
On the optimization of imaging pipelines
Schoonhoven, R.A.

Citation
Schoonhoven, R. A. (2024, June 11). On the optimization of imaging pipelines.
Retrieved from https://hdl.handle.net/1887/3762676

Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis
in the Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/3762676

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3762676

4
LEAN: graph-based pruning

for convolutional neural
networks by extracting

longest chains

4.1 Introduction
In recent years, convolutional neural networks (CNNs) have become state-of-the-art
for many image-to-image translation tasks [121], including image segmentation
[202], and denoising [232]. They are increasingly used as a subcomponent of a
larger system, e.g., visual odometry [254], as well as in energy-limited and real-time
applications [255]. In these situations, the applicability of high-accuracy CNNs
may be limited by large computational resource requirements. Small networks may
be more applicable in such settings, but may lack accuracy.

Neural network pruning [109, 156] has recently gained popularity as a technique
to reduce the size of neural networks [18]. Neural networks consist of learnable
parameters, including the scalar components of the convolutional filters. When
pruning, the neural network is reduced in size by removing such scalar parameters
while trying to maintain high accuracy. We distinguish between individual pa-
rameter pruning [80], where each parameter of an operation is ranked and pruned
separately, and structured pruning [125, 142], where entire convolutional filters are
ranked and pruned. As convolution operators can only be removed once all scalar
parameters of the filter kernel have been pruned, structured pruning is favored over

59

60
CHAPTER 4. LEAN: GRAPH-BASED PRUNING FOR CONVOLUTIONAL

NEURAL NETWORKS BY EXTRACTING LONGEST CHAINS

individual pruning when aiming to improve computational performance [178]. In
the remainder of this paper, we focus on structured pruning.

Although structured pruning methods take into account the division of a neural
network into operations, they do not take into account the fact that the output of
the network is formed by a sequence of such operations. This has two drawbacks.
First, since the relative scaling of individual convolutions may vary without changing
the output of the whole chain, pruning methods that prune individual operators
could potentially prune a suboptimal set of operators from the chain. Second, to
significantly reduce evaluation time, a severe pruning regime must be considered,
i.e., a pruning ratio (percentage of remaining parameters after pruning) of 1–10%.
In this regime, pruning can result in network disjointness, i.e., the network contains
sections that are not part of some path from the input to the network output.
Some existing pruning methods take into account network structure to a limited
degree [206]. In practice, however, these methods do not contain safeguards to
avoid network disjointness.

In this paper, we present a novel pruning method called LongEst-chAiN (LEAN)
pruning, which as opposed to conventional pruning approaches uses graph-based
algorithms to keep or prune chains of operations collectively. In LEAN, a CNN
is represented as a graph that contains all the CNN operators, with the operator
norm of each operator as edge weights. We argue that strong subnetworks in a
CNN can be discovered by extracting the longest (multiplicative) paths, using
computationally efficient graph algorithms. The main focus of this work is to show
how LEAN pruning can significantly improve the computation speed of CNNs for
real-world image-to-image applications, and obtain high accuracy in the severe
pruning regime that is difficult to achieve with existing approaches.

This paper is structured as follows. In Section 4.2, we explore existing pruning
approaches. In Section 4.3, we outline the preliminaries on CNNs, pruning filters,
and the operator norm. Next, in Section 4.4, we introduce LEAN pruning and
describe how to calculate the operator norm of various convolutional operators. We
discuss the setup of our experiments in Section 4.5. In Section 4.6, we demonstrate
the results of the proposed pruning approach on a series of image segmentation
problems and report practically realized wall time speedup. Our final conclusions
are presented in Section 4.7.

4.2 Related work
Reducing the size of neural networks by removing parameters has been studied for
decades [82, 109, 156]. Several works take into account the structure of the network
to some degree. In [130] filters are pruned at runtime based on the feature maps
[130]. Alternatively, one can prune entire channels [87], or decide which channels
to keep so that the feature maps approximate the output of the unpruned network
over several training examples [142]. In recent work, a graph is built for each
convolutional layer, and filters are pruned based on the properties of this graph
[245]. In [206] a neural network is represented as a graph and interdependencies

4.3. PRELIMINARIES 61

are determined using the Ising model.
Many pruning approaches are aimed at reducing neural network size with

little accuracy drop [53, 86, 154, 261], as opposed to sacrificing accuracy in favor
of computation speed. These approaches rarely exceed a pruning ratio of 12–
50% [18, 131, 142]. When a high pruning ratio is used, e.g., a range of 5–10%
[130, 138], a significant drop in accuracy is observed. Pruning ratios of 2–10%
can be achieved with an accuracy drop of 1-3% by learning-rate rewinding [198].
However, the reduction in FLOPs was less substantial (1.5–4.8 times). In [256]
severe pruning ratios of up to 1% have been considered, but the approach achieved
limited improvements in terms of FLOPs reduction compared with existing pruning
methods.

Criteria for deciding which elements of a neural network to prune have been
extensively studied. A parameter’s importance is commonly scored using its abso-
lute value. Whether this is a reasonable metric has been questioned [122]. Singular
values (which determine certain operator norms) have been used to compress
network layers [46] and to prune feed-forward networks [3]. Efficient methods for
the computation of singular values have been developed for convolutional layers
[223]. Furthermore, a definition of ReLU singular values was proposed recently
with an accompanying upper bound [49].

4.3 Preliminaries

4.3.1 CNNs for segmentation
A common image to image translation task is semantic image segmentation. The
goal of semantic image segmentation is to assign a class label to each pixel in an
image. A segmentation CNN computes a function f : Rm×n → [0, 1]k×m×n, which
specifies the probability of each pixel being in one of the k classes for an m × n
image.

CNNs are composed of layers of operations which pass images from one layer
to the next. Every operation, e.g., convolution, has an input x and output y. The
input and output consist of one or more images, called channels. For clarity, we
distinguish throughout this paper between an operation, which may have several
input and output channels, and an operator, which computes the relation between
a single input channel and a single output channel. For instance, in a convolutional
operation with input channels x1, . . . ,xN , an output channel yj is computed by
convolving input images with learned filters

yj =

(
N∑
i=1

hij ∗ xi
)

+ bj . (4.1)

Here hij is the filter related to the convolution operator that acts between channel xi

and yj, and bj is an additive bias parameter. In a similar way, every CNN operation
produces an output which consists of a number of channels. The exact arrangement
of operations, and connections between them, depends on the architecture.

62
CHAPTER 4. LEAN: GRAPH-BASED PRUNING FOR CONVOLUTIONAL

NEURAL NETWORKS BY EXTRACTING LONGEST CHAINS

A common operator to downsample images is the strided convolution. The
stride defines the step size of the convolution kernel. A convolution with stride s
defines a map h : Rm×n → Rm

s ×ns . Upsampling images can be done by transposed
convolutions. Transposed convolutions intersperse the input image pixels with
zeroes so that the output image has larger dimensions.

In addition to convolution operators, other common operators such as pooling
and batch normalization are often used. A batch normalization operator [101]
normalizes the input images for convolutional layers. A batch normalization
operator scales and shifts an image xi by

yi = γ
xi − µB√
σ2
B + ε

+ β. (4.2)

Here, γ and β are scaling and bias parameters which are learned during training,
and µB and σ2

B are the running mean and variance of the mini-batch, i.e., the set
of images used for the current training step. For an overview of CNN components
we refer to [68].

4.3.2 Pruning convolution filters
Pruning techniques aim to remove extraneous parameters from a neural network.
Several schemes exist to prune parameters from a network, but retraining the
network after pruning is critical to avoid significantly impacting accuracy [81].
Pruning a network once after training is called one-shot pruning. Alternatively, a
network can be fine-tuned, where the network is repeatedly pruned by a certain
percentage and is retrained for a few epochs after every pruning step. Fine-tuning
typically gives better results than one-shot pruning [198].

Generic pruning algorithm: All pruning methods used in this work make use
of the fine-tuning pruning algorithm outlined in Algorithm 1. The selection criteria
for determining which filters to keep for each step define the different pruning
methods. The pruning ratio pRatio is the fraction of remaining convolutions we
ultimately want to keep, and stepRatio is the fraction of convolutions that is
pruned at each step.

Algorithm 1 Fine-tuning pruning algorithm
1: procedure Prune(model, pRatio, nSteps, epochs)
2: stepRatio← eln(pRatio)/nSteps

3: for step ← 0 to nSteps do
4: pruneParams← selectPrunePars(model, stepRatio)
5: model← removePars(model, pruneParams)
6: for k ← 0 to epochs do
7: model← trainOneEpoch(model, trainData)

return model

Here, we focus on structured pruning. In structured pruning, a common
approach to decide which filters to remove is structured magnitude pruning. When

4.4. METHOD 63

Conv 3x3, ReLU

Avg Pool 2x2

BatchNorm

Upconv 2x2

CNN

In
p

u
t

2

2

O
u
tp

u
t2 1

1

Pruning Graph(A) (B)

1

2
 i
n
p

u
t

ch
a
n
n
e
ls

ReLU ReLU

ReLU

2

Figure 4.1: (A) Example CNN architecture with the number of channels indicated
above each layer. (B) Associated pruning graph. Every channel is a node, and
every operator is an edge connecting input and output nodes. The edge weights
are the corresponding operator norms.

using structured magnitude pruning, a convolution filter h ∈ Rk×k is scored by
its L1 vector norm ||h||1. Filters with norms below a threshold are pruned. The
threshold is determined by sorting a group of filters, and removing a percentage
based on the pruning ratio. Thresholds can be set per layer or globally. Setting
thresholds globally can give higher accuracy than setting thresholds per layer [18].

4.3.3 Operator norm
As an alternative to the L1-norm, one can interpret a convolution h as a linear
operator which acts on the input image, and score it according to an operator
norm. The (induced) operator norm ‖·‖p is defined as

‖h‖p := sup
{
‖h ∗ x‖p

∣∣∣ x ∈ Rn, ‖x‖p = 1
}
. (4.3)

A common operator norm is the spectral norm, which is induced by the Euclidean
norm (p = 2). The spectral norm can be obtained by calculating the largest singular
value of the matrix H associated with h, ‖h‖2 = σmax(H) [148]. A property that
we will use is that the spectral norm is submultiplicative, i.e., we have

‖AB‖ ≤ ‖A‖ · ‖B‖, for all A,B ∈ Rn×n. (4.4)

4.4 Method
The idea behind LEAN is to construct a weighted graph structure formed by the
operators of the CNN and having their respective norms as edge weights, such that
the multiplicative longest paths in this graph are selected as important subnetworks.
The remaining unselected operators will then be pruned. The motivation for LEAN
is two-fold. The first consideration is that since convolutions are linear operators,
the scaling of an individual convolution within a chain of convolutions is somewhat
arbitrary. For a scalar λ and chain of linear operators A1 ◦ · · · ◦Am, we have that

64
CHAPTER 4. LEAN: GRAPH-BASED PRUNING FOR CONVOLUTIONAL

NEURAL NETWORKS BY EXTRACTING LONGEST CHAINS

any chain (λ1A1)◦ · · · ◦ (λmAm) is equivalent if
∏
λi = 1. Since ‖λiAi‖ = |λi|‖Ai‖,

this can lead to any arbitrary ranking of operators. However, the chain as a whole
gives the same output for each input. We argue that this can lead to incorrect
pruning when pruning individual operators based on norms, rather than entire
chains. We hypothesize that these scaling properties still approximately hold in
the presence of non-linear operators. Since LEAN ranks chains of operators, it
is invariant under these scaling properties. Second, by extracting chains LEAN
combats network disjointness.

4.4.1 LEAN: creating the pruning graph
Graph structure: In this section, we define the pruning graph that is the basis
of the LEAN algorithm. As discussed in Section 4.3.1, we say that every CNN
operation has an input x and an output y, consisting of channels xi and yi. For
each channel, we add a single node in the pruning graph. An edge connects two
nodes corresponding to input channel xi and output channel yi if channel xi is
used in the computation of channel yi. In the terminology of Section 4.3.1, each
edge corresponds to an operator. For instance, a convolution operation is converted
by adding an edge from each input channel xi to every output channel yj , each
corresponding to exactly one filter hij . Certain CNN operations may be performed
in-place in practice, but we consider them as separate nodes in the pruning graph.
A combined convolution and ReLU operation, for instance, results in a node for
the output of the convolution and a separate node for the output of the ReLU, as
shown in Figure 4.1.

Edge weights: To each edge, we assign as weight the operator norm of its
corresponding operator. That is, we calculate the maximal scaling that an input
could undergo as a result of applying the operator. In this calculation, we ignore
any additive bias terms. For instance, applying a batch normalization results in a
scaling of |γ|/

√
σ2
B+ε (see Equation (4.2)). The scaling of non-linear operators in

neural networks is sometimes bounded, as in the case of the ReLU for instance, to
which we assign a weight of 1. We describe the calculation of operator norms for
various convolution operators in Section 4.4.3.

Path lengths: The length of a path in the graph is determined by multiplying
the edge weights. LEAN aims to model the norm of the composition of the
operators corresponding to the edges. Equation (4.4) states that ‖A‖ · ‖B‖ is
an upper bound for ‖AB‖. For LEAN, we assume that ‖AB‖ ≈ ‖A‖ · ‖B‖ is a
reasonable approximation, although it may not hold generally. By defining the path
length as the multiplication of the edge weights (operator norms), path lengths are
invariant under scaling linear operators in a chain if the scalars multiply to 1.

There are some edge cases to consider. First, some CNNs contain operations that
are meant to distribute features throughout the network, but are not implemented
with learnable parameters, e.g., residual connections in ResNet [84]. We include
residual connections in the pruning graph with an edge weight of 1, but label them
as unprunable to prevent the residual connections from being removed from the
network. Second, we do not consider CNNs with recurrent connections. Therefore,

4.4. METHOD 65

the pruning graph is a Directed Acyclic Graph (DAG). Large pruning graphs can
be reduced in size, e.g., by merging nodes that are connected by a single edge (see
Appendix A.1.2).

4.4.2 LEAN: extracting chains from the graph

The LEAN method prunes chains of convolutions based on paths in the graph; we
keep the longest paths (with the highest multiplicative operator norm). We refer
to this as LongEst-chAiN (LEAN) pruning. When we perform LEAN pruning, we
iteratively extract such paths from the graph until we have reached the pruning
ratio. This means that the edges that are not extracted are pruned. Finding paths
is done by iteratively running an all-pairs longest path algorithm [42].

Algorithm 2 LEAN
1: procedure LEAN(model, pruneRatio)
2: graph← createPruningGraph(model)
3: retainedConvs← []
4: while fractionRemainingConvs < 1− pruneRatio do
5: bestChain← longestPath(graph)
6: retainedConvs← retainedConvs+ bestChain
7: graph← removeFromGraph(graph, bestChain)

8: convsToPrune← convsInModel− retainedConvs
9: return convsToPrune

LEAN pruning is incorporated in the fine-tuning procedure. For each pruning
step in the fine-tuning procedure, Algorithm 2 is used to select the filters to prune
(line 4 in Algorithm 1). For DAGs, the longest path in a graph can be found in
O(|V |+|E|) time, where V is the set of nodes, and E is the set of edges [222]. For
a CNN with m channels (nodes), and k operators (edges), we can extract a longest
path in O(m+ k) time. As we extract at least one operator with every execution
of line 5 in Algorithm 2, the longest path algorithm is run at most k(1− p) times.
So the worst-case complexity of Algorithm 2 is O(k(1− p)(m+ k)) for a pruning
ratio p. Unprunable edges can be part of a longest path to extract operators, but
do not count towards the pruning ratio.

After every LEAN pruning step is concluded, some post-processing is performed.
In some cases there are channels which receive no input data at all, or which
are equal to a homogeneous constant image for all input data. We therefore
remove nodes without incoming edges as well as nodes where the succeeding batch
normalization has running variance below some threshold (10−40 by default). A
low running variance can occur when the output of a convolution is always zero
after applying the ReLU activation function, for instance. Second, bias terms are
removed from the CNN when all associated convolution or batch normalization
operations are pruned.

66
CHAPTER 4. LEAN: GRAPH-BASED PRUNING FOR CONVOLUTIONAL

NEURAL NETWORKS BY EXTRACTING LONGEST CHAINS

Figure 4.2: The output of a stride-2 convolution can be obtained by adding the
result of 4 convolutions. Split the image and filter into the coloured sections, with
white entries representing zeroes, and sum the outputs pixel-wise. The dots in the
image represent the positions of the center of the filter as it moves over the image.

4.4.3 Operator norm calculation
Operator norm of convolutions: For a convolution filter h and an n×n image,
h+ is the filter padded with zeros to size n× n. The singular values of h are the
magnitudes of the complex entries of the 2D Fourier transform F2D(h+) (Section 5
of [103])

σmax(H) = max {|F2D(h+)|} (4.5)

Downsampling: operator norm for strided convolutions: A strided
convolution is equal to the sum of regular convolutions on smaller input images (see
Figure 4.2). A single parameter of a stride-2 convolution filter is multiplied only
with every other pixel (horizontally and vertically). Similarly, filter parameters
which are 2 apart are multiplied with the same pixels. Here, we calculate the
operator norm for a stride-2 convolution operator h. Let h[i] and X [i] be the
partitioned convolution kernels and input images, both zero-padded to the correct
size. For a stride-2 convolution we have

h ∗2 X =

4∑
i=1

h[i] ∗X [i]. (4.6)

We can apply Equation 4.5 to obtain the singular values of h[i]. Equation 4.6 is
analogous to the equation of a convolutional layer with 4 input channels, and 1
output channel. The operator norm of a convolutional layer can be computed by
means of a tensor P ∈ R4×1×n×n [223]

Pcin,cout,i,j = F2D(h[cin]+)i,j .

According to Theorem 6 of [223], the spectral norm of the convolutional layer
equals the maximum of the singular values of the 4× 1 matrices P:,:,i,j . Since the
matrices are single-column, their singular value equals their L2-norm. Therefore,
the spectral norm of h equals

‖h‖ = max
i,j

{∑
cin

P 2
cin,:,i,j

}
. (4.7)

4.5. EXPERIMENTAL SETUP 67

Upsampling: operator norm for transposed convolutions: The matrix
of a stride-s transposed convolution is the transposed matrix of a stride-s con-
volution [139]. Since we have ‖A‖ =

∥∥AT∥∥, for a transposed convolution h, the
operator norm can be computed by Equation 4.7.

4.5 Experimental setup

In our experiments, we compare LEAN pruning to several structured pruning
methods across three image segmentation datasets and three CNN architectures:
MS-D, U-Net4, and ResNet50. We assess the performance of pruned neural networks
across 5 independent runs of fine-tuning (Algorithm 1). For each dataset, we have
trained a single model as a starting point for pruning. In every experimental run,
the same trained model was pruned.

For all pruning methods, we measure the pruning ratio as the fraction of
convolutions remaining:

∑
h∈HM(h)/|H| where H is the set of all convolutions in a

network, and M(h) is 0 if a convolution h ∈ H is pruned and 1 otherwise. This
means that other parameters, such as batch normalization and bias parameters,
are pruned when the associated convolutions are pruned, but do not count towards
the pruning ratio.

The MS-D networks were pruned to a pruning ratio of 1% in 45 steps. The
U-Net4, and ResNet50 networks were pruned to a ratio of 0.1% in 30 steps. All
were retrained for 5 epochs after each step. We chose relatively severe pruning
ratios because we are interested in significant computational speedup. U-Net4
and ResNet50 are pruned to a lower ratio as they have orders of magnitude more
convolutions than the MS-D network.

4.5.1 Structured pruning methods

We compare LEAN to two layer-wise pruning methods, and two global pruning
methods. The layer-wise pruning methods are geometric median pruning (GM)
[86], and soft filter pruning (SFP) [85]. The first global pruning method we
compare to is structured magnitude pruning, i.e., pruning entire filters by
their L1-norm (see Section 4.3.2), and the second global method we compare to
is operator norm pruning, i.e., pruning entire filters using the operator norm.
Here, we choose to use the spectral norm. The difference between LEAN and
structured magnitude pruning is 1) the operator norm; 2) the consideration of
network structure. The comparison of LEAN to structured operator norm pruning
measures the effect of incorporating the network structure.

We compare LEAN to structured magnitude pruning and operator norm pruning
for all CNN architectures. Both GM and SFP contain implementations to prune
ResNet50 but not MS-D or U-Net4, and hence are used only in the ResNet50
experiments.

68
CHAPTER 4. LEAN: GRAPH-BASED PRUNING FOR CONVOLUTIONAL

NEURAL NETWORKS BY EXTRACTING LONGEST CHAINS

4.5.2 CNN architectures
In this section, we describe three fully-convolutional CNN architectures that are
used in the experiments: the Mixed-Scale Dense convolutional neural network
(MS-D) network [183], U-Net [202], and ResNet [84]. Table 4.1 outlines which
operators are present in the networks. The networks were trained using ADAM
[113] with lr = 0.001, minimizing the negative log likelihood function.

Convolution
CNN Strided Transposed Dilated Pooling
MS-D No No Yes No
ResNet50 Yes No Yes Yes
U-Net4 No Yes No Yes

Batch # Edges in
normalization Parameters pruning graph

MS-D No 4.57 · 104 5.05 · 103

ResNet50 Yes 3.29 · 107 1.44 · 107

U-Net4 Yes 1.48 · 107 1.84 · 106

Table 4.1: Operators present in MS-D, ResNet50, U-Net4 architectures.

In our experiments we use MS-D networks as described in [183] and implemented
in [89]. Every layer has 1 channel and all convolutions have a dilated 3× 3 filter,
except the final 1× 1-layer. The dilations for layer i were set to 1 + (i mod 10).
The final layer is excluded from pruning as it contributes less than 0.5% of FLOPs.

As U-Net architecture we use a fully-convolutional (FCN) U-Net4 network,
i.e., a U-Net with 4 scaling operations. We used a U-Net4 architecture from the
PyTorch-UNet repository [149]. As ResNet architecture, we use an FCN-ResNet50
network [84]. The ResNet50 model is adapted from PyTorch’s model zoo code. We
replace the max pooling layers of ResNet and U-Net with average pooling layers as
average pooling is a linear operator which can be modeled as a strided convolution
for which we can compute the operator norm. In some cases U-Net with average
pooling can perform better than with max pooling [8].

4.5.3 Datasets
In our experiments, we consider three datasets: a high-noise, but relatively simple,
segmentation dataset [183] (CS dataset); the well-known CamVid dataset [24, 25];
and a real-world X-ray CT dataset [38, 39] to test the methods in practice. The
CS dataset is a 5-class segmentation dataset of 1000 training, 250 validation, and
100 test images. As a starting point for pruning, we trained a 100-layer MS-D
network with an accuracy of 97.5%, ResNet50 with 95.8% accuracy, and U-Net4
with 97.6% accuracy.

The X-ray CT dataset consists of 9216 training, 2048 validation, and 1536 test
images. As in [209], we use the F1-score to quantify results. As a starting point
for pruning, we trained a 100-layer MS-D network with a 0.88 F1-score, ResNet50

4.6. RESULTS 69

with a 0.85 F1-score, and U-Net4 with a 0.88 F1-score. As in [180], experimental
results on the CamVid dataset are quantified using mean Intersection-over-Union
(mIoU). As a starting point for pruning, we trained a 150-layer MS-D with 0.52
mIoU, ResNet50 with 0.71 mIoU, and U-Net4 with 0.65 mIoU. More details on the
datasets can be found in Appendix A.1.1.

4.6 Results

4.6.1 Experimental results for severe pruning
The results of the pruning experiments are displayed in Figure 4.3, showing that
LEAN pruning at similar accuracy obtains networks with a lower pruning ratio
than the four compared methods. The pruning ratio that can be achieved without
significant loss of accuracy depends on the network architecture and the complexity
of the dataset.

In the CS dataset results, we notice a drop-off point where performance decreased
significantly for all networks. On average over 5 runs of pruning, LEAN achieved a
3.4%, 0.79%, and 0.79% pruning ratio for MS-D, U-Net4, and ResNet50, with an
average accuracy reduction of 1.4%, 2.5%, and 2.1% respectively. On ResNet50, at
an accuracy reduction of 3% compared to the unpruned network, LEAN achieves a
43% reduction in the number of convolutions compared to GM and SFP. Below
15% accuracy reduction SFP and GM perform better, but the network no longer
reliably segments the data at these accuracies.

On the dynamic X-ray CT dataset, we notice large fluctuations in F1 for MS-D
and U-Net4. This may be due to the F1-score which is defined as a reciprocal. In
addition, on U-Net4, LEAN performs better than the structured pruning methods
right from the start. On average over 5 runs, LEAN achieved a 5.1% and 6.3%
pruning ratio for MS-D and U-Net4, with an average F1 drop of 5.7%, and 3.3%
respectively. For ResNet50, a drop-off point is again observed, which occurs at a
significantly lower pruning ratio for LEAN than for both global pruning methods.
GM and SFP exhibit a more gradual reduction in F1-score.At an F1-score reduction
of 3% compared to the unpruned network, LEAN achieves a 92% reduction in the
number of convolutions compared to GM and SFP.

On the CamVid dataset, we observe a declining mIoU for MS-D and U-Net4 as
pruning progresses on this challenging dataset. On ResNet50 we notice an initial
drop in mIoU, but subsequent pruning steps increase the performance initially.
These observations could indicate that 5 epochs of retraining are not sufficient for
the CamVid dataset to recover performance. Interestingly for U-Net4, we notice
that for two pruning ratios, structured magnitude pruning appears to perform
slightly better than LEAN. Given the variance between different runs, possibly
due to the limited number of retraining epochs, we suspect that this difference
is not statistically significant. After the initial drop in mIoU, we notice a later
drop-off pruning ratio on ResNet50. LEAN achieves a 6.3% pruning ratio with
an average mIoU reduction of 14.3% on ResNet50, whereas the best performing

70
CHAPTER 4. LEAN: GRAPH-BASED PRUNING FOR CONVOLUTIONAL

NEURAL NETWORKS BY EXTRACTING LONGEST CHAINS

Dynamic X-ray CT (real-time application)

CamVid (challenging)

U-Net4
1.5 x 107 parameters

ResNet50
3.3 x 107 parameters

MS-D
4.5 x 104 parameters

CircleSquare (simulated)

Figure 4.3: Comparison of structured pruning methods and LEAN pruning on
three datasets (rows). Pruning methods are applied to MS-D, U-Net4, ResNet50
network architectures. The base model is pruned to a ratio of 1% (MS-D) or 0.1%
(ResNet50, U-Net4) for all datasets. This is repeated five times (translucent lines)
and the average is taken (solid lines).

4.7. CONCLUSION 71

11.1x

Figure 4.4: Practically realized speedup of pruned MS-D networks evaluated on
the test dataset.

other method dropped-off at a 20.0% pruning ratio. Interestingly, both layer-wise
pruning methods GM and SFP exhibit a sustained reduction in test mIoU rather
than the drop-off we observe for the global pruning methods.

4.6.2 Speedup real-world dynamic X-ray CT segmentation
In addition to measuring the achievable pruning ratios, we measure the practically
realized wall-time speedup. We tested this on the dynamic X-ray CT dataset for
which a speedup has immediate benefits in practice. Existing pruning support
in PyTorch only masks pruned filters, thereby not creating a faster network.
Therefore, we implemented a custom MS-D model which loads only the unpruned
filters. During the experiments, an MS-D network pruned to a ratio of 2.5%
(40-fold reduction) with LEAN achieved an F1-score of 0.83 (drop of 5.4%). This
network was 11.1 times faster than the unpruned network in practice. The speed
of evaluating the entire test set is impacted by the batch size, which we take into
account as shown in Figure 4.4. For comparison, we included the best performing
pruned MS-D network by an other pruning method (operator norm pruning) which
achieved a pruning ratio of 15.8% with an F1-score of 0.83. We show differences
between MS-D networks pruned with different pruning methods in Appendix A.1.3.

4.7 Conclusion
In this paper, we have introduced a novel pruning method (LEAN) for CNN pruning
by extracting the highest value paths of operators. We incorporate existing graph
algorithms and computationally efficient methods for determining the operator
norm. We show that LEAN pruning permits removing significantly more operators
while retaining better network accuracy than several existing pruning methods.
Our results show that LEAN pruning can increase the speed of the network, both
in theoretical speedup (FLOPs reduction) and in practice. In conclusion, LEAN

72
CHAPTER 4. LEAN: GRAPH-BASED PRUNING FOR CONVOLUTIONAL

NEURAL NETWORKS BY EXTRACTING LONGEST CHAINS

enables severe pruning of CNNs while maintaining a high accuracy, by effectively
exploiting the interdependency of network operations.

Future work could be split along several lines. First, there are more CNN
operators for which methods to compute their operator norms could be developed.
Notably, we have mostly disregarded non-linear operators in this work. Next, LEAN
approximates the norm of a chain of operators using the submultiplicative property
upper bound ‖AB‖ ≤ ‖A‖ · ‖B‖. New methods for approximating the norm of a
chain of composed operators could strengthen LEAN as it more accurately extracts
chains with strong operator norms. In addition, new graph theoretic approaches
for extracting meaningful paths from the graph could be explored. Such algorithms
are already abundant in the field of graph theory, and could quite readily be carried
over to neural network pruning research. Lastly, LEAN currently works by greedily
extracting high-value paths. Approaches such as [75] could be considered to avoid
greedy selection of operators.

