in [RS21], the homology groups of these spaces (and many variations thereof)

stabilize as n tends to infinity, in a well-defined sense due to [CF13] known as rep-

resentation stability. In Chapter 7, we will combine the notion of representation

stability with that of motivic stability [VW15] to define an analogous notion of

motivic representation stability for stability in the Grothendieck ring of varieties.

As an application, we will show that the character stacks of Fn and Zn stabilize

in this sense for the linear groups G = GLr.

These explicit applications and computations have led to a number of new com-

putational techniques. For instance, the study of equivariant motivic invariants,

in Section 3.6, describes how motivic invariants, in particular the virtual class,

behave with respect to finite group actions. The results in this section are crucial

to the computations for the SL2-character stacks, and to the definition of mo-

tivic representation stability. Other new computational techniques include the

introduction of algebraic representatives, in Section 6.1, and the development of

an algorithm for computing virtual classes, in Section 3.4. Without these tech-

niques, the computations for the character stacks for upper triangular matrices

of high rank would not have been possible.




