
On the optimization of imaging pipelines
Schoonhoven, R.A.

Citation
Schoonhoven, R. A. (2024, June 11). On the optimization of imaging pipelines.
Retrieved from https://hdl.handle.net/1887/3762676
 
Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis
in the Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/3762676
 
Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3762676


3
Auto-differentiation for CT

workflows

3.1 Introduction
In recent years, deep learning and other data-driven machine learning approaches
have become increasingly popular in computed tomography. Deep neural networks
have achieved strong results in X-ray CT applications by improving reconstruction
quality [146], reducing metal artifacts [260], performing beam hardening correction
[262], and classification [34, 98, 171]. The progress in deep learning has shown the
power of data driven end-to-end optimization using auto-differentiation software,
often in combination with hardware acceleration using graphical processing units
(GPUs).

Despite promising results, deep learning approaches suffer from interpretability
and reproducibility challenges. Furthermore, a serious issue is the behaviour of deep
learning algorithms when presented with new data, and potential hallucination of
object features [15]. These considerations have hampered the adoption of learned
algorithms by experts in for example the medical domain where doctors can be
reluctant to trust black-box learned approaches.

In contrast, classical (i.e. non-learned) algorithms often excel in interpretability
and robustness. Additionally, classical algorithms often come with an intuition
for their applicable input data domain, and the results they should produce. This
can lead to expert users favouring such traditional methods over deep learning
approaches. However, parameters of these algorithms are often either kept fixed or
are adjusted by the user based on manual experimentation. Since these parameters
are not learned in a data-driven way, they may not be optimally chosen for the
particular dataset and application.

33



34 CHAPTER 3. AUTO-DIFFERENTIATION FOR CT WORKFLOWS

In this work, we apply concepts from the philosophy that made deep learning-
based methods so successful, and transfer it to CT workflows. We create workflows
of computed tomography algorithms for various problems and show how those
problems can be solved by end-to-end optimization based on auto-differentiation.
By doing so, we reconcile classical algorithms with deep learning. We perform
four case studies, representative of real-world tomography problems. To do so, we
create pipelines using the following core design principles:

End-to-end learning: We implement the pipelines such that all pieces
facilitate gradient propagation, meaning that parameters at all steps of the
pipeline can be optimized jointly.

Explicit quality criteria: All pipelines use explicit quality criteria as objec-
tives for optimization, thereby enabling automatic optimization of parameters.

Declarative algorithm construction: Each pipeline is created by building
the forward model, and we optimize its parameters using auto-differentiation
and generic readily-available algorithms.

Use existing building blocks: The pipelines re-use building blocks derived
from both classical algorithms and deep learning methods in a way that
enables gradient propagation. This allows for seamless compatibility with
deep learning-based methods.

Our portfolio of case studies sketches the outline of a new generation of powerful
software toolboxes that enable users to leverage the power of auto-differentiation
for advanced computational CT pipeline construction.

This work is structured as follows. In Section 3.2 we explore related work in
auto-differentiation software for classical methods, and approaches for learning
CT algorithms in a data-driven way. In Section 3.3 we describe the methodology.
In Section 3.4 we present our results in the form of four case studies. In Section
3.5 we discuss our findings and present key potential benefits that arise from our
approach. We present our final conclusions in Section 3.6.

3.2 Related work
The idea of extending auto-differentiation techniques [72] to classical algorithms
is actively investigated across several domains. In the field of robotics, for non-
linear optimization problems, Meta AI constructed Theseus [188] which is a library
for building custom non-linear optimization layers that were shown to be useful
for differentiable kinematics. In [36], robotic controllers are auto-tuned using the
DiffTune package which works with forward-mode auto-differentiation. Furthermore,
end-to-end differentiable optimization enabled the coupling of the prediction and
planning module in autonomous vehicles [100].



3.2. RELATED WORK 35

In the field of cosmology, JAX-Cosmo [31] is a recently developed end-to-end
GPU accelerated library for cosmological calculations. Using automatic differenti-
ation, JAX-COSMO exposes derivatives for certain cosmological quantities, and
enables previously impractical methods such as Hamiltonian Monte Carlo and
Variational Inference. Furthermore, by embedding the cosmological algorithms in
JAX, the algorithms can be run on accelerated hardware, and can benefit from
automatic code optimizations and techniques such as just-in-time compilation.

Embedding classical operators in neural networks has been demonstrated as an
effective technique for end-to-end learning based on auto-differentiation. In [144] the
tomographic backprojection operator is embedded as an algorithm within a neural
network. Here the backprojection parameters are not trainable themselves, but
rather the algorithm introduces prior knowledge about image reconstruction in the
neural network. From the field of seismic imaging, a 3-step reflective seismic imaging
method is learned end-to-end by turning the Delay-And-Sum (DAS) operator into
a network layer in [186]. Similarly, the wave-physics-formation algorithm is placed
between two neural networks in [187] to facilitate single-plane seismic wave imaging
(SFW).

Automatic differentiation techniques have already been applied to solve specific
problems in computed tomography in recent years. In [231], beam hardening
correction for X-ray microscopy of mouse bones is performed with a polynomial
correction model that is optimized through a PyTorch-based differentiable FDK
algorithm. An elaborate outline of algorithmic differentiation for phase retrieval is
presented in [105]. In [108, 160], automatic differentiation is used in ptychography
where the object wave function is obtained with a gradient-based method by
minimizing the ptychography loss for each pixel. In [55] the 3D reconstruction
problem for objects beyond depth-of-focus (DOF) is formulated as a minimization
problem with a data fidelity and total variation term, which is solved with a
gradient descent algorithm. How automatic differentiation techniques can be used
for different imaging modalities is shown in [77], where compressive sensing, single
image super resolution (SISR), and ptychography reconstructions are covered. For
tomography, the reconstruction is obtained with a gradient based approach by
minimizing a total variation functional, and the authors show how this is beneficial
for sparse and limited angle data.

In the field of nanotomography, the auto-differentiation framework Adorym
[54] for flexible reconstruction has been developed. In Adorym, a flexible forward
model allows for optimization of experimental parameters such as probe position,
object tilt, absorption/refraction relation coefficient, and propagation distance.
The authors show improved reconstruction quality for ptychography and multi-
distance holography reconstructions, by finetuning these experimental parameters.
For conventional CT, they accelerate ART with gradient descent optimizers and
acquire improved results over FBP.

Compared to the related work outlined above, the scope and focus of the present
paper is more general. We focus on the core design principles underlying CT
workflows using auto-differentiation and demonstrate the efficacy of the approach
through a varied set of four case studies.



36 CHAPTER 3. AUTO-DIFFERENTIATION FOR CT WORKFLOWS

3.3 Methodology

3.3.1 Auto-differentiation

For the case studies included in this paper, we implement the CT workflows in
the auto-differentiation framework PyTorch [181]. An auto-differentiation system
breaks down a program in a series of primitive operations for which fixed procedures
are known to compute derivatives. The series of primitive computations is collected
in a computational graph. Most auto-differentiation systems, including PyTorch,
trace the computational graph implicitly during the forward computation through
the program. After the forward computation, the error or loss is computed. Here,
we use gradient-based optimization, meaning that an auto-differentiation package
needs to obtain partial derivatives of the loss with respect to the parameters.

Often each primitive function in an auto-differentiation package specifies vector-
Jacobian products. Suppose two quantities are related by a primitive function
f(x) = y, and y is used further in the computation. Denote by ȳ the derivative of
a loss L with respect to y. A vector-Jacobian product defines a way to express the
derivatives of L with respect to x, and is defined as

∂L

∂xj
=
∑
i

∂yi
∂xj

∂L

∂yi
, x̄ = JT ȳ,

where J is the Jacobian. For a primitive operation f , the gradient of the input
x̄ can be calculated from the output gradient ȳ, the input x and the output y. For
example, in the case of y = f(x) = −x the gradient of the input can be computed
as −ȳ, for y = f(x) = ex it will be y · ȳ, and in the case of y = log(x) it will be ȳ

x .
The procedure of computing gradients in reverse (starting from L̄ = 1) is called
back propagation. For gradient descent, parameters are updated by

x← x− λx̄,

for some step size λ (often called the learning rate in deep learning). Variants of
gradient descent exist such as Nesterov’s accelerated gradient descent [162]. In our
experiments we will either use (stochastic) gradient descent, or Adam [113].

A drawback of auto-differentiation frameworks can be excessive memory con-
sumption because copies of many intermediate outputs are stored for fast com-
putation of the back propagation algorithm. This problem can be addressed by
several general approaches. Gradient checkpointing stores only a subset of the
intermediate outputs for gradient computation [35]. Another approach involves
just-in-time (JIT) compilation where a compiler attempts to optimize the computa-
tional graph into a more memory and compute efficient set of instructions. In this
work, we apply PyTorch implementations of both techniques for certain memory
or computationally expensive operations.



3.3. METHODOLOGY 37

3.3.2 Computed tomography
In computed tomography [106] a 3D image of an object is recovered from a series
of projections that are taken at different angles. Tomographic reconstruction can
be modelled as the problem to recover an object volume x ∈ X := RNx×Ny×Nz
from the measured projection data y ∈ RNθ×Nu×Nv . Here, Nu and Nv are the
number of detector rows and columns, and Nθ is the number of projection angles.
The projection process can be approximated by a linear operator A, and can be
expressed as a matrix using the aforementioned discretization

Ax = y, (3.1)

where x and y are collapsed to a vector. For parallel beam tomography the
object can be reconstructed by the commonly used filtered backprojection algorithm
(FBP)

xFBP = AT (h ∗ y). (3.2)

Here, the projection data is convolved with a 1D filter h ∈ RNv (Ram-Lak in this
study), and subsequently backprojected by applying AT . For circular cone-beam
tomography, the object can be recovered by the Feldkamp-Davis-Kress (FDK) [59]
algorithm, where the projection data is weighted in order to compensate for the
diminishing intensity at distance from the detector center. An alternative to direct
methods are iterative methods that reformulate the equation system 3.1 as an
optimization problem of the form

x∗ = arg min
x∈X

‖Ax− y‖22. (3.3)

Variational methods additionally aim to incorporate prior knowledge in the
form of a regularization term R(x) to the functional, e.g.,

x∗ = arg min
x∈X

‖Ax− y‖22 +R(x). (3.4)

3.3.3 CT workflows
The CT workflows that we consider here contain input data in the form of projection
images, contain several data processing steps of which at least one is a reconstruction
step, and contain an objective function that scores the final result. We consider
potentially non-sequential workflows, i.e., the data processing graph can contain
several branches, or cyclical sections. The computational blocks can contain
parameters that we want to update in order to minimize the objective function
(see Figure 3.1). Those parameters must be real or complex numbers in order to
facilitate gradient-based optimization.

For the four case studies, we have implemented the computational blocks to
be differentiable with respect to the learnable parameters. Non-differentiable
steps can potentially be replaced by a differentiable approximation function. For



38 CHAPTER 3. AUTO-DIFFERENTIATION FOR CT WORKFLOWS

example, to make thresholding (and segmentation) differentiable, we implement
the thresholding operation using a hyperbolic tangent

τγ(x, t) =
1

2

(
1 + tanh

(
γ
(x
t
− 1
)))

, (3.5)

where the volume x, and threshold t have been scaled to [0, 1]. The parameter γ
regulates the sharpness of the clipping.

Projection data Pre-processing

Parameters

Post-processing

Parameters

Reconstruction
Parameters

Objective function

Optimizable parametersInput data Objective function

Figure 3.1: Example CT workflow diagram.

3.3.4 Software implementation
To compute gradients end-to-end for workflows that contain tomographic (back)projection
operators, we will make use of the matrix identity ∇Ax = AT∇x. Tomographic
projection operations are implemented in the ASTRA toolbox [1] in a computa-
tionally efficient GPU accelerated manner. The tomosipo package [90] implements
PyTorch support for ASTRA, and contains projection operators that propagate
gradients in PyTorch using the aforementioned identity. Here, we use tomosipo
projection operators in our workflows to propagate gradients end to end. In addi-
tion to reconstruction algorithms, the workflows we construct in this work contain
other classical CT algorithms, such as Paganin’s phase retrieval, phase contrast
projection, and spectral projectors. We implemented these algorithms in PyTorch
which facilitates auto-differentiation, and makes them GPU compatible, and the
code is made publicly available for all case studies [216].

3.4 Case studies

3.4.1 Rotation axis alignment
Introduction

In the first case study, we consider the problem of alignment in tomographic
reconstruction [123]. Various experimental factors can introduce errors in the
geometric parameters that are used to perform the reconstruction. A common
occurrence of this effect in CT is a misalignment of the rotation axis position. In



3.4. CASE STUDIES 39

the case of a rotation axis misalignment δ, for a ray parametrized by angle ω
and position vector a from scanning set Γ, the projection p of the object function
f : R3 → R is given by the Radon transform as

p(a,ω) =

∫ ∞
0

f(a+ δ + tω) dt, ω ∈ S2, a ∈ Γ. (3.6)

This discrepancy (most prominently a lateral shift) between the assumed and the
true rotation axis position introduces severe artifacts in the resulting reconstruction,
which appear differently depending on the acquisition geometry. In cone-beam CT
this leads to blurring and "doubling" of object features, which significantly affect
the sharpness of the reconstruction.

(a) Shepp-Logan phantom (b) FDK (before optimization) (c) FDK (after optimization)

0 1 2 3 4 5

Iteration

4.26

4.27

4.28

4.29

V
ox

el
va

ri
an

ce

×10−10

(d) Contrast measure during optimization

0 1 2 3 4 5

Iteration

0.0

0.5

1.0

1.5

2.0

2.5

3.0

E
st

im
at

ed
ax

is
sh

if
t

(p
x)

(e) Rotation axis shifts during optimization

Figure 3.2: (a) Shepp-Logan phantom and its FDK reconstructions obtained from
projection data simulated using (b) shifted rotation axis and (c) rotation axis
position compensated by the proposed gradient-based optimization method. (d)
Image variance-based contrast measure and (e) estimated rotation axis shift during
the optimization.

Experiments

Here we propose to optimize for the rotation axis position by minimizing the mag-
nitude of misalignment-induced artefacts as measured by an appropriate measure



40 CHAPTER 3. AUTO-DIFFERENTIATION FOR CT WORKFLOWS

of reconstruction quality [50] [76]. In cone-beam CT, to account for edge blurring
and "doubling" artifacts, we use a well-known image contrast measure based on
voxel variance [73]. The intuition behind this metric is that a sharply focused
reconstruction has a large spread in the intensity histogram, whereas upon blurring
intensities concentrate around the same gray value. To enable gradient-based
optimization for this task, we adjust the lateral shift of the assumed rotation axis
position by shifting all projection images in the opposite direction using a bicubic
interpolation-based image shift operator implemented in PyTorch. The shifted
projections are then backprojected and the quality of this intermediate result is
quantified. Since all the pieces of the described workflow are implemented in a
differentiable manner within PyTorch, a generic gradient-based optimization algo-
rithm (SGD) can now be used to find the shift of the rotation axis that maximizes
the reconstruction quality. A diagram of the proposed pipeline is shown in Figure
3.3. Both experiments in this section were performed on a workstation with 64GB
RAM, an NVidia GeForce GTX 1070 GPU, and Intel i7-7700K CPU.

Projection data Shift projections

FDK

δ

Compute contrast

Optimizable parametersInput data Objective function

Figure 3.3: CT workflow for self-supervised rotation axis alignment.

Simulated experiment: Shepp-Logan phantom

To test the proposed gradient-based rotation axis alignment method, we first
employ simulated data based on a 512 × 512 px Shepp-Logan phantom (Figure
3.2(a)) that is projected using a geometry with a rotation axis shift of 3 px. As
can be observed in Figure 3.2(b), even a minor misalignment in the axis position
introduces significant blurring in the reconstruction. The proposed gradient-based
contrast optimization method successfully compensates the rotation axis shift
(Figure 3.2(c-e)), converging in only about 3 iterations. The proposed method is
computationally efficient as running 6 iterations took 97 ms on our system.

Real-world experiment: High-resolution cone-beam CT of a walnut

Next, we evaluate the performance of the proposed rotation axis shift compensation
method on experimental data using an open dataset of high-resolution cone-beam
CT of walnuts acquired at the Flex-ray lab [39, 119]. Figure 3.4(a) demonstrates an
FDK reconstruction obtained with the geometry parameters specified in the dataset
metadata, and Figure 3.4(b) shows the reconstruction after axis alignment method



3.4. CASE STUDIES 41

(a) FDK (before optimization)

(b) FDK (after optimization)

0 1 2 3 4 5

Training iteration

0.050

0.052

0.054

0.056

0.058

V
ox

el
va

ri
an

ce

+1.07× 102

(c) Contrast measure during
optimization

0 1 2 3 4 5

Training iteration

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

E
st

im
at

ed
ax

is
sh

if
t

(p
x)

(d) Rotation axis shifts during
optimization

Figure 3.4: (a) FDK reconstruction of the walnut dataset. (b) FDK reconstruction
after rotation axis position was compensated by the proposed gradient-based
optimization method. (d) Image variance-based contrast measure and (e) estimated
rotation axis shift during the optimization.



42 CHAPTER 3. AUTO-DIFFERENTIATION FOR CT WORKFLOWS

has been applied. It can be observed that although there are no obvious artifacts
present in the initial reconstruction (which makes this kind of misalignment easy to
miss with manual inspection), the rotation axis position optimization significantly
improves the resolution of the reconstruction. The improved resolution brings up
details that were not visible before, such as pores in the central part of the walnut
that can be seen in the zoom-in of Figure 3.4(b). The walnut slice is 550× 550 px,
with 501 projection angles, and running 6 iterations took 295 ms on our system.

To summarize, our workflow for rotation axis position alignment, implemented
in an automatic differentiation framework, results in an intuitive formulation of
the axis alignment problem. In addition, the resulting method enjoys a quick
convergence, can retrieve sub-pixel axis shifts in a straightforward manner, and
can be easily extended to multivariate optimization if other geometry parameters,
such as rotation axis tilt and the cone angle of illumination, are included in the
workflow.

3.4.2 Phase retrieval

Introduction

In the second case study we apply an end-to-end optimization approach to phase
contrast imaging (PCI) [57]. PCI can reach nanometric resolution in tomographic
imaging [251], and requires an additional reconstruction step known as phase
retrieval. In PCI, the image is reconstructed based on changes to the wave front
due to the material that is present along the wave path. A widely used experimental
PCI setup is phase propagation-based imaging where projections are acquired from
several different distances using a coherent beam. Next, a phase retrieval algorithm
is used to calculate phase maps.

Here, we will consider Paganin’s phase retrieval algorithm [172], which requires
the material refractive index δ, and attenuation β to be known. Paganin assumes
a single material object, and retrieves the projected thickness of the object T by

T(r⊥) = − 1

β
log

(
F−1

(
βF{I(r⊥, z = R2)}/I0

R2δ‖k⊥‖+ β

))
. (3.7)

Here I is the intensity function, I0 the incident intensity, r⊥ the position vector
perpendicular to the optical axis, k⊥ the wave vector, and R2 the source-detector
distance. A common practice is to divide both the numerator and the denominator
inside the inverse Fourier transform of equation 3.7 by β. The resulting fraction
δ/β is sometimes designated as α. Expert users will often pick α manually to
get a good reconstruction. However, this can be a time-consuming process, it is
subjective, and it can make it more difficult for other researchers to reproduce
results. Therefore, in this section we will show that we can optimize both β and δ
in an unsupervised way for a clear objective. We do so by constructing a pipeline
of operators that propagate gradients end-to-end.



3.4. CASE STUDIES 43

Experiments

Compute L2 distance

Phase images

Match mean+stdev

Paganin

β, δ

Propagate
phase contrast

β, δ

FBP

Binary segmentation

Optimizable parametersInput data Objective function

Figure 3.5: PCI pipeline for self-supervised optimization of β and δ.

In the experiments, we use a pipeline that takes raw projections as input,
and performs Paganin phase retrieval to produce phase maps. A reconstruction
based on the phase maps is made with filtered backprojection (FBP), and a binary
segmentation is made with an implementation of Otsu’s method [170] that makes
use of equation 3.5. We use binary segmentation since Paganin assumes a single
material.

After segmentation, using the same refraction and attenuation indices, projec-
tions are simulated based on the segmentation using a wave propagation projector.
Finally, the simulated projections are scaled so that their mean and standard devi-
ation align with the raw input. As a loss function we take the mean-squared error
loss between the scaled simulated projections and the original input projections. A
diagram of the pipeline is given in Figure 3.5. Both experiments in this section
were performed on a server with 384GB RAM, an NVidia Titan RTX GPU, and
two Intel Xeon Gold 6130 CPUs.

(a) CaCO3 phantom (b) Reference FBP (c) FBP (before) (d) FBP (after)

Figure 3.6: (a) Slice through calcium carbonate simulated phantom. (b): FBP
reconstruction using correct β and δ. (c): FBP of phase projections retrieved with
the material indices for water that were used as initialization. (d): FBP of phase
projections retrieved with learned material parameters after optimization.



44 CHAPTER 3. AUTO-DIFFERENTIATION FOR CT WORKFLOWS

0 20 40 60 80 100 120

Optimization iteration

10−1

M
ea

n
sq

u
ar

ed
er

ro
r

Optimization loss end-to-end gradient optimization
phase retrieval pipeline for CaCO3 phantom

End-to-end gradient method

0 25 50 75 100

Optimization iteration

−22.2

−22.0

−21.8

−21.6

N
at

u
ra

l
lo

ga
ri

th
m

of
b

et
a

Attenuation index during optimization

Beta

0 25 50 75 100

Optimization iteration

−15.6

−15.4

−15.2

−15.0

N
at

u
ra

l
lo

ga
ri

th
m

of
d

el
ta

Refraction index during optimization

Delta

Figure 3.7: (Left): L2-loss between input phase maps and output simulated phase
maps per iteration. Attenuation β (middle), and refraction δ (right) value per
iteration.

Simulated experiment: Calcium carbonate cube

First, we perform a simulated experiment on a 3D phantom (1923 volume, 572
angles) of a calcium carbonate hollow cube, with a smaller cube attached to one of
its sides (see Figure 3.6(a)). Next, we simulate phase contrast images using the
material parameters of calcium carbonate, and add Poisson noise. As reference,
we show the FBP reconstruction of the phase maps acquired with Paganin with
the correct β and δ in Figure 3.6(b). We initialize the attenuation and refraction
indices to those of water. We use a gradient descent algorithm (Adam) optimization
algorithm to update β and δ. For a smoother optimization we optimize these
parameters on an exponential scale.

The FBP reconstructions before and after optimization are given in Figure 3.6.
We see that the initial FBP reconstruction using water material indices has a halo
artifact. This artifact is no longer visible after optimization. The optimization loss
and the attenuation and refraction values (logarithm) per iteration are given in
Figure 3.7. While the reconstruction quality has improved, the pipeline is not able
to fully recover the original material index values; the final values after optimization



3.4. CASE STUDIES 45

Before After

Figure 3.8: Hydrogen fuel cell [45] reconstructed with FBP with default material
parameters for water (before), and after optimizing parameters end-to-end (after).

are ln(β) = −21.50 and ln(δ) = −15.69, whereas the original values for calcium
carbonate are ln(β) = −19.59, ln(δ) = −13.94. However, the value of α = δ/β is
only 17.6% off the original. Running 120 iterations of optimization on this pipeline
took 16 minutes and 48 seconds on our system.

Real-world experiment: Hydrogen fuel cell

We perform a real-world data experiment on a hydrogen fuel cell dataset acquired at
the TOMCAT beamline of the Swiss Light Source (PaulScherrer Institut)[45]. The
experiment is performed on a central slab of the full volume of size 160×1001×1476
to reduce computation time. For the experiment we use the same setup as for the
simulated experiment, and again initialize the attenuation and refraction indices to
those of water. In Figure 3.8 we show reconstructed central slices of the fuel cell
before and after optimization. We see that after optimization small-scale features
such as bubbles are visible. The zoomed images show that the initial reconstruction
is blurred, and the final reconstruction after optimization is much sharper. In
Figure 3.9 we display the optimization loss and the attenuation and refraction
values per iteration. Running 200 iterations of optimization on this pipeline took 1
hour and 38 minutes on our system.

Overall the experiments show that we can use a generic gradient based approach
to optimize for reconstruction quality in an self-supervised way in phase contrast
imaging. We showed on both a simulated and real-word dataset that the pipeline
can be optimized for a clear objective, as opposed to manual selecting the α = δ/β
parameter. First, this reduces the work for operators as they no longer have to



46 CHAPTER 3. AUTO-DIFFERENTIATION FOR CT WORKFLOWS

0 25 50 75 100 125 150 175 200

Optimization iteration

2× 10−4

3× 10−4

4× 10−4

M
ea

n
sq

u
ar

ed
er

ro
r

Optimization loss end-to-end gradient optimization
phase retrieval pipeline for hydrogen fuel cell

End-to-end gradient method

0 50 100 150 200

Optimization iteration

−25

−24

−23

−22

−21

−20

N
at

u
ra

l
lo

ga
ri

th
m

of
b

et
a

Attenuation index during optimization

Beta

0 50 100 150 200

Optimization iteration

−24

−22

−20

−18

−16

N
at

u
ra

l
lo

ga
ri

th
m

of
d

el
ta

Refraction index during optimization

Delta

Figure 3.9: (Left): L2-loss between input phase maps and output simulated phase
maps per iteration. Attenuation β (middle), and refraction δ (right) value per
iteration.



3.4. CASE STUDIES 47

tune parameters manually. Second, this makes the procedure more reproducible
for different datasets.

3.4.3 Beam hardening correction
Introduction

For the third case study, we implemented self-supervised correction of artifacts
introduced by beam hardening [23, 91]. The number of materials is denoted by
N , with attenuation coefficients µn(E), and the beam spectrum has Em energy
bins with intensities Ie. Furthermore, let li,j be the intersection length of ray i
(i = 1 . . . D) with voxel j (j = 1 . . . J), dj the relative density of voxel j, and sn,j
a variable that is 1 if voxel j contains material n, and 0 otherwise. Then we can
denote for a ray i and a material n the projected relative density Pi,n, and the
monochromatic measured intensity by Beer-Lambert as

Pi,n =

J∑
j=1

li,jdjsn,j , Imono,i = I0e
−∑N

n=1 µn(E0)Pi,n , (3.8)

for a monochromatic beam with energy E0 and intensity I0. The measured
polychromatic intensity (discrete) is given by

Ipoly,i =

Em∑
e=1

Iee
−∑N

n=1 µn,ePi,n , (3.9)

for a polychromatic beam with energies e and intensities Ie.
For a monochromatic X-ray, the attenuation coefficient µ is linearly related

to the thickness of the object by Beer-Lambert’s law. However, in practice X-
ray beams are often polychromatic and this relation is no longer linear as lower
energy photons get absorbed more than higher energy photons. Therefore, as a
polychromatic beam travels through an object it “hardens”, i.e., the average photon
energy increases. If this effect is not taken into account by the reconstruction
algorithm, it causes streaking and cupping artifacts because the lower absorbance
due to higher average energy is mistakenly reconstructed as a lower density material.

Experiments

The aim of the case study is to highlight how combining an explicit forward model
with a few lines of code and generic gradient-optimization can result in sophisticated
algorithm construction, even for cases that used to require lengthy, hand-crafted
implementations. In the experiments we will perform unsupervised beam hardening
correction by learning the beam spectrum, and the energy-dependent attenuation
coefficients per material. We will base the study on [66], where three different
iterative unsupervised beam hardening correction algorithms are proposed and
compared. We use the best performing algorithm in [66] as a comparison; the itera-
tive sinogram preprocessing (ISP) method. The ISP method is an iterative scheme



48 CHAPTER 3. AUTO-DIFFERENTIATION FOR CT WORKFLOWS

with multiple steps, such as a bruteforce segmentation step, a local optimization
step, and a reconstruction update step. For a detailed explanation of ISP we refer
to [66]. ISP assumes that the number of materials is known beforehand, but no
knowledge of the beam spectrum, or attenuation coefficients is assumed.

Projection data Reconstruct Spectral projection

s, µ, I

Evaluate ϕ
Correct projections

Inner optimization loop

Optimizable parametersInput data Objective function

Figure 3.10: CT pipeline for self-supervised beam hardening correction.

As opposed to constructing a specialized algorithm such as ISP, we compare to
a generic gradient-based approach where beam spectrum, attenuation coefficients,
and thresholds are learned jointly. The generic approach is self-supervised using
the same loss function as ISP

ϕ(µ, I, s,d) =
1

D

D∑
i=1

(
log

(
Imeas
poly,i

I0

)
− log

(
Isimpoly,i

))2

, (3.10)

which is the L2-loss between the simulated polychromatic projections and the
original input projections. To initialize the thresholds we use Otsu’s method on
an initial reconstruction R0 made with FBP or FDK. After the initialization we
iterate as

1. Update segmentation thresholds, attenuation coefficients, and beam intensi-
ties,

sk, µk, Ik = arg min
s,µ,I

ϕ(µ, I, g(Rk−1, s),d = 1), (3.11)

where g(Rk−1, s) is the differentiable thresholding function described before
(equation 3.5), ϕ is the ISP loss function, and arg min is performed with
gradient descent.

2. Update the sinograms and corrected reconstruction Rk as for ISP.

A diagram of the workflow is shown in Figure 3.10. By using an implementa-
tion of the spectral projector that can propagate gradients, we can optimize the
attenuation, intensity, and thresholds jointly. This improves the complexity of the
algorithm as the thresholding step in ISP is exponential in the number of materials
and computationally expensive. For our experiments, we created a PyTorch based
implementation of ISP and our generic gradient-based approach. Both experiments



3.4. CASE STUDIES 49

in this section were performed on a workstation with 64GB RAM, an NVidia RTX
2070 Super GPU, and AMD Ryzen 7 3800X CPU.

Figure 3.11: (Left): Barbapapa phantom consisting of PMMA filled with aluminium
cylinders. (Right): FBP reconstructions of simulated spectral projections (with
added Gaussian noise).

Simulated experiment

We perform a simulated experiment based on the Barbapapa phantom [66] where
we created a simulated phantom (see Figure 3.11) of polymethyl methacrylate
(PMMA) filled with aluminium rods with size 256× 256. Next, we use a spectral
projector with a simulated effective beam spectrum to simulate beam hardening
artifacts. Finally, we add 2% Gaussian noise on the projections (see Figure 3.11
for reconstruction of noisy projections). To perform beam hardening correction
we performed 40 steps of ISP. We ran the generic gradient-based approach for
the same amount of objective function evaluations. In Figure 3.12 we show the
FBP reconstructions of the corrected sinograms for both algorithms, and the
accompanying material segmentations. We see that both methods reduced cupping
and streaking artifacts. Furthermore, Figures 3.12(d) to 3.12(f) show a significant
improvement in segmentation quality for both methods, which is close to the
original phantom.

Line profiles for each of the three reconstructions are given in Figure 3.13(a).
The line profiles confirm that the cupping artifacts are significantly reduced for
both the PMMA material and the aluminium rods. In Figure 3.13(b) we plot the
self-supervised loss for both methods. Both methods reach a similar optimum, but
the combined gradient method shows slightly faster convergence. Note that the
combined gradient method also runs twice as fast, which is due to the missing
brute-force threshold selection step. This is also reflected in the runtimes; ISP ran
for 16 minutes and 15 seconds, whereas the generic gradient-based approach ran
for 8 minutes and 9 seconds.

Play-Doh foreign object X-ray CT dataset

We also evaluate both beam hardening correction methods on a real-world X-ray
CT dataset of Play-Doh objects filled with stones [257, 258]. The experiment was



50 CHAPTER 3. AUTO-DIFFERENTIATION FOR CT WORKFLOWS

(a) Original FBP reconstruction (b) ISP reconstruction (c) CG reconstruction

(d) Original FBP segmentation (e) ISP segmentation (f) CG segmentation

Figure 3.12: (Top): Barbapapa phantom reconstructed with the Filtered BackPro-
jection (FBP) algorithm for ISP and a combined gradient-based (CG) approach.
(Bottom): Material segmentations of corrected reconstructions.

0 50 100 150 200 250

Position

0.0

0.5

1.0

1.5

2.0

A
tt

en
u

at
io

n

Line profiles through Barbapapa reconstructions

Original

ISP

Combined gradient

(a) Line profiles

0 5000 10000 15000 20000

Training iteration

10−4

10−3

10−2

10−1

100

IS
P

lo
ss

Training loss gradient method on barbapapa phantom

ISP

Combined gradient

(b) ISP loss

Figure 3.13: (a) Three line profiles through the original, ISP corrected, and
combined gradient corrected Barbapapa reconstructions. (b) Optimization losses
per ϕ evaluation.

performed on a 478× 478 central slice. The Play-Doh objects exhibit significant
cupping artifacts. In Figure 3.14 we show the FBP reconstructions of the corrected



3.4. CASE STUDIES 51

(a) Original FBP reconstruction (b) ISP reconstruction (c) CG reconstruction

Figure 3.14: Play-Doh and stones reconstructed with the Filtered BackProjection
(FBP) algorithm for ISP and a combined gradient-based (CG) approach.

sinograms for both algorithms. We see that both methods reduced cupping, which
is also clearly visible on the line profiles shown in Figure 3.15(a). In Figure 3.15(b)
we plot the self-supervised loss for both methods. Both methods reach a similar
optimum, but the combined gradient method shows a more stable convergence.
The jumps in the loss curve for ISP happen when a new optimal set of thresholds is
determined with brute-force calculation after the local minimization steps. Since the
combined gradient method jointly optimizes all parameters every step, it does not
suffer from such jumps. The improved computational efficiency is more prominent
due to faster convergence of the local optimization step; ISP ran for 19 minutes
and 51 seconds, whereas the generic gradient-based approach ran for 4 minutes
and 35 seconds.

0 100 200 300 400 500

Position

−0.0025

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

A
tt

en
u

at
io

n

Line profiles through PlayDoh reconstructions

Original

ISP

Combined
gradient

(a) Line profiles

0 1000 2000 3000 4000 5000 6000

Training iteration

10−3

10−2

IS
P

lo
ss

Training loss gradient method on PlayDoh dataset

ISP

Combined gradient

(b) ISP loss

Figure 3.15: (a) Three line profiles through the original, ISP corrected, and
combined gradient corrected Play-Doh reconstructions. (b) Optimization losses
per ϕ evaluation.

Overall the experiments show that by using a generic gradient-based approach for
all parameters, we can create an algorithm that performs similar to the specialized



52 CHAPTER 3. AUTO-DIFFERENTIATION FOR CT WORKFLOWS

ISP algorithm in similar runtime. The construction of such an algorithm is more
straightforward as we can create the forward model and embed the workflow in
an auto-differentiation framework. This allows us to optimize end-to-end in a
straight-forward manner.

3.4.4 Optimizing total variation reconstruction and neural net-
works end-to-end

Introduction

In the final case study we will focus on denoising CT reconstructions using convo-
lutional neural networks (CNNs) jointly with total variation reconstruction (TV)
[176, 184, 240]. Since neural networks are often large, black-box models that are
hard to interpret, it can be desirable to let more computation steps be performed
by interpretable algorithms and use a smaller network, rather than using simpler
algorithms and a larger neural network. In the experiment we show how embedding
CT algorithms in an auto-differentiation framework allows for easy interfacing with
deep learning algorithms, and the pipeline can be trained end-to-end. This method
allows us to design a more interpretable pipeline using variational methods with
similar accuracy, while using a smaller neural network.

Total variation reconstruction is a commonly used variational method to incor-
porate prior knowledge that the gradient of the image should be sparse. For TV,
the regularization term in equation 3.4 becomes the magnitude of the gradient

x∗ = arg min
x

{
‖Ax− y‖22 + λ‖x‖TV

}
= arg min

x

{
‖Ax− y‖22 + λ‖∇x‖1

}
.

(3.12)
To minimize the functional we use an implementation based on Chambolle-Pock

[224]. The regularization parameter λ controls the trade-off between data fidelity
and regularization term. A small λ will result in a reconstruction x∗ that is close
to the raw data, but potentially with high noise. A large λ can lead to less noise
and more connected components of equal value. For more information on total
variation regularization we refer to Rudin-Osher-Fatemi [203].

Experiments

We perform an experiment on simulated 2D foam-like phantoms of size 256× 256.
These phantoms contain both large and small scale features (see Figure 3.16(a)).
We simulate parallel beam projections from an angular range of -60◦ to 60◦, creating
missing wedge artifacts, and add Poisson noise to the projection data (see Figure
3.16(b) for an example FBP reconstruction). For TV reconstruction (Figures
3.16(c) and (d)), this creates a situation where a small λ keeps smaller features, but
creates a high noise reconstruction, while a larger λ removes more noise but creates
connected components of voxels which removes smaller features. We created a
training dataset of 100 randomly generated target phantoms, and corresponding
noisy limited angle projections. In our experiments we in each case have the



3.4. CASE STUDIES 53

(a) Phantom (b) FBP reconstruction (c) TV (λ = 10−5) (d) TV (λ = 10−2)

Figure 3.16: (a) Foam CT binary phantom, (b) FBP reconstruction of phantom
projections with added severe noise, (c) TV reconstruction with λ = 10−8, and (d)
TV reconstruction with λ = 10−2.

noisy projections as input data, and use the original phantom as target data. Our
implementation of total variation reconstruction uses PyTorch primitives, and λ can
therefore be optimized end-to-end with gradient-based approaches in conjunction
with deep learning algorithms. In total, we trained four pipelines end-to-end.

1. FBP + Small CNN: An FBP reconstruction is input for a small CNN that
denoises the image. The CNN consists of 3 layers of 3× 3 kernels arranged
in 1× 64, 64× 32, and 32× 1 channels (19.393 parameters in total). Only
the CNN weights are learned.

2. Single TV + Small CNN: A single TV reconstruction is input for a small
CNN that denoises the image. The CNN consists of 3 layers of 3× 3 kernels
arranged in 1× 64, 64× 32, and 32× 1 channels (19.393 parameters in total).
Both λ and the CNN weights are learned jointly. λ is initialized at λ = 10−3.

3. Double TV + Small CNN: Two TV reconstructions with different λ are
input for a small CNN that uses both inputs to create a single denoised
output image. The CNN consists of 3 layers of 3 × 3 kernels arranged in
2×64, 64×32, and 32×1 channels (19.969 parameters in total). Both λ1, λ2,
and the CNN weights are learned jointly. The λ’s are initialized as λ1 = 10−3,
and λ2 = 10−8.

4. FBP + Large CNN: An FBP reconstruction is input for a larger CNN that
densoises the image. The CNN consists of 4 layers of 3× 3 kernels arranged
in 1 × 160, 160 × 96, 96 × 64, and 64 × 1 channels (195.873 parameters in
total). Only the CNN weights are learned.

A diagram of the Double TV + Small CNN pipeline is shown in Figure 3.17.
All 4 experiments are run for an equal number of training iterations, and were
performed on a workstation with 64GB RAM, an NVidia RTX 2070 Super GPU, and
AMD Ryzen 7 3800X CPU. For validating the results we generated an additional
random phantom that was not in the training set. The resulting denoised validation
reconstructions are shown in Figure 3.18.



54 CHAPTER 3. AUTO-DIFFERENTIATION FOR CT WORKFLOWS

Projection data

TV Reconstruction
λ1

TV Reconstruction
λ2

CNN
weights

Mean squared error

Ground truth data

Optimizable parametersInput data Objective function

Figure 3.17: Pipeline for supervised denoising of CT data.

Phantom FBP+small CNN TV+small CNN 2xTV+small CNN FBP+large CNN

Phantom (zoom) FBP+small CNN TV+small CNN 2xTV+small CNN FBP+large CNN

Figure 3.18: (Top): From left to right; Foam phantom, output of FBP reconstruction
followed by a small CNN, output of a single total variation reconstruction followed
by a CNN, output of two total variation reconstructions followed by a CNN, output
of FBP reconstruction followed by a larger CNN. (Bottom): Zoom of top row.

We see that all pipelines can denoise the reconstruction significantly, but
struggle to remove artifacts introduced by the missing angular information. The
FBP+SmallCNN pipeline seemingly performs worse on visual inspection of the
zoomed images. Arguably, both TV pipelines perform better than FBP+LargeCNN,
even though the larger CNN had 10 times more parameters. This suggests that
the prior knowledge incorporated by total variation makes for an easier denoising
problem for the CNN. It is unclear whether the addition of a second total variation
operator benefited the denoising quality. However, in validation loss the double
total variation operator performs better with 1.805 · 10−2 loss versus 1.864 · 10−2

for the single TV operator. The validation loss for the FBP+SmallCNN pipeline is
2.322 · 10−2, and for the FBP+LargeCNN pipeline 2.268 · 10−2.



3.5. DISCUSSION 55

0 2000 4000 6000 8000 10000

Training iteration

10−2

10−1

M
ea

n
sq

u
ar

ed
er

ro
r

Training loss TV+CNN experiment on foam phantoms

FBP+SmallCNN

TV+SmallCNN

2xTV+SmallCNN

FBP+LargeCNN

(a) Training losses

0 2000 4000 6000 8000 10000

Training iteration

10−8

10−7

10−6

10−5

10−4

10−3

λ

TV regularization λ value per iteration

Sinlge TV λ

Double TV λ1

Double TV λ2

(b) λ values

Figure 3.19: (a) Mean squared error loss during training. (b) TV regularization λ
values during training.

We plot the training losses and λ values during training in Figure 3.19. An
interesting observation is that single TV learned a λ with a value in between λ1

and λ2 of the double TV pipeline. We hypothesize that the single TV pipeline
had to compromise λ between leaving small features intact, and denoising the
reconstruction.

Running total variation in a training procedure comes at large computational
cost; a single training step (100 images) took 99.6, and 198.3 seconds for single
and double TV respectively whereas FBP + large CNN took 1.82 seconds. For
3D it could therefore be infeasible to train this pipeline. For single scan tuning of
λ a surrogate TV approach can be considered during optimization, such as [118].
Alternatively, λ could be tuned on the central slice for 3D cases.

Overall the experiment shows how embedding classical CT algorithms, such as
TV reconstruction, in GPU accelerated auto-differentiation frameworks allows for
the easy prototyping of mixed classical and deep learning pipelines. We were able to
replace a large CNN with 200 thousand parameters by a stack of two TV operators
to achieve better denoising accuracy, and reduce the CNN size to 20 thousand
parameters. In addition, the total variation pipelines are more interpretable as
the behaviour of TV for small or large λ is well understood. In general, this easy
interfacing of deep learning and classical methods enables end-to-end learning of
parameters, which opens up new areas of research. Additionally, the resulting
pipeline may be more interpretable since parameters of classical algorithms are
often linked to physical or mathematical concepts that are better understood.

3.5 Discussion
Our four use cases and the corresponding experiments demonstrate that a broad
range of CT workflows can be implemented as end-to-end optimized pipelines
using auto-differentiation. Depending on the particular use case, this approach



56 CHAPTER 3. AUTO-DIFFERENTIATION FOR CT WORKFLOWS

yields several benefits, which we will now discuss in more detail. When all pieces
of a data processing pipeline facilitate gradient propagation, parameters at all
steps of the pipeline can be optimized jointly for a criterion calculated at any
given step. In combination with explicit quality criteria this allowed us to design
workflows where the learnable parameters were used in the earlier stages of the
pipeline, while the objective function was more naturally defined at the end of the
pipeline. For example, in both the rotation axis alignment and beam hardening
correction experiments we were able to optimize parameters that are used in the
projection domain for metrics computed in the volume domain. Another benefit is
that this approach allows for efficient automatic optimization of parameters that
may otherwise be chosen manually. This additionally improves the transferability
of CT workflows when applied to new data as the parameters can be optimized in
an objective manner using the same quality criterion.

Our approach made it possible to implement workflows more efficiently by using
existing building blocks, and by defining the workflow in a declarative manner,
i.e., implementing the forward model and then optimizing its parameters with a
generic off-the-shelf optimizer. Creating workflows in this manner is typically less
time consuming to develop and more flexible compared to specialized methods. For
example, in the beam hardening experiment we showed that a gradient descent
on the forward model of the physical effect results in a quality comparable to a
specialized correction method.

Using our design principles allowed for seamless compatibility between classical
and deep learning-based approaches. As classical approaches often come with an
intuition of their behaviour, this combination of classical algorithms and deep
learning can lead to more robust and interpretable workflows. In the last experi-
ment we showed that using existing classical algorithms in conjunction with deep
learning can create workflows that perform similarly to purely deep learning based
approaches while using smaller neural networks.

Even though gradient-based end-to-end optimization has several potential
benefits, our approach can create certain practical challenges. First, convergence of
a gradient descent optimizer is not always guaranteed, and can potentially produce
suboptimal solutions. Second, the learning rate needs to be picked manually, which
is especially challenging when the involved parameters have significantly different
magnitudes. Despite the disadvantages, as we have seen in the field of deep learning,
this approach often still produces strong results in practice, and well-performing
heuristic solutions to mathematically complicated problems were found.

3.6 Conclusion
We have shown how implementing classical CT algorithms in an auto-differentiation
framework can improve their transferability and interpretability, enable efficient
automatic end-to-end optimization, and allow for solving real-world problems with-
out having to develop specialized algorithms. We have explored four use cases
experimentally: rotation axis alignment, phase contrast imaging, beam hardening



3.6. CONCLUSION 57

correction, and end-to-end denoising with deep learning and total variation recon-
struction, demonstrating that a wide range of CT workflows can be implemented
in such a framework. In the future, the key benefits demonstrated in this paper
can be utilized in computational toolboxes that leverage auto-differentiation for
improved construction and execution of advanced CT workflows.




