
On the optimization of imaging pipelines
Schoonhoven, R.A.

Citation
Schoonhoven, R. A. (2024, June 11). On the optimization of imaging pipelines.
Retrieved from https://hdl.handle.net/1887/3762676
 
Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis
in the Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/3762676
 
Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3762676


6
Going green: optimizing

GPUs for energy efficiency
through model-steered

auto-tuning

6.1 Introduction
Huge amounts of compute power are powering today’s industrial and scientific
applications, at huge energy and environmental costs. Energy is among the largest
expenses of supercomputers and data centres, and this consumption will double
every four years [43]. The computational demands in deep learning (artificial
intelligence) applications have been increasing at a exponential rate, 300,000×
from 2012 to 2018 [217]. The carbon footprint of these applications is a great
concern for the environment, as training a single large model produces as much
carbon dioxide as five cars in their lifetime, including fuel [229]. In addition, many
applications have stringent energy constraints; embedded and automotive systems
have limited battery capacity, offshore applications where a connection to the power
grid is not possible, and also large-scale scientific instruments, such as the Square
Kilometre Array (SKA) built partially in the desert [47]. Graphics Processing
Units (GPUs) are powering nearly all large-scale AI and HPC applications, and
are in large part responsible for the total power consumption of these systems [182,
253]. For instance, 8.3 MW out of the total 13 MW by the Summit Supercomputer
is consumed by its GPUs [227]. There is a clear urgency to improving the energy

105



106
CHAPTER 6. GOING GREEN: OPTIMIZING GPUS FOR ENERGY

EFFICIENCY THROUGH MODEL-STEERED AUTO-TUNING

efficiency of these applications.
While GPUs are relatively energy-efficient processors, energy consumption

greatly depends on how well the application is optimized to efficiently use the
underlying hardware [51, 127]. The optimization of GPU applications is a complex
problem that requires finding the best performing combination of many implemen-
tation choices and code optimization parameters in a large and discontinuous search
space [128, 166, 205, 226]. As such, auto-tuning, the process of automatically
searching for the best performing configuration, is often used to optimize the
compute performance of these applications [71, 145, 235, 259].

This has led to the rise of generic GPU code auto-tuners, such as CLTune [166],
Kernel Tuner [246], Kernel Tuning Toolkit (KTT) [60], and Auto-Tuning Framework
(ATF) [195], which facilitate the creation of auto-tuned GPU applications, and
support different optimization strategies to accelerate the search process. These
frameworks focus on auto-tuning user-defined code parameterizations, which is
more generic and powerful than compiler-based auto-tuning [7], because it allows
users to tune for entirely different ways to parallelize a computation, with different
algorithms to compare, and different data layouts, loop permutations, and code
optimizations. However, none of these generic GPU auto-tuners has built-in
support for energy optimization, and the differences between auto-tuning for
compute performance and energy efficiency have not yet been studied in detail.

In this chapter, we introduce new energy monitoring capabilities in Kernel
Tuner, which allows us to use the existing frameworks to study and optimize
energy efficiency. We use these capabilities to investigate how different compute
performance tuning (lowest kernel runtime) is from energy tuning, and whether
the tuning difficulty differs from the perspective of blind optimization algorithms.
In addition, we compare two methods for tuning energy efficiency of GPUs; power
capping and fixing clock frequencies. Lastly, we introduce a method to efficiently
model GPU power consumption, which allows us to significantly narrow the range of
clock frequencies to search for the most energy efficient configuration. All together,
we provide a method and open-source tool for tuning GPU applications for both
performance and/or energy efficiency. Moreover, these tools can be used for further
auto-tuning and high performance computing research.

6.2 Related Work
OpenTuner [5] was one of the first generic software auto-tuning frameworks, sup-
porting a number of different search optimization algorithms, but lacks support
for tuning individual GPU kernels. CLTune [166] was one of the first of a new
breed of generic auto-tuning tools with specific support for tuning GPU kernels
written in OpenCL. Kernel Tuning Toolkit (KTT) [60] is developed specifically to
support online auto-tuning and pipeline tuning, which allows for exploration of
combinations of tunable parameters over multiple kernels. An interesting feature
of KTT is its support for keeping track of hardware performance counters during
benchmarking, which can also be used in advanced search strategies [61]. Auto-



6.2. RELATED WORK 107

Tuning Framework (ATF) [195] implements a way to generate search spaces, using
a chain-of-tree search space structure for efficient storage and fast exploration of
constrained search spaces. HyperMapper [159] is a tuning framework that focuses
on multi-objective optimization and exploitation of user prior knowledge. Kernel
Tuner [246] is specifically designed to be an easy-to-use and easy to extend tool
for the development of tunable GPU kernels, and in particular supports a large
selection of search optimization strategies. In this chapter, we extend Kernel
Tuner [246] with functionality for auto-tuning energy efficiency, which cannot be
found in any of the existing generic auto-tuning frameworks.

Research in auto-tuning GPU applications for energy efficiency is still in its
infancy, despite spanning more than 12 years of research. There is no state-of-the-
art method for GPU energy tuning, as comparisons between studies or even to
a shared baseline are non-existent. The majority of studies only tune individual
parameters, e.g. thread block dimensions [40, 95, 129, 177, 233, 244], or clock
frequencies [4, 29, 58, 64, 147, 191]. Only two studies actually combine auto-tuning
code optimizations with execution parameters, such as clock frequencies, but only
for a single application on a single GPU [41, 153].

All generic auto-tuning frameworks use empirical performance measurements,
most likely because it is difficult to create generalized performance models that
capture the complex system that arises from the combination of hardware and
software [30, 192, 207]. Some GPU energy tuning studies use highly-inaccurate
performance models, with up to 50% error, to estimate energy consumption without
evaluating the impact of these inaccuracies on the auto-tuning results [104, 129].
Therefore, most studies take an empirical approach, in particular using the GPU’s
internal power sensor [4, 58, 74, 83, 126, 191, 208], but also through external
power sensors [44, 79, 99, 107, 197, 230] often based on custom-built measurement
equipment. Internal power sensors are included in most modern GPUs and can
be read by software, e.g., using the NVIDIA Management Library (NVML) for
NVIDIA GPUs. Such power sensors are therefore highly accessible, but may
suffer from low sampling frequencies and low accuracy [200]. Some researchers
try to compensate for these limitations by measuring individual functions for
long periods of time [6, 182, 191]. This approach, however, is impractical for use
in auto-tuners, which often have to benchmark many configurations to find the
optimum [220]. As such, Kernel Tuner supports an external power sensor, namely
PowerSensor2 [200], which is accurate within 1% error and at a sampling frequency
of 2.87 kHz. This means that PowerSensor2 is capable of accurately measuring the
energy consumption of a kernel without the need to prolong the kernel execution
time. We have used PowerSensor2 to validate the power measurements taken using
NVML.

Many studies claim that there is a clear difference between the optimization
objectives of compute performance and energy efficiency, and that the two require
different optimization algorithms and parameters [33, 41, 58, 95, 117, 153]. How-
ever, such claims are often not experimentally verified. The relationship between
performance and energy efficiency is complicated, and many authors simply opti-
mize energy efficiency by minimizing the kernel execution time, an approach that is



108
CHAPTER 6. GOING GREEN: OPTIMIZING GPUS FOR ENERGY

EFFICIENCY THROUGH MODEL-STEERED AUTO-TUNING

sometimes referred to as race-to-idle [6]. In [37], a model for energy is proposed that
predicts that energy usage differs from runtime because energy costs for memory
operations cannot be hidden while the algorithm is running. Therefore, energy
optimality does not depend solely on optimizing FLOPs, but also on balancing
energy usage between memory and compute operations. In this chapter, we aim to
experimentally verify the differences between tuning for compute performance and
energy efficiency.

6.3 Methodology

6.3.1 GPU power consumption model
The energy consumed by a GPU over a time interval [t0, t1] is related to its power
usage P (t) according to

E =

∫ t1

t0

P (t) dt.

The power consumption P (t) = V (t)I(t) can be determined by measuring the
current I, and voltage V . In practice, one can either approximate the integral
numerically by, e.g., trapezoidal integration using the power readings, or simply
multiplying the average power consumption by the elapsed time E = 〈P 〉(t1 − t0).
We employ the latter method in this work, where we take the median power reading
for 〈P 〉.

The power consumption of a GPU is affected by several factors, including the
workload and operating frequency of the GPU. The workload is implementation
dependent, and in most cases can be optimized by tuning kernel parameters, or
by changing the kernel code. Furthermore, different GPU models contain different
components, such as memory and chips, that operate at certain clock frequencies
which can vary at runtime. These operating frequencies are commonly taken as is.

Throughout this work, we use a variety of GPUs with distinct architectures.
Moreover, even within one architecture (e.g. the Ampere architecture) we cannot
assume that the energy characteristics of two different models are identical. The
Tesla A100 and RTX A4000 GPUs for instance use a different chip (GA100 versus
GA102), are produced at a different process size (7 nm versus 8 nm), and have
a very different mix and number of execution units. Moreover, the Tesla A100
has HBM2e memory, while the RTX A4000 uses GDDR6. The NVIDIA drivers
currently do not expose an option to tune the clock frequency of the HBM memory.
For the RTX A4000 and a compute-bound kernel, we measured only a marginally
lower energy consumption when reducing the memory clock frequency. Therefore,
we consider solely the graphics clock (core) frequency in this work.

Contemporary GPUs usually operate at a base core frequency and can boost
up to a certain turbo frequency to increase performance, but only when the
temperature and power consumption of the device allows for it. This technique
is commonly referred to as Dynamic Voltage Frequency Scaling (DVFS). Price



6.3. METHODOLOGY 109

Kernel code

User interface

Strategies

Runners

Python script

Observers

Device function interface
CUDA

Functions
OpenCL

Functions
C

Functions

NVMLObserver

NVML wrapper
PowerSensor

Observer

PyCUDA Cupy PyOpenCL GCC PyNVML PowerSensor2

User input

Kernel Tuner

Backends

Figure 6.1: Extended software architecture of Kernel Tuner.

et al. [191] showed a relation between core frequency and the voltage required to
operate on a given frequency, and a power consumption model is given by

Pgpu = Pstatic +NcCfV
2, (6.1)

where C is load capacitance, Nc the number of switches, f is frequency, and V is
voltage. V typically increases with f . Consequently, the turbo frequency may be
good for performance, but not necessarily for energy efficiency.

To steer frequency tuning, we fit a GPU power consumption model to data
in section 6.5.4, using a non-linear least squares approach (Levenberg-Marquardt
algorithm [155]).

6.3.2 Energy measurements in Kernel Tuner
We introduce several new features in Kernel Tuner to acquire energy measurements
of GPU kernel executions, namely observers, user-defined metrics, and custom
tuning objectives. The software architecture and basic functionality of Kernel
Tuner is described in [246], and a diagram of software hierarchy can be found
in Figure 6.1. An observer can be implemented to execute functions and can
extend results obtained during benchmarking before, during and after kernel
execution. For the experiments in this work, we implemented the NVMLObserver
and PowerSensorObserver in Kernel Tuner.

PowerSensorObserver

To facilitate accurate energy measurements at high sampling frequency, we im-
plemented the PowerSensorObserver (using PyBind111) as an interface to Pow-
erSensor2 [200]. The user can select this observer to record power and/or energy
1https://pybind11.readthedocs.io/en/stable/



110
CHAPTER 6. GOING GREEN: OPTIMIZING GPUS FOR ENERGY

EFFICIENCY THROUGH MODEL-STEERED AUTO-TUNING

Figure 6.2: NVML power readings while executing matrix multiplication kernel
(GEMM) over time on three different GPUs.

consumption of kernel configurations during auto-tuning. This allows Kernel
Tuner to accurately determine the power and energy consumption of all kernel
configurations it benchmarks during auto-tuning.

NVMLObserver

Measurements with the PowerSensor2 require wiring external hardware to a GPU,
and the sensor is not available to most users, the bulk of our measurements will be
performed using NVIDIA’s internal sensors. The NVIDIA Management Library
(NVML) [168] can be used for power measurements on almost all NVIDIA GPUs, so
using this library is much more accessible to end-users compared to solutions that
require custom hardware, such as PowerSensor2. To this end we implemented the
NVMLObserver in Kernel Tuner, which allows the user to observe the power usage,
energy consumption, core and memory frequencies, core voltage and temperature
as reported by NVML.

As opposed to PowerSensor2, the power usage reported by NVML has a signifi-
cantly lower temporal resolution. Furthermore, NVML only reports a time-averaged
power consumption rather than instantaneous power consumption [26].

Figure 6.2 shows the GPU power consumption over time as reported by NVML,
while continuously executing a matrix multiplication kernel (GEMM see section
6.4) for one second. The jumps in the graph are caused by the fact that the
time-averaged value reported by NVML only refreshes at a frequency of about
10 Hz (9.75 Hz on RTX A6000, 14.5 Hz on Tesla A100, and 12.4 Hz on Titan
RTX). We can see that on the Titan RTX and Tesla A100, the power consumption



6.4. EXPERIMENTAL SETUP 111

GPU Architecture Cores Bandwidth Peak SP TDP (W)

RTX A4000 Ampere (GA104) 6,144 448 19,170 140
RTX A6000 Ampere (GA104) 10,752 768 38,709 300
Tesla A100 Ampere (GA100) 6,912 1,555 19,500 250
Tesla V100 Volta (GV100) 5,120 900 14,028 250
Titan RTX Turing (TU102) 4,608 672 16,312 320

Table 6.1: GPUs used in our experiments. Bandwidth in GB/s. Peak compute
performance in GFLOP/s. TDP in Watts.

as report by NVML stabilizes after about 0.3 seconds into the run. For the RTX
A6000, power consumption gradually ramps up until hitting the Thermal Design
Power (TDP) right before the end of our 1-second interval.

To ensure that the NVML power measurements in Kernel Tuner more accurately
reflect the power consumption of the kernel, the NVMLObserver executes the kernel
repeatedly for a user-specified duration (1 second by default), and takes the final
energy measurement, thereby ensuring a more accurate measurement with NVML.
The downside of this approach is that it significantly increases benchmarking time.

6.3.3 Tunable parameters and objectives for energy tuning
Using application-specific clock frequencies is one of the most common approaches to
tuning energy efficiency on GPU systems. Recently, Krzywaniak and Czarnul [117]
have shown promising results with setting application-specific power limits, also
called power capping, to optimize energy consumption. For this work, we have
implemented support in Kernel Tuner for users to tune their applications under
different clock frequencies and power limits. Specifically, NVML tunable parameters,
such as nvml_gr_clock, nvml_mem_clock, and nvml_pwr_limit, can be set using
Kernel Tuner. Note that changing these settings requires root privileges on most
systems. As such, these features may not be available to all users on all systems.

Lastly, to perform energy tuning, we need to specify metrics that we aim to
minimize or maximize. Using the aforementioned observers, we can collect power
readings (in Watts) during kernel execution. Furthermore, Kernel Tuner’s flexible
user-defined metrics allows us to define other metrics such as compute performance
in floating point operations per second (GFLOP/s). This allows us to define energy
efficiency as GFLOPs/W (same as GFLOP/J) which is a measure of the energy
used to perform a billion floating point operations.

6.4 Experimental setup
To investigate energy tuning on GPUs, we run several real-world applicable kernel
programs, on a few different GPUs available in either the DAS-6 cluster (Turing
and Ampere architecture) [10], or in the LOFAR COBALT-2 correlator system



112
CHAPTER 6. GOING GREEN: OPTIMIZING GPUS FOR ENERGY

EFFICIENCY THROUGH MODEL-STEERED AUTO-TUNING

(Tesla V100) [22]. Table 6.1 lists the properties of these GPUs. In addition to
the widely-used GEMM kernel, we validate our results on several computationally
expensive radio astronomy kernels currently processing data for the Low Frequency
Array (LOFAR) radio-telescope [78]. These kernels will be used in section 6.5.5 to
determine the practically obtained energy reduction for a real-world application.
All kernels are compute-bound, except for the TDD kernel which is memory-bound.
For the experiments in this section,

GEMM (Generalized dense matrix–matrix multiplication) is one of the most
widely-used kernels across many application domains, including neural networks.
Here we perform the calculation C = αA ·B+βC for 4096×4096 matrices A,B,C,
and constants α and β. We use the highly-tunable OpenCL implementation
available in CLBlast [165].

The CLBlast GEMM kernel can be tuned with many parameters, here we
summarize the most important ones:

• Mwg, Nwg, and Kwg represent the total size of the tile processed by a single
thread block in the M, N, and K matrix dimensions.

• MdimC and NdimC are the thread block dimensions in M and N.

• SA and SB can be used to enable or disable using shared memory as a
software managed cache for matrix A and matrix B.

• Mvec and Nvec are the vector widths for loading and storing to global memory,
Mvec is used for matrices A and C, and Nvec for matrix B.

• Kwi is the unrolling factor used for the loop over K.

While the GEMM kernel can use several code optimizations, none of the code
optimizations have been introduced to optimize the kernel specifically for energy
efficiency. All tunable parameters combined describe a large space, of which many
portions are restricted. Using the parameters employed by CLBlast, the search
space consists of 17472 valid kernel configurations, that will all be compiled and
benchmarked when performing an exhaustive search. However, when we add
additional tunable parameters for energy tuning, such as a power limit or clock
frequency, the search space grows combinatorially from a grid search perspective.
For example, if we want to tune all parameters in the search space in combination
with 7 different clock frequencies, the total size of the search space becomes
17,472× 7 = 122,304.

LOFAR Correlator is the correlator application used for real-time processing
of LOFAR (Low Frequency Array) data [78]. It combines measurements from
the radio telescope into a data product to be processed further by other (offline)
processing pipelines (see other kernels). The correlator kernel was tuned by
hand for the Kepler architecture, e.g. by unrolling loops and using fixed block
and grid dimensions. Consequently, there is only a single tuning parameter left:
NR_STATIONS_PER_THREAD. This parameter is used to choose between one of four
different kernels.



6.4. EXPERIMENTAL SETUP 113

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Energy (J)

Tesla
A100

RTX
A4000

RTX
A6000

race-to-idle
energy-to-solution-maxclock
race-to-idle+clocks
energy-to-solution+clocks
global energy-to-solution

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Energy (J)

TITAN
RTX

Figure 6.3: GEMM: Lowest energy configuration for the Tesla A100, RTX
A4000, RTX A6000, and TITAN RTX GPUs for the race-to-idle, energy-to-
solution-maxclock, race-to-idle+clocks, energy-to-solution+clocks, and global energy-
to-solution tuning methods. The energy measurements for the TITAN RTX were
acquired using PowerSensor2, the others using NVML.



114
CHAPTER 6. GOING GREEN: OPTIMIZING GPUS FOR ENERGY

EFFICIENCY THROUGH MODEL-STEERED AUTO-TUNING

TCC (Tensor-Core Correlator) is similar to the LOFAR correlator, leveraging
the Tensor Cores of contemporary NVIDIA GPUs [201]. Tensor Cores are mixed-
precision compute units that operate on matrix-like inputs. By using these compute
units, the Tensor-Core correlator is both much faster and much more energy-efficient
compared to previous correlators. This kernel is hand-tuned and uses fixed thread
block dimensions. There is one tuning-parameter: PORTABLE, which determines
whether the output is written using asynchronous writes (not supported on all
GPUs) or via shared memory.

IDG (Image-Domain Gridding) is an algorithm for radio astronomical imaging,
of which the gridder and degridder kernels are the most compute intensive. IDG
moves the computation (which resembles convolution) from the frequency domain
to the image domain by introducing subgrids and Fourier transformations for
processing input data in smaller subsets [238, 239]. The GPU implementation
of the gridder has the following tuning parameters: BLOCK_SIZE_X, the number
of threads in a thread block; UNROLL_PIXELS, the number of pixels to process by
a thread; NUM_BLOCKS, the number of threads blocks per SM; USE_EXTRAPOLATE,
option to reduce the number of trigonometric operations, at the cost of having to
perform more fused multiply-add operations. The degridder kernel has the same
options, except for UNROLL_PIXELS.

Dedispersion is used in time-domain astronomy to detect transient effects (e.g.
fast radio bursts) and pulsars. The signal received by the telescope is dispersed
(shifted) in time of the frequency band, and dedispersion is needed to correct for
this. Dedispersion can either be performed in the time domain (TDD), or in the
Fourier domain (FDD) [12]. TDD has two tuning parameters: SAMPS_PER_THREAD,
controls the number of samples to be processed per thread; USE_TEXTURE_MEM,
whether to use texture memory as a cache when loading input data. FDD has the
following tuning parameters: NFREQ_BATCH_GRID and NDM_BATCH_GRID control the
number of input samples to process per kernel invocation; NCHAN_BATCH_THREAD,
the number of input samples (in the frequency dimension) that every GPU thread
processes; USE_SHARED_MEMORY, use shared memory as software-managed cache
when reading input data; USE_EXTRAPOLATE, reduces the number of trigonometric
operations (same as for IDG, see above.).

6.5 Experimental results

6.5.1 Impact of energy tuning versus race-to-idle
In this section, we experimentally answer whether auto-tuning for energy efficiency
(global energy-to-solution) is different from auto-tuning for the lowest kernel runtime
across all clock frequencies (race-to-idle). Furthermore, we report the lowest energy
configuration at max clocks. We compare with a practical compromise where we
first tune for time, and then select a clock frequency for the best energy efficiency.
We call this last approach race-to-idle+clocks. Conversely, we also consider energy-
to-solution+clocks where we fix the frequency at the base clock frequency, tune for



6.5. EXPERIMENTAL RESULTS 115

energy, and then select a clock frequency to further maximize energy efficiency.
In Figure 6.3, we show the lowest energy configuration in the GEMM search

space with each of the aforementioned methods across several GPUs. For the
TITAN RTX we used the PowerSensor2 measurements to validate the findings. We
use relatively widely spaced equidistant samples from the range of supported SM
clock frequencies (7-points) due to the high cost of obtaining all measurements (9
days per GPU).

First, Figure 6.3 shows that the fastest configuration returned by race-to-idle
is not the most energy efficient for any of the GPUs. Second, for most GPUs,
the energy usage of the configurations found by race-to-idle+clocks and energy-to-
solution+clocks are close to the global lowest energy configuration, but they never
have the same parameters. Note that for race-to-idle+clocks, we first tuned for
time with the clock frequency fixed to the maximum, before tuning only the clock
frequency for energy efficiency.

The exception is the Tesla A100, where we see a gap in energy usage between
all five methods. This means that there is a particular combination of tunable
parameter values that results in a configuration that is more energy-efficient than
anything returned by the two-step optimization approaches. In other words, to
find the global optimum in terms of energy-to-solution it is necessary to search the
combined configuration space of all tunable parameters, including clock frequencies.

Our experimental results show that auto-tuning the GEMM kernel for energy
efficiency does not lead to the same optimal configuration as tuning for time, as all
five methods produce different configurations, with a different energy usage. This
raises the question of how kernel speed and energy efficiency are related. In Figure
6.4 we plot the compute performance in GFLOP/s for every GEMM configuration
over energy efficiency in GFLOPs/W, together with the Pareto front in red. By
looking at the points on the Pareto front for the RTX A4000 and Tesla A100, we
see that the trade-off between speed and energy efficiency differs between GPUs.
For the RTX A4000, a speed reduction of 28.4% leads to an increase in energy
efficiency of just 5.8%. However, for the Tesla A100, a speed reduction of 27.5.%
leads to an increase in energy efficiency of 50.9%. Therefore, the trade-off between
kernel runtime and energy usage is GPU specific.

Overall, our results show that, for the GEMM kernel, tuning for lowest energy
leads to different configurations than tuning for lowest execution time. However,
depending on the GPU, it may be sufficient to treat the optimization as a two-
stage optimization problem; first optimizing for minimal energy with a fixed clock
frequency, and then optimizing for the most energy efficient frequency, can result
in close to optimal energy efficiency on certain GPUs.

6.5.2 Speed vs energy: tuning difficulty of optimization spaces
Tuning a kernel for energy typically requires a larger search space compared to
tuning only for execution time. For energy, the search space is typically enlarged
with tunable parameters such as clock frequency, or power limit, and possibly other
specific optimizations that affect energy usage (e.g. the use of shared memory).



116
CHAPTER 6. GOING GREEN: OPTIMIZING GPUS FOR ENERGY

EFFICIENCY THROUGH MODEL-STEERED AUTO-TUNING

Figure 6.4: Kernel speed (GFLOP/s) over energy efficiency (GFLOPs/W) for all
GEMM configurations for the RTX A4000 (top) and Tesla A100 (bottom). The
red line is the Pareto front, i.e., neither performance or efficiency can be improved
without decreasing the other. Points are coloured according to the core frequency.



6.5. EXPERIMENTAL RESULTS 117

This raises the question whether the search space for energy tuning, compared
to tuning execution time, is only larger, or whether energy is actually harder to
optimize with optimization algorithms.

The proportion of PageRank centrality [213] quantifies search difficulty for blind
optimization algorithms. Here, a fitness flow graph (FFG) is created where all the
points in the search space are represented as nodes, and a directed edge from a
node to its neighbour is added if the neighbour has better fitness (energy or time).
A random walk across the FFG has the property that it mimics a randomized
first-improvement local search algorithm. The PageRank centrality of a local
minimum in the FFG is the proportion of arrivals in that minimum for a random
walk, i.e., the proportion of arrivals of a first-improvement local searcher during
optimization. Since local searchers terminate in local minima, the proportion of
centrality metric considers the fraction of centrality of “suitably good” local minima,
among all minima in the space. In other words, it gives the expected fraction of
local search terminations in “good” local minima. If near-optimal minima have high
centrality, a local searcher will find a close to optimal solution in fewer evaluations.
Here, “suitably good” means that the fitness of the minimum is within p · foptimal
for some p ≥ 1.

In Figure 6.5, we plot the proportion of centrality as a function of p for GEMM,
for the RTX A4000, RTX A6000, and Tesla A100 GPUs. For every GPU we plot the
proportion of centrality curve for performance (time) tuning, energy tuning with
clock frequency, and energy tuning with power limits. There does not appear to be
a significant difference in difficulty for the RTX A4000 GPU. For the RTX A6000
GPU, the minima with more than 125% runtime of the optimum are less central.
However, as these minima are already significantly worse than the near-optimal
solutions, we conclude that performance tuning is not significantly harder than
energy tuning for the RTX A6000. For the Tesla A100, we find that energy tuning
is significantly harder than performance tuning. For minima ≤ 110% of optimal
fitness, a local search algorithm is 2-4× less likely to terminate in these minima
when minimizing energy.

Overall, in our experiments, energy tuning is either similar in tuning difficulty
or harder depending on the GPU. As such, these search spaces remain infeasibly
large to traverse fully within a day, and picking many sampling clock frequencies
or power limits will compound this problem.

6.5.3 Power capping versus frequency tuning
In this section, we compare two methods that frequently appear in the literature;
power capping [117], which is fixing the power limit of the GPU, and frequency
tuning [4, 29, 58, 64, 147, 191], which aims to find the optimal application-specific
GPU clock frequency.

In Figure 6.6, we analyse the impact of both frequency tuning and power
capping on GPU power consumption. At the same measured frequencies, power
consumption seems a bit higher when using a fixed clock frequency compared to
setting a power limit. We observe that power capping does not cover the entire



118
CHAPTER 6. GOING GREEN: OPTIMIZING GPUS FOR ENERGY

EFFICIENCY THROUGH MODEL-STEERED AUTO-TUNING

100 110 120 130 140 150
% Fitness (time or energy) of global minimum

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n 
of

 c
en

tra
lit

y

RTX A4000

EnergyPwrLimit

EnergyClockFreq

RunTime

100 110 120 130 140 150
% Fitness (time or energy) of global minimum

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n 
of

 c
en

tra
lit

y

RTX A6000

EnergyPwrLimit

EnergyClockFreq

RunTime

100 110 120 130 140 150
% Fitness (time or energy) of global minimum

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n 
of

 c
en

tra
lit

y

Tesla A100

EnergyPwrLimit

EnergyClockFreq

RunTime

Figure 6.5: Proportion of centrality for tuning execution time, energy tuning (power
limit), and energy tuning (clock frequency) for the RTX A4000, RTX A6000, and
Tesla A100 GPUs.



6.5. EXPERIMENTAL RESULTS 119

range of clock frequencies supported by the GPU. Therefore, using frequency tuning,
we can reduce the power consumption below the minimum power limit, which
may be beneficial for some applications. Moreover, by operating at a fixed clock
frequency (below the point where throttling may occur), GPU behaviour is more
predictable.

To compare the two methods globally, we add to the existing tunable GEMM
parameters either a set of power limits or clock frequencies. We take a 7-point
equidistant sample from the range of power limits in case of power capping, and the
range of supported SM clock frequencies in case of frequency tuning. Using these
parameters, we have performed a full combined search space exploration of the
GEMM application on the RTX A4000, RTX A6000, Tesla A100 and TITAN RTX
GPUs. On the Titan RTX, we measured power consumption using PowerSensor2
instead of NVML.

The lowest measured energy for power capping and frequency tuning is given
in Figure 6.7. For the RTX A4000 and A6000 GPUs, power capping results in a
marginally lower energy configuration, but not for the Tesla A100. For the TITAN
RTX, where we used 20 sampling points for frequency tuning (300 MHz to 2100
MHz in steps of 75 MHz) and 9 for power capping (100 W to 300 W in steps of
25 W), we see that frequency tuning finds a significantly more energy efficient
configuration. This seems to suggest that given sufficient sampling points, due
to the increased frequency range, frequency tuning can result in a more energy
efficient configuration. However, this leads to an increase in search points in an
already large search space. To combat this, in Section 6.5.4, we investigate the
relationship between frequency and voltage, and how this can be used to steer
fine-grained frequency tuning.

6.5.4 Model-steered frequency tuning
In this section, we analyse the impact of clock frequency scaling on the power
consumption of the GPU, with the goal of identifying a range of suitable clock
frequencies that likely results in energy-efficient configurations. The GPU core
voltage can be queried by calling NVIDIA-smi -q -d VOLTAGE. In our experience,
this option is only available with fairly recent NVIDIA drivers (510 and newer) in
combination with Ampere GPUs (e.g. A100, A4000, A6000).

We plot the frequency-voltage curves for Tesla A100 and RTX A4000 in Fig-
ure 6.8. We observe that there is indeed a non-linear relation between core frequency
and voltage, as discussed in Section 6.3.1. For both the Tesla A100 and RTX
A4000, the voltage remains unchanged for a range of core frequencies, after which
the voltage increases seemingly quadratically. We will refer to the point where this
increase occurs as the ridge point. The RTX A4000 seems to be capped at 1875
MHz, as the core voltage does not increase beyond this point. This is likely due to
its power limit of 140W. This is not observed for the Tesla A100, potentially due
to its lower maximum operating frequency and higher power limit of 250W. At the
ridge points, the clock frequency for the GPUs is 72% and 70% of the peak clock
frequency, for the Tesla A100 and RTX A4000 respectively. Interestingly, for both



120
CHAPTER 6. GOING GREEN: OPTIMIZING GPUS FOR ENERGY

EFFICIENCY THROUGH MODEL-STEERED AUTO-TUNING

Figure 6.6: Tuning using a power limit (triangles) versus tuning using frequency
(circles) for TITAN RTX (top left), Tesla A100 (top right) and RTX A4000 (bottom)
for a synthetic workload that fully occupies the GPU. For all three GPUs, the
power consumption coincides with the configured power limit (indicated with the
dashed lines). Moreover, we observe that for this workload, the TITAN RTX and
RTX A4000 can not sustain their maximum advertised turbo clock frequency of
1770 MHz and 1560 MHz, respectively.



6.5. EXPERIMENTAL RESULTS 121

0.0 0.5 1.0 1.5 2.0
Energy (J)

RTX
A4000

RTX
A6000

Tesla
A100

frequency tuning
power limit tuning

0.0 0.5 1.0 1.5 2.0
Energy (J)

TITAN
RTX

Figure 6.7: Lowest found energy for power capping or frequency tuning for GEMM,
for the RTX A4000, RTX A6000, Tesla A100, and TITAN RTX GPUs. The energy
measurements for the TITAN RTX were acquired using the PowerSensor2 instead
of the NVML energy.

GPUs, the ridge point does not coincide with the base frequency.

Estimating GPU power consumption

Equation 6.1 shows that the power consumption of a GPU can be modelled
as the sum of the idle power and the dynamic power. In our model we take
the idle power consumption as a constant, and the dynamic power consumption
has a linear dependence on frequency, and a quadratic dependence on voltage.
Moreover, for GPUs that are prone to power-limit throttling (e.g. RTX A4000),
the power consumption of the GPU is capped. The model for estimated GPU
power consumption is

P ∗load = min(Pmax, P
∗
idle + α ∗ f ∗ v2). (6.2)

P ∗load, Pmax, and P
∗
idle denote the estimated, maximum and idle power consumption

of a GPU respectively. An initial value for Pmax can be obtained by measuring the
maximum power consumption observed when executing a kernel that fully loads
the GPU, or simply by looking up the TDP of the device. Pidle can be obtained
by measuring the power consumption when no kernel is being executed. α is a
constant, f is the core frequency of the GPU, and v denotes the GPU core voltage.



122
CHAPTER 6. GOING GREEN: OPTIMIZING GPUS FOR ENERGY

EFFICIENCY THROUGH MODEL-STEERED AUTO-TUNING

Figure 6.8: Top: GPU core frequency versus voltage curves for Tesla A100 and RTX
A4000. The base clock frequency, the ridge point and peak frequency for each GPU
are highlighted with a dashed line and label. Bottom: estimated performance under
the assumption that GPU performance scales linearly with the clock frequency up
to the point where throttling (if any) occurs. Estimated performance is normalized
according to the performance for the highest possible clock frequency.



6.5. EXPERIMENTAL RESULTS 123

Estimating GPU core voltage

For GPUs that do not support voltage readings, such as the Tesla V100 and Titan
RTX, we extend the methodology outlined above to include a voltage estimate as
a function of core frequency. We assume based on our observations that for these
GPUs there exists a threshold τft after which the voltage increases with a rate
β. As input, our method requires a number of power measurements for a uniform
sample of all the clock frequencies that the GPU supports. These data points are
used to fit equation 6.2 to estimate Pload, where v is substituted by:

v(f) =

{
1 f < τft

β ∗ (f − τft) f >= τft
(6.3)

Fitting the model

We test our model by configuring Kernel Tuner to record core frequency and power
usage while running a simple synthetic kernel (array dot product) that fully loads
the GPU. We only need a few samples, spaced uniformly along the supported core
frequencies. Using the measurements obtained with Kernel Tuner, for every GPU,
we fit equation 6.2 to the data as outlined in section 6.3.1. When fitting the model
for P ∗load, the frequency f runs till the highest clock frequency before throttling (if
any) occurs.

The left plot in Figure 6.9 illustrates that the estimated power consumption
closely follows the power consumption measured using NVML. Next, the estimated
power consumption is used to compute estimated energy usage as a function of
absolute power (P ∗load) divided by clock frequency (f). For each of the GPUs, there
is a core frequency that minimizes estimated energy usage, see Figure 6.9 (right).
For both the Tesla A100 and RTX A4000, the predicted most energy-efficient clock
frequencies (985 MHz and 1298 MHz) are close to the observed ridge points at
1025 MHz and 1290 MHz as identified in Figure 6.8.

Reducing the clock frequency beyond the ridge point does not make the GPU
more energy efficient, as performance drops with f while v is constant below the
ridge point. This leads to a higher total energy usage for non-zero Pidle. On the
other hand, there is a trade-off between performance and energy when considering
higher clock frequencies than the ridge point, up to the point where throttling
starts to occur (at about 1700 MHz for the RTX A4000 and 2000 MHz for Titan
RTX). As energy increases quadratically with voltage, and compute performance
linearly with frequency, it is unnecessary to consider frequencies significantly higher
than the ridge point.

To conclude, prior to energy tuning a particular GPU kernel, we recommend
running a kernel that fully loads the GPU for a range of clock frequencies. Our
model can then be used to fit a power consumption curve and find an estimate
for the most energy-efficient frequency. Next, energy tuning can be run with a
fine-grained sampling of clock frequencies around the estimated optimal frequency.



124
CHAPTER 6. GOING GREEN: OPTIMIZING GPUS FOR ENERGY

EFFICIENCY THROUGH MODEL-STEERED AUTO-TUNING

Figure 6.9: Top: Power consumption of dot product kernel that fully loads the GPU,
for the Tesla A100, RTX A4000, RTX A6000, Tesla V100, and Titan RTX. The
dots indicate measurements, while the lines show the modelled power consumption
(equation 6.2). Bottom: Corresponding estimated energy usage, with frequency
that leads to minimal energy usage.



6.5. EXPERIMENTAL RESULTS 125

GOPs GOPs GOPs TOP TOP TOP Freq-
/W /W /W /s /s /s uency

GPU Kernel before after gained before after gained (MHz)

Tesla
A100

Gridder 64.7 102.6 58.6% 16.3 12.0 -26.5% 1035
Degridder 59.8 97.5 63.1% 14.5 10.7 -26.2% 1035
FD 62.2 92.8 49.1% 9.7 7.3 -24.6% 1035
Dedispersion
TD 13.3 21.5 61.3% 3.4 2.5 -26.4 % 1035
Dedispersion
Tensor-Core 684.8 1264.2 84.6% 148.4 135.2 -8.9% 1035
Correlator
LOFAR 58.9 125.8 113.8% 12.2 10.7 -12.0% 1035
Correlator

RTX
A4000

Gridder 77.6 107.5 38.6% 11.0 8.1 -25.8% 1200
Degridder 90.8 131.6 44.9% 10.2 9.4 -8.1% 1470
FD 77.6 111.9 44.3% 8.3 6.7 -19.2% 1290
Dedispersion
TD 12.9 17.2 33.0% 1.5 1.1 -22.2% 1200
Dedispersion
Tensor-Core 571.2 606.8 6.2% 57.2 55.2 -3.6% 1290
Correlator
LOFAR 98.9 119.3 20.6% 8.7 8.4 -4.2% 1470
Correlator

TITAN
RTX

Gridder 55.2 68.6 24.2% 14.3 9.0 -37.2% 1260
Degridder 48.4 65.6 35.4% 13.7 8.2 -39.7% 1155
FD 39.9 59.9 50.2% 10.2 5.5 -45.4% 1050
Dedispersion
TD 8.0 12.1 50.7% 2.1 1.3 -40.0% 1050
Dedispersion
Tensor-Core 140.5 209.5 49.1% 34.7 23.4 -32.6% 1155
Correlator
LOFAR 51.5 78.0 51.6% 12.8 7.2 -43.4% 1155

Tesla
V100

Gridder 59.6 73.6 23.6% 11.6 9.5 -18.0% 1110
Degridder 61.7 74.2 20.2% 11.0 8.8 -19.9% 1110
FD 58.6 69.2 18.1% 7.4 6.0 -19.2% 1110
Dedispersion
TD 11.6 15.7 34.9% 2.2 1.3 -37.8% 1110
Dedispersion
Tensor-Core 260.8 301.5 15.6% 34.2 27.7 -18.9% 1110
Correlator
LOFAR 74.7 86.8 16.3% 9.9 7.6 -23.5% 1110
Correlator

Table 6.2: Energy efficiency (GOPs/W) and compute performance (TOP/s) before
and after model-steered frequency tuning, i.e., select the most energy-efficient
frequency within ±10% MHz of the ridge points found in Figure 6.9. All kernels
use floating point operations (FLOPs) except the Tensor-Core correlator, which
uses 16-bit integer operations.
∗Note: The before measurements are already tuned for time by a domain expert.



126
CHAPTER 6. GOING GREEN: OPTIMIZING GPUS FOR ENERGY

EFFICIENCY THROUGH MODEL-STEERED AUTO-TUNING

Figure 6.10: Modelled energy usage (J) with power consumption model for core
clock frequencies (MHz) of LOFAR kernels for the Tesla V100, Titan RTX, Tesla
A100 and RTX A4000 GPUs.



6.6. CONCLUSIONS 127

This feature is included in Kernel Tuner2 (version 0.4.4). In this work, we use a
range of ±10% of the optimal frequency estimated with the model.

6.5.5 Practical efficiency gain for radio astronomy kernels
To verify the energy gains on a real-world high-throughput pipeline, we apply
our model-steered frequency tuning method to the six radio astronomy LOFAR
kernels (see section 6.4) currently running on the DAS-6 system [10], and LOFAR
COBALT-2 system [22] (can receive more than 1 Tbit/s). By using model-steered
frequency tuning we reduce the size of the searchspaces by 82.4%, 78.9%, 77.8%,
and 80.0% for the Tesla A100, RTX A4000, Titan RTX, and Tesla V100 respectively.
The measured compute performance and energy efficiency before and after model-
steered tuning is given in Table 6.2. Note that all six kernels have previously been
optimized for compute performance, which means that the reduction in compute
performance may be more severe than in most cases.

After model-steered frequency tuning, the LOFAR kernels gained between ∼15–
113% in energy efficiency, while losing ∼3–45% compute performance. Gains in
energy efficiency, and losses in compute performance, varied significantly between
GPU models and kernels. Two notable outliers are the Tensor-Core correlator on
the RTX A4000, where efficiency increased only 6%, and the LOFAR correlator
on the Tesla A100, where an efficiency gain of 113.8% was achieved while losing
only 12% compute performance. Overall, the mean energy efficiency gain was
42.0± 24.1%, and the mean compute performance loss was −24.3± 12.1%.

The estimated energy usage curves for each application using the power con-
sumption model are given in Figure 6.10. We can see that sometimes the estimated
optimal frequency is close to the measured optimal frequency in Table 6.2, and
sometimes differs more significantly. In future work, we plan to expand the model
by adding memory- and temperature-dependent terms.

6.6 Conclusions
We have investigated several GPU kernel tuning approaches for improving energy
efficiency, and extended Kernel Tuner’s capabilities for measuring GPU power
consumption and for tuning energy usage. On a commonly-used benchmark matrix
multiplication kernel (GEMM) – designed for compute performance without energy-
specific tunable parameters – we found that with a speed reduction of 27.5% an
increase in energy efficiency of 50.9% is possible on the Tesla A100. Additionally,
the combined search space of all tunable parameters (including clock frequency)
contains a globally lower energy configuration, compared to tuning for performance
and then tuning clock frequency separately. However, for most GPUs tuning
the frequency separately did lead to a close to optimal energy usage. When
investigating energy tuning methods, we found that clock frequency tuning gives

2https://github.com/KernelTuner/kernel_tuner



128
CHAPTER 6. GOING GREEN: OPTIMIZING GPUS FOR ENERGY

EFFICIENCY THROUGH MODEL-STEERED AUTO-TUNING

more fine-grained control over GPU power consumption than power capping, and
enables a larger (and lower) range of power consumption.

Due to the prohibitively large search spaces when tuning both kernel parameters
and clock frequency, we introduced a model to estimate GPU power consumption.
We show that a single core clock frequency is the most energy efficient when
the other tunable parameters are constant. This clock frequency can easily be
estimated using our power consumption model. We verified the potential energy
efficiency gains when tuning around ±10% of our estimated frequency on a number
of real-world radio astronomy kernels, and increased energy efficiency more than
two fold at a loss of 12% compute performance. Overall, the mean energy efficiency
gain was 42.0± 24.1%, and the mean compute performance loss was −24.3± 12.1%.
Using our model-steered frequency tuning approach, we were able to dramatically
reduce the size of the auto-tuning search spaces by 77.8− 82.4%.




