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5
Benchmarking optimization

kernels for auto-tuning
GPU kernels

5.1 Introduction
Graphics Processing Units (GPUs) have revolutionized the HPC landscape in the
past decade [88], and are seen as one of enabling factors in recent breakthroughs in
Artificial Intelligence (AI) [121]. GPUs originated as processors for gaming and
then adapted to more general workloads as co-processors in many HPC systems.
Over the past decade, GPUs have started to again penetrate new markets such
as IoT devices [152] and autonomous vehicles [135]. The range of applications
of GPUs as such continues to expand. Because of their relatively low cost with
respect to their parallel processing power, more and more supercomputers come
equipped with GPUs, and in 2020, the majority of modern supercomputers use
GPUs [236] as the major source of compute power.

The sections of code that run on a GPU, called kernels, can be challenging to
configure such that they run efficiently for a varying combinations of datasets and
GPU architectures [248]. The kernel parameters can be split into those defined
by the program, and those that are a consequence of the underlying architecture
and models behind the GPU. The hardware-specific parameters define how the
thousands of threads in a GPU are grouped. An ineffective layout can cause
underutilization of GPU resources. In general, the computational efficiency can
drop by an order of magnitude depending on certain implementation choices.
Typically, only a small subset of the possible configurations lead to a large increase
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in performance [220]. Therefore, it is vital to be able to select an efficient kernel
configuration.

The search space for this problem is formed by all feasible combinations of
GPU kernel parameters. This space is discrete and non-convex [185], making it
hard to carry out the optimization. For most GPU kernels used in practice, the
size of this search space is such that traversing the options by hand or brute-force
is infeasible. An additional complication in optimizing kernel parameters is that
evaluating the performance of each configuration requires costly recompilation and
test runs. Furthermore, the same GPU kernel often requires re-tuning for different
input data, hardware, or after changes to the code [107, 127, 166, 167]. Large
throughput pipelines often rely on computationally expensive GPU kernels that
consume large amount of resources [218, 221], and cannot be tuned exhaustively
due to the aforementioned reasons.

Automatic performance tuning (auto-tuning) techniques rely on empirical results
and feedback to optimize the kernel parameters with respect to desired performance
metrics. These techniques aim to be widely applicable across architectures. For this
reason, auto-tuning can be used to find configurations with increased performance
for GPU programs. As the search space for the auto-tuning task depends on
various aspects (kernel source, code layout, input data, GPU-architecture), the
optimization framework must deal with a broad variety of search spaces and
constraints. We, therefore, treat the problem as a black-box optimization task.
This raises the question of which optimization algorithm is best suited to find
highly efficient settings for GPU kernels, and how these optimization algorithms
need to be configured to tune GPU kernels.

The main contribution of this work is to determine which optimization algo-
rithms produce the fastest GPU kernels for different tuning-time ranges. To do
so, we conduct a survey of 16 evolutionary optimization algorithms for 9 different
NVidia and AMD GPUs, and run 3 real-world applicable benchmark kernels. We
select our benchmark problems such that we are able (given ample time) to compute
the entire search space, and make these spaces publicly available. To benchmark
the GPU kernels we use the Kernel Tuner package [246]. We use the wide range of
optimization algorithms present in Kernel Tuner for a large-scale comparison, and
provide favourable default hyperparameters for GPU tuning for each algorithm.
In addition, we extend Kernel Tuner with several highly-efficient optimization
algorithms, including iterative local search (ILS) and dual annealing that cannot
be found in any other generic auto-tuning framework.

Secondly, we aim to quantify tuning difficulty for these seemingly challenging
and capricious search spaces. To do so, we introduce the fitness flow graph (FFG),
which is a network of the points in the search space, with directed edges between
neighbours with a better fitness. By computing the likelihood of local search
walks terminating in good local minima, we use FFGs to better understand the
discrepancies between optimization algorithms, and subsequently tailor them to
better suit GPU tuning. In addition, FFGs can help explain the differences across
GPU manufactures, architectures, and kernel programs, and such knowledge can
help steer future development. To quantify tuning difficulty per kernel, we introduce
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a novel metric based on Google’s PageRank algorithm [21, 173].
This work is structured as follows. In section 5.2 we discuss existing GPU

kernel tuning approaches. In section 5.3 we introduce the preliminaries on GPU
kernels, and describe the optimization algorithms that are considered in this survey.
In section 5.4, we describe certain implementation details of Kernel Tuner and our
Python optimization package BlooPy. We discuss the setup of our experiments
in section 5.5. In section 5.6 we tune the hyperparameters of the algorithms, and
present our findings on optimization algorithm performance. In section 5.7 we
introduce fitness flow graphs (FFGs) and quantify tuning difficulty for kernel search
spaces. Finally, we present our conclusions in section 5.8.

5.2 Related work

5.2.1 Automated performance tuning
It is well-known that GPU tuning can yield considerable gains in computational
efficiency and utilization for large-scale, high-throughput pipelines that run on
compute clusters. As an example, we mention the AMBER pipeline [218, 221],
which is used to detect Fast Radio Bursts (FRBs) and other single pulse radio
transients in astronomy. The pipeline has a throughput of 2 TB/s, and uses a
large amount of resources. Benchmarking a single configuration is expensive, and
the search space consists of millions of configurations, meaning that sophisticated
tuning approaches have to be developed.

Research in automated performance tuning (auto-tuning) can be grouped into
two main categories: (1) auto-tuning compiler-generated code optimizations [111,
179, 193, 234], and (2) software auto-tuning [127, 259]. Ashouri et al. [7] wrote an
excellent survey on machine-learning methods for compiler-based auto-tuning. In
this chapter, we limit our scope to (2), i.e., optimizations methods for software auto-
tuning, which is sometimes referred to as automated design space exploration [159].
Software auto-tuning allows developers to automatically optimize individual func-
tions and allows, for example, to tune for entirely different implementations and
parallelizations that solve the same problem.

As such, auto-tuning techniques are often employed to optimize the source code
of high-performance libraries and applications for the CPU, e.g. ATLAS [249] or
FFTW [63], as well as for GPUs [71, 127, 145, 220, 235, 247, 259].

A number of generic auto-tuning frameworks have been introduced in recent
years. OpenTuner [5] was one of the first generic software auto-tuning frameworks,
supporting a number of different search optimization algorithms, but with no
support for tuning individual GPU kernels. GPTune [137] and HyperMapper [159]
are recently proposed frameworks that both use Bayesian Optimization for auto-
tuning on different platforms, but do not target GPUs.

Grauer-Gray et al. [70] have applied auto-tuning to the high-level directive-
based HMPP framework, which can compile to CUDA or OpenCL code. They
demonstrate significant performance improvements using auto-tuning over unopti-
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mized HMPP kernels in the PolyBench benchmark suite. Wang et al. [243] take a
similar compiler-based approach to automatically convert shared memory OpenMP
applications into OpenCL code for GPUs. They use a machine-learning approach,
which based on the number of compute operations and memory accesses in the
kernels, predicts the best performing hardware platform to execute the kernels
either the multi-core CPU using OpenMP, or on the GPU using OpenCL. Hou et
al. [97] proposed a data-sensitive auto-tuning framework for sparse matrix vector
(SpMV) multiplication that automatically finds the best parallelization strategy.
They use a two-step machine learning approach in which they first determine the
optimal way to group data into bins and then select the most suitable kernel to
process the rows in each bin.

CLTune [166] was the first generic auto-tuning framework with specific support
for directly tuning GPU kernels written in the OpenCL programming language.
CLTune supports several optimization algorithms, including simulated annealing
and particle swarm optimization, but these do not outperform random search [166].
Kernel Tuning Toolkit (KTT) [60] is developed specifically to support online
auto-tuning and pipeline tuning, which allows for the exploration of combinations
of tunable parameters over multiple kernels. An interesting feature of KTT is
the support to keep track of hardware performance counters, such as L2 cache
utilization, during benchmarking, which can also be used in advanced search
strategies [61]. Auto-Tuning Framework (ATF) [195] implements an innovative
way to generate auto-tuning search spaces, for efficient storage and fast exploration
of constrained search spaces, but does not focus on introducing new optimization
algorithms.

In earlier work, we have introduced Kernel Tuner [246], a generic auto-tuning
framework specifically designed to be an easy-to-use and easy to extend tool for
researching auto-tuning optimization algorithms. Kernel Tuner is a state-of-the-art
framework that implements the largest range of search optimization strategies of all
generic auto-tuning frameworks, and was the first generic framework to implement
multiple search strategies that consistently outperformed random search [246].

5.2.2 Analyzing auto-tuning search spaces
In this chapter, we do not only compare the performance of different optimization
algorithms on the GPU auto-tuning problem, but we also investigate the properties
of the search spaces to understand why certain optimization algorithms outper-
form others, and gain insight into the difficulty of the optimization problem. A
comprehensive introduction to GPU tuning difficulty is given in [219].

Ryoo et al. [205] were one of the first to study the properties of optimization
spaces for GPU applications. They defined two performance metrics to model
the efficiency and utilization of a CUDA kernel and used these to find kernel
configurations on the pareto curve that maximizes the two metrics. A downside of
this approach is that the performance metrics have to be constructed for each kernel
individually and require manual inspection and counting instructions in assembly
code. Lim et al. [128] also look into search space properties to preselect certain
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parameter values using static code analysis in order to try to limit exploration of
the search space by an auto-tuner.

In [169], Ochoa et al introduce the concept of Local Optima Networks (LONs).
When constructing LONs the search space is partitioned into basins of attraction,
i.e., sets of points where a local search algorithm will terminate in the same local
minimum. A LON is a graph with the local optima as vertices, and a directed
edge between nodes if a local search step transforms a solution from one basin
of attraction to another. We build upon this idea to define fitness flow graphs
(FFGs), which as opposed to LONs contain all the points in the search space. Due
to the large number of points with “failure fitnesses” (when a configuration fails to
compile) in GPU kernel spaces, defining the basin of attraction is difficult. Instead,
we simplify the ideas behind LONs to the entire search space, and quantify how
likely local search algorithms terminate in good local optima. To do so, we look at
PageRank centrality of local optima. In [93] the idea of using PageRank centrality
for LONs as predictor of performance for local-seach based heuristics was proposed,
and in [92] the PageRank was used to rank space difficulty. We extend this idea to
FFGs to determine GPU tuning difficulty.

5.3 Method: Optimization problem
In this section, we define the performance optimization of GPU kernels as a
mathematical optimization problem, and we present the optimization algorithms
that are part of our experiments.

5.3.1 GPU kernels
GPU kernels are executed by millions of threads in parallel to perform data-parallel
computations on the GPU. However, the compute performance of a GPU kernel
depends on how the software has been optimized for the hardware.

There are various different design choices that have an impact on the perfor-
mance of GPU kernels, and this impact is challenging to accurately predict. For
example, the way that a computation is parallelized and mapped on the thread
blocks and individual threads affects the utilization of the GPU cores. Other
design choices include what data types and data layouts to use in the various
memory spaces available to GPU applications. There may also be entirely different
algorithms to choose from to implement certain parts of the computation.

Other tunable parameters are introduced through code optimizations that can
be enabled and may in turn introduce new parameters, such as tiling factors,
vector data types, or partial loop unrolling factors. GPU kernels also have a
number inherent parameters in terms of the number of thread blocks and the
number of threads per block that are used to execute the kernel. The multitude
of implementation choices for GPU kernels result in sizeable, non-convex, and
discontinuous kernel design spaces.
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To automate the kernel design space exploration process, GPU code can be
parameterized, either using a kernel template or a code generator. An auto-tuner
can take such a kernel template or code generator and empirically benchmark
different kernel configurations, until it has found an efficient implementation. The
search performed by the auto-tuner can be treated as a mathematical optimization
problem of the form:

x∗ = arg min
x∈X

f(x) (5.1)

where f(x) is the performance metric to be minimized, for kernel configuration
x for a combination of kernel, GPU device, and input settings. In this work the
performance metric to be minimized will be the runtime of the kernel.

5.3.2 GPU kernel search spaces
The search space of possible settings for a GPU kernel can be characterized as a
finite subset X ⊂ Zn for n different parameters. Specifically, for each dimension
1 ≤ i ≤ n, every entry xi of a point x ∈ X takes values from a finite set Si ⊂ Z.
For example, the block dimension might allow values in {16, 32, 64, 128}. The total
search space is the Cartesian product of these finite sets

X = S1 × S2 × · · · × Sn.
The local structure of a search space depends on the definition of neighbouring

points. A common definition of the neighbours of a point are the points which differ
only in one dimension, and are equal for all other dimensions. Mathematically,
according to this definition the set of neighbours N(x) of a point x is

N(x) :=

n⋃
i=1

{y ∈ X \ {x} | yj = xj , ∀j 6= i} . (5.2)

Here, we will consider a more restrictive type of neighbourhood concept where
we place the additional requirement that the parameter that differs from xi should
have a value adjacent to xi in the list Si. For example, if the block dimension is
allowed to be [16, 32, 64, 128], then neighbours of xi = 64 would be 32 and 128,
and the neighbour of 128 would only be 64. We consider this restriction because
this definition gives information on whether closely related parameter values are
related in performance.

Points of special interest in the search space are local minima. A point is a local
minimum if all neighbouring points have a worse fitness. In other words, there are
no improvements to be found in the local neighbourhood. Algorithms that scan
local neighbourhoods can get stuck in local minima as there are no close points
with better fitness.

5.3.3 Black-box optimization algorithms
As the search space is typically too large to iterate over all feasible points, a range
of more sophisticated optimization algorithms are used in practice. In this section
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we describe the optimization algorithms that are considered in the experiments.
As a categorization of these algorithms, we distinguish continuous, and discrete
algorithms, and algorithms that learn about the stochasticity of the problem.

Optimization - discrete algorithms

Since tuning GPU kernels involves choosing the best from a finite set of possibilities,
it makes sense to consider discrete optimization algorithms. These algorithms are
considered in this work:

• Random sampling randomly generates solutions and records the highest
scoring one. This strategy serves as a baseline comparison to determine if
optimization algorithms offer significant benefits.

We consider several local search (or hill climb) algorithms which iteratively
check for a neighbouring solution of lower fitness to visit, until a local minimum is
reached. For all local search algorithms we distinguish between best-improvement
search, where we move to the best neighbour next, and first-improvement, where
we examine neighbours in a random order and move to one when we encounter an
improvement.

Local search algorithms can vary the neighbourhood function that they use
to generate new candidates. The algorithms can use both the version outlined in
equation 5.2 (called Hamming), and the more restrictive neighbourhood definition
in section 5.3.2 (called adjacent). First-improvement variants can decide whether
they continue checking the remaining variables first after finding an improvement,
or if they restart the search (hyperparameter restart search).

• Multi-start local search (MLS) repeatedly generates random starting
solutions, and hill climbs them until a local minimum is reached.
Hyperparameters: neighbourhood, restart.

• Iterative local search (ILS) [141] is similar to MLS but inherits part of
the original local minimum when generating a new starting solution. After
reaching a minimum, ILS performs several random permutations to generate
a new starting solution. This perturbation size is a tunable parameter. In
addition, a tunable exit after no improve hyperparameter randomly restarts if
no improvement is found after a that many iterations, which helps to escape
basins of attraction for small perturbation sizes.
Hyperparameters: perturbation size, exit after no improve, neighbourhood,
restart.

• Tabu search [65] maintains a queue of previously visited solutions which
the algorithm is not allowed to visit. The tunable hyperparameter tabu size
defines the queue size, and ensures that the new solution has not been visited
for tabu size iterations. Tabu search always picks a new solution, whether it
is an improvement or not.
Hyperparameters: tabu size, neighbourhood.
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• Simulated annealing (SA) [114] maintains a temperature parameter that,
together with the fitness values, determines the probability that we move
to a (potentially worse) neighbouring solution. The temperature parameter
is decreased each iteration to mimic the behaviour of cooling processes in
material physics. A tunable exploration parameter determines the size of the
mutation of the current solution that is performed at each iteration. A hill
climber subsequently optimizes the new solution, which is accepted with a
certain probability.

Hyperparameters: exploration, hill climber, neighbourhood

We also consider two discrete population-based algorithms, which require a
population size parameter to determine the number of solutions they maintain.
Population-based methods iteratively create a next generation of solutions by
mixing solutions from the previous generation. A reproduction operator creates
new initial solutions from existing ones, e.g., with two-point crossover a section of
the solution vector is swapped between two solutions. After new solutions have
been created, and their fitnesses determined, a selection mechanism determines
which solutions are kept for this generation. For example, in tournament selection
a number of randomly picked solutions compete for a spot in the next generation.

• Genetic local search (GLS) [102] (or memetic algorithm) is a population-
based method where every solution in a generation is subsequently hill climbed.
The initial population is made up of randomly generated solutions, which
after hill climbing are all local minima. Next, a number of children is created
by reproduction, and a new initial starting population is selected from the
batch. These solutions are subsequently hill climbed and the procedure is
repeated.

Hyperparameters: hill climber, population size, reproduction, selection.

• Genetic algorithm (GA) [151] is similar to GLS, but instead of hill climb-
ing each solution, it performs a single mutation only, e.g., permuting a single
parameter. Instead of a hill climbing algorithm, GA has a tunable hyper-
paramter mutation that determines the fraction of variables of a solution
that are mutated each generation.

Hyperparameters: mutation, population size, reproduction, selection.

Optimization - continuous algorithms

As an alternative to discrete algorithms, we can consider continuous optimization
algorithms which operate on real-valued solutions. In order to apply algorithms
which assume continuous variables to a discrete problem such as GPU kernel tuning,
we need to define a mapping between a real-valued vector, and the discrete values
in the search space. Suppose the search space allows values x1, x2, . . . , xn for a
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GPU Specifications
CUDA cores Band- Peak
/Stream Device Boost width compute

GPU model Year processors memory clock (GB/s) (GFLOP/s)
NVidia Tesla K20 2012 2496 5 GB 0.76 GHz 208 3524
NVidia GTX 2015 3072 12 GB 1.08 GHz 336 6605
Titan X
NVidia Tesla 2016 3584 12 GB 1.30 GHz 549 9340
P100 PCIe
NVidia GTX 2017 3584 11 GB 1.58 GHz 484 11340
1080 Ti
NVidia Tesla 2017 5120 32 GB 1.37 GHz 900 14899
V100 PCIe
AMD Radeon 2018 3840 16 GB 1.73 GHz 1024 13300
Instinct MI50
NVidia Titan RTX 2018 4608 24 GB 1.77 GHz 672 16312
NVidia RTX 2019 2560 8 GB 1.77 GHz 448 9060
NVidia A100 2020 6912 40GB 1.41 GHz 1555 19500
Tesla PCIe

Table 5.1: Specifications of graphical processing unints (GPUs) used to create
experimental data.

particular variable, then a continuous variable y ∈ [0, 1] gets mapped to the closest
grid point ȳ:

B = { 1

2n
,

3

2n
, . . . ,

2n− 1

2n
}

j∗ = arg min
i=1,...,n

{|Bi − y|}

ȳ = xj∗ .

Effectively, this ensures that all possible discrete values are equally spaced across
the interval [0, 1], and the continuous variable is mapped to the closest one. The
continuous optimization algorithms operate on real-valued vectors with dimensions
equal to the number of parameters that are to be optimized. Each entry is bounded
to the unit interval.

The mapping ensures that points close together in real-valued space can get
mapped to the same point in the GPU tuning space. While this can negatively
impact the performance of continuous algorithms, it does not automatically lead to
poor performance, as illustrated by the strong performance of continuous algorithms
in Kernel Tuner [246]. Furthermore, this mapping allows us to explore a new class
of algorithms. Here, we consider two local search algorithms.

• Basin hopping [241] is a global stepping algorithm that chooses new starting
positions for local minimization. It requires the local minimizer method and a
temperature parameter to be chosen. The temperature parameter determines
the accept–reject criterion. Currently supported minimization methods are
the nonlinear conjugate gradient (CG) [164], simplex (Nelder-Mead) [161],
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conjugate direction (Powell) [190], L-BFGS-B [28], Constrained Optimization
BY Linear Approximation (COBYLA) [189], and Sequential Least Squares
Programming (SLSQP) [115] methods.

Hyperparameters: minimizer method, temperature.

• Dual annealing [237] is an extension of generalized simulated annealing,
paired with a local minimization method. It combines global and local search
procedures, and it requires users to choose a local minimization method.

Hyperparameters: minimizer method.

Lastly, we consider two population-based algorithms.

• Particle swarm optimization (PSO) [110] initializes a number of particles
at random in the search space. Each iteration, these particles update their
position and velocity. Particles transmit information to a certain number of
neighbours, thereby influencing the movement of the other particles.

Hyperparameters: #particles, neighbours evaluated.

• Differential evolution [228] is similar to a genetic algorithm, but mixing
strategies are based on real-valued solutions. Typically they involve mixing
the best solution with a random candidate, and accepting the result with a
certain probability.

Hyperparameters: mixing method, population size, mutation size, recombina-
tion probability.

Optimization - tuning algorithms for stochastic optimization

In this survey we consider two state-of-the-art parameter tuning algorithms;

• Sequential Model Algorithm Configuration (SMAC) [132] is a ran-
dom forest-based Bayesian optimization method that is designed for opti-
mization of stochastic problems. However, it can also be used to optimize
deterministic problems. SMAC requires the model type of its Bayesian opti-
mizer to be chosen. The gp-mcmc model was significantly slower and worse
than gp in the preliminary experiments. We therefore use the gp model
type in this work. The acquisition function of the BO is another tunable
hyperparameter.

Hyperparameters: acquisition function.

• Iterated racing (irace) [140] is a statistical approach for selecting the best
configuration out of a set of candidates for stochastic optimization problems.
After consulting the authors [140], we set firstTest and nbConfigurations as
tunable hyperparameters for irace.

Hyperparameters: firstTest, nbConfigurations.
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5.4 Implementation

In this section we comment on certain implementation details for the software
developed for this work. The algorithms and analysis tools are implemented in
the BlooPy Python package, and the tuning of the GPU kernels is performed by
Kernel Tuner.

5.4.1 BlooPy and SOTA packages

The algorithms evaluated in this work are implemented in the discrete optimization
package BlooPy (BLackbOx Optimization Python) [214]. The package implements
the algorithms by encoding solutions as bitstrings. BlooPy implements several
functions for converting discrete solutions that are encoded as lists or arrays to
bitstrings. Similarly, continuous solutions are mapped to discrete solution vectors
using the mapping outlined in section 5.3.3. BlooPy requires the search space
to be finite. Using the bitstring encodings, BlooPy’s algorithms can make use
of the computationally efficient Python module bitarray which implements fast
low-level bitstrings in C. In addition, the algorithms are automatically applicable
to benchmark bitstring-based optimization problems such as randomized Nk-
landscapes [252].

Optimization algorithms in BlooPy maintain a cache of previously visited
solutions. This means that a solution that has been visited before does not count
as a function evaluation, and instead the cached value is returned. In addition
to a variety of optimization algorithms, BlooPy implements several search space
analysis tools. For example, it implements functions to determine the type of points
in the search space, e.g., local minima and saddle points. Furthermore, BlooPy
implements functions to compute the fitness flow graphs outlined in section 5.7.2.
BlooPy can be installed from the GitHub source repository [214], or by package
manager. To perform experiments with SMAC we used the Python package [133],
and for irace we used the R package [143].

5.4.2 Kernel Tuner

Kernel Tuner [246] implements a wide range of optimization algorithms, and builds
on top of various backends (e.g. PyOpenCL, PyCUDA, Cupy, GCC) that take
care of the compilation process.

Kernel Tuner runs Python code, provided by the user, which calls the tuner
function. In addition, the user needs to provide a code generator or parameterized
template for the kernel they wish to optimize. An optimization algorithm then
selects different kernel configurations for benchmarking.
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#local #variables #failed
Kernel #points minima to tune points
Convolution∗ 18432 89 6 12656∗
GEMM 82944 64 5 64988
Point-in-polygon 8184 220 10 335

Table 5.2: Statistics (averaged across GPU models) of kernel spaces. Number of
failed points refers to the average number of configurations in the kernel space that
failed to compile.
∗Convolution has 864 points for AMD MI50, and 450 fail points.

5.5 Experimental Setup
To analyze the structure of different kernel spaces, and find the optimization
algorithm best suited to finding strong kernel settings, we run experiments on 9
different GPUs, for 3 real-world applicable kernel programs (26 kernels in total).

• Convolution [247] operations are an essential tool in image processing, and
are often used for tasks such as edge detection, blurring, or sharpening. They
also feature prominently in deep learning methods for image processing as
they form the backbone of the convolutional neural network (CNN).

• GEMM (Generalized dense matrix–matrix multiplication) [165] is one of the
most widely-used kernels across many application domains, including neural
networks. Here we perform the calculation C = αA ·B + βC for 4096× 4096
matrices A,B,C, and constants α and β.

• PnPoly (Point-in-Polygon) kernel is used by Goncalves et al. [67] as part of
a geospatial database management system to, for example, return all objects
within the outline of a specific area.

Some statistics on the kernel spaces is given in Table 5.2. For convolution and
GEMM the majority of the points in the kernel space fail to compile, 68% and
78% respectively. In the case of a failed compilation we attribute a “fail” fitness of
1010 to this point. The exact kernel spaces can be found in the table of tunable
parameters (Table A.1) in Appendix A.2.1.

We selected these kernels programs since they are tunable common subroutines
in real-world applications, but also have a compact parameter space which can be
fully explored, given ample computation time. Note that this is not feasible for
many other kernels used in practice (see section 5.2.1). We have generated cache
files of the entire search space for each kernel by brute-force calculation. This allows
us to know the optimal settings for each problem, and therefore score solutions
returned by algorithms. It also allows us to develop analysis metrics on the entire
search space, which could at a later stage be adapted to work when sampling only
small parts of the space. We supply our cache files for benchmarking optimization
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Maximum number of function evaluations
(budget)

Basin hopping 25 50 100 200 400 800 1600
method Powell COBYLA SLSQP

temperature 0.1 1.0
Dual annealing 25 50 100 200 400 800 1600

method COBYLA Powell
Differential evolution 25 50 100 200 400 800 1600

population size 1 2 4 8 16 32
method best1bin best2bin best1exp

recombination 0.5 0.7
mutation (0.2, 0.7)

Particle swarm
optimization 25 50 100 200 400 800 1600

Number of particles 25 10 20 40 80 160
neighbours evaluated 5 10 20 26 32

FirstILS 25 50 100 200 400 800 1600
perturbation size 1.0 0.05

Exit after no improve 25 10
neighbour method Hamming adjacent

restart search False True
BestILS 25 50 100 200 400 800 1600

perturbation size 1.0 0.05
Exit after no improve 25
neighbour method adjacent Hamming adjacent

FirstTabu 25 50 100 200 400 800 1600
tabu size 4 2000

neighbour method Hamming
BestTabu 25 50 100 200 400 800 1600
tabu size 2000

neighbour method Hamming
FirstMLS 25 50 100 200 400 800 1600

restart search True False True
neighbour method Hamming

BestMLS 25 50 100 200 400 800 1600
neighbour method adjacent Hamming

Simulated annealing 25 50 100 200 400 800 1600
explore (p) 1.0 0.7 0.1
hill climber None RandomFirst

neighbour method Hamming

Table 5.3: (Part 1:) Selected hyperparameters across different budgets (25 to 1600)
for the optimization algorithms used in this work. The budgets columns are given
in red. These hyperparameters were optimized using the convolution, GEMM, and
PnPoly kernels on the NVidia P100 GPU.
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Maximum number of function evaluations
(budget)

Genetic local search 25 50 100 200 400 800 1600
hill climber RandomFirst

population size 2 2 4 16 20 40 80
reproductor uniform 2point uniform
selector RTS

neighbour method Hamming
Genetic algorithm 25 50 100 200 400 800 1600

mutation 0.02 0.05 0.02
population size 8 10 20 40 80 128 320
reproductor 1point 2point
selector tour8 tour4
SMAC 25 50 100 200 400 800 1600

model type gp NA
acquisition function LCB NA

irace 25 50 100 200 400 800 1600
firstTest NA 2

nbConfigurations NA 0

Table 5.4: (Part 2:) Selected hyperparameters across different budgets (25 to 1600)
for the optimization algorithms used in this work. The budgets columns are given
in red. These hyperparameters were optimized using the convolution, GEMM, and
PnPoly kernels on the NVidia P100 GPU.
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algorithms [215], similar to other computationally expensive applications such as
neural architecture search [52].

The 9 GPUs that are used for testing are given in Table 5.1. The convolution
kernel is implemented in CUDA, GEMM in OpenCL, and PnPoly is a heterogeneous
kernel that runs partly on the CPU, and partly on the GPU using CUDA. The
PnPoly kernel uses CUDA-specific features that are not available on AMD GPUs.
We have used CUDA Version 11.2, OpenCL 1.2, Python 3.8.5, PyCUDA v2021.1,
PyOpenCL v2020.3.1, and BlooPy version 0.4.2.

Experimental setup: The GPU kernels are tuned with respect to runtime
(ms). The runtime of a GPU kernel is stochastic, and can vary slightly per execution.
Kernel Tuner automatically benchmarks a given configuration 32 times to acquire
a mean runtime per configuration. In most cases, the compilation time for a
given kernel configuration significantly exceeds the time needed to benchmark
32 runs. Therefore, most of our experiments are performed in a deterministic
setting where the fitness of a configuration is the mean runtime. However, we also
perform a stochastic experiment where a single kernel runtime is returned for every
evaluation. This means that the fitness for the same point in the search space can
vary, and algorithms that learn stochastic information, such as irace and SMAC,
can potentially benefit.

After discussion with the authors [140] we decided to benchmark irace only for
the stochastic experiment. This was decided as it was deemed inappropriate for
the deterministic setting since the point of using irace is to dynamically handle
stochasticity in expensive problems.

The algorithms are evaluated based on the fraction of the optimal runtime
they can find within a limited budget of evaluations. For each algorithm, we run
experiments with a maximum function evaluation limit (budget) of 25, 50, 100,
200, 400, 800, 1600. The goal of our experiments is to benchmark algorithms
when traversing only a fraction of the search space. Therefore, we set the highest
budget limit at 1600 since it is already approximately 20% of the Point-in-polygon
search space. Every run is performed 50 times in order to get an indication of the
spread. Due to computational demand, SMAC and irace experiments are ran 20
times. SMAC is only run up to a budget of 400 evaluations due to the high tuning
time. Data and scripts for the experiments and figures can be found in the GitHub
repository [215].

5.6 Results: Benchmarking optimization algorithms
on runtime

In this section, we first discuss how to initialize each algorithm with favourable
hyperparameters. Next, we discuss which algorithms are best suited to tuning
GPU kernels.
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5.6.1 Setting hyperparameters
In order to compare the optimization algorithms fairly for the GPU tuning problem,
we need to choose sensible hyperparameters. Which hyperparameters can be varied
per algorithm is outlined in italics in section 5.3.3. We test different combinations
of hyperparameters on the P100, RTX 2070 Super, and GTX 1080Ti, for all three
kernels (9 out of 26 kernels). This way we select reasonable hyperparameters
across various architectures and kernels, which users can use as defaults for new
GPU tuning problems. We performed a bruteforce search over all combinations
of parameter values, and ran each set 20 times for each algorithm. For PSO we
kept the w, c1, c2, p parameters constant as these appeared to have little effect on
algorithm performance. Note that the time required to tune hyperparameters varies
greatly between algorithms due to this exhaustive search. The hyperparameters
chosen are in Tables 5.3 and 5.4.

To choose hyperparameters, we first group settings which perform similarly
statistically, and attempt to find one set of hyperparameters that performs well
across all 9 kernels. For a budget p, let fp,best be the lowest average fitness achieved
for a set of hyperparameters, and σp,best the standard deviation. We perform the
following selection approach:

1. For every kernel, we create a set of hyperparameter settings whose average
found fitness is within k · σp,best of fp,best.

2. For each budget, intersect the acceptable settings for convolution, GEMM,
and PnPoly, across the 3 GPUs.

3. For each budget, if this intersection is non-empty, reduce k and repeat. If
the intersection is empty, increase k and repeat. Repeat until only one set of
hyperparameters remains in the intersection.

5.6.2 Kernel tuning algorithm comparison
To quantify which kernel tuning algorithms perform best for certain budgets, we
can check whether an algorithm provided statistically significantly better results
than others for a certain experiment. To do so, we use a two-sample independent
t-test [62] with α = 0.05. For each GPU, kernel, and budget combination, we
perform the t-test to see if an algorithm A performed significantly better than
algorithm B. We subsequently combine the total number of “wins” for algorithm A
across all GPUs (excluding those that were used for tuning).

We split the competitions into low-range (200 evaluations or fewer), and medium-
range budgets. The competition tables at different function evaluation splits can be
found in the Appendix A.2.2. The full plots per GPU and algorithm can be found
in Appendix A.2.3. The results of these inter-algorithm competitions are given in
the heatmaps displayed in Figures 5.1, 5.2, and 5.3. The competition heatmaps
display how often the column algorithm found a statistically better solution than
the row algorithm in that budget range.
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Kernel tuning: deterministic fitness

In this section we present the results of our deterministic experiments, i.e., the
algorithms have to minimize the runtime of a GPU kernel where the runtime is
fixed at the mean of 32 runs.

Low-range budget: For 200 function evaluations or fewer, for convolution
dual annealing was statistically better than all other algorithms for all GPU models
(see column with “DualAnnealing” for convolution ≤ 200 function evaluations),
with simulated annealing as second. For GEMM, basin hopping and dual annealing
perform equally with dual annealing beating basin hopping 5 times, and basin
hopping beating dual annealing 6 times. For PnPoly dual annealing was again
best, followed by SMAC. We show the total number of wins and losses across all
kernels and GPUs in Table 5.5. Here we see that for low budgets dual annealing
has significantly more wins, and fewer losses than all other algorithms.

Interestingly, SMAC was second for PnPoly, in the best half of algorithms for
convolution, but did not even beat random sampling for GEMM. We hypothesize
this is either due to the number of variables to optimize for each of the three
kernels (see Table 5.2), or the increasing fraction of fail fitnesses for these kernels.
We hypothesize that the Bayesian optimizer could not fit a proper surrogate for
GEMM with a low budget, and many failed compilations.

Medium budget: For more than 200 function evaluations, FirstMLS and
GLS performed best for convolution, followed by FirstILS. For GEMM, FirstILS
and simulated annealing performed best, followed by GLS. For PnPoly, FirstMLS
is the strongest algorithm, followed by simulated annealing and GLS. As can be
seen from Table 5.5, FirstILS and simulated annealing have the most number of
total wins, and simulated annealing and genetic local search have the least number
of losses.

Additional remarks: In general, best-improvement local search algorithms
performed significantly worse than the first-improvement variants. In fact, for the
low range, they proved statistically worse than random sampling for PnPoly, and in
general have fewer wins and more losses. This can be explained due to the fact that
exploring all the neighbours before taking a step costs many evaluations, and leads
to only exploring a single neighbourhood for low budgets. For the population-based
methods, GLS is the best performing algorithm for medium budgets, but does worse
than differential evolution and GA for low budgets. PSO performed significantly
worse.

Interestingly, dual annealing, which works on real-valued solution vectors,
performs well for low budgets. It seems that the mapping from [0, 1]n to discrete
space does not prevent dual annealing from finding strong solutions quickly. One of
the main drawbacks of using continuous algorithms is that if a continuous algorithm
updates its real-valued solution vector, it could mean that it does not actually
update the discrete solution vector it is mapped to. However, since our algorithms
cache previously visited solutions (only for the deterministic experiments), such
redundant optimization steps do not cost any budget. We think this may negatively
impact gradient-based algorithms as the subroutines Powell and COBYLA, which
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Low budget Medium budget
total wins total losses total wins total losses

Basin hopping 403 204 131 393
Dual annealing 680 65 227 233

Differential evolution 426 192 150 347
PSO 290 327 136 368

FirstILS 352 233 361 77
BestILS 125 472 257 126
FirstTabu 148 430 255 183
BestTabu 35 677 220 185
FirstMLS 317 205 341 64
BestMLS 143 466 226 174

Simulated annealing 412 150 360 59
Genetic local search 320 216 329 59
Genetic algorithm 376 162 201 207

SMAC 356 344 48 145
Random sampling 222 463 7 629

Table 5.5: Total number of wins: sum of occurrences when the algorithm found
statistically better solutions than other algorithms (summed over all kernels). A
win (and corresponding loss for the other algorithm) is counted when 50 runs for a
budget are statistically significantly better according to a two-sample independent
t-test (α = 0.05). Low budget is for ≤ 200 budgets, medium budget is for > 200
budgets. Top 3 cells are coloured green.
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do not require derivatives to be known, are the selected solvers for dual annealing
during hyperparameter tuning.

As a final remark, we notice that SMAC performs poorly in the medium budgets.
Note that SMAC only has 1/3 as many data points in the medium budget since
we do not perform the 800 and 1600 budget experiments for SMAC. Nevertheless
the algorithm performs poorly on the 400 budget compared to other methods. It
seems that SMAC is unsuccessful in fitting a meaningful surrogate model for kernel
tuning. This could be due to the deterministic setup of this experiment, or due to
the high number of fail configurations with “infinite” fitness.
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Figure 5.1: (Convolution:) Occurrences when the column algorithm found better
solutions than the row algorithm. An occurrence is counted when 50 runs for a
budget are statistically significantly better according to a two-sample independent
t-test (α = 0.05). (Top): Heatmap for low ≤ 200 budgets (25, 50, 100, 200).
(Bottom): Heatmap for mid and high > 200 budgets (400, 800, 1600). Algorithms
with low values (blue) in their rows were not often beaten for those budgets, and
algorithms with high values in their column (red) often beat other algorithms.
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Algorithm Column beats Row - GEMM feval > 200

Figure 5.2: (GEMM:) Occurrences when the column algorithm found better solu-
tions than the row algorithm. An occurrence is counted when 50 runs for a budget
are statistically significantly better according to a two-sample independent t-test
(α = 0.05). (Top): Heatmap for low ≤ 200 budgets (25, 50, 100, 200). (Bottom):
Heatmap for mid and high > 200 budgets (400, 800, 1600). Algorithms with low
values (blue) in their rows were not often beaten for those budgets, and algorithms
with high values in their column (red) often beat other algorithms.
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Algorithm Column beats Row - pnpoly feval <= 200
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Algorithm Column beats Row - pnpoly feval > 200

Figure 5.3: (PnPoly:) Occurrences when the column algorithm found better
solutions than the row algorithm. An occurrence is counted when 50 runs for a
budget are statistically significantly better according to a two-sample independent
t-test (α = 0.05). (Top): Heatmap for low ≤ 200 budgets (25, 50, 100, 200).
(Bottom): Heatmap for mid and high > 200 budgets (400, 800, 1600). Algorithms
with low values (blue) in their rows were not often beaten for those budgets, and
algorithms with high values in their column (red) often beat other algorithms.
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Figure 5.4: Fraction of optimal runtime for max budget supplied over all GPUs.
Each point is the mean fraction of optimal runtime found (y-axis) for each budget
limit (x-axis) over all GPUs, with the shaded region indicating 95% confidence
interval. Left: convolution kernel. Middle: GEMM kernel. Right: PnPoly kernel
(logarithmic x-axis).
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Kernel tuning: stochastic fitness

For the stochastic experiments the algorithms have to minimize the runtime of a
GPU kernel where the runtime is a random draw from the 32 timings. In addition
to running SMAC and irace, we also run FirstILS, GA and dual annealing which
did well for deterministic fitnesses. We remark that irace throws an error if the
budget is too small with respect to the number of variables, and therefore starts at
a budget of 200 for convolution and PnPoly, and 400 for GEMM.

The experimental results are shown in Figure 5.4. Here we aggregate the results
per kernel for all GPU models by showing the mean fraction of optimum (and 95%
confidence interval) for a given max budget. We see that GA and dual annealing
are best for low budgets in the stochastic experiments. FirstILS does well for
budgets ≥ 100. Irace is the best method for GEMM with budgets ≥ 800, but for
convolution and pnpoly irace is not as good as GA, dual annealing, and FirstILS.

SMAC consistently achieves a lower fraction of optimality than the competing
algorithms across kernels and budgets. Again, we hypothesize that this is because
of the high number of fail fitnesses in the search spaces (see Table 5.2). This makes
it hard for the Bayesian optimizer to fit a meaningful surrogate.

Stochastic or deterministic: Overall, we notice that higher budgets are
necessary to find good solutions for the stochastic experiments than in the deter-
ministic case. This leads to a higher overall tuning time. We therefore recommend
to treat GPU kernel tuning as a deterministic optimization problem, with the
mean runtime as fitness. The added stochastic information does not appear to
allow SMAC or irace to consistently outperform conventional black-box algorithms.
This could be because the runtime does not vary much; the average (normalized)
runtime and standard deviation is 1.000±0.011. Second, the high number of failure
configurations could confuse models that try to learn stochastic information.

5.7 Quantifying GPU tuning difficulty
In this section we want to gain insight into the difficulty of the GPU kernel tuning
optimization problem, and quantify kernel spaces according to tuning difficulty.
When attempting to understand why certain GPU kernel spaces appear difficult
to optimize we found that relatively simple metrics do not coincide with our
experimental results. We outline discrepancies between an intuitive simple metric
and our experimental results, and introduce a novel refined approach that does
correlate with our results.

5.7.1 Naive metric: fraction of optimal fitness of local minima
Method: As an example of a simple metric that intuitively could explain the
results, we consider the fraction of optimal fitness of local minima. For a minimum
xi, and optimal fitness fopt, we can consider the fraction of optimal fitness of the
minimum fopt/f(xi). In this case, we divide the global minimal runtime by the
runtime of the minima.
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Figure 5.5: Fraction of optimal fitness of local minima for each GPU model, for
the convolution kernel. The box plots shows the median line, the box designates
the quartiles, and the whiskers the full extend of the distribution. Additionally, a
scatter plot of the fitness for each local minimum is shown. The GPUs are ordered
in descending median fraction of optimal fitness from left to right.

Results: In Figure 5.5 we show a scatter plot of the fraction of optimal fitness
for the local minima for the convolution kernel (per GPU model). According to
this distribution, the V100 and A100 GPUs have the closest to optimal median
fitness for local minima. This means that an algorithm that randomly explores
local minima with equal probability will obtain the closest to optimal runtime for
these kernels.

Analysis: To empirically check how difficult the GPU kernels are to tune,
we can plot the fraction of optimal fitness that optimization algorithms managed
to achieve for certain budgets. If fj is the lowest fitness found for a single run
for some budget p, a point in the plot is the average over 50 runs computed as
f̃p := (1/50) ·∑50

j=1(fopt/fj,p). In Figures 5.6 and 5.7 we plot f̃p for dual annealing
and FirstILS. We chose dual annealing and FirstILS as they represent the strongest
algorithms for low, and medium budgets respectively.

We see that for convolution on the A100 GPU both algorithms returned solutions
which were furthest away from the optimum, while for the V100 both optimizers
return close to optimal solutions for few function evaluations. These observations
are opposite to what would be expected on the basis of Figure 5.5. Hence, the
distribution of fitness of the local optima does not properly explain tuning difficulty.
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Figure 5.6: Dual annealing: Fraction of optimal runtime for different budgets
(per GPU). Each point is the average fraction of optimal runtime found (y-axis)
for each budget, with respect to the average number of evaluations actually used
(x-axis) for that budget (counts only the visited unique settings). Left: convolution
kernel. Middle: GEMM kernel. Right: PnPoly kernel (logarithmic x-axis).
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Figure 5.7: FirstILS: Fraction of optimal runtime for different budgets (per GPU).
Each point is the average fraction of optimal runtime found (y-axis) for each budget,
with respect to the average number of evaluations actually used (x-axis) for that
budget (counts only the visited unique settings). Left: convolution kernel. Middle:
GEMM kernel. Right: PnPoly kernel (logarithmic x-axis).
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5.7.2 Refined approach: Fitness flow graphs and PageRank
Method: A more refined metric to quantify GPU tuning difficulty may be to
compute how likely local search algorithms terminate in local minima. For this
purpose, we introduce the fitness flow graph (FFG), which contains all points in the
search space, and creates a directed edge to a neighbouring point if the neighbour
has lower fitness. This means that a random walk across the FFG mimics the
behaviour of a randomized first-improvement local search algorithm. The expected
proportion of arrivals of each minimum then gives a metric for weighting reachability
of each minimum. We show two example FFGs in Figure 5.8.

To compute the likelihood of arrival per local minima, we compute the PageRank
node centrality, which was originally used to determine the relevance of a webpage
[21, 173]. Let AG be the adjacency matrix of a directed graph G, rescaled such
that each column adds up to 1. Essentially, this means that for every node, the
column is a probability vector of visiting adjacent nodes with equal likelihood. The
PageRank values are then the values of the dominant right eigenvector of AG. For
an FFG, this means that the PageRank value of a local minimum is the probability
of arriving in that minimum after a long random walk through the graph.

As a measure of difficulty we consider how likely a certain subset of “suitably
good” local minima are to be visited by a local search algorithm relative to the rest.
Suppose that fopt is the optimal fitness, and let L(X) be the set of local minima
of X. Given a proportion p, we take the set of nodes Lp(X) consisting of local
minima with fitness less than (1 + p)fopt (for minimization problems, otherwise
(1− p)fopt). For a centrality function cG, we define the p-proportion of centrality

Cp(G,X) =

∑
x∈Lp(X) cG(x)∑
x∈L(X) cG(x)

. (5.3)

Results: The proportion of centrality for strong local minima for each FFG
is shown in Figure 5.9. We calculate the proportion of centrality for different
acceptance percentages with respect to the global minimum of p = 0, 1, 2, . . . , 15%.

Revisiting the A100 and V100 convolution kernel comparison, we see that the
proportion of centrality matches the experimental observations for dual annealing
and FirstILS. Figure 5.9 shows that the NVidia V100 has the most central local
minima, whereas the A100 has the least central local minima. For the GEMM
and PnPoly kernels, Figures 5.6 and 5.7 align with the expectations based on the
proportion of centrality. For example, the group of PnPoly kernels with lowest
proportion of centrality (P100, GTX Titan X, K20, GTX 1080Ti) are indeed the
hardest to tune for both algorithms.

One exception is the K20 GEMM kernel, where proportion of centrality does not
entirely reflect the perceived difficulty for dual annealing. This suggests that the
proportion of centrality may correlate with GPU tuning difficulty better for certain
optimization algorithms. This is to be expected since the PageRank centrality on
the FFG in expectation mimics the performance of randomized first-improvement
local search. Algorithms that are substantially different than first-improvement
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Figure 5.8: Fitness flow graphs of PnPoly kernel search spaces of the (top) NVidia
Titan RTX, and (bottom) NVidia GTX 1080Ti. Each node is a point in the search
space. There is a directed edge between neighbouring points from higher to lower
fitness. Points are coloured within a fitness range of +25% with respect to the
global minimal fitness (global minimum in green), i.e., each point is coloured by
its fraction of optimal fitness, and points with a fraction below 0.75 are given the
same colour. Local minima are represented as larger nodes.
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Figure 5.9: Proportion of centrality for FFGs for each GPU. The proportion of
centrality is computed by taking the sum of PageRank centrality for local minima
within p% of the optimal fitness, divided by the total PageRank centrality of all
local minima. From top to bottom are convolution, GEMM, and PnPoly kernel.
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local search will therefore also correlate less with the expected difficulty on the
basis of proportion of centrality.

Analysis: Overall, the experimental results suggest that the proportion of
centrality is a suitable metric for estimating tuning difficulty for GPU kernels. By
using FFGs and the PageRank algorithm, we are able to observe kernel differences
that were otherwise unknown. For example, both the A100 and V100 convolution
kernels have few outlier minima with a close to optimal fitness. In fact, the existence
of only a few kernel configurations that lead to large increases in performance is a
general property of certain GPU kernels [246]. Crucially however, the likelihood of
local search algorithms arriving in such minima differs greatly between the A100
and V100. The proportion of centrality of an FFG gives us a tool to quantify this
likelihood. However, further research is necessary to quantitatively determine how
well our proposed metric correlates with GPU tuning difficulty.

As a final remark on kernel differences, the experimental results shows that the
difficulty of tuning a particular kernel can greatly differ from one GPU to the next,
and that these changes do not appear to be correlated with release time of the
models. The A100 is the most recent GPU in our set, while the K20 is the oldest.
For GEMM and PnPoly, we can say that it has become easier to tune these kernels
with more recent GPUs, but the convolution kernel has become more difficult to
tune, except on the V100.

5.8 Conclusion
In this chapter, we have investigated which optimization algorithms produce the
fastest GPU kernel configurations across different tuning-time ranges. To do so,
we analyzed 26 GPU kernel spaces for 9 GPUs. We computed sets of optimal
hyperparameters for GPU tuning for each optimization algorithm. From among
the tested algorithms in this set of experiments, we conclude that dual annealing
performs best as GPU kernel tuner when a limited amount of function evaluations
is desirable. When more evaluations are possible, first-improvement local searchers
such as FirstILS proved the best GPU kernel tuners. Using these algorithms,
we are convinced that GPU programmers can reliably auto-tune GPU kernels to
close to optimal runtime while requiring relatively few re-compilations of the code.
Furthermore, we conclude that treating GPU tuning as a deterministic optimization
problem is preferred over treating the runtime as a stochastic variable.

We showed that the basic metric of fraction of optimality of local minima is
not suitable for explaining the results observed in the experimental benchmarks.
To make steps towards a metric for tuning difficulty, we introduced the concept
of fitness flow graphs, and proportion of centrality. Our results suggest that the
proportion of centrality can be used to quantify tuning difficulty. For future
work, in cases where exhaustive exploration is infeasible, perhaps a procedure to
dynamically update the proportion of centrality of FFGs can be used. Such dynamic
estimates of tuning difficulty could be used for automatic algorithm selection within
frameworks such as Kernel Tuner. Furthermore, the pagerank centrality of strong
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local minima within FFGs can be used to investigate why certain minima are
unlikely to be visited, for example because neighbouring configurations fail to
compile. Lastly, in this work we fully computed 26 kernel spaces, and made these
publicly available. We aim to extend this to a benchmark dataset for evolutionary
computation algorithms.




