
On the optimization of imaging pipelines
Schoonhoven, R.A.

Citation
Schoonhoven, R. A. (2024, June 11). On the optimization of imaging pipelines.
Retrieved from https://hdl.handle.net/1887/3762676

Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis
in the Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/3762676

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3762676

Summary

Today, many of our industrial and scientific tasks rely heavily on powerful com-
puter systems that process huge amounts of data. These tasks are performed by
computational pipelines that often consist of several algorithms that calculate the
data, and pass the results on to each other. Conceptually, the process of designing
a computational pipeline for these tasks has different stages.

• The Idea Stage: This is where we plan how the pipeline will work, deciding
which algorithms to use and how they connect. Figure S3 shows a conceptual
example of how we might design the workflow.

• The Software Stage: Here, we decide how each algorithm must perform
its task. We try to write the code to make the algorithms as efficient and
accurate as possible.

• The Hardware Stage: This is about deciding what computational hardware
each algorithm will have available, and how to efficiently run the computation
on that hardware.

Figure S3: Example computational pipeline illustrating how input data is processed
by different algorithms and passed on until the final result is computed.

Running such a pipeline can be challenging. We often need to tweak the way
the algorithms work, make sure they’re not wasting time and energy, upgrade their
hardware, and sometimes, we need to redesign the whole pipeline to get the best
result. Plus, with today’s environmental challenges, we must also try to make our
pipeline eco-friendly. To do this, in this thesis, we focus on all three stages to
optimize our computational pipelines.

One of the applications where such challenging computational pipelines occur
is in the field of X-ray computed tomography. Computed tomography (CT) is
a technique for visualizing the interior of objects with some form of radiation
(Figure S4). This makes it a powerful tool as we can study the internals of objects
without damaging them, or opening them up. One of the computational challenges
comes from the fact that CT is typically done in 3D, which means that large
amounts of data are involved, and any computational step needs to work on a
large batch of data. Furthermore, CT pipelines usually come with several different
processing steps that we would like to optimize.

159

160 Summary

X-ray source

Rotation

 table

Object

Detector

Figure S4: An example setup of an X-ray CT scanner that is common in laboratories.

Several settings of a CT scanner, such as the beam’s energy and from which
position it captures the X-ray photographs, need to be chosen correctly to get a
sharp CT image with high contrast. This creates a challenge from an optimization
point of view. Often, the desired result (or an undesirable image feature) is only
visible at the very end, whereas it may be caused by a setting at the beginning of
the CT workflow. For example. the alignment of the machine may be off, or we ran
our algorithms with the wrong parameters. The problem is compounded because
users often want to perform extra processing steps at the end of the reconstruction.

In Chapter 2, we attempt to add a so-called segmentation step to an X-ray CT
workflow using AI, such that it can perform the computation in real time (meaning
the operator gets a live view). In Chapter 3, we attempt to tackle the problem of
optimizing algorithmic parameters along the whole pipeline for a final result. In
Chapter 4, we revisit the AI that we used in Chapter 2, and attempt to speed it
up significantly using a technique called “pruning”. In Chapter 5, we look at the
final hardware stage. In particular, we look at a type of chip called a Graphics
Processing Unit (GPU), and which optimization algorithms are best for structuring
these GPU computations. In Chapter 6, we look at GPU computations from an
environmental and energy consumption perspective, and propose a model to make
them more energy efficient. In the end, we look at how much energy our method
saves for a large European network of radio telescopes called the Low-frequency
Array (LOFAR).

