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A.1 Appendix: (LEAN) graph-based pruning for con-
volutional neural networks by extracting longest chains

A.1.1 Datasets

In this appendix we discuss some more details on the datasets used for experimen-
tation.

Figure Al: Example input and target images of the (top left) Circle-Square (CS),
(top right) CamVid, (bottom) real-world dynamic CT datasets.

Simulated Circle-Square (CS) dataset: We used a simulated high-noise
5-class segmentation dataset containing 256 x 256 images of randomly placed
squares and circles (CS dataset) [183] (see Figure Al). The objects were assigned
a random grey value and Gaussian noise was added to the images. In total, we
generated 1000 training, 250 validation, and 100 test images. Experimental results
on the CS dataset are quantified using global accuracy, i.e., the ratio of correctly
classified pixels, regardless of class, to the total number of pixels.

CamVid: The Cambridge-driving Labeled Video Database (CamVid) [24, 25]
is a collection of videos with labels, captured from the perspective of a driving
automobile. In total, 700 labeled frames are split into 367 training, 100 validation,
and 233 test images. As there are few training images, we combined the training and
validation datasets and trained for a fixed 500 epochs. Similar to other papers that
apply CNNs to CamVid [9, 180], we use 11 classes, and a single class representing
unlabeled pixels (see Figure Al).

We used median frequency balancing [56] to balance classes for training, and set
the unlabeled class weights to zero. During training, we used data augmentation
by cropping and (horizontally) flipping input images.
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Unpruned Random Magnitude Operator norm LEAN

Figure A2: Adjacency matrices of active convolutions (in white) after pruning. All
pruned network were pruned to a ratio of 10%. From left to right, we have the
unpruned matrix of a 100-layer MS-D network trained on the real-world dynamic CT
dataset, randomly pruned convolutions, structured magnitude pruning, structured
operator norm pruning, and LEAN.

Real-world dynamic CT dataset: The real-time dynamic X-ray CT dataset
contains images of a dissolving tablet suspended in gel [38, 39]. The bubbles are to
be segmented within a glass container filled with gel [209] (see Figure Al). The
dataset consists of 512 x 512 images, split into 9216 training images, 2048 validation
images, and 1536 test images. As in [209], we use the Fl-score because the large
amount of background pixels make global accuracy an unsuitable metric.

A.1.2 Reducing the size of the pruning graph

The procedure outlined in Section 4.4 can lead to large pruning graphs, but the size
of the graph can be reduced. First, according to Equation 4.3, the operator norm
of ReLU is 1. Therefore, the combination of a convolution followed by a ReLLU can
be combined into a single edge whose weight equals the norm of the convolution.

Batch normalization often succeeds a convolution. Batch-normalization scaling
is applied with different learned parameters per input channel, and output a
single channel. Therefore, the input convolution edge and the following batch
normalization edges can be combined. The edges can be combined into a single
edge whose weight is the product of the two edge weights, preserving the path
length.

A.1.3 Structure of pruned MS-D networks

To investigate the structure of pruned networks we plotted the adjacency matrices
of pruned networks where an entry is 0 if it is pruned (black) and 1 if it is still
active (white). Here, we show the adjacency matrices of MS-D networks pruned to
a ratio of 10% in Figure A2. After pruning, LEAN retains only connections linked
to nearby layers in the densely connected MS-D network. Compared to individual
filter pruning, LEAN exposes a distinct structure which may suggest that LEAN
could be used for architecture discovery.
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A.2 Appendix: Benchmarking optimization algorithms

for auto-tuning GPU kernels

A.2.1 Tunable parameters per GPU kernel

In Table A.1 we show the tunable parameters per kernel, and the values each
parameter could take. For the convolution kernel, the MI50 GPU (the only AMD
model) required a different problem setup due to hardware constraints.

Kernel parameter to tune list of values number of
possible values
Convolution block_size_x 1,2,4,8,16,32,48, 12
(except MI50) 64, 80, 96,112,128
block_size_y 1,2,4,8,16,32 6
tile_size_x 1,2,3,4,5,6,7,8 8
tile_size_y 1,2,3,4,5,6,7,8 8
use_padding 0,1 2
read_only 0,1 2
Convolution block_size_x 16, 32,48, 64, 8
(MI50) 80,96,112,128
block_size_y 1,2,4,8,16,32 6
tile_size_x 1,2,4 3
tile_size_y 1,2,4 3
use_padding 0,1 2
GEMM MWG 16, 32,64, 128 4
NWG 16, 32,64, 128 4
MDIMC 8,16,32 3
NDIMC 8,16,32 3
MDIMA 8,16,32 3
NDIMB 8,16,32 3
VWM 1,2,4,8 4
VWN 1,2,4,8 4
SA 0,1 2
SB 0,1 2
Point-in-polygon block_size_x 32,64, 96, 128,160, 192, 224, 31
256, 288, 320, 352, 384, 416,
448,480, 512, 544, 576, 608,
640,672,704, 736, 768, 800,
832, 864, 896, 928, 960, 992
tile_size 1,2,4,6,8, 10, 11
12,14,16, 18,20
between_method 0,1,2,3 4
use_precomputed_slopes 0,1 2
use_method 0,1,2 3

Table A.1: Tunable parameters per kernel, and list of possible values for each

parameter.
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A.2.2 Alternative splits for competition heatmaps

In Figures Al and A6 we show the algorithm competition heatmaps such as in
Figures 5.1, 5.2 and 5.3, but when split at 100 and 400 budgets instead of 200.
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Algorithm Column beats Row - convolution feval <= 100
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Algorithm Column beats Row - convolution feval > 100
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Figure Al: (Convolution:) Occurrences when the column algorithm found better
solutions than the row algorithm. An occurrence is counted when 50 runs for a
budget are statistically significantly better according to a two-sample independent
t-test (o = 0.05). (Top): Heatmap for low < 100 budgets (25, 50, 100). (Bottom):
Heatmap for mid and high > 100 budgets (200, 400, 800, 1600). Algorithms
with low values (blue) in their rows were not often beaten for those budgets, and
algorithms with high values in their column (red) often beat other algorithms.
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Figure A2: (GEMM:) Occurrences when the column algorithm found better so-
lutions than the row algorithm. An occurrence is counted when 50 runs for a
budget are statistically significantly better according to a two-sample independent
t-test (o = 0.05). (Top): Heatmap for low < 100 budgets (25, 50, 100). (Bottom):
Heatmap for mid and high > 100 budgets (200, 400, 800, 1600). Algorithms
with low values (blue) in their rows were not often beaten for those budgets, and
algorithms with high values in their column (red) often beat other algorithms.
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t-test (o = 0.05). (Top): Heatmap for low < 100 budgets (25, 50, 100). (Bottom):
Heatmap for mid and high > 100 budgets (200, 400, 800, 1600). Algorithms
with low values (blue) in their rows were not often beaten for those budgets, and
algorithms with high values in their column (red) often beat other algorithms.
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Algorithm Column beats Row - convolution feval <= 400
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Figure A4: (Convolution:) Occurrences when the column algorithm found better
solutions than the row algorithm. An occurrence is counted when 50 runs for a
budget are statistically significantly better according to a two-sample independent
t-test (v = 0.05). (Top): Heatmap for low < 400 budgets (25, 50, 100, 200, 400).
(Bottom): Heatmap for mid and high > 400 budgets (800, 1600). Algorithms
with low values (blue) in their rows were not often beaten for those budgets, and
algorithms with high values in their column (red) often beat other algorithms.
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Figure A5: (GEMM:) Occurrences when the column algorithm found better so-
lutions than the row algorithm. An occurrence is counted when 50 runs for a
budget are statistically significantly better according to a two-sample independent
t-test (v = 0.05). (Top): Heatmap for low < 400 budgets (25, 50, 100, 200, 400).
(Bottom): Heatmap for mid and high > 400 budgets (800, 1600). Algorithms
with low values (blue) in their rows were not often beaten for those budgets, and
algorithms with high values in their column (red) often beat other algorithms.
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Figure AG6:

(Bottom): Heatmap for mid and high > 400 budgets (800, 1600).
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A.2.3 Per kernel graphs of experimental results

In Figures A7 to A15 we show plots of algorithm performance in terms of fraction
of optimal fitness found for certain budget used (per GPU).



A.2. APPENDIX: BENCHMARKING OPTIMIZATION ALGORITHMS FOR
AUTO-TUNING GPU KERNELS 177

Algorithm fraction of optimum per GPU for convolution
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Figure A7: Convolution: Fraction of optimal runtime per GPU for FirstILS,
FirstMLS, dual annealing, simulated annealing, and GLS over 50 runs. Each
point is the mean fraction of optimal runtime found (y-axis) for mean budget used
(logarithmic z-axis), with error bars indicating the standard deviation in fraction
of optimum.
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Algorithm fraction of optimum per GPU for convolution
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x-axis), with error bars indicating the standard deviation in fraction of optimum.
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Algorithm fraction of optimum per GPU for GEMM
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Figure A10: GEMM: Fraction of optimal runtime per GPU for FirstILS, FirstMLS,
dual annealing, simulated annealing, and GLS over 50 runs. Each point is the
mean fraction of optimal runtime found (y-axis) for mean budget used (logarithmic
x-axis), with error bars indicating the standard deviation in fraction of optimum.
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Figure A11: GEMM: Fraction of optimal runtime per GPU for GA, BestMLS,
BestILS, basin hopping, and differential evolution over 50 runs. Each point is the
mean fraction of optimal runtime found (y-axis) for mean budget used (logarithmic
x-axis), with error bars indicating the standard deviation in fraction of optimum.
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Figure A12: GEMM: Fraction of optimal runtime per GPU for SMAC, FirstTabu,
BestTabu, PSO, and random sampling over 50 runs. Each point is the mean fraction
of optimal runtime found (y-axis) for mean budget used (logarithmic z-axis), with
error bars indicating the standard deviation in fraction of optimum.
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Figure A13: Point-in-polygon: Fraction of optimal runtime per GPU for FirstILS,
FirstMLS, dual annealing, simulated annealing, and GLS over 50 runs. Each point
is the mean fraction of optimal runtime found (y-axis) for mean budget used
(logarithmic z-axis), with error bars indicating the standard deviation in fraction
of optimum. The point-in-polygon kernel was not implemented for the MI50 GPU.
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Figure A14: Point-in-polygon: Fraction of optimal runtime per GPU for GA,
BestMLS, BestILS, basin hopping, and differential evolution over 50 runs. Each
point is the mean fraction of optimal runtime found (y-axis) for mean budget used
(logarithmic z-axis), with error bars indicating the standard deviation in fraction
of optimum. The point-in-polygon kernel was not implemented for the MI50 GPU.
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Figure A15: Point-in-polygon: Fraction of optimal runtime per GPU for SMAC,
FirstTabu, BestTabu, PSO, and random sampling over 50 runs. Each point is the
mean fraction of optimal runtime found (y-axis) for mean budget used (logarithmic
x-axis), with error bars indicating the standard deviation in fraction of optimum.
The point-in-polygon kernel was not implemented for the MI50 GPU.





