
On the optimization of imaging pipelines
Schoonhoven, R.A.

Citation
Schoonhoven, R. A. (2024, June 11). On the optimization of imaging pipelines.
Retrieved from https://hdl.handle.net/1887/3762676

Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis
in the Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/3762676

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3762676

1
Introduction

Today’s industrial and scientific processes are powered by large amounts of comput-
ing power in the form of complex hardware systems running computational pipelines.
These pipelines process vast amounts of data, sometimes in real time. Often such
processing pipelines consist of several different algorithms connected end-to-end.
Furthermore, computational pipelines have different levels of implementation, as
illustrated in Figure 1.1. On one hand, there’s the conceptual level: the design of
the algorithm and the adjustable parameters that influence its accuracy. Second,
there is the software level of the algorithms and how computationally efficient they
are implemented. Third, there is the hardware aspect of efficiently configuring
the different hardware systems that run algorithms. Altogether, such pipelines
come with challenges when it comes to extracting better accuracy, running the
computations at higher speed, or bringing down energy and environmental costs.

Algorithm 1:
Pre-processing

Algorithm 2:
Solve inverse
problem

Algorithm 3:
Deep learning
imaging task

Algorithm 4:
Post-processing

Implementation:
Multi-threaded
C++

Implementation:
CUDA

Implementation:
Autograd ML
package (GPU)

Implementation:
Single-threaded
Python

Device: CPU Device: GPU Device: GPU Device: CPU

Figure 1.1: A schematic of an example imaging pipeline illustrating different
implementation levels.

1

2 CHAPTER 1. INTRODUCTION

Addressing these challenges requires a multi-faceted approach. First, these
pipelines often consist of several algorithms, each with parameters that typically
remain fixed or are manually set. Optimizing these parameters can lead to improved
output quality. Second, it may be possible to accelerate algorithms while minimizing
the reduction in output quality. If the speed-up is significant, it can enable
previously unfeasible applications. Third, equipping the computer systems with
the right hardware is crucial, and efficiently running algorithms on this hardware
presents its own set of challenges. An added layer of complexity is that hardware
efficiency should encompass not just computation speed but also energy efficiency,
especially in light of growing environmental concerns. Lastly, the most efficient
optimization can come from an end-to-end approach rather than analyzing each
computational block in isolation. Enabling end-to-end optimization may require
integration with advanced software that, for example, propagates gradients through
computational blocks.

This thesis is based on a range of results in optimizing computational imaging
pipelines at different levels of implementation. Jointly, these results encompass a
multi-faceted perspective on pipeline optimization. Imaging pipelines that are used
for X-ray CT serve as a leading application topic for many results in this thesis,
but different computational tasks such as radio astronomy are also considered. In
this introductory chapter, we first introduce X-ray CT as an application field in
Section 1.1. Next, we introduce deep learning techniques for computational imaging
tasks in Section 1.2. Lastly, we introduce the basics of Graphics Processing Units
(GPUs) and GPU programming in Section 1.3.

1.1 X-ray CT pipelines

1.1.1 Introduction to tomography
Tomographic imaging [106] is a technique for examining the internal structure of
objects using penetrating radiation such as X-rays or electron beams. This process
involves acquiring projection images from various angles to subsequently compute
a 3D image of the object’s internal structure (see Figure 1.2). In most laboratory
CT setups an object is placed on a rotation table, and a source illuminates an
object with an X-ray cone beam. The beam is attenuated by the material along
its path, and the beam intensity, after passing through the object, is measured on
a flat panel detector. The detector counts the photons hitting the detector for a
certain exposure time. The image acquired by the detector in this manner is called
a projection. During a CT scan, projections are acquired for different angles by
rotating the object on the rotation table.

The raw projections represent the intensity of X-rays after passing through
the object. To represent the 3D interior of an object we are interested in its
density and composition, which are directly related to the object’s attenuation
coefficients. These attenuation coefficients are reconstructed during the tomographic
reconstruction process.

1.1. X-RAY CT PIPELINES 3

X-ray source

Rotation

 table

Object

Detector

Figure 1.2: Example laboratory X-ray cone beam CT setup.

Mathematically, the attenuation function can be expressed as a continuous
function u : Ω→ R on a bounded set Ω ⊂ R3. For a given ray Lx passing through a
point x ∈ Ω, the detected X-ray intensity I(x) is related to the object’s attenuation
coefficients according to the Beer-Lambert law [106]

I(x) = I0 exp

(
−
∫
Lx

u(z) dz

)
, (1.1)

where I0 is the intensity at the X-ray source. To extract the attenuation
coefficients from the raw projections, a log-transformation of the raw projections is
performed in the pre-processing phase∫

Lx

u(z) dz = − log

(
I(x)

I0

)
.

After pre-processing, a tomographic reconstruction algorithm computes a 3D
volume of the object using the geometry of the setup and the acquired projections.

1.1.2 Tomography as an inverse problem
The tomographic reconstruction problem is to recover an object’s volume from
a series of its projections. In the discrete setting, it can be modeled as the
problem to recover a volume x ∈ RNx×Ny×Nz from the measured projection data
y ∈ RNθ×Nu×Nv . Here, Nθ is the number of projection angles, and Nu and Nv
are the number of detector rows and columns. The process of passing X-rays
through an object from various angles, and capturing the resulting 2D images on
a detector is called projection. The projection process can be approximated by a
linear operator A, and the tomographic reconstruction problem can be modeled as
an inverse problem

Ax = y. (1.2)

4 CHAPTER 1. INTRODUCTION

To provide solutions to the inverse problem we run tomographic reconstruc-
tion algorithms to compute x for measured projection data y. A widely used
reconstruction algorithm is filtered backprojection (FBP)

xFBP = AT (h ∗ y). (1.3)

Here, h ∈ RNv is a 1D filter that is convolved with the projection data to
amplify the high spatial frequencies. For example, the commonly used Ram-Lak
filter is essentially a ramp filter in the frequency domain that linearly weights the
frequencies. In the context of circular cone-beam tomography, a variant of FBP
the Feldkamp-Davis-Kress (FDK) [59] algorithm is used

xFDK = AT (h ∗ ỹ). (1.4)

Here ỹ denotes weighted projection data, adjusting for diminishing intensity
further from the detector center.

Alternative algorithms are iterative algorithms that formulate equation 1.2 as a
minimization problem to iteratively reduce the difference between the estimated
projections and the measured projection data

x∗ = arg min
x∈RNx×Ny×Nz

‖Ax− y‖22. (1.5)

Moreover, variational methods incorporate additional prior knowledge via a
regularization term R(x)

x∗ = arg min
x∈RNx×Ny×Nz

‖Ax− y‖22 +R(x). (1.6)

These methods can enhance reconstruction accuracy when working with for
example limited or noisy projection data.

A commonly used variational method is total variation reconstruction where
we add prior information about the gradient of the image being sparse by adding a
total variation term [14]

‖Ax− y‖22 + λ‖∇x‖1. (1.7)

The trade-off between prior knowledge and data fidelity is regulated by the
parameter λ, which has to be set by the user.

1.1.3 Computational pipeline
Acquiring a CT reconstruction of an object requires several processing steps. These
steps can contain parameters that are potentially optimizable or learnable. To
illustrate, an example FDK reconstruction pipeline is presented in Figure 1.3.

1. First, there can be inconsistencies or non-uniformities in the X-ray beam and
detector response. To correct these, an image with no object is taken called

1.1. X-RAY CT PIPELINES 5

Algorithm 1:
Flat/dark field
correction and
log-transform

Algorithm 2:
Filtering and
weigthing
projection data

Algorithm 3:
Backprojection

Algorithm 4:
Post-processing
(if applicable)

Implementation:
Multi-threaded
Python

Implementation:
Multi-threaded
Python

Implementation:
CUDA

Implementation:
Autograd ML
package (GPU)

Device: CPU Device: CPU Device: GPU Device: GPU

Figure 1.3: A schematic illustrating different implementation levels of an example
CT imaging pipeline using FDK reconstruction.

the flat-field image. Another image, called the dark-field image, is taken with
the X-ray source turned off. It captures the electronic background of the
detector and the after-glow of the detector sensor material. As mentioned, a
log-transformation is applied to the raw projection data in the pre-processing
step. The full pre-processing equation is

ycorrected = − log

(
yraw − ydark-field

yflat-field − ydark-field

)
.

In the example pipeline of Figure 1.3 the projections are for example loaded
as NumPy arrays, and the equation is computed on the CPU using multi-
threaded Python code.

Learnable parameters: None. However, in this stage for example beam
hardening correction could be performed in which case the beam spectrum,
and the energy-dependent attenuation coefficients could be learned.

2. Second, as explained in the previous section, the first step of FDK is to apply
a weighting depending on the distance to the center of the beam and convolve
the result with a 1D filter. In this example, both steps are still performed
on the CPU with multi-threaded Python code. However, convolution is an
operation that can efficiently be performed on the GPU so it may be more
efficient to run this step on the GPU.

Learnable parameters: Filter coefficients.

3. Third, the filtered projection data is backprojected to compute the 3D
reconstruction of the object. For backprojection, we can use efficient high-
performance libraries such as the ASTRA toolbox [1]. In the example pipeline,
ASTRA is run on the GPU (CUDA is a GPU programming language for
Nvidia GPUs) to efficiently perform the backprojection.

6 CHAPTER 1. INTRODUCTION

Learnable parameters: None. However, if a different reconstruction meth-
ods was used, e.g., total variation reconstruction, then the regularization
parameter could be learned.

4. Fourth, many imaging tasks require a post-processing step to be performed
after reconstruction. In this example, a post-processing step using neural
networks is performed that creates a segmented volume, or denoises the
reconstruction to improve the quality.

Learnable parameters: Neural network parameters.

In addition to the steps outlined in Figure 1.3, CT pipelines often contain
processing steps such as ring artifact reduction, beam hardening correction, and
rotation axis alignment (beam hardening correction and rotation axis alignment
are considered in Chapter 3). Efficient CT pipelines need to consider not only
the different processing steps (conceptual level) but also the implementation and
hardware levels.

1.2 Deep learning for imaging

1.2.1 Machine learning for imaging pipelines
Machine learning involves training algorithms to recognize patterns and output
predictions based on data [17]. A machine learning model typically has a set of
parameters Θ. For supervised learning, the training process attempts to adjust the
parameters to minimize the difference between the model predictions, and the true
values. For given Θ, the machine learning model defines a function FΘ : X → Y
for input data space X and desired output data space Y. Digital images are
typically represented as arrays of pixel values Rcin×m×n. The number of channels
cin signifies the number of input channels an image possesses. Typically, natural
images have cin = 3 corresponding to RGB channels, while X-ray CT images have
cin = 1. However, spectral CT images might have as many input channels as there
are spectral bins.

A machine learning model for imaging typically has input space X = Rcin×m×n.
The shape of the output Y is dependent on the specific imaging task. For instance:

• In a 1-D regression task, Y = R.

• For classification tasks with k classes, Y = Rk. In this case, the machine
learning model computes a probability vector with predictions for each class.
The highest probability class is then chosen from the network output to
obtain a final prediction.

• For image denoising we have Y = Rcin×m×n for an image of size m× n.

• For segmentation tasks, we have Y = Rk×m×n for k classes. Here, a proba-
bility vector with predictions for each class and each pixel is computed.

1.2. DEEP LEARNING FOR IMAGING 7

1.2.2 Convolutional neural networks

In recent years, convolutional neural networks (CNNs) have been state-of-the-art
machine learning algorithms for solving many imaging tasks [116, 121, 225]. A
CNN is a machine learning model where layers of convolutional filters are arranged
hierarchically, allowing for the extraction of features from image data [68]. A CNN
consists of consecutive layers of operations that sequentially process image data.
Each operation, such as convolution, has an input x, and an output y. These
inputs and outputs are multi-dimensional arrays that consist of one or more images,
referred to as channels. For example, let’s consider a convolutional operation with
input channels x1, . . . ,xN . An output channel, yj , is computed by convolving the
input channels with corresponding learned filters:

yj =

(
N∑
i=1

hij ∗ xi
)

+ bj .

In this equation, hij ∈ Θ represents the filter related to the convolution operator
that acts between channels xi and yj , and bj ∈ Θ is an additive bias term. The
specific sequence and interconnections of operations in a CNN are dependent on
the chosen network architecture [136, 196].

The weights Θ are optimized during the training phase, where input samples
x1, . . . ,xN are processed by the network. In supervised learning, the output of
the network is compared against known desired output samples y1, . . . ,yN . An
appropriate loss function denoted as J : Y × Y → R, quantifies the error between
the network’s predictions and the desired samples (for instance, mean squared error
loss). The objective of the training phase is to determine a Θ that minimizes this
loss over the training data:

Θ∗ = arg min
Θ

{
N∑
i=1

J (FΘ(xi),yi)

}
.

The partial derivatives of J with respect to the weights can be computed
through backpropagation [68]. The weights can then be updated using a gradient-
based optimization strategy such as Adam [113].

The purpose of the training phase is to tune the CNN to produce accurate
predictions for a certain distribution of images. However, it’s possible that during
the training phase, while Θ is optimized to yield the correct results for the given
input samples xi, it may not generalize effectively to unseen samples. This process
is called overfitting. To combat this, a set of samples independent of the training
set can be created, called the validation set. In that case, the optimization step of
the training phase remains the same, but the final objective becomes to determine
Θ that minimizes the loss over the validation data.

8 CHAPTER 1. INTRODUCTION

1.2.3 End-to-end learning
End-to-end learning refers to the process of optimizing all components of a com-
putational pipeline jointly to achieve a specific objective [11, 96, 175]. Instead
of optimizing each component of the pipeline separately, this approach tunes the
entire system together to better optimize for the final objective. Consider a pipeline
g = f

[n]
θn
◦ · · · ◦ f [2]

θ2
◦ f [1]

θ1
defined by functions f [i]

θi
parametrized by parameters θi.

For some loss function J , traditionally this could involve solving separate optimiza-
tion problems arg minθi

{∑N
j=1 J (g(xj))

}
for input data {xj}j=1,...,N . End-to-end

learning instead solves one joint optimization problem over all parameters

arg min
θ1,...,θn

N∑
j=1

J (g(xj))

 .

In general, this can be a challenging optimization problem. Neural networks, with
their multilayer architectures, are inherently well-suited for this kind of end-to-end
optimization [204]. This is due to techniques that propagate gradients end-to-end
in neural networks, which allows for gradient-based optimization strategies to be
used.

Neural networks are commonly trained using backpropagation, a method that
employs the chain rule to compute partial derivatives of the loss function with
respect to the model parameters, beginning from the last layer. To facilitate
this, neural networks are often implemented in auto-differentiation frameworks
such as PyTorch [181], TensorFlow [2], or JAX [20]. When running code in an
auto-differentiation framework, a program is decomposed into a series of primitive
operations for which predefined procedures exist to compute derivatives. These
series of computations are structured into a computational graph. In many auto-
differentiation frameworks, like PyTorch, the computational graph is implicitly
traced during the forward pass through the program. This graph is then utilized
in the backward pass (when backpropagation is performed) to efficiently compute
gradients for the model parameters.

End-to-end optimization, aided by auto-differentiation frameworks, is not limited
to deep learning techniques. Exposing traditional algorithms to auto-differentiation
frameworks can lead to numerous benefits, such as allowing for efficient automatic
optimization of parameters that may otherwise be chosen manually, seamless com-
patibility with deep learning, and potentially improved accuracy of the optimized
computational pipeline with respect to a final objective.

1.3 Graphics Processing Units
Graphics Processing Units, or GPUs, originally emerged as specialized hardware
to accelerate graphics rendering tasks. Their design consists of a large number
of simple, data-parallel processors which makes them an attractive option for
computations that are parallel in nature. While CPUs typically have a handful to

1.3. GRAPHICS PROCESSING UNITS 9

dozens of threads, GPUs are built to handle thousands of threads in parallel. This
design is particularly efficient for tasks that involve applying the same operation
to every element in large data sets.

Over the years, GPUs have seen increased usage beyond graphics rendering.
Modern computational pipelines, especially deep learning, simulation, and imag-
ing pipelines, have benefited from GPU acceleration. In imaging pipelines, for
instance, the parallel processing capability of GPUs facilitates rapid transforma-
tions, filtering, and other manipulations of pixel data. In deep learning, GPUs
play an important role in accelerating the training of neural networks, making
GPUs significantly responsible for the recent advancements in AI capabilities. As
algorithms become more complex and data sets grow in size, the demand for
high-throughput computational resources has surged. In this context, GPUs have
emerged as an important processing unit in modern high-performance computing
infrastructures. Therefore, optimizing the performance of GPUs, for both speed
and energy efficiency, is relevant to extract the most out of existing computational
pipelines, and reduce their environmental impact. In the remainder of this section,
we give an introduction to GPU architectures, and programming on the GPU.

In a GPU architecture, threads are the smallest execution units. These threads
are grouped into warps (usually 32 threads per warp), and warps are further
grouped into blocks. A collection of blocks forms a grid. A block of threads is a
unit that runs on a single streaming multiprocessor (SM) on the GPU. Each SM
has a shared memory (that a block can use) and can synchronize its threads.

In addition to the hierarchy of threads, there is a memory hierarchy on the
GPU. First, global memory is the main memory pool and is accessible by all
threads, but it has higher latency than other types of memory. Second, shared
memory is shared between threads in a block. It is faster than global memory but
is limited in size. Third, local memory is used for thread-private variables and is
only visible and accessible by the thread that allocated it. This memory typically
is not accessed directly by the programmer but is rather used by the system as an
overflow for registers. Lastly, a thread has a register memory that can exclusively
be accessed by it. In general, scalar variables defined in GPU code are stored in
registers. Additionally, GPUs can have texture and constant memory. These are
special memory types optimized for specific use cases, such as storing constants for
computations.

1.3.1 GPU Programming
A GPU program has both a CPU and a GPU part. The CPU is responsible for
memory management, and for starting the functions that are executed on the GPU.
GPUs are typically programmed using specific frameworks designed to exploit
their parallel processing capabilities. In this work, we mainly focus on CUDA
(Compute Unified Device Architecture), which is a parallel computing platform
and API created by Nvidia that allows developers to use C, C++, and Fortran
to code algorithms for execution on the GPU. As opposed to most code written
in languages such as Python, writing GPU code presents challenges in designing

10 CHAPTER 1. INTRODUCTION

def add_vector(A, B, C, size):
for i in range(0, size):

C[i] = A[i] + B[i]

Figure 1.4: Example vector addition function in Python.

__global__ void vector_add(const float * A, const float * B, float * C,
const int size)

{
int i = threadIdx.x;
if (i < size)
{

C[i] = A[i] + B[i];
}

}

...
vector_add<<<1, N>>>(a, b, c, N);

Figure 1.5: Example vector addition function written in CUDA.

thread layouts and applying GPU-specific optimizations. To illustrate this, we will
transform a simple vector addition function in Python (see Figure 1.4) to a CUDA
program (called a GPU kernel):

When programming using CUDA, one of the key decisions a developer has to
make is regarding the block size (number of threads per block) and grid dimensions
(number of blocks). These parameters directly affect the distribution of tasks across
the GPU’s SMs. For example, a block size of 256 means that each block has 256
threads. The total number of threads launched for a kernel is equal to block size
times grid size. A CUDA implementation of the aforementioned Python function
could be (see Figure 1.5):

Here the keyword __global__ specifies that the kernel is run on the GPU, and
can be called from both the CPU and GPU (as opposed to __device__ which
runs on the GPU and can only be called from the GPU). The keyword __host__
specifies that the function can be run and called only from the CPU. Apart from
the type declarations, the main difference with the Python code is the omission
of the for-loop, and the addition of the variable threadIdx.x. In CUDA, the
threadIdx of a thread is a triplet that denotes the coordinate of the thread within
a three-dimensional block. In this example, we are adding 1D vectors so we are
only interested in the x coordinate. Instead of a loop running on a single CPU
thread for the Python code snippet, the above CUDA code will be run on a GPU
and every thread will execute a single addition in parallel. The final line (which is
executed on the CPU portion of the code) indicates that the kernel will be launched
on a grid with one block of N threads.

If we have one grid, and one block of threads, the above GPU kernel will

1.4. RESEARCH QUESTIONS 11

__global__ void vector_add(const float * A, const float * B, float * C,
const int size)

{
int i = (blockIdx.x * blockDim.x) + threadIdx.x;
if (i < size)
{

C[i] = A[i] + B[i];
}

}

...
vector_add<<<N/256, 256>>>(a, b, c, N);

Figure 1.6: Improved vector addition function written in CUDA.

typically only work for vectors of size 1024 or smaller. This is because most GPUs
will not allow the execution of a block with more than 1024 threads. Instead, we
should organize our computation in blocks. The keyword blockDim defines a triplet
with the number of threads per dimension, and the keyword gridDim defines a
triplet with the number of blocks per dimension. Using the blockIdx keyword we
can modify the kernel to run on different blocks (see Figure 1.6).

Here we distribute the computation over N/256 blocks and 256 threads. Other
design choices include what data types and data layouts to use in the various
memory spaces available to GPU applications. Furthermore, there are other code
optimizations available such as varying the amount of work per thread. An overview
of many of the available optimization techniques for GPU programming is contained
in [94].

The execution speed, and energy efficiency, of the kernel will depend greatly
(potentially an order of magnitude or more) on choosing the correct block and grid
sizes and applying useful code optimizations. However, this usually depends on
the input size and the GPU model that the code is executed on. This means that
a GPU kernel often needs to be (re)tuned to a specific situation. For this reason,
auto-tuners have been developed to tune GPU kernels automatically [71, 127, 259].
In Chapter 5 we auto-tune several real-world kernels on many different GPU models,
and benchmark different black-box optimization algorithms on the auto-tuning
search space. Additionally, we look into a new method for quantifying the difficulty
of GPU kernel search spaces. In Chapter 6 we use auto-tuners in combination
with a data-driven power consumption model to improve the energy efficiency of
GPU kernels. In the end, we look at the high-throughput LOFAR pipeline [78]
and compute potential energy efficiency gains on different GPU models.

1.4 Research questions
In this thesis, we explore techniques to optimize different aspects of imaging pipelines
used in contemporary industrial and scientific processes on different implementation

12 CHAPTER 1. INTRODUCTION

levels. On the whole, the thesis shows how concepts like parameter optimization,
algorithm acceleration, hardware efficiency, and end-to-end optimization combine
to allow for high-performance, energy efficient and potentially novel pipelines
to modern computational imaging tasks. We mostly focus on X-ray computed
tomography (CT) as an application field, but also consider radio astronomy pipelines
that process data for the LOFAR telescope [78].

The chapters in this thesis deal with the following research questions.

1.4. RESEARCH QUESTIONS 13

In Chapter 2, we build upon RECAST3D to enable real-time quasi-3D seg-
mentation of X-ray CT images. RECAST3D is a software package for real-time
reconstruction and visualization of X-ray CT data. It uses a system of servers that
in parallel process data, and reconstructs slices in real time that are requested by
the user as they interact with the visualization. Here we intercept reconstruction
data packets, use a convolutional neural network to segment the reconstructed
slices, and let the visualization server show the segmentation to the user (see
Figure 1.7).

Research question 1. Can deep learning be used to perform segmentation of
X-ray images in real time?

Figure 1.7: (Left) screenshot of a dissolving tablet reconstructed with FDK dynam-
ically in RECAST3D, (right) segmented network output visualized in RECAST3D.

14 CHAPTER 1. INTRODUCTION

In Chapter 3, we perform four case studies on four CT workflows embedded
in the PyTorch auto-differentiation framework. We expose various parameters of
traditional CT algorithms to end-to-end optimization with gradient descent-based
methods. The first workflow we consider is rotation axis alignment where we
optimize the rotation axis shift applied in the projection domain for a quality
criterion computed in the volume domain. Second, we optimize the refraction
and attenuation indices for phase retrieval imaging using a self-consistent pipeline,
i.e. we minimize the error between the raw projection data, and the simulated
projection data acquired from forward propagating the segmented reconstruction.
In Figure 1.8 we show a reconstructed slice before and after optimization. Third, we
correct beam hardening artifacts by learning the beam spectrum and attenuation
coefficients. Fourth, we denoise simulated CT images by joint optimization of the
TV regularization parameter and CNN weights.

Research question 2. To what extent can auto-differentiation be generalized to
work effectively on a wide range of CT workflows?

Before After

Figure 1.8: Hydrogen fuel cell [45] reconstructed with FBP with default material
parameters for water (before), and after self-supervised optimization of parameters
(after).

1.4. RESEARCH QUESTIONS 15

In Chapter 4, we accelerate convolutional neural networks by introducing a new
pruning technique called longest-chain pruning (LEAN). LEAN creates a directed
graph representation where the operations are edges on the graph, and the weights
of the edges are the operator norm. Next, the path through the graph with the
highest multiplicative weight is iteratively selected to remain in the pruned net-
work. Using LEAN we were able to significantly accelerate several neural networks
in practice. Specifically, we measured an 11.1× speedup for the CNN used for
real-time segmentation in Chapter 2 (see Figure 1.9).

Research question 3. Can convolutional neural networks be accelerated sig-
nificantly to enable real-time applications?

11.1x

Figure 1.9: Practically realized speedup of pruned MS-D networks evaluated on
the test dataset.

16 CHAPTER 1. INTRODUCTION

In Chapter 5, we perform a benchmarking study of 16 black-box optimization
algorithms for 3 real-world GPU kernels on 9 different GPU models. The GPU
kernels define a discrete search space with potentially many discontinuities (combi-
nations of parameters that result in an invalid kernel) which can be challenging to
traverse for traditional methods. In Figure 1.10 we show the varying distributions
of local minima for different GPU models. We solve the optimization problem
both as a deterministic and stochastic optimization problem and select the best-
performing optimization algorithms using a statistical inter-algorithm competition.
Additionally, as part of the study we contribute these optimization algorithms to
the auto-tuning software package Kernel Tuner [246].

Research question 4A. To what extent can black-box optimization algorithms be
used to accelerate the process of auto-tuning GPU kernels?

V100 A100 P100 GTX 1080Ti GTX TitanX MI50 RTX 2070 Super K20 Titan RTX
GPU

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 g

lo
ba

l f
itn

es

Fraction of global optimal fitness for minima (convolution)

Figure 1.10: Fraction of optimal fitness of local minima for each GPU model, for
the convolution kernel. The box plots shows the median line, the box designates
the quartiles, and the whiskers the full extend of the distribution. Additionally, a
scatter plot of the fitness for each local minimum is shown. The GPUs are ordered
in descending median fraction of optimal fitness from left to right.

1.4. RESEARCH QUESTIONS 17

In Chapter 5, we introduce a graph-based method for quantifying the difficulty
of discrete optimization search spaces. We introduce the fitness flow graph (FFG)
(see Figure 1.11) where each point in the search space is a node, and a directed edge
is drawn to neighbours with better fitness. We then use PageRank centrality [21,
173] to quantify the likelihood of a random walk ending in certain local minima
(this mimics the behaviour of greedy local search). Next, we define a metric that
quantifies how likely such random walks end in suitably good local minima to rank
search space difficulty.

Research question 4B. Can a graph representation of the GPU kernel search
space be used to quantify the difficulty of the optimization problem?

Figure 1.11: Fitness flow graph of point-in-polygon kernel search space of the
Nvidia Titan RTX. Each node is a point in the search space. There is a directed
edge between neighbouring points from higher to lower kernel runtime. Points are
coloured within a fitness range of +25% with respect to the global minimal fitness
(global minimum in green), i.e., each point is coloured by its fraction of optimal
fitness, and points with a fraction below 0.75 are given the same colour. Local
minima are represented as larger nodes.

18 CHAPTER 1. INTRODUCTION

In Chapter 6, we develop a model for GPU power consumption that greatly
reduces the large tuning search space that is formed by adding core clock frequency
as a tunable parameter (see Figure 1.12 for an example scatter plot). We use the
model to provide clock frequencies for which a GPU is likely most energy efficient.
We experiment on 6 kernels currently running in production for the low-frequency
array (LOFAR) for 4 different GPU models and achieve measured improvements
in energy efficiency. The power consumption model can be fitted using a few
executions of a small example kernel. As part of the study, we contribute the
power consumption model to Kernel Tuner as a script that can be executed on
Nvidia GPUs to suggest the most energy-efficient clock frequency in under a minute.

Research question 5. To what extent can we model the power consumption
of GPUs and steer the auto-tuning process to improve the energy efficiency of
GPUs?

Figure 1.12: Kernel speed (GFLOP/s) over energy efficiency (GFLOPs/W) for all
GEMM configurations for the Tesla A100. The red line is the Pareto front, i.e.,
neither performance or efficiency can be improved without decreasing the other.
Points are coloured according to the core frequency.

