
On the optimization of imaging pipelines
Schoonhoven, R.A.

Citation
Schoonhoven, R. A. (2024, June 11). On the optimization of imaging pipelines.
Retrieved from https://hdl.handle.net/1887/3762676
 
Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis
in the Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/3762676
 
Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3762676


2
Real-time segmentation for

tomographic imaging

2.1 Introduction
Tomographic imaging is a widely applicable technique for studying the internal
structure of objects using some form of penetrating radiation such as X-rays or
an electron beam. Projection images are obtained from a range of angles and a
tomographic reconstruction algorithm subsequently computes a 3D image of the
internal structure of the object. Currently, reconstruction and analysis are often
performed after image acquisition has completed. If processing, reconstruction,
and analysis of tomographic data can be run in real time during the experiment,
internal dynamic processes of the imaged object can be visualized and analyzed
as they occur. Real-time feedback enables online optimization and steering of
the imaging setup and experimental conditions which increases the efficiency of
experiments and avoids costly repetition.

Despite advances in computationally efficient reconstruction algorithms [13,
112] and in specialized hardware such as Graphic Processing Units (GPUs) [174]
and supercomputers [16], full 3D tomographic reconstructions at the rate of data
acquisition remain out of reach for most applications. Recently it was shown that
real-time reconstruction can be achieved for a small set of arbitrarily oriented 2D
slices [27]. These slices can be adjusted on the fly, thereby giving access to a virtual
full 3D volume at a fraction of the computational cost. This methodology is called
quasi-3D reconstruction, and is implemented in the RECAST3D software package.

To enable adaptive imaging, where the imaging process is adjusted based on
the observations, just having access to a reconstructed volume is not sufficient, as
the image analysis step should also be included in the real-time processing pipeline.

19



20
CHAPTER 2. REAL-TIME SEGMENTATION FOR TOMOGRAPHIC

IMAGING

Figure 2.1: Traditional experiments (top) involving tomography require significant
time for both the reconstruction phase and the offline analysis phase. With
RECAST3D (middle) the reconstruction phase is performed in real time. Our
method (bottom) additionally includes a real-time segmentation step.

An important step in many image analysis pipelines is segmentation, which is the
problem of assigning to each pixel the appropriate class label from a finite set of
classes, for example segmenting bone for calcaneal fractures in CT images [194]. In
this article we introduce a real-time imaging pipeline to reconstruct, segment, and
visualize quasi-3D volumes implemented as an extension of the existing RECAST3D
software package. Our method adds real-time segmentation to the existing real-time
reconstruction capabilities of the RECAST3D framework, as outlined in Figure 2.1.

As quasi-3D reconstruction employs direct reconstruction methods such as
filtered backprojection (FBP) [106] and Feldkamp-David-Kress (FDK) [59] without
additional image regularization, limited-data artefacts are typically present in the
reconstructions. These artifacts limit the applicability of computationally efficient
unsupervised segmentation algorithms, such as Otsu’s method [170], since they are
often unable to separate artifacts and noise from important features. Furthermore,
because image analysis algorithms may be sensitive to noise in the segmentation
[32, 150, 199], analysis based on such traditional segmentation methods may not be
accurate. In addition, many unsupervised segmentation methods operate exclusively
on the basis of the pixel values [124, 163, 170], limiting their applicability to general
segmentation problems as they are unable to segment features that are not based
on pixel values.

To overcome these issues, we propose to use a convolutional neural network
(CNN) to segment the quasi-3D reconstructions in real time. To apply CNNs
in a quasi-3D setting, we introduce an adapted training strategy that takes the
arbitrary orientations of the slices into account. We show that a CNN is capable
of achieving similar accuracy to segmentations based on computationally more
expensive total variation minimization (TV-MIN) reconstructions [14] which are too
slow to compute for real-time applications. In addition, we show that a CNN can



2.2. METHOD 21

be implemented efficiently as a plugin within the existing RECAST3D framework
without significantly increasing the processing time.

This article is structured as follows. In Section 2.2 we introduce the tomographic
reconstruction problem and define the FDK and TV-MIN reconstruction algorithms.
We introduce quasi-3D reconstructions, the segmentation problem, and provide
more details on the segmentation plugin. Lastly, we outline our adapted training
strategy for randomly oriented slices. In Section 2.3 we present the experimental
results, and analyze the training strategies. We perform a real-world experiment
on a dynamic X-ray CT dataset and two simulated experiments. Finally, in Section
2.4 we state our final conclusions.

2.2 Method

2.2.1 Prerequisites
Tomographic Reconstruction

The tomographic reconstruction problem is to recover a volume from a series of
its projections. In this article we consider circular cone-beam tomography, where
the object is placed in between a point source and flat-panel detector which are
situated on opposite sides of a circle. The object is rotated and X-ray projections
are taken at a selection of equidistant angles. The approach generalizes to other
acquisition geometries (e.g. parallel beam) in a straightforward manner.

The tomographic reconstruction problem can be modelled as an inverse problem:

Ku = f . (2.1)

Here K is the forward projection operator, u ∈ RNx×Ny×Nz represents the object,
and f ∈ RNθ×Na×Nb is the measured projection data, with Nθ is the number
of projection angles, and Na, Nb are the number of detector rows and columns
respectively. In this article we use the FDK reconstruction algorithm, given by

uFDK = KT (h ∗ f̃). (2.2)

Here f̃ denotes weighted projection data, which compensates for diminishing
intensity at distance from detector center, and h ∈ RNb is a 1D filter. We used the
Ram–Lak filter for this work.

Instead of using FDK, equation 2.1 can be solved by iteratively minimizing
‖Ku− f‖. In addition, we can add prior information about the gradient of the
image being sparse by adding a total variation term [14] to improve reconstruction
accuracy when projection data is limited or noisy:

1

2
‖Ku− f‖22 + λ‖∇u‖1.

This function can be minimized by a range of convex optimization algorithms.



22
CHAPTER 2. REAL-TIME SEGMENTATION FOR TOMOGRAPHIC

IMAGING

Quasi-3D Reconstruction

Quasi-3D reconstruction has recently been proposed as a method to make real-
time tomographic reconstruction feasible [27]. Instead of computing a full 3D
volume, only a small collection of arbitrarily oriented 2D slices is reconstructed
and visualized in real-time. When these slices are translated and/or rotated by
the user, they are reconstructed on the fly, so that it appears as though a full
3D reconstruction is available. This on-demand 2D reconstruction significantly
reduces the total computational cost compared to full 3D reconstruction. This
approach is implemented in the open source RECAST3D software package and
more implementation details can be found in [27].

In RECAST3D, the filtering and weighting steps of the FDK algorithm are
performed in parallel. The computation of h ∗ f̃ is performed in real time from
the incoming data. When a slice is requested, the application of KT (called
backprojection) is performed using GPU-based high-performance routines from
the ASTRA toolbox [1]. In addition, a low-resolution 3D FDK reconstruction
is created so that the user can preview the object. Our quasi-3D pipeline for
segmentation is implemented by extending the RECAST3D software package with
a computationally efficient segmentation plugin.

Segmentation

Mathematically, segmenting an image can be described as finding a function
g : Rm×n → Zm×nk , where m,n are the rows and columns of the image and k is
the number of object classes to be assigned.

Classical segmentation methods (for example local and global thresholding
[124, 170], watershed methods [163]) typically operate on the image greyvalues
to separate classes and have the high computational efficiency that is need for
real-time segmentation. As an example, Otsu’s method performs a segmentation of
an image by selecting a threshold that minimizes intra-class variance. In addition
to the greyscale distribution, segmentation can be performed on other properties
by for example clustering pixels [48] or defining edge boundaries in the image [157].
Recently, CNNs have proven successful for image segmentation [9, 202].

CNNs for segmentation

In this work we use CNNs to segment the tomographic reconstructions. In a
segmentation network, the final output layer will assign one of k classes to each
pixel. The CNN is defined by its architecture with weights Θ which can be
altered to change the output. For a given Θ, a CNN corresponds to a function
FΘ : Rm×n → Rk×m×n which aims to approximate g by computing a probability
vector with predictions for each class for each pixel. The highest probability class
can be chosen from the network predictions to obtain a final segmentation.

The weights Θ are found in a training phase, where input samples x1, . . . ,xN
are processed by the network and compared to known labelled output samples
y1, . . . ,yN . A loss function J : Rk×m×n × Zm×nk → R, such as cross-entropy loss,



2.2. METHOD 23

Figure 2.2: Diagram outlining unidirectional training on slices (left) and omnidi-
rectional training (right).

measures the error of the network on the training samples. The aim of the training
phase is to find a Θ that minimizes the loss on the training dataset

Θ∗ = arg min
Θ

{
N∑
i=1

J (FΘ(xi),yi)

}
.

For a CNN, we can compute the partial derivatives of J with respect to the
weights using backpropagation. The weights can be updated using gradient-based
optimization algorithms [113].

2.2.2 Quasi-3D training strategies
In 3D image segmentation, neural networks are often trained on 2D slices from the
volumes since full 3D networks are typically computationally too expensive [134,
183]. The 2D input slices are obtained by extracting slices in a single direction. In
contrast, slices in a quasi-3D reconstruction can have an arbitrary orientation. A
network trained only on unidirectional slices may not recognize object classes from
a different view. Therefore, the standard training procedure has to be adapted
to enable application of CNNs to arbitrary oriented slices. Here, we introduce a
training strategy where arbitrarily oriented 2D slices of the tomographic volume
are supplied as input for the neural network.

Let X ∈ Rn×n×n be an input volume and Y ∈ Zn×n×nk the aligned target
volume. Define Eα,β,γ : Z × Rn×n×n → Rn×n to be a rotated extraction opera-
tion. Eα,β,γ(i,X) extracts the i-the slice rotated by angles α, β, γ with respect
to the sagittal slice from the volume X. For omnidirectional training we create
a dataset of slices with pairs (Eα,β,γ(i,X), Eα,β,γ(i,Y)) where the angles are ran-
domly generated. For unidirectional training we create pairs of sagittal slices
(E0,0,0(i,X), E0,0,0(i,Y)) (see Figure 2.2).

2.2.3 Segmentation Plugin
To construct the pipeline for real-time segmentation we developed a plugin for
RECAST3D which segments quasi-3D reconstructions. The segmented slices are
then visualized in RECAST3D. The plugin is GPU-based and can be disabled,



24
CHAPTER 2. REAL-TIME SEGMENTATION FOR TOMOGRAPHIC

IMAGING

altered and reenabled while the projection data is processed simultaneously. A
command line interface allows for online tuning of parameters with immediate
visual feedback, and the user can select which class is visualized. The plugin
operates independently from the quasi-3D reconstruction pipeline, and can be run
on a separate node.

The plugin is implemented in Python, and includes three CNNs implemented in
PyTorch: the MS-D network [89, 183], U-Net [202], and ResNet [84]. In addition,
the plugin includes several traditional segmentation methods, including Otsu’s
method [170], cross entropy thresholding [124], contour evolution [158], region
based random walk segmentation [69] and the watershed algorithm [163].

2.3 Results and Discussion

2.3.1 Setup
To assess the accuracy and computational efficiency of our CNN-based segmentation
approach, we compare it with traditional unsupervised methods. The neural
network used in this work is the MS-D network [183], chosen because of its low
number of trainable parameters.

Since the MS-D network can flexibly adapt to different problems, we used
the same network architecture for each experiment. We used an MS-D network,
implemented in PyTorch [89], of 100 layers with a width of 1. The dilations in
layer i were set to 1 + (i mod 10). The networks were trained using the ADAM
algorithm [113], using a batch size of 20, and the cross-entropy loss function. For
each experiment, the data was split in training, validation, and test sets. The
network is trained on the training set for 100 epochs. The network with the lowest
validation error was selected to be evaluated on the test set. All experiments
were run on a workstation with an AMD Ryzen 3800X processor and NVIDIA
GeForce RTX 2070 Super GPU. To quantify our comparisons we use the F1-score
(Dice coefficient) which is the harmonic mean of precision and recall, and the
accuracy. For multi-class problems we report the macro F1-score (average of
per-class F1-score), and the global accuracy.

2.3.2 Simulated data
We created two sets of simulated tomographic data to investigate the difference
between omni- and unidirectional training, and to quantitatively compare Otsu’s
method to the MS-D network. For the former we created twenty 5123 volumes filled
with fibre strands and spheres. Each volume contained 20 spheres and 20 fibres
which were generated with a random shape and location. Greyscale intensities
were the same for both classes. 3D renderings of the noiseless volumes are shown
in Figure 2.3.

For the second simulation experiment we created twenty 5123 volumes filled
with 40 fibre strands generated with random shapes surrounded by a cylinder



2.3. RESULTS AND DISCUSSION 25

(a) (b) (c) (d)

Figure 2.3: (a), (b) Example volumes of the fibre-sphere data, (c) slice of the noisy
FDK reconstruction, and (d) slice of the ground truth (spheres and fibres have
different labels).

(a) (b) (c)

Figure 2.4: (a) Example volume of the fibre-container data with container, (b) slice
of the noisy FDK reconstruction, and (c) slice of the ground truth (the container
is not to be segmented).

forming a container (see Figure 2.4). Greyscale intensities were the same for the
container and the fibres to represent a segmentation problem where the fibres are
to be labeled but the container is not.

Using the ASTRA toolbox [1] we simulated a cone-beam projection dataset
of 60 projections for each volume. Furthermore, Poisson noise was applied to
the projection dataset where the sample absorbed roughly 70% of the incoming
photons. Out of the 20 phantoms, 14 were randomly selected for training, 4 for
validation and 2 for testing. For each scan we obtained 500 randomly oriented, and
500 unidirectional 512× 512 slices for both the ground truth labeled volume, and
the noisy FDK reconstruction (see Figures 2.3 and 2.4).

Comparison of uni- and omnidirectional training slices

To investigate the importance of the slicing direction in the training strategy for
CNNs, we compare unidirectional and omnidirectional training strategies. We



26
CHAPTER 2. REAL-TIME SEGMENTATION FOR TOMOGRAPHIC

IMAGING

FDK Ground truth MS-D
omnidirectional

MS-D
unidirectional

Figure 2.5: Slices of the simulated fibre-sphere test dataset and MS-D network
predictions. From left to right we have the FDK reconstructions, the labeled
ground truths, the MS-D network output trained on randomly oriented slices, and
the MS-D network output trained on unidirectional slices.

Random orientation Sagittal orientation
Training F1 Accuracy F1 Accuracy
Omnidirectional 0.9989 0.9979 0.9951 0.9950
Unidirectional 0.6857 0.9792 0.9995 0.9995

Table 2.1: Macro F1 and accuracy on the fibre-sphere (left) randomly oriented test
set, and (right) sagittal test set, for MS-D networks trained with the omnidirectional,
and unidirectional strategies.

trained one network on the slices in a single direction and the other on randomly
oriented slices, using the fibre-spheres dataset (Figure 2.3). Otsu’s method, and
any other unsupervised method that works solely on greyvalues, are not applicable
to this type of multi-class segmentation problem as they cannot categorize objects
with the same greyvalue. This indicates an advantage of deep-learning approaches.

Example results from the test set are shown in Figure 2.5. Note that both
networks were able to remove the Poisson noise and the tomographic artifacts. Some
notable differences between both networks can be seen where the unidirectional
network identifies parts of the fibre strands as spheres. In Table 2.1 we report the
macro F1-score, and accuracy for both networks on both the test set with randomly
oriented slices and the test set with slices in a single direction.

The MS-D omnidirectional network outperforms the unidirectional network
on both quantitative measures for the randomly oriented test set, which is in



2.3. RESULTS AND DISCUSSION 27

FDK Ground truth MS-D
omnidirectional

MS-D
unidirectional

Otsu

Figure 2.6: Slices of the simulated fibre-container test dataset, with (from left to
right): the FDK reconstructions, the labeled ground truths, the omnidirectional
MS-D network output, the unidirectional MS-D network output, and Otsu’s method.

line with the qualitative comparison shown in Figure 2.5. When tested on the
sagittal direction, although the unidirectional networks performs better than the
omnidirectional network, the difference in performance is significantly smaller. This
can be explained by the fact that the omnidirectional network has also encountered
images sliced in the sagittal direction.

Comparison of MS-D segmentation and Otsu’s method

Here, we compare Otsu’s method to the uni- and omnidirectional MS-D networks.
Both the MS-D networks and Otsu’s method were tested on randomly oriented
slices from the fibre data test phantoms because the user can select arbitrary slices
in RECAST3D. To more accurately determine the performance of Otsu’s method
inside the container, we created a version of Otsu’s method where a ROI-mask was
applied on the segmented slices with the proper rotation. We used a cylindrical
volume around the simulated container to remove misclassified background. Some
example results from the test set can be seen in Figure 2.6 and in Table 2.2 we
report the F1-score and accuracy.

The results show that the omnidirectional MS-D network was able to accurately
segment the fibres and remove the applied Poisson noise. We see that the unidirec-
tional MS-D network misclassified the container in the randomly oriented slices,
and that Otsu’s method occasionally does not remove the FDK artifacts and noise.
In addition, Otsu’s method classifies the container as a fibre since it is unable to
distinguish it from the fibres on the basis of intensity. Even if we manually mask
the region-of-interest, the interior of the container is significantly more noisy than
the MS-D network segmentation.



28
CHAPTER 2. REAL-TIME SEGMENTATION FOR TOMOGRAPHIC

IMAGING

F1-score Accuracy
MS-D omnidirectional 0.9544 0.9989
MS-D unidirectional 0.6777 0.9885
Otsu 0.0585 0.6086
ROI-Otsu 0.2568 0.9300

Table 2.2: F1 and accuracy on the fibre-container randomly oriented test set for
MS-D omnidirectional, MS-D unidirectional, Otsu, and ROI Otsu.

The MS-D network outperforms Otsu and ROI-Otsu on both metrics. Otsu’s
method performs significantly worse on F1-score, which can be explained by the
greater amount of false positives segmented by Otsu as opposed to the MS-D
network.

2.3.3 Experimental data
To show the feasibility of our method in real-world applications, we applied the
real-time segmentation pipeline to a real-world dynamic X-ray CT dataset of a
dissolving tablet suspended in gel [38, 39]. A container with a dissolving tablet was
filled with gel to create moving air bubbles which we segmented. The container
was rotated at 100 deg/s and 60 projections were acquired every 180 degrees with
an exposure time of 30 ms for each projection. In total 9960 projections of size
647× 768 were taken and the experiment lasted 5 minutes.

In RECAST3D, the full processing step of a batch of projections takes ap-
proximately 140 ms on our workstation. The computation time to compute the
backprojection for a slice is about 2 milliseconds. The segmentation with Otsu’s
method is about 3 milliseconds and with the MS-D network about 30 milliseconds.
This means that the pipeline would be able to dynamically visualize the projection
data stream every 170 milliseconds for a batch of 60 projections. In this experi-
ment, data acquisition was at a rate of 1.8 seconds per batch of 60 projections (180
degrees), well within the computational limits of the pipeline. Figure 2.8 shows
an example real-time quasi-3D reconstruction and segmentation of the data in
RECAST3D.

To create training data for the neural networks we created TV-MIN reconstruc-
tions for every 60 projections with a regularization parameter λ = 0.001 for 2000
iterations. We used the Douglas–Rachford primal-dual splitting algorithm [19] to
iteratively minimize the functional. Each TV-MIN reconstruction took roughly 20
hours on our workstation and is therefore infeasible to compute in real time. Next,
we created 25 labeled ground truth volumes by applying Otsu’s method to the
TV-MIN reconstructions and masking the region outside the container. As a final
processing step we removed small objects with a mass smaller than 4 pixels with
the scikit-image remove_small_objects function from the morphology package
[242]. The scans were randomly separated into 18 training scans (9216 slices), 4
validation scans (2048 slices) and 3 test scans (1536 slices) for the unidirectional



2.3. RESULTS AND DISCUSSION 29
Sa

gi
tt
al

di
re
ct
io
n

R
ot
at
ed

FDK TV
ground truth

MS-D
omnidirectional

MS-D
unidirectional

Sa
gi
tt
al

di
re
ct
io
n

R
ot
at
ed

FDK TV
ground truth

Otsu ROI-Otsu

Figure 2.7: Slices of the TabletInFluid test dataset and experimental predictions.
The first row is from the unidirectional dataset, the second from the randomly
rotated dataset. From left to right we have the FDK reconstructions, the labeled TV-
MIN ground truths, the MS-D network output trained on randomly oriented slices,
the MS-D network output trained on slices in one direction, Otsu’s segmentation,
and Otsu’s segmentation using a ROI cylindrical mask.



30
CHAPTER 2. REAL-TIME SEGMENTATION FOR TOMOGRAPHIC

IMAGING

Figure 2.8: (Left) example screenshot of dissolving tablet data reconstructed
dynamically in RECAST3D, (right) example of segmented network output in
RECAST3D.

F1-score Accuracy
MS-D omnidirectional 0.8816 0.9983
MS-D unidirectional 0.7595 0.9968
Otsu 0.0142 0.2538
ROI-Otsu 0.8229 0.9977

Table 2.3: F1 and accuracy on the real-world TabletInFluid randomly oriented test
set for MS-D omnidirectional, MS-D unidirectional, Otsu, and ROI Otsu.

network. For the arbitrarily oriented slices, we chose the same amount of slices at
random 3D orientations for each scan.

To compare our method to an existing computationally efficient method, we
segmented each FDK slice with Otsu’s method and manually applied a cylindrical
ROI-mask to remove misclassified background. The results can be seen in Figure
2.7. In Table 2.3 we report the F1-score and accuracy for the randomly oriented
slices.

The MS-D network trained on randomly rotated slices is able to create an
accurate segmentation of the bubbles in real time and it outperformed the other
three methods on all metrics. It is able to create real-time segmentations with similar
quality to the computationally expensive segmented TV-MIN reconstructions. This
shows that our method can be used to perform quasi-3D reconstruction and
segmentation in real time by training on randomly oriented slices of segmented
TV-MIN reconstructions. Note that, in practice, acquiring training data and
training the networks has to be performed offline. The results show that our
method outperforms Otsu’s method with masking on all metrics. Notably, the
unidirectional network regularly misclassifies sections of the randomly oriented
slices. The importance of the training method is highlighted when comparing the
F1-scores for both MS-D networks.



2.4. CONCLUSIONS 31

2.4 Conclusions
In this paper, we introduced a real-time pipeline to process, reconstruct, and
segment quasi-3D tomographic images, representing an important step for online
and real-time analysis of tomographic experiments. We showed the importance
of including arbitrarily oriented slices in the training dataset to achieve accurate
results. We demonstrated that a deep-learning based approach can perform better
than Otsu’s method in terms of accuracy on both simulated data and real-world
dynamic tomographic data. In addition, our deep-learning based approach is more
generalizable to multi-class segmentation problems than traditional intensity-based
unsupervised segmentation methods. Using our method, one can perform real-time
and online segmentation of quasi-3D volumes, enabling immediate feedback and
analysis during experiments.




