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ABSTRACT
Allogeneic hematopoietic stem cell transplantation (HSCT) is a curative treatment for many inborn errors of immunity,
metabolism, and hematopoiesis. No predictive models are available for these disorders. We created a machine learning
model using XGBoost to predict survival after HSCT using European Society for Blood and Marrow Transplant registry
data of 10,888 patients who underwent HSCT for inborn errors between 2006 and 2018, and compared it to a simple
linear Cox model, an elastic net Cox model, and a random forest model. The XGBoost model had a cross-validated area
under the curve value of .73 at 1 year, which was significantly superior to the other models, and it accurately predicted
for countries excluded while training. It predicted close to 0% and >30% mortality more often than other models at 1
year, while maintaining good calibration. The 5-year survival was 94.7% in the 25% of patients at lowest risk and 62.3%
in the 25% at highest risk. Within disease and donor subgroups, XGBoost outperformed the best univariate predictor.
We visualized the effect of the main predictors—diagnosis, performance score, patient age and donor type—using the
SHAP ML explainer and developed a stand-alone application, which can predict using the model and visualize predic-
tions. The risk of mortality after HSCT for inborn errors can be accurately predicted using an explainable machine
learning model. This exceeds the performance of models described in the literature. Doing so can help detect devia-
tions from expected survival and improve risk stratification in trials.
© 2023 The American Society for Transplantation and Cellular Therapy. Published by Elsevier Inc. This is an open
access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
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INTRODUCTION

Allogeneic hematopoietic stem cell transplantation (HSCT)
provides an often-curative treatment option for a diverse
group of inborn errors, including inborn errors of immunity,
metabolism, and hematopoiesis [1]. Within the European Soci-
ety for Blood nd Marrow Transplant (EBMT), more than 1500
patients undergo HSCT annually for an inborn error, the most
common nonmalignant indication for HSCT [2].

Outcomes of HSCT for inborn errors are highly dependent
on the disease, with an 88% 2-year overall survival for
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thalassemia [3], an 81% 2-year survival for severe combined
immunodeficiency (SCID) [4], and lower survival for familial
hemophagocytic lymphohistiocytosis [5].

Models predicting survival after HSCT have various pur-
poses, such as in trials, where multiple scores can be used to
evaluate whether groups are equally distributed for mortality
risk or to stratify patients according to this risk. In benchmark-
ing, such models can adjust for differences in patient popula-
tion among centers to fairly identify deviations from expected
survival [6].

For malignancies, multiple algorithms exist for stratifying
and predicting survival after HSCT, including algorithms that
predict using underlying diagnosis and disease stage [7,8] or
comorbidity [9]. Models also have been developed to adjust
for multiple patient, donor, and transplantation characteristics,
such as the EBMT risk score, which assigns points based on 5
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parameters [10], or an alternating decision tree model focused
on 100-day mortality [11]. However, no such scores exist for
inborn errors.

Survival prediction for patients with inborn errors is diffi-
cult, as patient groups are often small and risk factors may be
disease- or disease category-specific. For example, in SCID,
pretransplantation infection is a major factor influencing sur-
vival, requiring HSCT early in the first year of life [4,12],
whereas in hemoglobinopathies, overall survival decreases
with age throughout childhood into adulthood [3,13]. How-
ever, both disease categories follow the same donor hierarchy,
with preference for a matched sibling donor.

A predictive model that integrates all inborn errors should
be able to identify prognostic factors shared among all diagno-
ses, be able to adjust for them, and thus be able to determine
remaining factors predictive of a disease category or a single
disease more accurately, allowing for better predictions while
working with small numbers of patients per diagnosis.

To achieve this, we evaluated 2 machine learning
approaches: (1) a random survival forest, which fits many
decision trees by fitting them on randomized subsets of the
data and attempts to predict a patient-specific survival curve,
and (2) an XGBoost model, which fits many decision trees
through boosting, each one attempting to improve predictions
of the previous one, and uses the Cox loss function to predict a
patient-specific hazard ratio. We compared these approaches
to each other and to the more generally used linear Cox model.

METHODS

We included patients from the EBMT registry who under-
went first allogeneic HSCT for an inborn error between 2006
and 2018 to investigate determinants of survival. We retrieved
survival data and patient, donor, and transplantation charac-
teristics known at the time of HSCT from the registry. Given
that some of the terminology discussed below will be unfamil-
iar to physicians without extensive knowledge of machine
learning, a glossary explaining these terms has been included
in the Supplementary Data.

To predict survival, we evaluated a simple linear Cox model
without regularization or term interactions, an elastic net reg-
ularized Cox model with relevant interactions [14], a random
survival forest model to fit nonparametric survival curves [15],
and an XGBoost model optimizing the Cox negative log-likeli-
hood [16]. Covariate selection was based on data availability
and known effects in the literature (Supplementary Table S2).

For all models except the XGBoost model, MissForest impu-
tation was used to account for missing data [17]. The XGBoost
model can natively incorporate missing values. The full model
configuration, including hyperparameter search space and
optimization strategy, can be found in Supplementary Tables
S1 and S2. In cases of near ties, hyperparameters that led to
the least complex model were preferred. Iteration counts for
both the XGBoost model and random forest model were deter-
mined by inspecting learning curves.

To compare models, we determined the area under the
receiver operator characteristic curve (AUC) and calculated the
changes in AUC, CIs, and P values using the riskRegression R
package [18]. We used 10-fold cross-validation for internal
validation and used country-wise cross-validation among 4
countries with the most inclusions to assess the ability of the
model to extrapolate geographically, by refitting the model
while excluding a country and then evaluating model fit on
the excluded country.

To provide a benchmark on which models should improve,
we assessed predictors univariately, and determined the best

predictor in each disease category using Kaplan-Meier curves.
To evaluate model benefit within disease categories, we com-
pared the model AUC for that category against the best predic-
tor for it.

To express the effect of the final model in a more intuitive
way, we categorized cross-validated risks using the interquar-
tile range (IQR) as low risk (below the IQR), intermediate risk
(within the IQR), or high risk (above the IQR); determined sur-
vival per category; and investigated associations between risk
categories and patient, donor, and transplantation characteris-
tics. We used hierarchical disease coding to allow the decision
tree based models to fit effects that hold for an entire disease
category (eg, all hemoglobinopathies), a subgroup of a cate-
gory (eg, all non-SCID inborn errors of immunity) or a single
disease (Supplementary Data).

To explain machine learning predictions, we used SHAP val-
ues [19], an explainer that determines the influence of single
covariates on model predictions for each patient while account-
ing for interactions, and evaluated these both globally and
within single patients as examples. We also calculated the mean
absolute SHAP value for each covariate to determine the impor-
tance of each covariate. Model reporting was done in accordance
with the TRIPOD statement (Supplementary Data) [20].

RESULTS
Patient Characteristics

A total of 10,888 patients with survival data who under-
went HSCT for an inborn error were included. Diagnosis
groups consisted of hemoglobinopathies and inborn errors of
immunity and metabolism. Among these, 28% of the patients
had thalassemia, 27% had a non-SCID inborn error of immu-
nity, 16% had SCID, 8% had a histiocytic disorder, 10% had an
inborn error of metabolism, and 1% had a congenital bone mar-
row failure syndrome. Donors were mostly HLA-identical sib-
lings (43%) and unrelated donors (38%). Bone marrow was the
most common stem cell source (61% of cases), with peripheral
blood used in 25% of cases and cord blood used in 12% of cases
(Table 1).

When splitting data in groups and predicting using survival
curves, diagnosis was the best predictor of survival, with an
AUC of .63 (95% (I, .62 to .65) at 1 year, followed by donor
type, performance score at SCT, and stem cell source (Supple-
mentary Table S3). Within diagnosis subgroups, the best pre-
dictor varied, with AUC between .55 and .63 and donor type,
stem cell source and CMV matching the most common best
predictors within subgroups (Supplementary Table S4).

Model Comparison

We fit and compared a random forest model, an XGBoost
model, and 2 linear Cox models and investigated model perfor-
mance. At 1 year, the XGBoost model was the best-performing
model, with a cross-validated AUC of .728 (95% CI, .714 to
.742), followed by the random forest model at .713 (95% CI,
.698 to .727). The XGBoost model yielded significantly more
accurate predictions than the Cox, elastic net Cox, and random
forest models at 1 year (P < .001 against all models). At 5 years,
the XGBoost and random forest model performed equally
(AAUC, -.004; 95% CI, -.004 to .013: P =.3). Both the simple and
elastic net Cox models performed markedly worse at all time
points. In all models, a drop in accuracy over time can be seen
(Table 2).

Cross-validated model calibration was excellent for pre-
dicted mortality between 0 and 25% for all models, above
which the Cox-based models overestimated mortality,
whereas the random forest model underestimated mortality
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Table 1
Demographic Characteristics of the Included Patients (N = 10,888)
Characteristic Value
Disease category, n (%)
Inborn errors of immunity 4682 (43)
Hemoglobinopathies 4144 (38)
Inborn errors of metabolism 1055 (9.7)
Histiocytic disorders 877 (8.1)
Congenital bone marrow failure 130(1.2)
Age at transplantation, yr, median (IQR) 4(1-10)
Unknown, n 1
Stem cell source, n (%)
Bone marrow 6655 (61)
PB 2731 (25
CB 1290 (12)
Combined grafts 212(1.9)
Donor type, n (%)
Identical sibling 4613 (43)
Unrelated 4127 (38)
Mismatched relative 1247 (12)
Matched other relative 855(7.9)
Unknown 46
Performance status, n (%)
100 3435 (45)
90 2292 (30)
80 1140 (15)
70-10 724(9.5)
Unknown 3297
CMV serostatus, patient/donor, n (%)
+[+ 4458 (49)
-/- 1913 (21)
+/- 1335(15)
-+ 1323 (15)
Unknown 1859
Patient sex, n (%)
Male 6609 (61)
Female 4279 (39)
Donor sex, n (%)
Male 5698 (54)
Female 4874 (46)
Unknown 316

(Supplementary Figure S1A, B). The simple Cox and elastic net
Cox model had a similar prediction distribution, whereas the
XGBoost model identified a very low-risk group, as well as a
more high-risk group. The random forest model mainly differ-
entiated between intermediate-risk and high-risk patients
(Supplementary Figure S1C, D).

Table 2

In the XGBoost model, patients are assigned a single haz-
ard, as it uses the Cox loss function. However, for the random
survival forest model, the risk for one patient compared to
another can change over time, because the model predicts
nonparametric survival curves. This makes the predictions of
the XGBoost model easier to interpret and apply, and thus we
further dissected its performance.

When performing country-wise cross-validation, the
XGBoost model performed consistently with internal valida-
tion. The model performed better than internal validation in
France and did not show a drop in accuracy over time for that
country; however, it performed slightly worse than internal
validation in the United Kingdom (Table 3).

When analyzing performance between countries, we found
that performance varied across disease groups, with excep-
tionally high model accuracy for hemoglobinopathies in France
and high accuracy for inborn errors of immunity and metabo-
lism in Turkey. Within the UK, performance in each disease
group was in line with internal validation (Supplementary
Table S5); however, survival was significantly higher for the
inborn errors of immunity and metabolism group (P < .001),
whereas survival of other disease groups was in line with other
countries. This could cause the model to incorrectly compare
patients with an inborn error of immunity and metabolism
with patients with other diagnoses, explaining why discrimi-
native performance was reduced when globally evaluating the
model but not when looking at specific disease groups (Sup-
plementary Table S6).

Model Performance

When categorizing cross-validated risk as low (below the
IQR), intermediate (within the IQR), and high (above the IQR),
1-year survival was 96.2% (95% Cl, 95.4% to 97.0%) in the low-
risk group, 87.7% (95% Cl, 86.8% to 88.6%) in the intermediate-
risk group, and 69.0% (95% CI, 67.2% to 70.9%) in the high-risk
group, an 8.1-fold higher mortality compared with the low-
risk group. At 5 years, survival in the 3 groups was 94.7% (95%
Cl, 93.7% to 95.7%), 83.1% (955 CI, 81.9% to 84.3%), and 62.3%
(95% CI, 6.2% to 64.4%), respectively. The simple Cox model
revealed a ratio of only 6:1 for similarly categorized predic-
tions between the high-risk and low-risk groups at 1 year
(Figure 1A, Supplementary Table S7).

The low-risk group consisted mostly of hemoglobinopa-
thies, with 75% of sickle cell patients and 48% of thalassemia
patients included in this group. Only 6% of identical sibling
transplants fell in the high-risk group, whereas 63% of mis-
matched relative transplants were categorized as such. How-
ever, when examining risk within specific diagnosis and donor
categories, considerable additional variation caused by other
covariates remained (Figure 1B, C, Supplementary Table S8).

When analyzing which covariates had the most influence
on the model, we used mean absolute SHAP values, which

Discriminative Performance of Evaluated Models, Measured as AUC, at 1, 2, and 5 Years Post-HSCT and the Decrease in AUC when Choosing this Model vs the Best Per-

forming Model at that Time Point, Calculated Using 10-Fold Cross-Validation

Model AUCat 1yr Performance vs AUC at 2 yr Performance vs AUC at 5 yr Performance vs

best predictor at 1 yr best predictor at 2 yr best predictor at 5 yr
Simple .697 (.683-.712) .031 (.022-.040); P <.001 .688 (.673-.703) .028 (.019-.038); P <.001 .679 (.662-.696) .019 (.010- 028); P <.001
Cox model
Elasticnet | .698(.684-713) | .030(.021-.039); P<.001 | .686(.671-.701) | .030(.021-.039); P<.001 | .667(.650-.684) | .031(.022-.040); P <.001
Cox model
Random 713(.698-.727) | .016(.009-.023); P<.001 | .705(.690-.720) | .011(.004-.018); P=.003 | .698 (.682-.715) | Best predictor
forest
XGBoost 728 (.714-.742) Best predictor 716 (.701-.731) Best predictor .694 (.677-.710) .004 (.013-.004); P=.3
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Table 3
Geographical Validation of Discriminative Performance of the XGBoost Model for Countries with >1000 Included Subjects, Measured as AUC, at 1, 2, and 5 Years Post-
HSCT

Country AUC at 1 yr (95% CI) AUC at 2 yr (95% CI) AUC at 5 yr (95% CI)

France (n = 1042) 771 (.737-.805)

777 (.742-.811) 768 (.724-.811)

Italy (n = 1494) 745 (.704-.785)

710 (.669-.751) 674 (.630-.718

Turkey (n = 1245) 746 (.700-.793)

722 (672-771)

United Kingdom (n = 1240) .706 (.664-.748)

)
689 (.622-.756)
)

685 (.643-.728) 653 (.608-.698

Note that a lower AUC is not associated with better or worse survival than expected, only with less accurate survival predictions.

allowed us to integrate multiple levels of a single covariate and
analyze diagnoses using hierarchical disease coding. Predic-
tions were driven mainly by diagnosis, donor type, and patient
performance status score and age. CMV serostatus matching,
conditioning agents used, and stem cell source were of second-
ary importance (Figure 2A).

Examining SHAPs for the most important predictors uni-
variately revealed that the model properly captured well-
known facts: hemoglobinopathies are lower risk than other
inborn errors, a higher performance score at time of transplan-
tation is favorable, and having an identical sibling donor
improves survival. We found that younger age appeared favor-
able, but that additional heterogeneity was caused by other
covariates (Figure 2B, C).

Histiocytic disorders

Within the univariate SHAP plots, chronic granulomatous
disease (CGD) and Wiskott- Aldrich syndrome (WAS) appeared
to result in favorable predictions. When analyzing risk groups,
348 out of 2924 patients with a non-SCID inborn error of
immunity were in the low-risk group, with 242 of these
patients having either CGD or WAS, indicating that these diag-
noses have more favorable outcomes after HSCT compared to
other non-SCID inborn errors of immunity.

When inspecting interactions, the effect of age varied with
the graft source, with the increased risk at a older age reduced
for patients receiving a peripheral blood stem cell graft,
whereas patients receiving such a graft at a younger age had a
reduced benefit of their younger age (Figure 2C). We also saw
that inborn errors of immunity or metabolism were associated
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Figure 1. (A) Survival according to cross-validated predicted risk quantiles using the XGBoost model, including number at risk and survival probabilities at 2.5 and
5 years. (B) Predicted risk quantiles by diagnosis and donor group. (C) Risk density plot for the linear predictor by disease subcategory and donor relation, with lines

representing the cutoffs for risk quantiles.
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for the top 15 parameters. SHAP values are equivalent to a change in the XGBoost linear predictor; negative values mean a lower risk of death and thus better survival.
(C) SHAP plot for the influence of age on predicted survival, color-coded by graft source. Of interest is that when a peripheral blood stem cell graft is used, the SHAP
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with especially poor outcome in patients with a low perfor-
mance status score at time of transplantation (Figure 2D).

Application Development

To make the model usable for future research, we have
made the complete model object available, including code on
how to use the model. To allow researchers inexperienced
with machine learning to use the model, we include a stand-
alone offline application for the model that can predict HSCT
mortality risk, visualize these predictions, and provide both
global and disease category-specific references on where this
prediction falls relative to other predictions included in the
research cohort (Supplementary Data).

The application is structured as follows. On the left is a data
entry panel, which allows users to enter data as entered in the
EBMT registry (Figure 3A). To allow the user to view the contri-
bution of parameters to the current prediction, the tool offers a
SHAP waterfall plot of the top 6 contributing parameters. The
parameters shown can change, depending on the data, as
interactions can change the role of specific parameter values
(Figure 3B).

The application also draws an overall survival curve, which
plots the estimated survival given the entered data and curves
at point predictions of the median risk and the 10% and 90%
risk quantiles. It also reports the risk level of the patient in
relation to both the overall cohort and patients within the
same disease category (Figure 3C, D).

DISCUSSION

For patients with inborn errors, survival following HSCT is
dependent on both general and disease-specific factors, and
some factors, such as age, are not linearly associated with sur-
vival. Here we have presented a machine learning model using
XGBoost, which can accurately predict survival for these
patients with good calibration and geographical extrapolation,
by modeling the effects of patient, donor, and transplant

characteristics and their interactions using boosted decision
trees.

This model is the first published prognostic model that pre-
dicts survival after HSCT for inborn errors, whereas such mod-
els for malignancies are common. This population proved
especially challenging because it cannot be assumed that prog-
nostic indicators are shared among all diagnoses, and because
some diagnoses are extremely rare. Thus, we embedded
knowledge on diagnosis categorization in model parameters,
allowing the model to fit general effects, effects that hold for a
disease category, and effects that hold only for a specific dis-
ease.

We envision several applications for this model, such as
evaluating equal distribution of risk when performing retro-
spective trials, stratifying patients based on risk when per-
forming interventional trials, or in quality management to
detect deviations from expected survival. However, it is not a
causal model and so cannot be used to infer causal relations
regarding determinants of survival and their interaction. It
also is not meant to be applied in patient care, which would
require a costly certification process and constant evaluation
of model accuracy in patients in whom it is used, which is not
feasible in the context of retrospective registry studies.

In gene therapy for inborn errors as an alternative to HSCT,
which is starting to become available for specific forms of SCID
[21,22] and is being studied for many different inborn errors
[23], model predictions could be used to compare the results
of gene therapy with expected results if HSCT were performed
instead, adjusting for a patient’s specific risk factors, and
results could be tested against multiple hypothetical donors to
identify in which cases gene therapy would be most beneficial.

Regarding discriminative performance, a previous study
comparing multiple prognostic scores for hematologic malig-
nancies identified the revised pretransplantation assessment
of mortality as the best performing score, reaching an AUC of
.64 at 2 years, with other scores reaching AUCs between .63
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Figure 3. PREPAD visualizer application. (A) Parameter entry pane containing patient, donor, and transplantation characteristics. (B) SHAP waterfall plot of the top 6
parameters with the most influence on the current prediction. (C) Current estimated risk percentage for the patient, related to the entire cohort and the risk subgroup.
(D) Estimated survival in years according to the XGBoost model, in relation to the median and 10% and 90% risk quantile point predictions.

and .58 at 2 years, and more recent studies show similar per-
formance [8,24,25]. Considering this, an AUC of .716 at 2 years
is a big step forward.

Compared to the simple Cox model, the XGBoost model
increased the AUC by .028 at 2 years, with an even larger dif-
ference at 1 year. For reference, adjusting the HSCT Comorbid-
ity Index for use in nonmalignant patients improved its
predictive performance from .643 to .649 at 2 years, and the
revised version of the Disease Risk Index showed a C-index of
.643, compared to .637 for the original, with both indices
increasing the C-index by .006 [26]. This indicates that while
numerically small, the relative improvement in accuracy from
using XGBoost is substantial.

A limitation of the AUC is that it is strongly dependent on
the cohort, which is also demonstrated by the variability
between countries in external validation. No existing scores
apply to our cohort, leaving the AUC difficult to interpret, given
that the only reference points are the other approaches that
we tried. Model categorization is easier to interpret, with 3.8%
of patients dying in the low-risk group at 1 year versus 31% in
the high-risk group (an 8.1-fold difference), whereas the sim-
ple Cox model showed only a 6.1-fold difference in survival
between similarly created groups.

These risk groups were created arbitrarily, because the pre-
dicted risk was distributed smoothly. Dividing the predicted
risk into more groups would be equally valid and could allow
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for more fine-grained risk categorization. However, when
applying the model, exact predicted survival should be used
instead of relying on categorization to achieve the model’s full
discriminative potential. We ensured that this was feasible by
freely providing the model object as well as an example appli-
cation that can be used to enter patient characteristics and
form predictions.

The added model complexity, with thousands of estimates
instead of tens at most in previous models, allowed us to
achieve this performance but comes at the cost of interpret-
ability. We used SHAP values to investigate the modeled
effects and their interactions. The example application allows
users to enter specific patients, investigate the main determi-
nants, see the prediction and the associated SHAP explanation,
and change parameters on the fly to see the change in predic-
tion and the explanation. However, these explainers should
not be misinterpreted as causal effects. For example, a rela-
tively modest increase in mortality at a higher patient age
might be modeled owing to a less aggressive course of disease
for patients of older age not needing transplantation earlier in
life, and thus should not be used as an argument to delay
transplantation. Similarly, the excellent results using an HLA-
identical sibling donor may be augmented by the benefit of
HSCT more often outweighing the risks if an identical sibling
donor is available, causing low-risk patients to be treated with
an identical sibling donor more often.

Although simple scores can be calculated using only
weights that can be published in a table, our scores cannot be
calculated in this manner, and so an application to calculate
risk is needed. When designing this application, future avail-
ability was a key concern. Sustainably maintaining a web
application that processes patient data available is a challenge
in academia, as demonstrated by the fact that 2 previously
available applications are no longer available at the time of
this report [11,27]. To avoid this, we took an approach in
which the application can be run both online and offline using
Shiny [28], which by being open source serves as a reference
implementation to easily allow future use in large datasets.

A limitation of the model lies in data collection, which
ended in 2018 to ensure a decent duration of follow-up. Inno-
vations and changes in HSCT practice over time may change
the accuracy of the model, necessitating refitting. In an analy-
sis that included year of transplantation as a covariate, predic-
tion accuracy did not improve, but we cannot anticipate if this
may change in a more recent or future dataset. For example,
the increasing use of post-transplantation cyclophosphamide
for HLA-mismatched transplantation may change the influ-
ence of donor type on survival probability. Coronavirus disease
2019 (COVID-19) also might have an impact, both because
patients may be at risk for COVID-19 itself, and because of the
increased use of cryopreserved grafts during the COVID-19
pandemic [29].

Missing data remained a challenge during model develop-
ment, and the ability of XGBoost to incorporate missing data
into the model and make predictions based on incomplete
data may be one reason for its superior performance over the
other modeling approaches, which rely on imputation of miss-
ing data both for fitting and for prediction. Ideally, we could
evaluate the model against a complete and correct dataset to
see whether performance would change; however, obtaining
such a dataset while remaining representative of clinical prac-
tice, and thus not excluding patients, is currently unfeasible.
We hope that with current efforts to increase the reliability of
registry data, future models can be developed without the
need to rely on handling of missing data and the inherent

uncertainty associated with it, and thus become even more
accurate.
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