
On the optimization of imaging pipelines
Schoonhoven, R.A.

Citation
Schoonhoven, R. A. (2024, June 11). On the optimization of imaging pipelines.
Retrieved from https://hdl.handle.net/1887/3762676
 
Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis
in the Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/3762676
 
Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3762676


7
Conclusion and outlook

The main goal of the research presented in this thesis was to develop approaches
for optimizing computationally demanding imaging pipelines from several different
angles. A subordinate goal was to try and support the research questions with
practical problems from real-world applications and test the techniques on real
data as much as possible. In this chapter, we summarize the contributions of this
thesis, discuss its limitations, and suggest directions for future research.

7.1 Contributions and limitations
The contributions of Chapter 2 can be categorized as an attempt to practically
realize the computationally challenging task of doing real-time reconstruction and
segmentation, and how machine learning can help in this regard. Conceptually,
design choices were made in the RECAST3D framework to perform quasi-3D recon-
struction, and to use an omnidirectional CNN. On a software level, RECAST3D
is created as a modular system with separate servers running visualization and
reconstruction separately, and communication is done via data packets. This allows
the system to be extended by different plugins that can asynchronously compute
processing steps, e.g., filtering of the projection data can be done while earlier
reconstructed slices are being annotated. On the hardware level, this modular
system also has benefits since processing steps can be split among different GPUs,
or even different machines to avoid blocking the pipeline. Practically, such a compu-
tational pipeline potentially represents an important step for online and real-time
analysis of tomographic experiments. A limitation of the approach is related to the
generalizability of the neural network to new data. For accurate segmentation, the
training data needs to be representative of the data that will be segmented during
the scanning procedure, meaning similar CT data needs to be available ahead of
the experiment. Nevertheless, using such a pipeline, one can perform real-time

129



130 CHAPTER 7. CONCLUSION AND OUTLOOK

and online segmentation of quasi-3D volumes, enabling immediate feedback and
analysis during experiments.

The main contribution of Chapter 3 is that the study outlines what benefits arise
from connecting traditional CT approaches with modern auto-differentiation frame-
works. While the convergence of a gradient descent-based optimization method
is not guaranteed, the study shows that in practice the method still produces
strong results. A large benefit comes from the engineering perspective, where the
user can now trial different learned CT workflows and turn optimization on or off
for selected parameters at will, without having to design complicated specialized
algorithms. Connecting existing building blocks to an auto-differentiation frame-
work means that users can experiment in a plug-and-play nature to solve common
image processing tasks. Despite these benefits, several limitations of the approach
emerged in the study. First, the current setup requires a large effort to implement
existing algorithms in PyTorch, which inhibits adoption of the approach in practice.
Second, the learning rate needs to be picked manually which is challenging when
multiple parameters of different magnitude are involved.

The main contribution of Chapter 4 is a method that significantly prunes
CNNs which does not require hyperparameters to be set. Furthermore, the graph
representation allows for efficient pruning of redundant operations, which further
reduces the size of the CNN. A drawback of the method thus far is that PyTorch
implements pruning by masking the model parameters with binary tensors, thereby
natively not producing any computational speedup. For the MS-D network, we
implemented a pruned model that loads a sparse MS-D network to measure actual
acceleration, but this is a time-consuming process if it has to be done for any CNN
architecture.

Chapter 5 contributes practically usable methods to the GPU auto-tuning
community that are implemented in the Kernel Tuner package. It further provides
a ranking of black-box optimization methods for tuning GPU kernels, and the
learnings from the study contributed to the methodology paper [250] that was set
up by the GPU auto-tuning community to streamline research into optimization
algorithms in the future. Secondly, the study contributes a difficulty quantification
(and visualization) method for discrete search spaces based on graph theory. The
application of this method need not be limited to GPU auto-tuning as it generalizes
to any discrete search space. Computational limitations of the approach could
come into play when the graph becomes too large to store in memory. Second, the
entire search space needs to be traversed before the method can be applied. This
means that it is currently only useful for post-optimization analysis, and not for
steering optimization of unknown GPU kernels.

Finally, Chapter 6 provides a practical method to improve the energy efficiency
of GPUs. With growing environmental concerns, methods that focus not only on
maximizing compute performance but also take into consideration the environmental
footprint of computations are of large importance. The simplicity of the method,
i.e. a handful of executions of a small kernel that is shipped with the script, means
that it can easily be applied on many different systems. Steering the GPU towards
energy efficiency proved potentially highly effective as for the Tesla A100 GPU we



7.2. OUTLOOK 131

were able to increase its energy efficiency by 113.8% while losing only 12.0% in
speed. This highlights that such a trade-off may be worthwhile on many systems
if it is not crucial to extract maximal performance. A drawback of the current
implementation is that it only works for NVidia server-grade GPUs. While the
method was also designed to work for older models (those that do not support
voltage measurements), it does not work for models where setting the core clock
frequency is not allowed. It appears that this functionality has been disabled on
consumer-grade GPUs, something we hope to see changed with future releases.

7.2 Outlook
Several promising research directions are unfolding to optimize computational
imaging pipelines that we want to discuss in turn. A promising direction to further
develop the idea of optimizing legacy pipelines with modern auto-differentiation
tools is to develop infrastructure that approximates the gradients instead of com-
puting them analytically. With this approach, the traditional building blocks are
registered in the auto-differentiation framework by e.g. wrapping them in a Python
class. Instead of computing gradients by traversing the computational graph, which
requires expensive re-implementation of the existing algorithms, we use a method
to approximate the gradients such as a finite differences method. In fact, instead
of wrapping the legacy code and calling it from the auto-differentiation framework,
a client-server model can be designed that separates the environments. In this
manner, the auto-differentiation framework can work with external C or Fortran
code or even an executable. Users would need to set up a lightweight server that
can run on the legacy side and run the legacy code for a set of parameters (by for
example passing them as CLI arguments, or writing them to a .txt file). Hopefully,
such infrastructure would allow us to extend the learnings from Chapter 3 to a
larger range of legacy pipelines, many of which cannot easily be reimplemented in
PyTorch.

An alternative to approximating the gradient during pipeline optimization
would be to approximate the forward model. If the forward model is prohibitively
expensive to run repeatedly, it may be possible to approximate the forward model
by a surrogate and optimize the parameters using the surrogate model instead.
For example, in [118], a surrogate to TV reconstruction is introduced which could
be used to tune the regularization parameter λ. Potentially, approaches could be
developed that are suitable to approximate many computational building blocks.
For example, neural networks are generic surrogate models that, if given the
dimensions of the input and output space of a computational block, could be used
to replace that block during pipeline optimization.

Another research direction is to investigate methods that can adaptively adjust
gradient-based optimization methods for traditional algorithms. When parameters
have significantly different magnitudes, it is challenging to find a combination of
step sizes that makes the optimization method converge. Furthermore, approaches
similar to batch normalization in deep learning could be used in between traditional



132 CHAPTER 7. CONCLUSION AND OUTLOOK

building blocks to normalize input and output data to avoid vanishing gradient
problems. Next, in principle for N parameters, a single finite differences approxi-
mation requires 2N executions (f(x+ h) and f(x− h)). If an approximation of
the gradient is used such as finite differences, approaches could be applied that
limit the amount of executions necessary to run a finite differences method.

To improve the usefulness of neural network pruning, more development could
be done on methods that create sparse models from the current PyTorch imple-
mentation with masked parameters. Potentially, the computational graph itself
could be used to construct the pruning graph that LEAN uses, and the masked
tensors could be used to remove branches of the computational graph altogether.

A major issue in auto-tuning research is the lack of proper algorithm comparisons.
Most studies demonstrate their optimization algorithms on a specific dataset
and only compare them to selected methods using different quality metrics. As
mentioned, a proposed methodology by the auto-tuning community to improve
reproducibility and transferability of results is currently in preparation [250].
Another interesting direction of research could be if methods can be developed that
approximate the FFG on the fly, and use it as a heuristic to guide optimization.

As mentioned in Chapter 6, a major limitation to improving the energy efficiency
of GPUs is that consumer-grade GPUs do not support core clock frequency tuning.
In my view, vendors must expose functionality that can help with improving the
energy efficiency of as many models as possible. Furthermore, we want to extend
the power consumption model to work for other vendors. The model in principle is
generically applicable, but code needs to be developed that can query the relevant
measurements for non-NVidia GPUs. Another dimension of the GPU auto-tuning
problem that was not explored in this thesis is the incorporation of memory energy
efficiency. In addition to core clock frequency, GPUs have several memory clock
frequencies which influence its performance and energy consumption. Thus far,
there are usually only a few available memory clock frequencies, but if future
GPUs allow for a larger range of memory clock frequencies, these would need to be
incorporated into the power consumption model for further gains.




