&2 Universiteit
4] Leiden
The Netherlands

On the optimization of imaging pipelines
Schoonhoven, R.A.

Citation
Schoonhoven, R. A. (2024, June 11). On the optimization of imaging pipelines.
Retrieved from https://hdl.handle.net/1887/3762676

Version: Publisher's Version

Licence agreement concerning inclusion of doctoral thesis
in the Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/3762676

License:

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3762676

CuURRICULUM VITAE

Richard Schoonhoven was born in 1995 in Utrecht, the Netherlands. He com-
pleted his secondary education at RSG Broklede in Breukelen, the Netherlands.
Afterwards, he completed bachelor’s degrees (both cum laude) in mathematics and
physics at Utrecht University in 2016, and obtained master’s degrees (both cum
laude) in mathematics and computer science in 2019 from Utrecht University. The
master’s thesis with the title “Improving cryo-ET reconstructions of ER-associated
ribosomes with tomographic reconstruction methods and deep learning” was su-
pervised by Dr. Tristan van Leeuwen. In 2019, he started as a PhD candidate at
Centrum Wiskunde & Informatica (the national research institute for mathemat-
ics and computer science in Amsterdam) under the supervision of Prof.dr. K.J.
Batenburg.

161

ACKNOWLEDGMENTS

First, I thank my advisors, Prof. Joost Batenburg and Dr. Daniél Pelt, for the
time and energy they have put into providing motivating, educational, and fun
supervision of our research projects. In particular, I would like to thank them for
providing me with large amounts of freedom to pursue different research directions,
which has made the past four years a thoroughly enjoyable part of my career.

In addition, I would like to thank Dr. Ben van Werkhoven for his energetic and
stimulating approach to research and supervision, which has made several of our
projects a great pleasure to collaborate on.

I would also like to thank my colleague Dr. Alexander Skorikov for his compan-
ionable collaboration, and his tireless energy for dealing with my ceaseless stream
of thoughts, and at times, tumultuous working style.

A special thank you goes out to my co-authors at the ESRF who have hosted me
for several weeks on many occasions, and for their efforts to make me feel welcome
and show me around their impressive facilities. I have to mention in particular
Dr. Alexandra Pacureanu who was kind enough to allow me to stay in their city
apartment in Grenoble during these trips.

I would like to thank my co-authors Allard Hendriksen, Bram Veenboer, and
Jan-Willem Buurlage, who have greatly helped me with my research projects and
spent time and effort teaching me more about new topics.

In particular, I would like to thank Willem Jan Palenstijn for his expert and
patient help on countless problems I encountered.

I thank the colleagues whom I shared an office with, Vladyslav Andriiashen,
Mathé Zeegers, Adriaan Graas, Poulami Ganguly, Francien Bossema, Jordi Min-
nema, Dirk Schut, Maximilian Kiss, Tianyuan Wang, Rien Lagerwerf for providing
stimulating conversations and a pleasant work environment.

Many others contributed to a great research environment, among which Floris-
Jan, Jiayang, Serban, Alex, Nicola, Henri, Maureen, Dzemila, Georgios, Sophia,
Felix, Rob, Robert, Hamid, Roozbeh, Ajynkya, Jan, and Tristan.

I would like to thank my family and friends for their support, and camaraderie
over the years.

Finally, T would like to thank Sasha for her love, infinite patience, and whole-
hearted support.

163

APPENDICES

165

166 APPENDIX A. APPENDICES

A.1 Appendix: (LEAN) graph-based pruning for con-
volutional neural networks by extracting longest chains

A.1.1 Datasets

In this appendix we discuss some more details on the datasets used for experimen-
tation.

Figure Al: Example input and target images of the (top left) Circle-Square (CS),
(top right) CamVid, (bottom) real-world dynamic CT datasets.

Simulated Circle-Square (CS) dataset: We used a simulated high-noise
5-class segmentation dataset containing 256 x 256 images of randomly placed
squares and circles (CS dataset) [183] (see Figure Al). The objects were assigned
a random grey value and Gaussian noise was added to the images. In total, we
generated 1000 training, 250 validation, and 100 test images. Experimental results
on the CS dataset are quantified using global accuracy, i.e., the ratio of correctly
classified pixels, regardless of class, to the total number of pixels.

CamVid: The Cambridge-driving Labeled Video Database (CamVid) [24, 25]
is a collection of videos with labels, captured from the perspective of a driving
automobile. In total, 700 labeled frames are split into 367 training, 100 validation,
and 233 test images. As there are few training images, we combined the training and
validation datasets and trained for a fixed 500 epochs. Similar to other papers that
apply CNNs to CamVid [9, 180], we use 11 classes, and a single class representing
unlabeled pixels (see Figure Al).

We used median frequency balancing [56] to balance classes for training, and set
the unlabeled class weights to zero. During training, we used data augmentation
by cropping and (horizontally) flipping input images.

A.1. APPENDIX: (LEAN) GRAPH-BASED PRUNING FOR
CONVOLUTIONAL NEURAL NETWORKS BY EXTRACTING LONGEST
CHAINS 167

Unpruned Random Magnitude Operator norm LEAN

Figure A2: Adjacency matrices of active convolutions (in white) after pruning. All
pruned network were pruned to a ratio of 10%. From left to right, we have the
unpruned matrix of a 100-layer MS-D network trained on the real-world dynamic CT
dataset, randomly pruned convolutions, structured magnitude pruning, structured
operator norm pruning, and LEAN.

Real-world dynamic CT dataset: The real-time dynamic X-ray CT dataset
contains images of a dissolving tablet suspended in gel [38, 39]. The bubbles are to
be segmented within a glass container filled with gel [209] (see Figure Al). The
dataset consists of 512 x 512 images, split into 9216 training images, 2048 validation
images, and 1536 test images. As in [209], we use the Fl-score because the large
amount of background pixels make global accuracy an unsuitable metric.

A.1.2 Reducing the size of the pruning graph

The procedure outlined in Section 4.4 can lead to large pruning graphs, but the size
of the graph can be reduced. First, according to Equation 4.3, the operator norm
of ReLU is 1. Therefore, the combination of a convolution followed by a ReLLU can
be combined into a single edge whose weight equals the norm of the convolution.

Batch normalization often succeeds a convolution. Batch-normalization scaling
is applied with different learned parameters per input channel, and output a
single channel. Therefore, the input convolution edge and the following batch
normalization edges can be combined. The edges can be combined into a single
edge whose weight is the product of the two edge weights, preserving the path
length.

A.1.3 Structure of pruned MS-D networks

To investigate the structure of pruned networks we plotted the adjacency matrices
of pruned networks where an entry is 0 if it is pruned (black) and 1 if it is still
active (white). Here, we show the adjacency matrices of MS-D networks pruned to
a ratio of 10% in Figure A2. After pruning, LEAN retains only connections linked
to nearby layers in the densely connected MS-D network. Compared to individual
filter pruning, LEAN exposes a distinct structure which may suggest that LEAN
could be used for architecture discovery.

168

APPENDIX A. APPENDICES

A.2 Appendix: Benchmarking optimization algorithms

for auto-tuning GPU kernels

A.2.1 Tunable parameters per GPU kernel

In Table A.1 we show the tunable parameters per kernel, and the values each
parameter could take. For the convolution kernel, the MI50 GPU (the only AMD
model) required a different problem setup due to hardware constraints.

Kernel parameter to tune list of values number of
possible values
Convolution block_size_x 1,2,4,8,16,32,48, 12
(except MI50) 64, 80, 96,112,128
block_size_y 1,2,4,8,16,32 6
tile_size_x 1,2,3,4,5,6,7,8 8
tile_size_y 1,2,3,4,5,6,7,8 8
use_padding 0,1 2
read_only 0,1 2
Convolution block_size_x 16, 32,48, 64, 8
(MI50) 80,96,112,128
block_size_y 1,2,4,8,16,32 6
tile_size_x 1,2,4 3
tile_size_y 1,2,4 3
use_padding 0,1 2
GEMM MWG 16, 32,64, 128 4
NWG 16, 32,64, 128 4
MDIMC 8,16,32 3
NDIMC 8,16,32 3
MDIMA 8,16,32 3
NDIMB 8,16,32 3
VWM 1,2,4,8 4
VWN 1,2,4,8 4
SA 0,1 2
SB 0,1 2
Point-in-polygon block_size_x 32,64, 96, 128,160, 192, 224, 31
256, 288, 320, 352, 384, 416,
448,480, 512, 544, 576, 608,
640,672,704, 736, 768, 800,
832, 864, 896, 928, 960, 992
tile_size 1,2,4,6,8, 10, 11
12,14,16, 18,20
between_method 0,1,2,3 4
use_precomputed_slopes 0,1 2
use_method 0,1,2 3

Table A.1: Tunable parameters per kernel, and list of possible values for each

parameter.

A.2. APPENDIX: BENCHMARKING OPTIMIZATION ALGORITHMS FOR
AUTO-TUNING GPU KERNELS 169

A.2.2 Alternative splits for competition heatmaps

In Figures Al and A6 we show the algorithm competition heatmaps such as in
Figures 5.1, 5.2 and 5.3, but when split at 100 and 400 budgets instead of 200.

170 APPENDIX A. APPENDICES

Algorithm Column beats Row - convolution feval <= 100

BasinHopping n--- 11 6 5 - 6 7 9 - 5 6
gestis |5 [ENIENIEN 2 EIE s Bl 6 7 9 6 7 9
BestMLS | 6 -n- 115 8 (7 P5HIEN 10 10 | 7 11 10
BestTabu [17 [pREEI 12 [gias] 11 12 5

DifferentialEvolution

DualAnnealing

FirstILS 6
Firstis |50 ICHICHIEN 10 13 ERIEICEEN 7 8 6 8 [5
Firstrabu |5 RNl 2 e 5 Rl 5 1112 7 9 9

os MREE 13“““6 3] 4 [E] 5
GeneticAlgorithm n n 1 n 5 n
ParticleSwarm n nn 6 n
RandomSampling 5 5 11 7 7 11“10 5
VLI 0 | 1 | 8 5 (afa]1] 5
SimulatedAnnealing -n 6 n
20035200398 ¢E¢28¢8

s B s = B 5 68 = <« =

< wog < C 2 un <

8 g3 $55 3

Algorithm Column beats Row - convolution feval > 100

BasinHopping n12 12 8 9 14 16 16 7 16 12 8 -n 16
BestILS
BestMLS N 7 7
BestTabu
DifferentialEvolution
DualAnnealing
FirstILS

FirstMLS
FirstTabu

GLS
GeneticAlgorithm
ParticleSwarm

RandomSampling 16 -- n 9
SMAC4BB 207 5 |5 IEEE B2 o | o B
SimulatedAnnealing n Bnnn n
n

BasinHopping .
BestILS H
BestMLS
BestTabu
DifferentialEvolution
DualAnnealing
FirstILS
FirstMLS
FirstTabu
GL
GeneticAlgorithm
ParticleSwarm
RandomSampling
SMAC4BB
SimulatedAnnealing

Figure Al: (Convolution:) Occurrences when the column algorithm found better
solutions than the row algorithm. An occurrence is counted when 50 runs for a
budget are statistically significantly better according to a two-sample independent
t-test (o = 0.05). (Top): Heatmap for low < 100 budgets (25, 50, 100). (Bottom):
Heatmap for mid and high > 100 budgets (200, 400, 800, 1600). Algorithms
with low values (blue) in their rows were not often beaten for those budgets, and
algorithms with high values in their column (red) often beat other algorithms.

A.2. APPENDIX: BENCHMARKING OPTIMIZATION ALGORITHMS FOR
AUTO-TUNING GPU KERNELS 171

Algorithm Column beats Row - GEMM feval <= 100

sasintoppine [N ICHICHICHEN N EN N N
gestiis FEIRENDIRNEGEE)) 12 JE 10 2012 11 9
Bestiis FEIENIEEEREESES ¢ OEN 7 (12 1107 7 12
BestTabu 8 13 n n 13
DifferentialEvolution 12 “nnn 10 “
(oo}

DualAnnealing 6

Iﬂﬂﬂ
ISR 0 | o | o IEIEEY o | o [o | o [ERIERICHERNG
IS EN 0 [0 [o [EENT4T 2 [0 [0 [1 [N

FirstTabu SN 0 (1715 FEAEEN o RN 16 FENA4E] 16

ois EORNENIEE 12
o)

GeneticAlgorithm 13

SimulatedAnnealing

3asinHopping
1tialEvolution
ualAnnealing
articleSwarm H
lomSampling
SMAC4BB
tedAnnealing

Algorithm Column beats Row - GEMM feval > 100
BasinHopping [0l 16 [17 11 13 16 [18)[18 14 [18] 13 13 nn
BestILS
BestMLS
BestTabu
DifferentialEvolution

DualAnnealing -14 LT 1 | o [TOISPARPASTANS NG 0 | 0 [20]
Wwﬂ-ﬂ-ﬂﬂﬂ-ﬂ=g-ﬂﬂ-

FirstMLS

FirstTabu

GLS

GeneticAlgorithm - 13 13 9 -
ParticleSwarm 17 17 8

o oo Jm
randomsamvivg - EZSEEIEEA 16 EIEZIE nmnan-m

SMAC4BB 11 12 126 12 12 12 12 7 12 12 11)

SimulatedAnnealing nnn-nn n--nnnnn

o U > £ o v =1 € £ © o O
s 4 E‘ 2 8 £ Z E‘ 2 C': c £ £ o ¢
3 B S = D s 0 = < =
s 955 23 0% 5 T z 2 9 8
S m ¢ ¢ ¢ &z £ ¥ s o £ < 2
T o & 7 < T > 9 & 5 ¢
< wog < © VY unw <
@ T o Y 5 E ©
© B3 3 © O 9
@ g o c & B k)
5 v © =]
o o o
£ £
o) n

Figure A2: (GEMM:) Occurrences when the column algorithm found better so-
lutions than the row algorithm. An occurrence is counted when 50 runs for a
budget are statistically significantly better according to a two-sample independent
t-test (o = 0.05). (Top): Heatmap for low < 100 budgets (25, 50, 100). (Bottom):
Heatmap for mid and high > 100 budgets (200, 400, 800, 1600). Algorithms
with low values (blue) in their rows were not often beaten for those budgets, and
algorithms with high values in their column (red) often beat other algorithms.

172

APPENDIX A. APPENDICES

BasinHopping
BestILS

BestMLS
BestTabu
DifferentialEvolution
DualAnnealing
FirstILS

FirstMLS
FirstTabu

GLS
GeneticAlgorithm
ParticleSwarm
RandomSampling
SMAC4BB

SimulatedAnnealing

BasinHopping
BestILS

BestMLS

BestTabu
DifferentialEvolution
DualAnnealing
FirstILS

FirstMLS

FirstTabu

GLS
GeneticAlgorithm
ParticleSwarm
RandomSampling
SMAC4BB
SimulatedAnnealing

Algorithm Column beats Row - pnpoly feval <= 100

BasinHopping

BestILS

BestMLS

BestTabu

Figure A3: (PnPoly:) Occurrences
solutions than the row algorithm. An occurrence is counted when 50 runs for a
budget are statistically significantly better according to a two-sample independent
t-test (o = 0.05). (Top): Heatmap for low < 100 budgets (25, 50, 100). (Bottom):
Heatmap for mid and high > 100 budgets (200, 400, 800, 1600). Algorithms
with low values (blue) in their rows were not often beaten for those budgets, and
algorithms with high values in their column (red) often beat other algorithms.

(%]
—
G]

s |7 EAEAISI
nn. 1

FirstTabu

6
OoE B
c o wn v 3 VN g £ O a O
c c J J 9o J £ £ £ m <
s = 2 = © 0 5 6o Z < =
S © v T T z 2 Q ®
s 2 £ £ w s o £ g ¢
> < [> 9 ® = ¢
wog < v V2 v g
o T S 5 £ °
F=R 2 & 9 Qo
g o c = 2 kS
o v 5] >
E= © « E
a)

when the column algorithm found better

A.2. APPENDIX: BENCHMARKING OPTIMIZATION ALGORITHMS FOR
AUTO-TUNING GPU KERNELS 173

Algorithm Column beats Row - convolution feval <= 400

BasinHopping [l8719 /87 16 2 14 14 [15 13 12 [El[9 15

gestis [N IERIERIEN 13 20 B4 10 AR 9 e 14
Bestis [CHIENIENEEN 12 17 13 13 A 10 11 A 11 14
Bestfabu 10 13 15 [17 [PZ] 18 20 [19 [21 14 12 16 [P

DualAnnealing
FirstILS
FirstMLS
FirstTabu

DifferentialEvolution - 8 --n 20 11 15- 10 ﬂ-- 8 14
HEE

| 0| [2]4]
78 9 Bl 14 21 15 15 [12 14 13 [12 17
os EIRICEEN® 1« BIEIERIIE A A
GeneticAlgorithm -n 19 11 12 7 nnn 8
Particleswarm [11 9 |51/ 9 16 14 [Z§ 14 11 [EREN 10 15
RandomSampling 12 17 17 13 21 gefof 19 18 13 19 18 22“19 17
smacass B89 [0 13 751 13 12) 13 (10 |8 NI 13
SimulatedAnnealing ----ﬂ 18 -n----nn
299
s 7 2
3

S

—

BestTabu
1tialEvolution
ualAnnealing

FirstILS
FirstMLS
FirstTabu
G

aticAlgorithm
articleSwarm
lomSampling
SMAC4BB

tedAnnealing

Algorithm Column beats Row - convolution feval > 400

BasinHopping
BestILS

BestMLS

BestTabu
DifferentialEvolution

[e

DualAnnealing
FirstILS

FirstMLS

FirstTabu

GLS
GeneticAlgorithm
ParticleSwarm
RandomSampling
SMAC4BB
SimulatedAnnealing

FirstILS
GLS

sceee - R RREERE
SimulatedAnnealing EEE o N Enaa » n

DifferentialEvolution

Figure A4: (Convolution:) Occurrences when the column algorithm found better
solutions than the row algorithm. An occurrence is counted when 50 runs for a
budget are statistically significantly better according to a two-sample independent
t-test (v = 0.05). (Top): Heatmap for low < 400 budgets (25, 50, 100, 200, 400).
(Bottom): Heatmap for mid and high > 400 budgets (800, 1600). Algorithms
with low values (blue) in their rows were not often beaten for those budgets, and
algorithms with high values in their column (red) often beat other algorithms.

174

APPENDIX A. APPENDICES

BasinHopping
BestILS

BestMLS
BestTabu
DifferentialEvolution
DualAnnealing
FirstILS

FirstMLS
FirstTabu

GLS
GeneticAlgorithm
ParticleSwarm
RandomSampling
SMAC4BB

SimulatedAnnealing

BasinHopping
BestILS

BestMLS

BestTabu
DifferentialEvolution
DualAnnealing
FirstILS

FirstMLS

FirstTabu

GLS
GeneticAlgorithm
ParticleSwarm
RandomSampling
SMAC4BB
SimulatedAnnealing

Algorithm Column beats Row - GEMM feval <= 400

ﬂa--- ¢ 7 & i « EAEAKEKE °

17 (21 [22 20 [15 14 13 11 9

18 |IEAICHIEY 17 21 12 10 Bl 11 13 12 707021

20 13 19

9 EEl 19 14 16 B

362 1] 0]
2¥ o o |1] o |
1+ NN 1+ > EXH

21 9 14 021 EZ] 20 19 [18 21 16 14 13 E5]

Y 0 [2 [1 BRARER 6 1 [0 [0 [RETORC] 13

15 |Ei

P

[4] 2 [EARTIREARPY 1) o |3 | 1| 0 [k

19 8 10 B3 15 21 15 16 i 14 11 [ERIERIEN 15

3asinHopping

B 20 187 1721 17 | 9 20

18 PE] 20 10 [NEA
B L 0

S oV v 3 N g £ O a O
o c Jd J 9o J = £ € m <
5 = 2 5 © 0O 5 0 = ¥ =
S5 ®© 0 5 5 T 2z & Qg ©
s o = v B o}
s 2 £ 2 v S n £ < ¢
o < T T > 9 ®© 5 £
£ < T v L n g
R 2 € § K
£ 5 m o 2 L

Algorithm Column beats Row - GEMM feval > 400

el e el a0 [o 2
O« O - B > SEou -

o
c
a
a
o
T
=
)
©
o

BestTabu

FirstiLS m=
SMAC4BB HEE

RandomSampling Haa
SimulatedAnnealing Eaﬁ

Figure A5: (GEMM:) Occurrences when the column algorithm found better so-
lutions than the row algorithm. An occurrence is counted when 50 runs for a
budget are statistically significantly better according to a two-sample independent
t-test (v = 0.05). (Top): Heatmap for low < 400 budgets (25, 50, 100, 200, 400).
(Bottom): Heatmap for mid and high > 400 budgets (800, 1600). Algorithms
with low values (blue) in their rows were not often beaten for those budgets, and
algorithms with high values in their column (red) often beat other algorithms.

A.2. APPENDIX: BENCHMARKING OPTIMIZATION ALGORITHMS FOR
AUTO-TUNING GPU KERNELS

175

Figure AG6:

(Bottom): Heatmap for mid and high > 400 budgets (800, 1600).

BasinHopping
BestILS

BestMLS
BestTabu
DifferentialEvolution
DualAnnealing
FirstILS

FirstMLS
FirstTabu

GLS
GeneticAlgorithm
ParticleSwarm
RandomSampling
SMAC4BB

SimulatedAnnealing n

BasinHopping
BestILS

BestMLS

BestTabu
DifferentialEvolution
DualAnnealing
FirstILS

FirstMLS

FirstTabu

GLS
GeneticAlgorithm
ParticleSwarm
RandomSampling
SMAC4BB
SimulatedAnnealing

Algorithm Column beats Row - pnpoly feval <= 400

O - >

7
15

3asinHopping

BEEEELE 13 9 [78 10 11 [EJEN 12 '8
[0 | 22 EEl 1
| 2 [20]21]20]

171 15)
22[23 20 (a8 Y20 22|

20(21|20

1 Bl PE 16 (17 EX)

o)
(20 o Ry o
oo

17 s 7 8 8 8

N 12 (6]
R
[6 8 86 11 14 7
0 | E1E :: =
8 BENEEN7 7 6 8 147
7 12 |[E

L0 L8
[1]0]2]3 REREN 3 AN 0] 0] 2 [ERCY

(%)
-
=
=}
wn
]
o

N6 16 11

11 B 12 15 13 1016

1tialEvolution
ualAnnealing
ticAlgorithm
articleSwarm
lomSampling
SMAC4BB
tedAnnealing

of

Algorithm Column beats Row - pnpoly feval > 400

BasinHopping wanm wH th w »Hm pa

5
ﬂ

5

N

sesons - KR ~ RIS HH

DifferentialEvolution

5

(PnPoly:) Occurrences
solutions than the row algorithm. An occurrence is counted when 50 runs for a
budget are statistically significantly better according to a two-sample independent
t-test (aw = 0.05). (Top): Heatmap for low < 400 budgets (25, 50, 100, 200, 400).

58 B58 B58 S5 B58 58 RGN)

Il
K ---- 33 -ﬂﬂﬂ-
a2 [i o |

FirstMLS
FirstTabu
GLS

SimulatedAnnealing EEE

when the column algorithm found better

Algorithms

with low values (blue) in their rows were not often beaten for those budgets, and
algorithms with high values in their column (red) often beat other algorithms.

176 APPENDIX A. APPENDICES

A.2.3 Per kernel graphs of experimental results

In Figures A7 to A15 we show plots of algorithm performance in terms of fraction
of optimal fitness found for certain budget used (per GPU).

A.2. APPENDIX: BENCHMARKING OPTIMIZATION ALGORITHMS FOR
AUTO-TUNING GPU KERNELS 177

Algorithm fraction of optimum per GPU for convolution

A100 TITAN_RTX
m %]
¢ 1.0 9 1.0
C C
= =
Y Y
< 0.8 1 T 0.8
£ £
| e I
o 0.6 o 0.6
Y— Y—
o o
5 0.4 § 0.4
© 9]
o o
% 0.2 - T T 4 0.2 4 T T
10?2 103 10? 103
Max budget Max budget
MI50 V100
a @
2 1.04 € 1.0
k= =
“_r; 0.9 4 “_;
e 0.8
5 0.8 g
) 53
5 0.7 A 5 0.6
5061 s
k9] G 0.4
® 0.5 - o
v T w T T
10? 10? 103
Max budget Max budget
K20 GTX_Titan_X
o 0
@ 1.0 1 g 107
S S
= (=
< 0.8 = 0.81
£ £
S 0.6 - 8 0.6 —f— GreedyILS
g .,g —— GreedyMLS
c 0.4 c 0.4 —f— DualAnnealing
2 2 —— SimulatedAnnealing
g 027 € 0.2 1 — als
u T T u T T
102 103 102 103
Max budget Max budget

Figure A7: Convolution: Fraction of optimal runtime per GPU for FirstILS,
FirstMLS, dual annealing, simulated annealing, and GLS over 50 runs. Each
point is the mean fraction of optimal runtime found (y-axis) for mean budget used
(logarithmic z-axis), with error bars indicating the standard deviation in fraction
of optimum.

178 APPENDIX A. APPENDICES

Algorithm fraction of optimum per GPU for convolution
A100 TITAN_RTX

=
o

1.0 A

o
o]
1

0.8 A

0.6

0.4

o
IS
1

Fraction of optimal fitness
o
o
1

Fraction of optimal fitness

T 0'2 L T
102 103 102 10°
Max budget Max budget

MI50 V100

1.0 A1

0.8 1

0.6

0.4

Fraction of optimal fitness

Fraction of optimal fitness

T T 0'2 L T T
10! 102 102 103
Max budget Max budget

K20 GTX_Titan_X

=
o
1

1.0 A1

o
o]
1

0.8

—— GeneticAlgorithm
—]— BestMLS

—J}— BestILS

—J— BasinHopping
—J}— DifferentialEvolution

0.6

o
IS
1

0.4

Fraction of optimal fitness
o o
IN] o
1 1

Fraction of optimal fitness

0.2 1

T T T T
102 103 102 103
Max budget Max budget

Figure A8: Convolution: Fraction of optimal runtime per GPU for GA, BestMLS,
BestILS, basin hopping, and differential evolution over 50 runs. Each point is the
mean fraction of optimal runtime found (y-axis) for mean budget used (logarithmic
x-axis), with error bars indicating the standard deviation in fraction of optimum.

A.2. APPENDIX: BENCHMARKING OPTIMIZATION ALGORITHMS FOR
AUTO-TUNING GPU KERNELS

179

Fraction of optimal fitness Fraction of optimal fitness

Fraction of optimal fitness

Algorithm fraction of optimum per GPU for convolution

A100 TITAN_RTX
1.0 A a
. []
S
Y
0.8 1 ©
£
a
0.6 o
—
]
0.4 S
S
o
©
i
10? 10°
Max budget Max budget
MI50 V100
@
1.0 A [9)
S 1.0
=
]
0.8 - £
S 0.8 1
53
0.6 - 5
c 0.6 1
Qo
0.4 S
i 0.4
10? 103 102 103
Max budget Max budget
K20 GTX_Titan_X
o
1.0 4 E 1.0 4
=
0.8 A © 0.8 1
£
=1
0.6 g_ 0.6 1 —}— SMAC4BB
- —}— GreedyTabu
0.4 g 0.4 - —f— BestTabu
= —J— ParticleSwarm
0.2 1 © 0 —}— RandomSampling
[
T T T T
102 103 10?2 103
Max budget Max budget

Figure A9: Convolution: Fraction of optimal runtime per GPU for SMAC,
FirstTabu, BestTabu, PSO, and random sampling over 50 runs. Each point is the
mean fraction of optimal runtime found (y-axis) for mean budget used (logarithmic
x-axis), with error bars indicating the standard deviation in fraction of optimum.

180 APPENDIX A. APPENDICES

Algorithm fraction of optimum per GPU for GEMM

A100 TITAN_RTX
wn)]
@ 3
§ 1.0 4 £ - 45 1.0 1
Y Y
208 2 081
=1 =1
o Q.
© 0.6 © 0.6 1
Y Y
(o] [e]
5 0.4 § 04
- -
1%} o
© ©
= 0.2 4 T 0.2 1
10? 103 102 103
Max budget Max budget
MI50 V100
wn)]
3]
g 1.07 2 1.0
2 2
: 0 8 . :
© Y- © i
E £°8
2 0.6 - a
o (o] 0.6 -
Y— Y—
© 0.4 °
C c
=l 2 044
0 0.2 1 ©
© ©
UL- T T Lt 0'2 a T T
102 103 102 103
Max budget Max budget
K20 GTX_Titan_X
%]]
.. ¢ 1.0
_45 1.0 45 .
= =
< 0.8 T 0.8 A
£ £
S 0.6 B 0.6 - —J— GreedyILS
S o ~f— GreedyMLS
g 0.4 g 0.4 —J— DualAnnealing
£ 0o 5 —F— SimulatedAnnealing
g : E 0.2 1 —— GLS
T T T T
102 103 102 103
Max budget Max budget

Figure A10: GEMM: Fraction of optimal runtime per GPU for FirstILS, FirstMLS,
dual annealing, simulated annealing, and GLS over 50 runs. Each point is the
mean fraction of optimal runtime found (y-axis) for mean budget used (logarithmic
x-axis), with error bars indicating the standard deviation in fraction of optimum.

A.2. APPENDIX: BENCHMARKING OPTIMIZATION ALGORITHMS FOR
AUTO-TUNING GPU KERNELS 181

Algorithm fraction of optimum per GPU for GEMM

A100 TITAN_RTX
I @
1.0 1
£ 1.01 i k = = 0
= il = 0.8
© 0.8 ©
£ £
- - 0.6 -
2 0.6 1 g
‘G S 0.4
c 0.4 A c
g g
§ 0.2 8 027
P i
1(')2 1(')3 1(')2 1(')3
Max budget Max budget
MI50 V100
& 0
(] - o 1.0
_-E 1.0] 5
Y Y
< 0.8 1 0.8 1
E . £
- . - - a
8 g 05
6 0.4 ‘s
g c 044
S 0.2 2
@ 8 0.2
£ 0.0 4 , : & . :
102 103 102 103
Max budget Max budget
K20 GTX_Titan_X
w]
$ 1.01 g 1.0
S S
& 0.8 =
= — 0.8 1
© ©
£ | €
506 3 061 —J— GeneticAlgorithm
% 0.4 g 04 - —J— BestMLS
c c —I— BestILS
-% 0.2 1 -% 024 —J}— BasinHopping
© © —J— DifferentialEvolution
w 0 0 -4 [
. T T T T
10?2 103 102 103
Max budget Max budget

Figure A11: GEMM: Fraction of optimal runtime per GPU for GA, BestMLS,
BestILS, basin hopping, and differential evolution over 50 runs. Each point is the
mean fraction of optimal runtime found (y-axis) for mean budget used (logarithmic
x-axis), with error bars indicating the standard deviation in fraction of optimum.

182 APPENDIX A. APPENDICES
Algorithm fraction of optimum per GPU for GEMM
A100 TITAN_RTX
ﬁ 1.2 1 5
S 1.0 & 101
© ©
£ 081 £ 081
g g
S 0.6 S 061
(o] o
§ 0.4 4 S 0.4
8 8
S o024 . . 2 0.2+ . .
102 103 10?2 103
Max budget Max budget
MI50 V100
n 1.2 n 1.2
g @
5 1.0 £ 1.0+
£ £ —
© - © E
g 0.8 g 0.8
S 0.6 ‘2 0.6 -
o o
Y Y
© 0.4+ © 0.4 1
5 S
5 0.2 T 0.2
o o
L& 0.0 - y : % 0.0 T T
10?2 10° 10?2 103
Max budget Max budget
K20 GTX_Titan_X
@ @ 1.2 1
£ 101 £ 104
508 =
© Y9 © i
£ £°®
2 0.6 A 2 064 —J— SMAC4BB
S 04 o —}— GreedyTabu
o V.41] i
° c 0.4 —}— BestTabu
-% 0.2 1 -% 024 —f— ParticleSwarm
I ® —f— RandomSampling
Lt 00 T r r Lt O.o T T
102 103 10? 103
Max budget Max budget

Figure A12: GEMM: Fraction of optimal runtime per GPU for SMAC, FirstTabu,
BestTabu, PSO, and random sampling over 50 runs. Each point is the mean fraction
of optimal runtime found (y-axis) for mean budget used (logarithmic z-axis), with
error bars indicating the standard deviation in fraction of optimum.

A.2. APPENDIX: BENCHMARKING OPTIMIZATION ALGORITHMS FOR
AUTO-TUNING GPU KERNELS 183

Algorithm fraction of optimum per GPU for pnpoly

A100 TITAN_RTX
2 2
2 1.004 g 1.051
E =
Y N
‘T 0.98 ‘T 1.00 A 7-
g g 00
a a
-E 0.96 - e 0.95 -
[e] o
S 0.94 - s
5 5 0.90
2 0.92 o
102 103 10?2 103
Max budget Max budget
MI50 V100
a 2 1.00
2 0.04 2~
& =
= £ 0.98
c 0.02 4 ©
S 1S
2 0,004 5 0.96 1
o ! o
Y N
[S) © 0.94 1
o —0.02 - o
o o
= N T 0.92 4
o -0.0 ®
= . — Y% 0.90 . .
10° 10! 102 103
Max budget Max budget
K20 GTX_Titan_X
& A
o 1.04 o 1.0
g 5
(= L=
< 0.9 1 = 0.9 1
E E
2 0.8 8 0.8 —}— GreedylILS
2 o —f— GreedyMLS
2 0.7 g 0.7 | —}— DualAnnealing
£ £ —— SimulatedAnnealing
@ 0.6 © 0.6 —— GLS
Lt T T LIL- T T
102 103 10? 10°
Max budget Max budget

Figure A13: Point-in-polygon: Fraction of optimal runtime per GPU for FirstILS,
FirstMLS, dual annealing, simulated annealing, and GLS over 50 runs. Each point
is the mean fraction of optimal runtime found (y-axis) for mean budget used
(logarithmic z-axis), with error bars indicating the standard deviation in fraction
of optimum. The point-in-polygon kernel was not implemented for the MI50 GPU.

184 APPENDIX A. APPENDICES

Algorithm fraction of optimum per GPU for pnpoly

A100 TITAN_RTX
@ 1.05 A v 1.05 A
Q [}
5 1.00 A S
= — 1.00 1 z
g 0.95 A g
2 0.90 4 3 E
& 0.90 & 0.95 +
G G
2 0.85 4 °
° .© 0.90 1
© 0.80 i}
© ©
P i
102 103 102 103
Max budget Max budget
MI50 V100
2 8 1.00
2 0.04 2~
& =
= & 0.95
g 0.02 1 g
;3_ 0.00 - g_ 0.90 A
o : o
[l 4 0.85 A
] o
g —0.02 A g
= = 0.80 A
3 —0.04 g
s . | & 0.75 1 i i
10° 10! 102 103
Max budget Max budget
K20 GTX_Titan_X
2] wn
@ 1.01 g 1.0 1
] S
= &= 0.9 A
© ©
£ 087 £ 0.8
8 2 0.7 —}— GeneticAlgorithm
“g | g : —J— BestMLS
2 0.6 c 0.6 —I— BestILS
2 £ o5 —J— BasinHopping
§ 0.4 E : —f— DifferentialEvolution
v ' T T v T T
102 103 102 103
Max budget Max budget

Figure A14: Point-in-polygon: Fraction of optimal runtime per GPU for GA,
BestMLS, BestILS, basin hopping, and differential evolution over 50 runs. Each
point is the mean fraction of optimal runtime found (y-axis) for mean budget used
(logarithmic z-axis), with error bars indicating the standard deviation in fraction
of optimum. The point-in-polygon kernel was not implemented for the MI50 GPU.

A.2. APPENDIX: BENCHMARKING OPTIMIZATION ALGORITHMS FOR
AUTO-TUNING GPU KERNELS 185

Algorithm fraction of optimum per GPU for pnpoly

A100 TITAN_RTX
@ @
2 1.00 @ 1.051
= =
= = 1.00 A
© @
£ 0.95 - € /7
=] = 0.95 4
5 53
5 S
2 0.85 1 5 0851
O o
[y i i = 0.80 1 . .
10?2 103 102 103
Max budget Max budget
MI50 V100
] (%]
0 »n 1.00 A
2 0.04 g % i
= =
= (=
T 0.02 5 09
£ E
° 4 ‘2 0.90
g— 0.00 8—
bS] kS
c —0.02 c 0.85 1
Rel o
C —0.04]
® © 0.80 -
- T T - T T
10° 10! 102 103
Max budget Max budget
K20 GTX_Titan_X
wn w0
@ 1.0 A £ 1.0
S S
= = 0.9 A
© 4 ©
£08 £ 0.8
= = —— sMAc4BB
S 0.6 4 2 0.7 —}— GreedyTabu
g g 0.6 - —}— BestTabu
2 £ —— ParticleSwarm
§ 0.4 E 0.5 1 —f— RandomSampling
v T T - T T
102 103 102 103
Max budget Max budget

Figure A15: Point-in-polygon: Fraction of optimal runtime per GPU for SMAC,
FirstTabu, BestTabu, PSO, and random sampling over 50 runs. Each point is the
mean fraction of optimal runtime found (y-axis) for mean budget used (logarithmic
x-axis), with error bars indicating the standard deviation in fraction of optimum.
The point-in-polygon kernel was not implemented for the MI50 GPU.

