
On the optimization of imaging pipelines
Schoonhoven, R.A.

Citation
Schoonhoven, R. A. (2024, June 11). On the optimization of imaging pipelines.
Retrieved from https://hdl.handle.net/1887/3762676

Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis
in the Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/3762676

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3762676

On the optimization of imaging pipelines

Proefschrift

ter verkrijging van
de graad van doctor aan de Universiteit Leiden,
op gezag van rector magnificus prof.dr.ir. H. Bijl,
volgens besluit van het college voor promoties

te verdedigen op dinsdag 11 juni 2024
klokke 13:45 uur

door

Richard Arnoud Schoonhoven
geboren te Utrecht, Nederland

in 1995

Promotor:
Prof.dr. K. J. Batenburg

Co-promotores:
Dr. D. M. Pelt
Dr. B. J. C. van Werkhoven

Promotiecommissie:
Prof.dr. T. H. W. Bäck
Prof.dr. R. V. van Nieuwpoort
Prof.dr. A. Plaat
Prof.dr. ir. M. Staring
Dr. L. Cao
Dr. N. Viganò (European Synchrotron Radiation Facility)

The research presented in this dissertation was carried out at the Centrum Wis-
kunde & Informatica (CWI) in Amsterdam.

Financial support was provided by the Netherlands Organisation for Scientific Re-
search (NWO) in the framework of the NWA-ORC Call (file number NWA.1160.18.316).
This work is also financially supported by the Netherlands Organization for Scienti-
fic Research (NWO), project number 639.073.506 and 016.Veni.192.235. This work
has made use of the experimental systems on the Dutch national e-infrastructure
with the support of the SURF Cooperative. The DAS-6 cluster is funded through
NWO-M and Open Competition (617.001.204) grants.

Ridderprint, the Netherlands
© 2024 Richard A. Schoonhoven,

Contents

1 Introduction 1
1.1 X-ray CT pipelines . 2
1.2 Deep learning for imaging . 6
1.3 Graphics Processing Units . 8
1.4 Research questions . 11

2 Real-time segmentation for tomographic imaging 19
2.1 Introduction . 19
2.2 Method . 21
2.3 Results and Discussion . 24
2.4 Conclusions . 31

3 Auto-differentiation for CT workflows 33
3.1 Introduction . 33
3.2 Related work . 34
3.3 Methodology . 36
3.4 Case studies . 38
3.5 Discussion . 55
3.6 Conclusion . 56

4 LEAN: graph-based pruning for convolutional neural networks by
extracting longest chains 59
4.1 Introduction . 59
4.2 Related work . 60
4.3 Preliminaries . 61
4.4 Method . 63
4.5 Experimental setup . 67
4.6 Results . 69
4.7 Conclusion . 71

5 Benchmarking optimization kernels for auto-tuning GPU kernels 73
5.1 Introduction . 73
5.2 Related work . 75
5.3 Method: Optimization problem . 77
5.4 Implementation . 83

5.5 Experimental Setup . 84
5.6 Results: Benchmarking optimization algorithms on runtime 87
5.7 Quantifying GPU tuning difficulty 96
5.8 Conclusion . 103

6 Going green: optimizingGPUs for energy efficiency throughmodel-
steered auto-tuning 105
6.1 Introduction . 105
6.2 Related Work . 106
6.3 Methodology . 108
6.4 Experimental setup . 111
6.5 Experimental results . 114
6.6 Conclusions . 127

7 Conclusion and outlook 129
7.1 Contributions and limitations . 129
7.2 Outlook . 131

Bibliography 133

List of publications 155

Samenvatting 157

Summary 159

Curriculum Vitae 161

Acknowledgments 163

A Appendices 165
A.1 Appendix: (LEAN) graph-based pruning for convolutional neural

networks by extracting longest chains 166
A.2 Appendix: Benchmarking optimization algorithms for auto-tuning

GPU kernels . 168

1
Introduction

Today’s industrial and scientific processes are powered by large amounts of comput-
ing power in the form of complex hardware systems running computational pipelines.
These pipelines process vast amounts of data, sometimes in real time. Often such
processing pipelines consist of several different algorithms connected end-to-end.
Furthermore, computational pipelines have different levels of implementation, as
illustrated in Figure 1.1. On one hand, there’s the conceptual level: the design of
the algorithm and the adjustable parameters that influence its accuracy. Second,
there is the software level of the algorithms and how computationally efficient they
are implemented. Third, there is the hardware aspect of efficiently configuring
the different hardware systems that run algorithms. Altogether, such pipelines
come with challenges when it comes to extracting better accuracy, running the
computations at higher speed, or bringing down energy and environmental costs.

Algorithm 1:
Pre-processing

Algorithm 2:
Solve inverse
problem

Algorithm 3:
Deep learning
imaging task

Algorithm 4:
Post-processing

Implementation:
Multi-threaded
C++

Implementation:
CUDA

Implementation:
Autograd ML
package (GPU)

Implementation:
Single-threaded
Python

Device: CPU Device: GPU Device: GPU Device: CPU

Figure 1.1: A schematic of an example imaging pipeline illustrating different
implementation levels.

1

2 CHAPTER 1. INTRODUCTION

Addressing these challenges requires a multi-faceted approach. First, these
pipelines often consist of several algorithms, each with parameters that typically
remain fixed or are manually set. Optimizing these parameters can lead to improved
output quality. Second, it may be possible to accelerate algorithms while minimizing
the reduction in output quality. If the speed-up is significant, it can enable
previously unfeasible applications. Third, equipping the computer systems with
the right hardware is crucial, and efficiently running algorithms on this hardware
presents its own set of challenges. An added layer of complexity is that hardware
efficiency should encompass not just computation speed but also energy efficiency,
especially in light of growing environmental concerns. Lastly, the most efficient
optimization can come from an end-to-end approach rather than analyzing each
computational block in isolation. Enabling end-to-end optimization may require
integration with advanced software that, for example, propagates gradients through
computational blocks.

This thesis is based on a range of results in optimizing computational imaging
pipelines at different levels of implementation. Jointly, these results encompass a
multi-faceted perspective on pipeline optimization. Imaging pipelines that are used
for X-ray CT serve as a leading application topic for many results in this thesis,
but different computational tasks such as radio astronomy are also considered. In
this introductory chapter, we first introduce X-ray CT as an application field in
Section 1.1. Next, we introduce deep learning techniques for computational imaging
tasks in Section 1.2. Lastly, we introduce the basics of Graphics Processing Units
(GPUs) and GPU programming in Section 1.3.

1.1 X-ray CT pipelines

1.1.1 Introduction to tomography
Tomographic imaging [106] is a technique for examining the internal structure of
objects using penetrating radiation such as X-rays or electron beams. This process
involves acquiring projection images from various angles to subsequently compute
a 3D image of the object’s internal structure (see Figure 1.2). In most laboratory
CT setups an object is placed on a rotation table, and a source illuminates an
object with an X-ray cone beam. The beam is attenuated by the material along
its path, and the beam intensity, after passing through the object, is measured on
a flat panel detector. The detector counts the photons hitting the detector for a
certain exposure time. The image acquired by the detector in this manner is called
a projection. During a CT scan, projections are acquired for different angles by
rotating the object on the rotation table.

The raw projections represent the intensity of X-rays after passing through
the object. To represent the 3D interior of an object we are interested in its
density and composition, which are directly related to the object’s attenuation
coefficients. These attenuation coefficients are reconstructed during the tomographic
reconstruction process.

1.1. X-RAY CT PIPELINES 3

X-ray source

Rotation

 table

Object

Detector

Figure 1.2: Example laboratory X-ray cone beam CT setup.

Mathematically, the attenuation function can be expressed as a continuous
function u : Ω→ R on a bounded set Ω ⊂ R3. For a given ray Lx passing through a
point x ∈ Ω, the detected X-ray intensity I(x) is related to the object’s attenuation
coefficients according to the Beer-Lambert law [106]

I(x) = I0 exp

(
−
∫
Lx

u(z) dz

)
, (1.1)

where I0 is the intensity at the X-ray source. To extract the attenuation
coefficients from the raw projections, a log-transformation of the raw projections is
performed in the pre-processing phase∫

Lx

u(z) dz = − log

(
I(x)

I0

)
.

After pre-processing, a tomographic reconstruction algorithm computes a 3D
volume of the object using the geometry of the setup and the acquired projections.

1.1.2 Tomography as an inverse problem
The tomographic reconstruction problem is to recover an object’s volume from
a series of its projections. In the discrete setting, it can be modeled as the
problem to recover a volume x ∈ RNx×Ny×Nz from the measured projection data
y ∈ RNθ×Nu×Nv . Here, Nθ is the number of projection angles, and Nu and Nv
are the number of detector rows and columns. The process of passing X-rays
through an object from various angles, and capturing the resulting 2D images on
a detector is called projection. The projection process can be approximated by a
linear operator A, and the tomographic reconstruction problem can be modeled as
an inverse problem

Ax = y. (1.2)

4 CHAPTER 1. INTRODUCTION

To provide solutions to the inverse problem we run tomographic reconstruc-
tion algorithms to compute x for measured projection data y. A widely used
reconstruction algorithm is filtered backprojection (FBP)

xFBP = AT (h ∗ y). (1.3)

Here, h ∈ RNv is a 1D filter that is convolved with the projection data to
amplify the high spatial frequencies. For example, the commonly used Ram-Lak
filter is essentially a ramp filter in the frequency domain that linearly weights the
frequencies. In the context of circular cone-beam tomography, a variant of FBP
the Feldkamp-Davis-Kress (FDK) [59] algorithm is used

xFDK = AT (h ∗ ỹ). (1.4)

Here ỹ denotes weighted projection data, adjusting for diminishing intensity
further from the detector center.

Alternative algorithms are iterative algorithms that formulate equation 1.2 as a
minimization problem to iteratively reduce the difference between the estimated
projections and the measured projection data

x∗ = arg min
x∈RNx×Ny×Nz

‖Ax− y‖22. (1.5)

Moreover, variational methods incorporate additional prior knowledge via a
regularization term R(x)

x∗ = arg min
x∈RNx×Ny×Nz

‖Ax− y‖22 +R(x). (1.6)

These methods can enhance reconstruction accuracy when working with for
example limited or noisy projection data.

A commonly used variational method is total variation reconstruction where
we add prior information about the gradient of the image being sparse by adding a
total variation term [14]

‖Ax− y‖22 + λ‖∇x‖1. (1.7)

The trade-off between prior knowledge and data fidelity is regulated by the
parameter λ, which has to be set by the user.

1.1.3 Computational pipeline
Acquiring a CT reconstruction of an object requires several processing steps. These
steps can contain parameters that are potentially optimizable or learnable. To
illustrate, an example FDK reconstruction pipeline is presented in Figure 1.3.

1. First, there can be inconsistencies or non-uniformities in the X-ray beam and
detector response. To correct these, an image with no object is taken called

1.1. X-RAY CT PIPELINES 5

Algorithm 1:
Flat/dark field
correction and
log-transform

Algorithm 2:
Filtering and
weigthing
projection data

Algorithm 3:
Backprojection

Algorithm 4:
Post-processing
(if applicable)

Implementation:
Multi-threaded
Python

Implementation:
Multi-threaded
Python

Implementation:
CUDA

Implementation:
Autograd ML
package (GPU)

Device: CPU Device: CPU Device: GPU Device: GPU

Figure 1.3: A schematic illustrating different implementation levels of an example
CT imaging pipeline using FDK reconstruction.

the flat-field image. Another image, called the dark-field image, is taken with
the X-ray source turned off. It captures the electronic background of the
detector and the after-glow of the detector sensor material. As mentioned, a
log-transformation is applied to the raw projection data in the pre-processing
step. The full pre-processing equation is

ycorrected = − log

(
yraw − ydark-field

yflat-field − ydark-field

)
.

In the example pipeline of Figure 1.3 the projections are for example loaded
as NumPy arrays, and the equation is computed on the CPU using multi-
threaded Python code.

Learnable parameters: None. However, in this stage for example beam
hardening correction could be performed in which case the beam spectrum,
and the energy-dependent attenuation coefficients could be learned.

2. Second, as explained in the previous section, the first step of FDK is to apply
a weighting depending on the distance to the center of the beam and convolve
the result with a 1D filter. In this example, both steps are still performed
on the CPU with multi-threaded Python code. However, convolution is an
operation that can efficiently be performed on the GPU so it may be more
efficient to run this step on the GPU.

Learnable parameters: Filter coefficients.

3. Third, the filtered projection data is backprojected to compute the 3D
reconstruction of the object. For backprojection, we can use efficient high-
performance libraries such as the ASTRA toolbox [1]. In the example pipeline,
ASTRA is run on the GPU (CUDA is a GPU programming language for
Nvidia GPUs) to efficiently perform the backprojection.

6 CHAPTER 1. INTRODUCTION

Learnable parameters: None. However, if a different reconstruction meth-
ods was used, e.g., total variation reconstruction, then the regularization
parameter could be learned.

4. Fourth, many imaging tasks require a post-processing step to be performed
after reconstruction. In this example, a post-processing step using neural
networks is performed that creates a segmented volume, or denoises the
reconstruction to improve the quality.

Learnable parameters: Neural network parameters.

In addition to the steps outlined in Figure 1.3, CT pipelines often contain
processing steps such as ring artifact reduction, beam hardening correction, and
rotation axis alignment (beam hardening correction and rotation axis alignment
are considered in Chapter 3). Efficient CT pipelines need to consider not only
the different processing steps (conceptual level) but also the implementation and
hardware levels.

1.2 Deep learning for imaging

1.2.1 Machine learning for imaging pipelines
Machine learning involves training algorithms to recognize patterns and output
predictions based on data [17]. A machine learning model typically has a set of
parameters Θ. For supervised learning, the training process attempts to adjust the
parameters to minimize the difference between the model predictions, and the true
values. For given Θ, the machine learning model defines a function FΘ : X → Y
for input data space X and desired output data space Y. Digital images are
typically represented as arrays of pixel values Rcin×m×n. The number of channels
cin signifies the number of input channels an image possesses. Typically, natural
images have cin = 3 corresponding to RGB channels, while X-ray CT images have
cin = 1. However, spectral CT images might have as many input channels as there
are spectral bins.

A machine learning model for imaging typically has input space X = Rcin×m×n.
The shape of the output Y is dependent on the specific imaging task. For instance:

• In a 1-D regression task, Y = R.

• For classification tasks with k classes, Y = Rk. In this case, the machine
learning model computes a probability vector with predictions for each class.
The highest probability class is then chosen from the network output to
obtain a final prediction.

• For image denoising we have Y = Rcin×m×n for an image of size m× n.

• For segmentation tasks, we have Y = Rk×m×n for k classes. Here, a proba-
bility vector with predictions for each class and each pixel is computed.

1.2. DEEP LEARNING FOR IMAGING 7

1.2.2 Convolutional neural networks

In recent years, convolutional neural networks (CNNs) have been state-of-the-art
machine learning algorithms for solving many imaging tasks [116, 121, 225]. A
CNN is a machine learning model where layers of convolutional filters are arranged
hierarchically, allowing for the extraction of features from image data [68]. A CNN
consists of consecutive layers of operations that sequentially process image data.
Each operation, such as convolution, has an input x, and an output y. These
inputs and outputs are multi-dimensional arrays that consist of one or more images,
referred to as channels. For example, let’s consider a convolutional operation with
input channels x1, . . . ,xN . An output channel, yj , is computed by convolving the
input channels with corresponding learned filters:

yj =

(
N∑
i=1

hij ∗ xi
)

+ bj .

In this equation, hij ∈ Θ represents the filter related to the convolution operator
that acts between channels xi and yj , and bj ∈ Θ is an additive bias term. The
specific sequence and interconnections of operations in a CNN are dependent on
the chosen network architecture [136, 196].

The weights Θ are optimized during the training phase, where input samples
x1, . . . ,xN are processed by the network. In supervised learning, the output of
the network is compared against known desired output samples y1, . . . ,yN . An
appropriate loss function denoted as J : Y × Y → R, quantifies the error between
the network’s predictions and the desired samples (for instance, mean squared error
loss). The objective of the training phase is to determine a Θ that minimizes this
loss over the training data:

Θ∗ = arg min
Θ

{
N∑
i=1

J (FΘ(xi),yi)

}
.

The partial derivatives of J with respect to the weights can be computed
through backpropagation [68]. The weights can then be updated using a gradient-
based optimization strategy such as Adam [113].

The purpose of the training phase is to tune the CNN to produce accurate
predictions for a certain distribution of images. However, it’s possible that during
the training phase, while Θ is optimized to yield the correct results for the given
input samples xi, it may not generalize effectively to unseen samples. This process
is called overfitting. To combat this, a set of samples independent of the training
set can be created, called the validation set. In that case, the optimization step of
the training phase remains the same, but the final objective becomes to determine
Θ that minimizes the loss over the validation data.

8 CHAPTER 1. INTRODUCTION

1.2.3 End-to-end learning
End-to-end learning refers to the process of optimizing all components of a com-
putational pipeline jointly to achieve a specific objective [11, 96, 175]. Instead
of optimizing each component of the pipeline separately, this approach tunes the
entire system together to better optimize for the final objective. Consider a pipeline
g = f

[n]
θn
◦ · · · ◦ f [2]

θ2
◦ f [1]

θ1
defined by functions f [i]

θi
parametrized by parameters θi.

For some loss function J , traditionally this could involve solving separate optimiza-
tion problems arg minθi

{∑N
j=1 J (g(xj))

}
for input data {xj}j=1,...,N . End-to-end

learning instead solves one joint optimization problem over all parameters

arg min
θ1,...,θn

N∑
j=1

J (g(xj))

 .

In general, this can be a challenging optimization problem. Neural networks, with
their multilayer architectures, are inherently well-suited for this kind of end-to-end
optimization [204]. This is due to techniques that propagate gradients end-to-end
in neural networks, which allows for gradient-based optimization strategies to be
used.

Neural networks are commonly trained using backpropagation, a method that
employs the chain rule to compute partial derivatives of the loss function with
respect to the model parameters, beginning from the last layer. To facilitate
this, neural networks are often implemented in auto-differentiation frameworks
such as PyTorch [181], TensorFlow [2], or JAX [20]. When running code in an
auto-differentiation framework, a program is decomposed into a series of primitive
operations for which predefined procedures exist to compute derivatives. These
series of computations are structured into a computational graph. In many auto-
differentiation frameworks, like PyTorch, the computational graph is implicitly
traced during the forward pass through the program. This graph is then utilized
in the backward pass (when backpropagation is performed) to efficiently compute
gradients for the model parameters.

End-to-end optimization, aided by auto-differentiation frameworks, is not limited
to deep learning techniques. Exposing traditional algorithms to auto-differentiation
frameworks can lead to numerous benefits, such as allowing for efficient automatic
optimization of parameters that may otherwise be chosen manually, seamless com-
patibility with deep learning, and potentially improved accuracy of the optimized
computational pipeline with respect to a final objective.

1.3 Graphics Processing Units
Graphics Processing Units, or GPUs, originally emerged as specialized hardware
to accelerate graphics rendering tasks. Their design consists of a large number
of simple, data-parallel processors which makes them an attractive option for
computations that are parallel in nature. While CPUs typically have a handful to

1.3. GRAPHICS PROCESSING UNITS 9

dozens of threads, GPUs are built to handle thousands of threads in parallel. This
design is particularly efficient for tasks that involve applying the same operation
to every element in large data sets.

Over the years, GPUs have seen increased usage beyond graphics rendering.
Modern computational pipelines, especially deep learning, simulation, and imag-
ing pipelines, have benefited from GPU acceleration. In imaging pipelines, for
instance, the parallel processing capability of GPUs facilitates rapid transforma-
tions, filtering, and other manipulations of pixel data. In deep learning, GPUs
play an important role in accelerating the training of neural networks, making
GPUs significantly responsible for the recent advancements in AI capabilities. As
algorithms become more complex and data sets grow in size, the demand for
high-throughput computational resources has surged. In this context, GPUs have
emerged as an important processing unit in modern high-performance computing
infrastructures. Therefore, optimizing the performance of GPUs, for both speed
and energy efficiency, is relevant to extract the most out of existing computational
pipelines, and reduce their environmental impact. In the remainder of this section,
we give an introduction to GPU architectures, and programming on the GPU.

In a GPU architecture, threads are the smallest execution units. These threads
are grouped into warps (usually 32 threads per warp), and warps are further
grouped into blocks. A collection of blocks forms a grid. A block of threads is a
unit that runs on a single streaming multiprocessor (SM) on the GPU. Each SM
has a shared memory (that a block can use) and can synchronize its threads.

In addition to the hierarchy of threads, there is a memory hierarchy on the
GPU. First, global memory is the main memory pool and is accessible by all
threads, but it has higher latency than other types of memory. Second, shared
memory is shared between threads in a block. It is faster than global memory but
is limited in size. Third, local memory is used for thread-private variables and is
only visible and accessible by the thread that allocated it. This memory typically
is not accessed directly by the programmer but is rather used by the system as an
overflow for registers. Lastly, a thread has a register memory that can exclusively
be accessed by it. In general, scalar variables defined in GPU code are stored in
registers. Additionally, GPUs can have texture and constant memory. These are
special memory types optimized for specific use cases, such as storing constants for
computations.

1.3.1 GPU Programming
A GPU program has both a CPU and a GPU part. The CPU is responsible for
memory management, and for starting the functions that are executed on the GPU.
GPUs are typically programmed using specific frameworks designed to exploit
their parallel processing capabilities. In this work, we mainly focus on CUDA
(Compute Unified Device Architecture), which is a parallel computing platform
and API created by Nvidia that allows developers to use C, C++, and Fortran
to code algorithms for execution on the GPU. As opposed to most code written
in languages such as Python, writing GPU code presents challenges in designing

10 CHAPTER 1. INTRODUCTION

def add_vector(A, B, C, size):
for i in range(0, size):

C[i] = A[i] + B[i]

Figure 1.4: Example vector addition function in Python.

__global__ void vector_add(const float * A, const float * B, float * C,
const int size)

{
int i = threadIdx.x;
if (i < size)
{

C[i] = A[i] + B[i];
}

}

...
vector_add<<<1, N>>>(a, b, c, N);

Figure 1.5: Example vector addition function written in CUDA.

thread layouts and applying GPU-specific optimizations. To illustrate this, we will
transform a simple vector addition function in Python (see Figure 1.4) to a CUDA
program (called a GPU kernel):

When programming using CUDA, one of the key decisions a developer has to
make is regarding the block size (number of threads per block) and grid dimensions
(number of blocks). These parameters directly affect the distribution of tasks across
the GPU’s SMs. For example, a block size of 256 means that each block has 256
threads. The total number of threads launched for a kernel is equal to block size
times grid size. A CUDA implementation of the aforementioned Python function
could be (see Figure 1.5):

Here the keyword __global__ specifies that the kernel is run on the GPU, and
can be called from both the CPU and GPU (as opposed to __device__ which
runs on the GPU and can only be called from the GPU). The keyword __host__
specifies that the function can be run and called only from the CPU. Apart from
the type declarations, the main difference with the Python code is the omission
of the for-loop, and the addition of the variable threadIdx.x. In CUDA, the
threadIdx of a thread is a triplet that denotes the coordinate of the thread within
a three-dimensional block. In this example, we are adding 1D vectors so we are
only interested in the x coordinate. Instead of a loop running on a single CPU
thread for the Python code snippet, the above CUDA code will be run on a GPU
and every thread will execute a single addition in parallel. The final line (which is
executed on the CPU portion of the code) indicates that the kernel will be launched
on a grid with one block of N threads.

If we have one grid, and one block of threads, the above GPU kernel will

1.4. RESEARCH QUESTIONS 11

__global__ void vector_add(const float * A, const float * B, float * C,
const int size)

{
int i = (blockIdx.x * blockDim.x) + threadIdx.x;
if (i < size)
{

C[i] = A[i] + B[i];
}

}

...
vector_add<<<N/256, 256>>>(a, b, c, N);

Figure 1.6: Improved vector addition function written in CUDA.

typically only work for vectors of size 1024 or smaller. This is because most GPUs
will not allow the execution of a block with more than 1024 threads. Instead, we
should organize our computation in blocks. The keyword blockDim defines a triplet
with the number of threads per dimension, and the keyword gridDim defines a
triplet with the number of blocks per dimension. Using the blockIdx keyword we
can modify the kernel to run on different blocks (see Figure 1.6).

Here we distribute the computation over N/256 blocks and 256 threads. Other
design choices include what data types and data layouts to use in the various
memory spaces available to GPU applications. Furthermore, there are other code
optimizations available such as varying the amount of work per thread. An overview
of many of the available optimization techniques for GPU programming is contained
in [94].

The execution speed, and energy efficiency, of the kernel will depend greatly
(potentially an order of magnitude or more) on choosing the correct block and grid
sizes and applying useful code optimizations. However, this usually depends on
the input size and the GPU model that the code is executed on. This means that
a GPU kernel often needs to be (re)tuned to a specific situation. For this reason,
auto-tuners have been developed to tune GPU kernels automatically [71, 127, 259].
In Chapter 5 we auto-tune several real-world kernels on many different GPU models,
and benchmark different black-box optimization algorithms on the auto-tuning
search space. Additionally, we look into a new method for quantifying the difficulty
of GPU kernel search spaces. In Chapter 6 we use auto-tuners in combination
with a data-driven power consumption model to improve the energy efficiency of
GPU kernels. In the end, we look at the high-throughput LOFAR pipeline [78]
and compute potential energy efficiency gains on different GPU models.

1.4 Research questions
In this thesis, we explore techniques to optimize different aspects of imaging pipelines
used in contemporary industrial and scientific processes on different implementation

12 CHAPTER 1. INTRODUCTION

levels. On the whole, the thesis shows how concepts like parameter optimization,
algorithm acceleration, hardware efficiency, and end-to-end optimization combine
to allow for high-performance, energy efficient and potentially novel pipelines
to modern computational imaging tasks. We mostly focus on X-ray computed
tomography (CT) as an application field, but also consider radio astronomy pipelines
that process data for the LOFAR telescope [78].

The chapters in this thesis deal with the following research questions.

1.4. RESEARCH QUESTIONS 13

In Chapter 2, we build upon RECAST3D to enable real-time quasi-3D seg-
mentation of X-ray CT images. RECAST3D is a software package for real-time
reconstruction and visualization of X-ray CT data. It uses a system of servers that
in parallel process data, and reconstructs slices in real time that are requested by
the user as they interact with the visualization. Here we intercept reconstruction
data packets, use a convolutional neural network to segment the reconstructed
slices, and let the visualization server show the segmentation to the user (see
Figure 1.7).

Research question 1. Can deep learning be used to perform segmentation of
X-ray images in real time?

Figure 1.7: (Left) screenshot of a dissolving tablet reconstructed with FDK dynam-
ically in RECAST3D, (right) segmented network output visualized in RECAST3D.

14 CHAPTER 1. INTRODUCTION

In Chapter 3, we perform four case studies on four CT workflows embedded
in the PyTorch auto-differentiation framework. We expose various parameters of
traditional CT algorithms to end-to-end optimization with gradient descent-based
methods. The first workflow we consider is rotation axis alignment where we
optimize the rotation axis shift applied in the projection domain for a quality
criterion computed in the volume domain. Second, we optimize the refraction
and attenuation indices for phase retrieval imaging using a self-consistent pipeline,
i.e. we minimize the error between the raw projection data, and the simulated
projection data acquired from forward propagating the segmented reconstruction.
In Figure 1.8 we show a reconstructed slice before and after optimization. Third, we
correct beam hardening artifacts by learning the beam spectrum and attenuation
coefficients. Fourth, we denoise simulated CT images by joint optimization of the
TV regularization parameter and CNN weights.

Research question 2. To what extent can auto-differentiation be generalized to
work effectively on a wide range of CT workflows?

Before After

Figure 1.8: Hydrogen fuel cell [45] reconstructed with FBP with default material
parameters for water (before), and after self-supervised optimization of parameters
(after).

1.4. RESEARCH QUESTIONS 15

In Chapter 4, we accelerate convolutional neural networks by introducing a new
pruning technique called longest-chain pruning (LEAN). LEAN creates a directed
graph representation where the operations are edges on the graph, and the weights
of the edges are the operator norm. Next, the path through the graph with the
highest multiplicative weight is iteratively selected to remain in the pruned net-
work. Using LEAN we were able to significantly accelerate several neural networks
in practice. Specifically, we measured an 11.1× speedup for the CNN used for
real-time segmentation in Chapter 2 (see Figure 1.9).

Research question 3. Can convolutional neural networks be accelerated sig-
nificantly to enable real-time applications?

11.1x

Figure 1.9: Practically realized speedup of pruned MS-D networks evaluated on
the test dataset.

16 CHAPTER 1. INTRODUCTION

In Chapter 5, we perform a benchmarking study of 16 black-box optimization
algorithms for 3 real-world GPU kernels on 9 different GPU models. The GPU
kernels define a discrete search space with potentially many discontinuities (combi-
nations of parameters that result in an invalid kernel) which can be challenging to
traverse for traditional methods. In Figure 1.10 we show the varying distributions
of local minima for different GPU models. We solve the optimization problem
both as a deterministic and stochastic optimization problem and select the best-
performing optimization algorithms using a statistical inter-algorithm competition.
Additionally, as part of the study we contribute these optimization algorithms to
the auto-tuning software package Kernel Tuner [246].

Research question 4A. To what extent can black-box optimization algorithms be
used to accelerate the process of auto-tuning GPU kernels?

V100 A100 P100 GTX 1080Ti GTX TitanX MI50 RTX 2070 Super K20 Titan RTX
GPU

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 g

lo
ba

l f
itn

es

Fraction of global optimal fitness for minima (convolution)

Figure 1.10: Fraction of optimal fitness of local minima for each GPU model, for
the convolution kernel. The box plots shows the median line, the box designates
the quartiles, and the whiskers the full extend of the distribution. Additionally, a
scatter plot of the fitness for each local minimum is shown. The GPUs are ordered
in descending median fraction of optimal fitness from left to right.

1.4. RESEARCH QUESTIONS 17

In Chapter 5, we introduce a graph-based method for quantifying the difficulty
of discrete optimization search spaces. We introduce the fitness flow graph (FFG)
(see Figure 1.11) where each point in the search space is a node, and a directed edge
is drawn to neighbours with better fitness. We then use PageRank centrality [21,
173] to quantify the likelihood of a random walk ending in certain local minima
(this mimics the behaviour of greedy local search). Next, we define a metric that
quantifies how likely such random walks end in suitably good local minima to rank
search space difficulty.

Research question 4B. Can a graph representation of the GPU kernel search
space be used to quantify the difficulty of the optimization problem?

Figure 1.11: Fitness flow graph of point-in-polygon kernel search space of the
Nvidia Titan RTX. Each node is a point in the search space. There is a directed
edge between neighbouring points from higher to lower kernel runtime. Points are
coloured within a fitness range of +25% with respect to the global minimal fitness
(global minimum in green), i.e., each point is coloured by its fraction of optimal
fitness, and points with a fraction below 0.75 are given the same colour. Local
minima are represented as larger nodes.

18 CHAPTER 1. INTRODUCTION

In Chapter 6, we develop a model for GPU power consumption that greatly
reduces the large tuning search space that is formed by adding core clock frequency
as a tunable parameter (see Figure 1.12 for an example scatter plot). We use the
model to provide clock frequencies for which a GPU is likely most energy efficient.
We experiment on 6 kernels currently running in production for the low-frequency
array (LOFAR) for 4 different GPU models and achieve measured improvements
in energy efficiency. The power consumption model can be fitted using a few
executions of a small example kernel. As part of the study, we contribute the
power consumption model to Kernel Tuner as a script that can be executed on
Nvidia GPUs to suggest the most energy-efficient clock frequency in under a minute.

Research question 5. To what extent can we model the power consumption
of GPUs and steer the auto-tuning process to improve the energy efficiency of
GPUs?

Figure 1.12: Kernel speed (GFLOP/s) over energy efficiency (GFLOPs/W) for all
GEMM configurations for the Tesla A100. The red line is the Pareto front, i.e.,
neither performance or efficiency can be improved without decreasing the other.
Points are coloured according to the core frequency.

2
Real-time segmentation for

tomographic imaging

2.1 Introduction
Tomographic imaging is a widely applicable technique for studying the internal
structure of objects using some form of penetrating radiation such as X-rays or
an electron beam. Projection images are obtained from a range of angles and a
tomographic reconstruction algorithm subsequently computes a 3D image of the
internal structure of the object. Currently, reconstruction and analysis are often
performed after image acquisition has completed. If processing, reconstruction,
and analysis of tomographic data can be run in real time during the experiment,
internal dynamic processes of the imaged object can be visualized and analyzed
as they occur. Real-time feedback enables online optimization and steering of
the imaging setup and experimental conditions which increases the efficiency of
experiments and avoids costly repetition.

Despite advances in computationally efficient reconstruction algorithms [13,
112] and in specialized hardware such as Graphic Processing Units (GPUs) [174]
and supercomputers [16], full 3D tomographic reconstructions at the rate of data
acquisition remain out of reach for most applications. Recently it was shown that
real-time reconstruction can be achieved for a small set of arbitrarily oriented 2D
slices [27]. These slices can be adjusted on the fly, thereby giving access to a virtual
full 3D volume at a fraction of the computational cost. This methodology is called
quasi-3D reconstruction, and is implemented in the RECAST3D software package.

To enable adaptive imaging, where the imaging process is adjusted based on
the observations, just having access to a reconstructed volume is not sufficient, as
the image analysis step should also be included in the real-time processing pipeline.

19

20
CHAPTER 2. REAL-TIME SEGMENTATION FOR TOMOGRAPHIC

IMAGING

Figure 2.1: Traditional experiments (top) involving tomography require significant
time for both the reconstruction phase and the offline analysis phase. With
RECAST3D (middle) the reconstruction phase is performed in real time. Our
method (bottom) additionally includes a real-time segmentation step.

An important step in many image analysis pipelines is segmentation, which is the
problem of assigning to each pixel the appropriate class label from a finite set of
classes, for example segmenting bone for calcaneal fractures in CT images [194]. In
this article we introduce a real-time imaging pipeline to reconstruct, segment, and
visualize quasi-3D volumes implemented as an extension of the existing RECAST3D
software package. Our method adds real-time segmentation to the existing real-time
reconstruction capabilities of the RECAST3D framework, as outlined in Figure 2.1.

As quasi-3D reconstruction employs direct reconstruction methods such as
filtered backprojection (FBP) [106] and Feldkamp-David-Kress (FDK) [59] without
additional image regularization, limited-data artefacts are typically present in the
reconstructions. These artifacts limit the applicability of computationally efficient
unsupervised segmentation algorithms, such as Otsu’s method [170], since they are
often unable to separate artifacts and noise from important features. Furthermore,
because image analysis algorithms may be sensitive to noise in the segmentation
[32, 150, 199], analysis based on such traditional segmentation methods may not be
accurate. In addition, many unsupervised segmentation methods operate exclusively
on the basis of the pixel values [124, 163, 170], limiting their applicability to general
segmentation problems as they are unable to segment features that are not based
on pixel values.

To overcome these issues, we propose to use a convolutional neural network
(CNN) to segment the quasi-3D reconstructions in real time. To apply CNNs
in a quasi-3D setting, we introduce an adapted training strategy that takes the
arbitrary orientations of the slices into account. We show that a CNN is capable
of achieving similar accuracy to segmentations based on computationally more
expensive total variation minimization (TV-MIN) reconstructions [14] which are too
slow to compute for real-time applications. In addition, we show that a CNN can

2.2. METHOD 21

be implemented efficiently as a plugin within the existing RECAST3D framework
without significantly increasing the processing time.

This article is structured as follows. In Section 2.2 we introduce the tomographic
reconstruction problem and define the FDK and TV-MIN reconstruction algorithms.
We introduce quasi-3D reconstructions, the segmentation problem, and provide
more details on the segmentation plugin. Lastly, we outline our adapted training
strategy for randomly oriented slices. In Section 2.3 we present the experimental
results, and analyze the training strategies. We perform a real-world experiment
on a dynamic X-ray CT dataset and two simulated experiments. Finally, in Section
2.4 we state our final conclusions.

2.2 Method

2.2.1 Prerequisites
Tomographic Reconstruction

The tomographic reconstruction problem is to recover a volume from a series of
its projections. In this article we consider circular cone-beam tomography, where
the object is placed in between a point source and flat-panel detector which are
situated on opposite sides of a circle. The object is rotated and X-ray projections
are taken at a selection of equidistant angles. The approach generalizes to other
acquisition geometries (e.g. parallel beam) in a straightforward manner.

The tomographic reconstruction problem can be modelled as an inverse problem:

Ku = f . (2.1)

Here K is the forward projection operator, u ∈ RNx×Ny×Nz represents the object,
and f ∈ RNθ×Na×Nb is the measured projection data, with Nθ is the number
of projection angles, and Na, Nb are the number of detector rows and columns
respectively. In this article we use the FDK reconstruction algorithm, given by

uFDK = KT (h ∗ f̃). (2.2)

Here f̃ denotes weighted projection data, which compensates for diminishing
intensity at distance from detector center, and h ∈ RNb is a 1D filter. We used the
Ram–Lak filter for this work.

Instead of using FDK, equation 2.1 can be solved by iteratively minimizing
‖Ku− f‖. In addition, we can add prior information about the gradient of the
image being sparse by adding a total variation term [14] to improve reconstruction
accuracy when projection data is limited or noisy:

1

2
‖Ku− f‖22 + λ‖∇u‖1.

This function can be minimized by a range of convex optimization algorithms.

22
CHAPTER 2. REAL-TIME SEGMENTATION FOR TOMOGRAPHIC

IMAGING

Quasi-3D Reconstruction

Quasi-3D reconstruction has recently been proposed as a method to make real-
time tomographic reconstruction feasible [27]. Instead of computing a full 3D
volume, only a small collection of arbitrarily oriented 2D slices is reconstructed
and visualized in real-time. When these slices are translated and/or rotated by
the user, they are reconstructed on the fly, so that it appears as though a full
3D reconstruction is available. This on-demand 2D reconstruction significantly
reduces the total computational cost compared to full 3D reconstruction. This
approach is implemented in the open source RECAST3D software package and
more implementation details can be found in [27].

In RECAST3D, the filtering and weighting steps of the FDK algorithm are
performed in parallel. The computation of h ∗ f̃ is performed in real time from
the incoming data. When a slice is requested, the application of KT (called
backprojection) is performed using GPU-based high-performance routines from
the ASTRA toolbox [1]. In addition, a low-resolution 3D FDK reconstruction
is created so that the user can preview the object. Our quasi-3D pipeline for
segmentation is implemented by extending the RECAST3D software package with
a computationally efficient segmentation plugin.

Segmentation

Mathematically, segmenting an image can be described as finding a function
g : Rm×n → Zm×nk , where m,n are the rows and columns of the image and k is
the number of object classes to be assigned.

Classical segmentation methods (for example local and global thresholding
[124, 170], watershed methods [163]) typically operate on the image greyvalues
to separate classes and have the high computational efficiency that is need for
real-time segmentation. As an example, Otsu’s method performs a segmentation of
an image by selecting a threshold that minimizes intra-class variance. In addition
to the greyscale distribution, segmentation can be performed on other properties
by for example clustering pixels [48] or defining edge boundaries in the image [157].
Recently, CNNs have proven successful for image segmentation [9, 202].

CNNs for segmentation

In this work we use CNNs to segment the tomographic reconstructions. In a
segmentation network, the final output layer will assign one of k classes to each
pixel. The CNN is defined by its architecture with weights Θ which can be
altered to change the output. For a given Θ, a CNN corresponds to a function
FΘ : Rm×n → Rk×m×n which aims to approximate g by computing a probability
vector with predictions for each class for each pixel. The highest probability class
can be chosen from the network predictions to obtain a final segmentation.

The weights Θ are found in a training phase, where input samples x1, . . . ,xN
are processed by the network and compared to known labelled output samples
y1, . . . ,yN . A loss function J : Rk×m×n × Zm×nk → R, such as cross-entropy loss,

2.2. METHOD 23

Figure 2.2: Diagram outlining unidirectional training on slices (left) and omnidi-
rectional training (right).

measures the error of the network on the training samples. The aim of the training
phase is to find a Θ that minimizes the loss on the training dataset

Θ∗ = arg min
Θ

{
N∑
i=1

J (FΘ(xi),yi)

}
.

For a CNN, we can compute the partial derivatives of J with respect to the
weights using backpropagation. The weights can be updated using gradient-based
optimization algorithms [113].

2.2.2 Quasi-3D training strategies
In 3D image segmentation, neural networks are often trained on 2D slices from the
volumes since full 3D networks are typically computationally too expensive [134,
183]. The 2D input slices are obtained by extracting slices in a single direction. In
contrast, slices in a quasi-3D reconstruction can have an arbitrary orientation. A
network trained only on unidirectional slices may not recognize object classes from
a different view. Therefore, the standard training procedure has to be adapted
to enable application of CNNs to arbitrary oriented slices. Here, we introduce a
training strategy where arbitrarily oriented 2D slices of the tomographic volume
are supplied as input for the neural network.

Let X ∈ Rn×n×n be an input volume and Y ∈ Zn×n×nk the aligned target
volume. Define Eα,β,γ : Z × Rn×n×n → Rn×n to be a rotated extraction opera-
tion. Eα,β,γ(i,X) extracts the i-the slice rotated by angles α, β, γ with respect
to the sagittal slice from the volume X. For omnidirectional training we create
a dataset of slices with pairs (Eα,β,γ(i,X), Eα,β,γ(i,Y)) where the angles are ran-
domly generated. For unidirectional training we create pairs of sagittal slices
(E0,0,0(i,X), E0,0,0(i,Y)) (see Figure 2.2).

2.2.3 Segmentation Plugin
To construct the pipeline for real-time segmentation we developed a plugin for
RECAST3D which segments quasi-3D reconstructions. The segmented slices are
then visualized in RECAST3D. The plugin is GPU-based and can be disabled,

24
CHAPTER 2. REAL-TIME SEGMENTATION FOR TOMOGRAPHIC

IMAGING

altered and reenabled while the projection data is processed simultaneously. A
command line interface allows for online tuning of parameters with immediate
visual feedback, and the user can select which class is visualized. The plugin
operates independently from the quasi-3D reconstruction pipeline, and can be run
on a separate node.

The plugin is implemented in Python, and includes three CNNs implemented in
PyTorch: the MS-D network [89, 183], U-Net [202], and ResNet [84]. In addition,
the plugin includes several traditional segmentation methods, including Otsu’s
method [170], cross entropy thresholding [124], contour evolution [158], region
based random walk segmentation [69] and the watershed algorithm [163].

2.3 Results and Discussion

2.3.1 Setup
To assess the accuracy and computational efficiency of our CNN-based segmentation
approach, we compare it with traditional unsupervised methods. The neural
network used in this work is the MS-D network [183], chosen because of its low
number of trainable parameters.

Since the MS-D network can flexibly adapt to different problems, we used
the same network architecture for each experiment. We used an MS-D network,
implemented in PyTorch [89], of 100 layers with a width of 1. The dilations in
layer i were set to 1 + (i mod 10). The networks were trained using the ADAM
algorithm [113], using a batch size of 20, and the cross-entropy loss function. For
each experiment, the data was split in training, validation, and test sets. The
network is trained on the training set for 100 epochs. The network with the lowest
validation error was selected to be evaluated on the test set. All experiments
were run on a workstation with an AMD Ryzen 3800X processor and NVIDIA
GeForce RTX 2070 Super GPU. To quantify our comparisons we use the F1-score
(Dice coefficient) which is the harmonic mean of precision and recall, and the
accuracy. For multi-class problems we report the macro F1-score (average of
per-class F1-score), and the global accuracy.

2.3.2 Simulated data
We created two sets of simulated tomographic data to investigate the difference
between omni- and unidirectional training, and to quantitatively compare Otsu’s
method to the MS-D network. For the former we created twenty 5123 volumes filled
with fibre strands and spheres. Each volume contained 20 spheres and 20 fibres
which were generated with a random shape and location. Greyscale intensities
were the same for both classes. 3D renderings of the noiseless volumes are shown
in Figure 2.3.

For the second simulation experiment we created twenty 5123 volumes filled
with 40 fibre strands generated with random shapes surrounded by a cylinder

2.3. RESULTS AND DISCUSSION 25

(a) (b) (c) (d)

Figure 2.3: (a), (b) Example volumes of the fibre-sphere data, (c) slice of the noisy
FDK reconstruction, and (d) slice of the ground truth (spheres and fibres have
different labels).

(a) (b) (c)

Figure 2.4: (a) Example volume of the fibre-container data with container, (b) slice
of the noisy FDK reconstruction, and (c) slice of the ground truth (the container
is not to be segmented).

forming a container (see Figure 2.4). Greyscale intensities were the same for the
container and the fibres to represent a segmentation problem where the fibres are
to be labeled but the container is not.

Using the ASTRA toolbox [1] we simulated a cone-beam projection dataset
of 60 projections for each volume. Furthermore, Poisson noise was applied to
the projection dataset where the sample absorbed roughly 70% of the incoming
photons. Out of the 20 phantoms, 14 were randomly selected for training, 4 for
validation and 2 for testing. For each scan we obtained 500 randomly oriented, and
500 unidirectional 512× 512 slices for both the ground truth labeled volume, and
the noisy FDK reconstruction (see Figures 2.3 and 2.4).

Comparison of uni- and omnidirectional training slices

To investigate the importance of the slicing direction in the training strategy for
CNNs, we compare unidirectional and omnidirectional training strategies. We

26
CHAPTER 2. REAL-TIME SEGMENTATION FOR TOMOGRAPHIC

IMAGING

FDK Ground truth MS-D
omnidirectional

MS-D
unidirectional

Figure 2.5: Slices of the simulated fibre-sphere test dataset and MS-D network
predictions. From left to right we have the FDK reconstructions, the labeled
ground truths, the MS-D network output trained on randomly oriented slices, and
the MS-D network output trained on unidirectional slices.

Random orientation Sagittal orientation
Training F1 Accuracy F1 Accuracy
Omnidirectional 0.9989 0.9979 0.9951 0.9950
Unidirectional 0.6857 0.9792 0.9995 0.9995

Table 2.1: Macro F1 and accuracy on the fibre-sphere (left) randomly oriented test
set, and (right) sagittal test set, for MS-D networks trained with the omnidirectional,
and unidirectional strategies.

trained one network on the slices in a single direction and the other on randomly
oriented slices, using the fibre-spheres dataset (Figure 2.3). Otsu’s method, and
any other unsupervised method that works solely on greyvalues, are not applicable
to this type of multi-class segmentation problem as they cannot categorize objects
with the same greyvalue. This indicates an advantage of deep-learning approaches.

Example results from the test set are shown in Figure 2.5. Note that both
networks were able to remove the Poisson noise and the tomographic artifacts. Some
notable differences between both networks can be seen where the unidirectional
network identifies parts of the fibre strands as spheres. In Table 2.1 we report the
macro F1-score, and accuracy for both networks on both the test set with randomly
oriented slices and the test set with slices in a single direction.

The MS-D omnidirectional network outperforms the unidirectional network
on both quantitative measures for the randomly oriented test set, which is in

2.3. RESULTS AND DISCUSSION 27

FDK Ground truth MS-D
omnidirectional

MS-D
unidirectional

Otsu

Figure 2.6: Slices of the simulated fibre-container test dataset, with (from left to
right): the FDK reconstructions, the labeled ground truths, the omnidirectional
MS-D network output, the unidirectional MS-D network output, and Otsu’s method.

line with the qualitative comparison shown in Figure 2.5. When tested on the
sagittal direction, although the unidirectional networks performs better than the
omnidirectional network, the difference in performance is significantly smaller. This
can be explained by the fact that the omnidirectional network has also encountered
images sliced in the sagittal direction.

Comparison of MS-D segmentation and Otsu’s method

Here, we compare Otsu’s method to the uni- and omnidirectional MS-D networks.
Both the MS-D networks and Otsu’s method were tested on randomly oriented
slices from the fibre data test phantoms because the user can select arbitrary slices
in RECAST3D. To more accurately determine the performance of Otsu’s method
inside the container, we created a version of Otsu’s method where a ROI-mask was
applied on the segmented slices with the proper rotation. We used a cylindrical
volume around the simulated container to remove misclassified background. Some
example results from the test set can be seen in Figure 2.6 and in Table 2.2 we
report the F1-score and accuracy.

The results show that the omnidirectional MS-D network was able to accurately
segment the fibres and remove the applied Poisson noise. We see that the unidirec-
tional MS-D network misclassified the container in the randomly oriented slices,
and that Otsu’s method occasionally does not remove the FDK artifacts and noise.
In addition, Otsu’s method classifies the container as a fibre since it is unable to
distinguish it from the fibres on the basis of intensity. Even if we manually mask
the region-of-interest, the interior of the container is significantly more noisy than
the MS-D network segmentation.

28
CHAPTER 2. REAL-TIME SEGMENTATION FOR TOMOGRAPHIC

IMAGING

F1-score Accuracy
MS-D omnidirectional 0.9544 0.9989
MS-D unidirectional 0.6777 0.9885
Otsu 0.0585 0.6086
ROI-Otsu 0.2568 0.9300

Table 2.2: F1 and accuracy on the fibre-container randomly oriented test set for
MS-D omnidirectional, MS-D unidirectional, Otsu, and ROI Otsu.

The MS-D network outperforms Otsu and ROI-Otsu on both metrics. Otsu’s
method performs significantly worse on F1-score, which can be explained by the
greater amount of false positives segmented by Otsu as opposed to the MS-D
network.

2.3.3 Experimental data
To show the feasibility of our method in real-world applications, we applied the
real-time segmentation pipeline to a real-world dynamic X-ray CT dataset of a
dissolving tablet suspended in gel [38, 39]. A container with a dissolving tablet was
filled with gel to create moving air bubbles which we segmented. The container
was rotated at 100 deg/s and 60 projections were acquired every 180 degrees with
an exposure time of 30 ms for each projection. In total 9960 projections of size
647× 768 were taken and the experiment lasted 5 minutes.

In RECAST3D, the full processing step of a batch of projections takes ap-
proximately 140 ms on our workstation. The computation time to compute the
backprojection for a slice is about 2 milliseconds. The segmentation with Otsu’s
method is about 3 milliseconds and with the MS-D network about 30 milliseconds.
This means that the pipeline would be able to dynamically visualize the projection
data stream every 170 milliseconds for a batch of 60 projections. In this experi-
ment, data acquisition was at a rate of 1.8 seconds per batch of 60 projections (180
degrees), well within the computational limits of the pipeline. Figure 2.8 shows
an example real-time quasi-3D reconstruction and segmentation of the data in
RECAST3D.

To create training data for the neural networks we created TV-MIN reconstruc-
tions for every 60 projections with a regularization parameter λ = 0.001 for 2000
iterations. We used the Douglas–Rachford primal-dual splitting algorithm [19] to
iteratively minimize the functional. Each TV-MIN reconstruction took roughly 20
hours on our workstation and is therefore infeasible to compute in real time. Next,
we created 25 labeled ground truth volumes by applying Otsu’s method to the
TV-MIN reconstructions and masking the region outside the container. As a final
processing step we removed small objects with a mass smaller than 4 pixels with
the scikit-image remove_small_objects function from the morphology package
[242]. The scans were randomly separated into 18 training scans (9216 slices), 4
validation scans (2048 slices) and 3 test scans (1536 slices) for the unidirectional

2.3. RESULTS AND DISCUSSION 29
Sa

gi
tt
al

di
re
ct
io
n

R
ot
at
ed

FDK TV
ground truth

MS-D
omnidirectional

MS-D
unidirectional

Sa
gi
tt
al

di
re
ct
io
n

R
ot
at
ed

FDK TV
ground truth

Otsu ROI-Otsu

Figure 2.7: Slices of the TabletInFluid test dataset and experimental predictions.
The first row is from the unidirectional dataset, the second from the randomly
rotated dataset. From left to right we have the FDK reconstructions, the labeled TV-
MIN ground truths, the MS-D network output trained on randomly oriented slices,
the MS-D network output trained on slices in one direction, Otsu’s segmentation,
and Otsu’s segmentation using a ROI cylindrical mask.

30
CHAPTER 2. REAL-TIME SEGMENTATION FOR TOMOGRAPHIC

IMAGING

Figure 2.8: (Left) example screenshot of dissolving tablet data reconstructed
dynamically in RECAST3D, (right) example of segmented network output in
RECAST3D.

F1-score Accuracy
MS-D omnidirectional 0.8816 0.9983
MS-D unidirectional 0.7595 0.9968
Otsu 0.0142 0.2538
ROI-Otsu 0.8229 0.9977

Table 2.3: F1 and accuracy on the real-world TabletInFluid randomly oriented test
set for MS-D omnidirectional, MS-D unidirectional, Otsu, and ROI Otsu.

network. For the arbitrarily oriented slices, we chose the same amount of slices at
random 3D orientations for each scan.

To compare our method to an existing computationally efficient method, we
segmented each FDK slice with Otsu’s method and manually applied a cylindrical
ROI-mask to remove misclassified background. The results can be seen in Figure
2.7. In Table 2.3 we report the F1-score and accuracy for the randomly oriented
slices.

The MS-D network trained on randomly rotated slices is able to create an
accurate segmentation of the bubbles in real time and it outperformed the other
three methods on all metrics. It is able to create real-time segmentations with similar
quality to the computationally expensive segmented TV-MIN reconstructions. This
shows that our method can be used to perform quasi-3D reconstruction and
segmentation in real time by training on randomly oriented slices of segmented
TV-MIN reconstructions. Note that, in practice, acquiring training data and
training the networks has to be performed offline. The results show that our
method outperforms Otsu’s method with masking on all metrics. Notably, the
unidirectional network regularly misclassifies sections of the randomly oriented
slices. The importance of the training method is highlighted when comparing the
F1-scores for both MS-D networks.

2.4. CONCLUSIONS 31

2.4 Conclusions
In this paper, we introduced a real-time pipeline to process, reconstruct, and
segment quasi-3D tomographic images, representing an important step for online
and real-time analysis of tomographic experiments. We showed the importance
of including arbitrarily oriented slices in the training dataset to achieve accurate
results. We demonstrated that a deep-learning based approach can perform better
than Otsu’s method in terms of accuracy on both simulated data and real-world
dynamic tomographic data. In addition, our deep-learning based approach is more
generalizable to multi-class segmentation problems than traditional intensity-based
unsupervised segmentation methods. Using our method, one can perform real-time
and online segmentation of quasi-3D volumes, enabling immediate feedback and
analysis during experiments.

3
Auto-differentiation for CT

workflows

3.1 Introduction
In recent years, deep learning and other data-driven machine learning approaches
have become increasingly popular in computed tomography. Deep neural networks
have achieved strong results in X-ray CT applications by improving reconstruction
quality [146], reducing metal artifacts [260], performing beam hardening correction
[262], and classification [34, 98, 171]. The progress in deep learning has shown the
power of data driven end-to-end optimization using auto-differentiation software,
often in combination with hardware acceleration using graphical processing units
(GPUs).

Despite promising results, deep learning approaches suffer from interpretability
and reproducibility challenges. Furthermore, a serious issue is the behaviour of deep
learning algorithms when presented with new data, and potential hallucination of
object features [15]. These considerations have hampered the adoption of learned
algorithms by experts in for example the medical domain where doctors can be
reluctant to trust black-box learned approaches.

In contrast, classical (i.e. non-learned) algorithms often excel in interpretability
and robustness. Additionally, classical algorithms often come with an intuition
for their applicable input data domain, and the results they should produce. This
can lead to expert users favouring such traditional methods over deep learning
approaches. However, parameters of these algorithms are often either kept fixed or
are adjusted by the user based on manual experimentation. Since these parameters
are not learned in a data-driven way, they may not be optimally chosen for the
particular dataset and application.

33

34 CHAPTER 3. AUTO-DIFFERENTIATION FOR CT WORKFLOWS

In this work, we apply concepts from the philosophy that made deep learning-
based methods so successful, and transfer it to CT workflows. We create workflows
of computed tomography algorithms for various problems and show how those
problems can be solved by end-to-end optimization based on auto-differentiation.
By doing so, we reconcile classical algorithms with deep learning. We perform
four case studies, representative of real-world tomography problems. To do so, we
create pipelines using the following core design principles:

End-to-end learning: We implement the pipelines such that all pieces
facilitate gradient propagation, meaning that parameters at all steps of the
pipeline can be optimized jointly.

Explicit quality criteria: All pipelines use explicit quality criteria as objec-
tives for optimization, thereby enabling automatic optimization of parameters.

Declarative algorithm construction: Each pipeline is created by building
the forward model, and we optimize its parameters using auto-differentiation
and generic readily-available algorithms.

Use existing building blocks: The pipelines re-use building blocks derived
from both classical algorithms and deep learning methods in a way that
enables gradient propagation. This allows for seamless compatibility with
deep learning-based methods.

Our portfolio of case studies sketches the outline of a new generation of powerful
software toolboxes that enable users to leverage the power of auto-differentiation
for advanced computational CT pipeline construction.

This work is structured as follows. In Section 3.2 we explore related work in
auto-differentiation software for classical methods, and approaches for learning
CT algorithms in a data-driven way. In Section 3.3 we describe the methodology.
In Section 3.4 we present our results in the form of four case studies. In Section
3.5 we discuss our findings and present key potential benefits that arise from our
approach. We present our final conclusions in Section 3.6.

3.2 Related work
The idea of extending auto-differentiation techniques [72] to classical algorithms
is actively investigated across several domains. In the field of robotics, for non-
linear optimization problems, Meta AI constructed Theseus [188] which is a library
for building custom non-linear optimization layers that were shown to be useful
for differentiable kinematics. In [36], robotic controllers are auto-tuned using the
DiffTune package which works with forward-mode auto-differentiation. Furthermore,
end-to-end differentiable optimization enabled the coupling of the prediction and
planning module in autonomous vehicles [100].

3.2. RELATED WORK 35

In the field of cosmology, JAX-Cosmo [31] is a recently developed end-to-end
GPU accelerated library for cosmological calculations. Using automatic differenti-
ation, JAX-COSMO exposes derivatives for certain cosmological quantities, and
enables previously impractical methods such as Hamiltonian Monte Carlo and
Variational Inference. Furthermore, by embedding the cosmological algorithms in
JAX, the algorithms can be run on accelerated hardware, and can benefit from
automatic code optimizations and techniques such as just-in-time compilation.

Embedding classical operators in neural networks has been demonstrated as an
effective technique for end-to-end learning based on auto-differentiation. In [144] the
tomographic backprojection operator is embedded as an algorithm within a neural
network. Here the backprojection parameters are not trainable themselves, but
rather the algorithm introduces prior knowledge about image reconstruction in the
neural network. From the field of seismic imaging, a 3-step reflective seismic imaging
method is learned end-to-end by turning the Delay-And-Sum (DAS) operator into
a network layer in [186]. Similarly, the wave-physics-formation algorithm is placed
between two neural networks in [187] to facilitate single-plane seismic wave imaging
(SFW).

Automatic differentiation techniques have already been applied to solve specific
problems in computed tomography in recent years. In [231], beam hardening
correction for X-ray microscopy of mouse bones is performed with a polynomial
correction model that is optimized through a PyTorch-based differentiable FDK
algorithm. An elaborate outline of algorithmic differentiation for phase retrieval is
presented in [105]. In [108, 160], automatic differentiation is used in ptychography
where the object wave function is obtained with a gradient-based method by
minimizing the ptychography loss for each pixel. In [55] the 3D reconstruction
problem for objects beyond depth-of-focus (DOF) is formulated as a minimization
problem with a data fidelity and total variation term, which is solved with a
gradient descent algorithm. How automatic differentiation techniques can be used
for different imaging modalities is shown in [77], where compressive sensing, single
image super resolution (SISR), and ptychography reconstructions are covered. For
tomography, the reconstruction is obtained with a gradient based approach by
minimizing a total variation functional, and the authors show how this is beneficial
for sparse and limited angle data.

In the field of nanotomography, the auto-differentiation framework Adorym
[54] for flexible reconstruction has been developed. In Adorym, a flexible forward
model allows for optimization of experimental parameters such as probe position,
object tilt, absorption/refraction relation coefficient, and propagation distance.
The authors show improved reconstruction quality for ptychography and multi-
distance holography reconstructions, by finetuning these experimental parameters.
For conventional CT, they accelerate ART with gradient descent optimizers and
acquire improved results over FBP.

Compared to the related work outlined above, the scope and focus of the present
paper is more general. We focus on the core design principles underlying CT
workflows using auto-differentiation and demonstrate the efficacy of the approach
through a varied set of four case studies.

36 CHAPTER 3. AUTO-DIFFERENTIATION FOR CT WORKFLOWS

3.3 Methodology

3.3.1 Auto-differentiation

For the case studies included in this paper, we implement the CT workflows in
the auto-differentiation framework PyTorch [181]. An auto-differentiation system
breaks down a program in a series of primitive operations for which fixed procedures
are known to compute derivatives. The series of primitive computations is collected
in a computational graph. Most auto-differentiation systems, including PyTorch,
trace the computational graph implicitly during the forward computation through
the program. After the forward computation, the error or loss is computed. Here,
we use gradient-based optimization, meaning that an auto-differentiation package
needs to obtain partial derivatives of the loss with respect to the parameters.

Often each primitive function in an auto-differentiation package specifies vector-
Jacobian products. Suppose two quantities are related by a primitive function
f(x) = y, and y is used further in the computation. Denote by ȳ the derivative of
a loss L with respect to y. A vector-Jacobian product defines a way to express the
derivatives of L with respect to x, and is defined as

∂L

∂xj
=
∑
i

∂yi
∂xj

∂L

∂yi
, x̄ = JT ȳ,

where J is the Jacobian. For a primitive operation f , the gradient of the input
x̄ can be calculated from the output gradient ȳ, the input x and the output y. For
example, in the case of y = f(x) = −x the gradient of the input can be computed
as −ȳ, for y = f(x) = ex it will be y · ȳ, and in the case of y = log(x) it will be ȳ

x .
The procedure of computing gradients in reverse (starting from L̄ = 1) is called
back propagation. For gradient descent, parameters are updated by

x← x− λx̄,

for some step size λ (often called the learning rate in deep learning). Variants of
gradient descent exist such as Nesterov’s accelerated gradient descent [162]. In our
experiments we will either use (stochastic) gradient descent, or Adam [113].

A drawback of auto-differentiation frameworks can be excessive memory con-
sumption because copies of many intermediate outputs are stored for fast com-
putation of the back propagation algorithm. This problem can be addressed by
several general approaches. Gradient checkpointing stores only a subset of the
intermediate outputs for gradient computation [35]. Another approach involves
just-in-time (JIT) compilation where a compiler attempts to optimize the computa-
tional graph into a more memory and compute efficient set of instructions. In this
work, we apply PyTorch implementations of both techniques for certain memory
or computationally expensive operations.

3.3. METHODOLOGY 37

3.3.2 Computed tomography
In computed tomography [106] a 3D image of an object is recovered from a series
of projections that are taken at different angles. Tomographic reconstruction can
be modelled as the problem to recover an object volume x ∈ X := RNx×Ny×Nz
from the measured projection data y ∈ RNθ×Nu×Nv . Here, Nu and Nv are the
number of detector rows and columns, and Nθ is the number of projection angles.
The projection process can be approximated by a linear operator A, and can be
expressed as a matrix using the aforementioned discretization

Ax = y, (3.1)

where x and y are collapsed to a vector. For parallel beam tomography the
object can be reconstructed by the commonly used filtered backprojection algorithm
(FBP)

xFBP = AT (h ∗ y). (3.2)

Here, the projection data is convolved with a 1D filter h ∈ RNv (Ram-Lak in this
study), and subsequently backprojected by applying AT . For circular cone-beam
tomography, the object can be recovered by the Feldkamp-Davis-Kress (FDK) [59]
algorithm, where the projection data is weighted in order to compensate for the
diminishing intensity at distance from the detector center. An alternative to direct
methods are iterative methods that reformulate the equation system 3.1 as an
optimization problem of the form

x∗ = arg min
x∈X

‖Ax− y‖22. (3.3)

Variational methods additionally aim to incorporate prior knowledge in the
form of a regularization term R(x) to the functional, e.g.,

x∗ = arg min
x∈X

‖Ax− y‖22 +R(x). (3.4)

3.3.3 CT workflows
The CT workflows that we consider here contain input data in the form of projection
images, contain several data processing steps of which at least one is a reconstruction
step, and contain an objective function that scores the final result. We consider
potentially non-sequential workflows, i.e., the data processing graph can contain
several branches, or cyclical sections. The computational blocks can contain
parameters that we want to update in order to minimize the objective function
(see Figure 3.1). Those parameters must be real or complex numbers in order to
facilitate gradient-based optimization.

For the four case studies, we have implemented the computational blocks to
be differentiable with respect to the learnable parameters. Non-differentiable
steps can potentially be replaced by a differentiable approximation function. For

38 CHAPTER 3. AUTO-DIFFERENTIATION FOR CT WORKFLOWS

example, to make thresholding (and segmentation) differentiable, we implement
the thresholding operation using a hyperbolic tangent

τγ(x, t) =
1

2

(
1 + tanh

(
γ
(x
t
− 1
)))

, (3.5)

where the volume x, and threshold t have been scaled to [0, 1]. The parameter γ
regulates the sharpness of the clipping.

Projection data Pre-processing

Parameters

Post-processing

Parameters

Reconstruction
Parameters

Objective function

Optimizable parametersInput data Objective function

Figure 3.1: Example CT workflow diagram.

3.3.4 Software implementation
To compute gradients end-to-end for workflows that contain tomographic (back)projection
operators, we will make use of the matrix identity ∇Ax = AT∇x. Tomographic
projection operations are implemented in the ASTRA toolbox [1] in a computa-
tionally efficient GPU accelerated manner. The tomosipo package [90] implements
PyTorch support for ASTRA, and contains projection operators that propagate
gradients in PyTorch using the aforementioned identity. Here, we use tomosipo
projection operators in our workflows to propagate gradients end to end. In addi-
tion to reconstruction algorithms, the workflows we construct in this work contain
other classical CT algorithms, such as Paganin’s phase retrieval, phase contrast
projection, and spectral projectors. We implemented these algorithms in PyTorch
which facilitates auto-differentiation, and makes them GPU compatible, and the
code is made publicly available for all case studies [216].

3.4 Case studies

3.4.1 Rotation axis alignment
Introduction

In the first case study, we consider the problem of alignment in tomographic
reconstruction [123]. Various experimental factors can introduce errors in the
geometric parameters that are used to perform the reconstruction. A common
occurrence of this effect in CT is a misalignment of the rotation axis position. In

3.4. CASE STUDIES 39

the case of a rotation axis misalignment δ, for a ray parametrized by angle ω
and position vector a from scanning set Γ, the projection p of the object function
f : R3 → R is given by the Radon transform as

p(a,ω) =

∫ ∞
0

f(a+ δ + tω) dt, ω ∈ S2, a ∈ Γ. (3.6)

This discrepancy (most prominently a lateral shift) between the assumed and the
true rotation axis position introduces severe artifacts in the resulting reconstruction,
which appear differently depending on the acquisition geometry. In cone-beam CT
this leads to blurring and "doubling" of object features, which significantly affect
the sharpness of the reconstruction.

(a) Shepp-Logan phantom (b) FDK (before optimization) (c) FDK (after optimization)

0 1 2 3 4 5

Iteration

4.26

4.27

4.28

4.29

V
ox

el
va

ri
an

ce

×10−10

(d) Contrast measure during optimization

0 1 2 3 4 5

Iteration

0.0

0.5

1.0

1.5

2.0

2.5

3.0

E
st

im
at

ed
ax

is
sh

if
t

(p
x)

(e) Rotation axis shifts during optimization

Figure 3.2: (a) Shepp-Logan phantom and its FDK reconstructions obtained from
projection data simulated using (b) shifted rotation axis and (c) rotation axis
position compensated by the proposed gradient-based optimization method. (d)
Image variance-based contrast measure and (e) estimated rotation axis shift during
the optimization.

Experiments

Here we propose to optimize for the rotation axis position by minimizing the mag-
nitude of misalignment-induced artefacts as measured by an appropriate measure

40 CHAPTER 3. AUTO-DIFFERENTIATION FOR CT WORKFLOWS

of reconstruction quality [50] [76]. In cone-beam CT, to account for edge blurring
and "doubling" artifacts, we use a well-known image contrast measure based on
voxel variance [73]. The intuition behind this metric is that a sharply focused
reconstruction has a large spread in the intensity histogram, whereas upon blurring
intensities concentrate around the same gray value. To enable gradient-based
optimization for this task, we adjust the lateral shift of the assumed rotation axis
position by shifting all projection images in the opposite direction using a bicubic
interpolation-based image shift operator implemented in PyTorch. The shifted
projections are then backprojected and the quality of this intermediate result is
quantified. Since all the pieces of the described workflow are implemented in a
differentiable manner within PyTorch, a generic gradient-based optimization algo-
rithm (SGD) can now be used to find the shift of the rotation axis that maximizes
the reconstruction quality. A diagram of the proposed pipeline is shown in Figure
3.3. Both experiments in this section were performed on a workstation with 64GB
RAM, an NVidia GeForce GTX 1070 GPU, and Intel i7-7700K CPU.

Projection data Shift projections

FDK

δ

Compute contrast

Optimizable parametersInput data Objective function

Figure 3.3: CT workflow for self-supervised rotation axis alignment.

Simulated experiment: Shepp-Logan phantom

To test the proposed gradient-based rotation axis alignment method, we first
employ simulated data based on a 512 × 512 px Shepp-Logan phantom (Figure
3.2(a)) that is projected using a geometry with a rotation axis shift of 3 px. As
can be observed in Figure 3.2(b), even a minor misalignment in the axis position
introduces significant blurring in the reconstruction. The proposed gradient-based
contrast optimization method successfully compensates the rotation axis shift
(Figure 3.2(c-e)), converging in only about 3 iterations. The proposed method is
computationally efficient as running 6 iterations took 97 ms on our system.

Real-world experiment: High-resolution cone-beam CT of a walnut

Next, we evaluate the performance of the proposed rotation axis shift compensation
method on experimental data using an open dataset of high-resolution cone-beam
CT of walnuts acquired at the Flex-ray lab [39, 119]. Figure 3.4(a) demonstrates an
FDK reconstruction obtained with the geometry parameters specified in the dataset
metadata, and Figure 3.4(b) shows the reconstruction after axis alignment method

3.4. CASE STUDIES 41

(a) FDK (before optimization)

(b) FDK (after optimization)

0 1 2 3 4 5

Training iteration

0.050

0.052

0.054

0.056

0.058

V
ox

el
va

ri
an

ce

+1.07× 102

(c) Contrast measure during
optimization

0 1 2 3 4 5

Training iteration

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

E
st

im
at

ed
ax

is
sh

if
t

(p
x)

(d) Rotation axis shifts during
optimization

Figure 3.4: (a) FDK reconstruction of the walnut dataset. (b) FDK reconstruction
after rotation axis position was compensated by the proposed gradient-based
optimization method. (d) Image variance-based contrast measure and (e) estimated
rotation axis shift during the optimization.

42 CHAPTER 3. AUTO-DIFFERENTIATION FOR CT WORKFLOWS

has been applied. It can be observed that although there are no obvious artifacts
present in the initial reconstruction (which makes this kind of misalignment easy to
miss with manual inspection), the rotation axis position optimization significantly
improves the resolution of the reconstruction. The improved resolution brings up
details that were not visible before, such as pores in the central part of the walnut
that can be seen in the zoom-in of Figure 3.4(b). The walnut slice is 550× 550 px,
with 501 projection angles, and running 6 iterations took 295 ms on our system.

To summarize, our workflow for rotation axis position alignment, implemented
in an automatic differentiation framework, results in an intuitive formulation of
the axis alignment problem. In addition, the resulting method enjoys a quick
convergence, can retrieve sub-pixel axis shifts in a straightforward manner, and
can be easily extended to multivariate optimization if other geometry parameters,
such as rotation axis tilt and the cone angle of illumination, are included in the
workflow.

3.4.2 Phase retrieval

Introduction

In the second case study we apply an end-to-end optimization approach to phase
contrast imaging (PCI) [57]. PCI can reach nanometric resolution in tomographic
imaging [251], and requires an additional reconstruction step known as phase
retrieval. In PCI, the image is reconstructed based on changes to the wave front
due to the material that is present along the wave path. A widely used experimental
PCI setup is phase propagation-based imaging where projections are acquired from
several different distances using a coherent beam. Next, a phase retrieval algorithm
is used to calculate phase maps.

Here, we will consider Paganin’s phase retrieval algorithm [172], which requires
the material refractive index δ, and attenuation β to be known. Paganin assumes
a single material object, and retrieves the projected thickness of the object T by

T(r⊥) = − 1

β
log

(
F−1

(
βF{I(r⊥, z = R2)}/I0

R2δ‖k⊥‖+ β

))
. (3.7)

Here I is the intensity function, I0 the incident intensity, r⊥ the position vector
perpendicular to the optical axis, k⊥ the wave vector, and R2 the source-detector
distance. A common practice is to divide both the numerator and the denominator
inside the inverse Fourier transform of equation 3.7 by β. The resulting fraction
δ/β is sometimes designated as α. Expert users will often pick α manually to
get a good reconstruction. However, this can be a time-consuming process, it is
subjective, and it can make it more difficult for other researchers to reproduce
results. Therefore, in this section we will show that we can optimize both β and δ
in an unsupervised way for a clear objective. We do so by constructing a pipeline
of operators that propagate gradients end-to-end.

3.4. CASE STUDIES 43

Experiments

Compute L2 distance

Phase images

Match mean+stdev

Paganin

β, δ

Propagate
phase contrast

β, δ

FBP

Binary segmentation

Optimizable parametersInput data Objective function

Figure 3.5: PCI pipeline for self-supervised optimization of β and δ.

In the experiments, we use a pipeline that takes raw projections as input,
and performs Paganin phase retrieval to produce phase maps. A reconstruction
based on the phase maps is made with filtered backprojection (FBP), and a binary
segmentation is made with an implementation of Otsu’s method [170] that makes
use of equation 3.5. We use binary segmentation since Paganin assumes a single
material.

After segmentation, using the same refraction and attenuation indices, projec-
tions are simulated based on the segmentation using a wave propagation projector.
Finally, the simulated projections are scaled so that their mean and standard devi-
ation align with the raw input. As a loss function we take the mean-squared error
loss between the scaled simulated projections and the original input projections. A
diagram of the pipeline is given in Figure 3.5. Both experiments in this section
were performed on a server with 384GB RAM, an NVidia Titan RTX GPU, and
two Intel Xeon Gold 6130 CPUs.

(a) CaCO3 phantom (b) Reference FBP (c) FBP (before) (d) FBP (after)

Figure 3.6: (a) Slice through calcium carbonate simulated phantom. (b): FBP
reconstruction using correct β and δ. (c): FBP of phase projections retrieved with
the material indices for water that were used as initialization. (d): FBP of phase
projections retrieved with learned material parameters after optimization.

44 CHAPTER 3. AUTO-DIFFERENTIATION FOR CT WORKFLOWS

0 20 40 60 80 100 120

Optimization iteration

10−1

M
ea

n
sq

u
ar

ed
er

ro
r

Optimization loss end-to-end gradient optimization
phase retrieval pipeline for CaCO3 phantom

End-to-end gradient method

0 25 50 75 100

Optimization iteration

−22.2

−22.0

−21.8

−21.6

N
at

u
ra

l
lo

ga
ri

th
m

of
b

et
a

Attenuation index during optimization

Beta

0 25 50 75 100

Optimization iteration

−15.6

−15.4

−15.2

−15.0

N
at

u
ra

l
lo

ga
ri

th
m

of
d

el
ta

Refraction index during optimization

Delta

Figure 3.7: (Left): L2-loss between input phase maps and output simulated phase
maps per iteration. Attenuation β (middle), and refraction δ (right) value per
iteration.

Simulated experiment: Calcium carbonate cube

First, we perform a simulated experiment on a 3D phantom (1923 volume, 572
angles) of a calcium carbonate hollow cube, with a smaller cube attached to one of
its sides (see Figure 3.6(a)). Next, we simulate phase contrast images using the
material parameters of calcium carbonate, and add Poisson noise. As reference,
we show the FBP reconstruction of the phase maps acquired with Paganin with
the correct β and δ in Figure 3.6(b). We initialize the attenuation and refraction
indices to those of water. We use a gradient descent algorithm (Adam) optimization
algorithm to update β and δ. For a smoother optimization we optimize these
parameters on an exponential scale.

The FBP reconstructions before and after optimization are given in Figure 3.6.
We see that the initial FBP reconstruction using water material indices has a halo
artifact. This artifact is no longer visible after optimization. The optimization loss
and the attenuation and refraction values (logarithm) per iteration are given in
Figure 3.7. While the reconstruction quality has improved, the pipeline is not able
to fully recover the original material index values; the final values after optimization

3.4. CASE STUDIES 45

Before After

Figure 3.8: Hydrogen fuel cell [45] reconstructed with FBP with default material
parameters for water (before), and after optimizing parameters end-to-end (after).

are ln(β) = −21.50 and ln(δ) = −15.69, whereas the original values for calcium
carbonate are ln(β) = −19.59, ln(δ) = −13.94. However, the value of α = δ/β is
only 17.6% off the original. Running 120 iterations of optimization on this pipeline
took 16 minutes and 48 seconds on our system.

Real-world experiment: Hydrogen fuel cell

We perform a real-world data experiment on a hydrogen fuel cell dataset acquired at
the TOMCAT beamline of the Swiss Light Source (PaulScherrer Institut)[45]. The
experiment is performed on a central slab of the full volume of size 160×1001×1476
to reduce computation time. For the experiment we use the same setup as for the
simulated experiment, and again initialize the attenuation and refraction indices to
those of water. In Figure 3.8 we show reconstructed central slices of the fuel cell
before and after optimization. We see that after optimization small-scale features
such as bubbles are visible. The zoomed images show that the initial reconstruction
is blurred, and the final reconstruction after optimization is much sharper. In
Figure 3.9 we display the optimization loss and the attenuation and refraction
values per iteration. Running 200 iterations of optimization on this pipeline took 1
hour and 38 minutes on our system.

Overall the experiments show that we can use a generic gradient based approach
to optimize for reconstruction quality in an self-supervised way in phase contrast
imaging. We showed on both a simulated and real-word dataset that the pipeline
can be optimized for a clear objective, as opposed to manual selecting the α = δ/β
parameter. First, this reduces the work for operators as they no longer have to

46 CHAPTER 3. AUTO-DIFFERENTIATION FOR CT WORKFLOWS

0 25 50 75 100 125 150 175 200

Optimization iteration

2× 10−4

3× 10−4

4× 10−4

M
ea

n
sq

u
ar

ed
er

ro
r

Optimization loss end-to-end gradient optimization
phase retrieval pipeline for hydrogen fuel cell

End-to-end gradient method

0 50 100 150 200

Optimization iteration

−25

−24

−23

−22

−21

−20

N
at

u
ra

l
lo

ga
ri

th
m

of
b

et
a

Attenuation index during optimization

Beta

0 50 100 150 200

Optimization iteration

−24

−22

−20

−18

−16

N
at

u
ra

l
lo

ga
ri

th
m

of
d

el
ta

Refraction index during optimization

Delta

Figure 3.9: (Left): L2-loss between input phase maps and output simulated phase
maps per iteration. Attenuation β (middle), and refraction δ (right) value per
iteration.

3.4. CASE STUDIES 47

tune parameters manually. Second, this makes the procedure more reproducible
for different datasets.

3.4.3 Beam hardening correction
Introduction

For the third case study, we implemented self-supervised correction of artifacts
introduced by beam hardening [23, 91]. The number of materials is denoted by
N , with attenuation coefficients µn(E), and the beam spectrum has Em energy
bins with intensities Ie. Furthermore, let li,j be the intersection length of ray i
(i = 1 . . . D) with voxel j (j = 1 . . . J), dj the relative density of voxel j, and sn,j
a variable that is 1 if voxel j contains material n, and 0 otherwise. Then we can
denote for a ray i and a material n the projected relative density Pi,n, and the
monochromatic measured intensity by Beer-Lambert as

Pi,n =

J∑
j=1

li,jdjsn,j , Imono,i = I0e
−∑N

n=1 µn(E0)Pi,n , (3.8)

for a monochromatic beam with energy E0 and intensity I0. The measured
polychromatic intensity (discrete) is given by

Ipoly,i =

Em∑
e=1

Iee
−∑N

n=1 µn,ePi,n , (3.9)

for a polychromatic beam with energies e and intensities Ie.
For a monochromatic X-ray, the attenuation coefficient µ is linearly related

to the thickness of the object by Beer-Lambert’s law. However, in practice X-
ray beams are often polychromatic and this relation is no longer linear as lower
energy photons get absorbed more than higher energy photons. Therefore, as a
polychromatic beam travels through an object it “hardens”, i.e., the average photon
energy increases. If this effect is not taken into account by the reconstruction
algorithm, it causes streaking and cupping artifacts because the lower absorbance
due to higher average energy is mistakenly reconstructed as a lower density material.

Experiments

The aim of the case study is to highlight how combining an explicit forward model
with a few lines of code and generic gradient-optimization can result in sophisticated
algorithm construction, even for cases that used to require lengthy, hand-crafted
implementations. In the experiments we will perform unsupervised beam hardening
correction by learning the beam spectrum, and the energy-dependent attenuation
coefficients per material. We will base the study on [66], where three different
iterative unsupervised beam hardening correction algorithms are proposed and
compared. We use the best performing algorithm in [66] as a comparison; the itera-
tive sinogram preprocessing (ISP) method. The ISP method is an iterative scheme

48 CHAPTER 3. AUTO-DIFFERENTIATION FOR CT WORKFLOWS

with multiple steps, such as a bruteforce segmentation step, a local optimization
step, and a reconstruction update step. For a detailed explanation of ISP we refer
to [66]. ISP assumes that the number of materials is known beforehand, but no
knowledge of the beam spectrum, or attenuation coefficients is assumed.

Projection data Reconstruct Spectral projection

s, µ, I

Evaluate ϕ
Correct projections

Inner optimization loop

Optimizable parametersInput data Objective function

Figure 3.10: CT pipeline for self-supervised beam hardening correction.

As opposed to constructing a specialized algorithm such as ISP, we compare to
a generic gradient-based approach where beam spectrum, attenuation coefficients,
and thresholds are learned jointly. The generic approach is self-supervised using
the same loss function as ISP

ϕ(µ, I, s,d) =
1

D

D∑
i=1

(
log

(
Imeas
poly,i

I0

)
− log

(
Isimpoly,i

))2

, (3.10)

which is the L2-loss between the simulated polychromatic projections and the
original input projections. To initialize the thresholds we use Otsu’s method on
an initial reconstruction R0 made with FBP or FDK. After the initialization we
iterate as

1. Update segmentation thresholds, attenuation coefficients, and beam intensi-
ties,

sk, µk, Ik = arg min
s,µ,I

ϕ(µ, I, g(Rk−1, s),d = 1), (3.11)

where g(Rk−1, s) is the differentiable thresholding function described before
(equation 3.5), ϕ is the ISP loss function, and arg min is performed with
gradient descent.

2. Update the sinograms and corrected reconstruction Rk as for ISP.

A diagram of the workflow is shown in Figure 3.10. By using an implementa-
tion of the spectral projector that can propagate gradients, we can optimize the
attenuation, intensity, and thresholds jointly. This improves the complexity of the
algorithm as the thresholding step in ISP is exponential in the number of materials
and computationally expensive. For our experiments, we created a PyTorch based
implementation of ISP and our generic gradient-based approach. Both experiments

3.4. CASE STUDIES 49

in this section were performed on a workstation with 64GB RAM, an NVidia RTX
2070 Super GPU, and AMD Ryzen 7 3800X CPU.

Figure 3.11: (Left): Barbapapa phantom consisting of PMMA filled with aluminium
cylinders. (Right): FBP reconstructions of simulated spectral projections (with
added Gaussian noise).

Simulated experiment

We perform a simulated experiment based on the Barbapapa phantom [66] where
we created a simulated phantom (see Figure 3.11) of polymethyl methacrylate
(PMMA) filled with aluminium rods with size 256× 256. Next, we use a spectral
projector with a simulated effective beam spectrum to simulate beam hardening
artifacts. Finally, we add 2% Gaussian noise on the projections (see Figure 3.11
for reconstruction of noisy projections). To perform beam hardening correction
we performed 40 steps of ISP. We ran the generic gradient-based approach for
the same amount of objective function evaluations. In Figure 3.12 we show the
FBP reconstructions of the corrected sinograms for both algorithms, and the
accompanying material segmentations. We see that both methods reduced cupping
and streaking artifacts. Furthermore, Figures 3.12(d) to 3.12(f) show a significant
improvement in segmentation quality for both methods, which is close to the
original phantom.

Line profiles for each of the three reconstructions are given in Figure 3.13(a).
The line profiles confirm that the cupping artifacts are significantly reduced for
both the PMMA material and the aluminium rods. In Figure 3.13(b) we plot the
self-supervised loss for both methods. Both methods reach a similar optimum, but
the combined gradient method shows slightly faster convergence. Note that the
combined gradient method also runs twice as fast, which is due to the missing
brute-force threshold selection step. This is also reflected in the runtimes; ISP ran
for 16 minutes and 15 seconds, whereas the generic gradient-based approach ran
for 8 minutes and 9 seconds.

Play-Doh foreign object X-ray CT dataset

We also evaluate both beam hardening correction methods on a real-world X-ray
CT dataset of Play-Doh objects filled with stones [257, 258]. The experiment was

50 CHAPTER 3. AUTO-DIFFERENTIATION FOR CT WORKFLOWS

(a) Original FBP reconstruction (b) ISP reconstruction (c) CG reconstruction

(d) Original FBP segmentation (e) ISP segmentation (f) CG segmentation

Figure 3.12: (Top): Barbapapa phantom reconstructed with the Filtered BackPro-
jection (FBP) algorithm for ISP and a combined gradient-based (CG) approach.
(Bottom): Material segmentations of corrected reconstructions.

0 50 100 150 200 250

Position

0.0

0.5

1.0

1.5

2.0

A
tt

en
u

at
io

n

Line profiles through Barbapapa reconstructions

Original

ISP

Combined gradient

(a) Line profiles

0 5000 10000 15000 20000

Training iteration

10−4

10−3

10−2

10−1

100

IS
P

lo
ss

Training loss gradient method on barbapapa phantom

ISP

Combined gradient

(b) ISP loss

Figure 3.13: (a) Three line profiles through the original, ISP corrected, and
combined gradient corrected Barbapapa reconstructions. (b) Optimization losses
per ϕ evaluation.

performed on a 478× 478 central slice. The Play-Doh objects exhibit significant
cupping artifacts. In Figure 3.14 we show the FBP reconstructions of the corrected

3.4. CASE STUDIES 51

(a) Original FBP reconstruction (b) ISP reconstruction (c) CG reconstruction

Figure 3.14: Play-Doh and stones reconstructed with the Filtered BackProjection
(FBP) algorithm for ISP and a combined gradient-based (CG) approach.

sinograms for both algorithms. We see that both methods reduced cupping, which
is also clearly visible on the line profiles shown in Figure 3.15(a). In Figure 3.15(b)
we plot the self-supervised loss for both methods. Both methods reach a similar
optimum, but the combined gradient method shows a more stable convergence.
The jumps in the loss curve for ISP happen when a new optimal set of thresholds is
determined with brute-force calculation after the local minimization steps. Since the
combined gradient method jointly optimizes all parameters every step, it does not
suffer from such jumps. The improved computational efficiency is more prominent
due to faster convergence of the local optimization step; ISP ran for 19 minutes
and 51 seconds, whereas the generic gradient-based approach ran for 4 minutes
and 35 seconds.

0 100 200 300 400 500

Position

−0.0025

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

A
tt

en
u

at
io

n

Line profiles through PlayDoh reconstructions

Original

ISP

Combined
gradient

(a) Line profiles

0 1000 2000 3000 4000 5000 6000

Training iteration

10−3

10−2

IS
P

lo
ss

Training loss gradient method on PlayDoh dataset

ISP

Combined gradient

(b) ISP loss

Figure 3.15: (a) Three line profiles through the original, ISP corrected, and
combined gradient corrected Play-Doh reconstructions. (b) Optimization losses
per ϕ evaluation.

Overall the experiments show that by using a generic gradient-based approach for
all parameters, we can create an algorithm that performs similar to the specialized

52 CHAPTER 3. AUTO-DIFFERENTIATION FOR CT WORKFLOWS

ISP algorithm in similar runtime. The construction of such an algorithm is more
straightforward as we can create the forward model and embed the workflow in
an auto-differentiation framework. This allows us to optimize end-to-end in a
straight-forward manner.

3.4.4 Optimizing total variation reconstruction and neural net-
works end-to-end

Introduction

In the final case study we will focus on denoising CT reconstructions using convo-
lutional neural networks (CNNs) jointly with total variation reconstruction (TV)
[176, 184, 240]. Since neural networks are often large, black-box models that are
hard to interpret, it can be desirable to let more computation steps be performed
by interpretable algorithms and use a smaller network, rather than using simpler
algorithms and a larger neural network. In the experiment we show how embedding
CT algorithms in an auto-differentiation framework allows for easy interfacing with
deep learning algorithms, and the pipeline can be trained end-to-end. This method
allows us to design a more interpretable pipeline using variational methods with
similar accuracy, while using a smaller neural network.

Total variation reconstruction is a commonly used variational method to incor-
porate prior knowledge that the gradient of the image should be sparse. For TV,
the regularization term in equation 3.4 becomes the magnitude of the gradient

x∗ = arg min
x

{
‖Ax− y‖22 + λ‖x‖TV

}
= arg min

x

{
‖Ax− y‖22 + λ‖∇x‖1

}
.

(3.12)
To minimize the functional we use an implementation based on Chambolle-Pock

[224]. The regularization parameter λ controls the trade-off between data fidelity
and regularization term. A small λ will result in a reconstruction x∗ that is close
to the raw data, but potentially with high noise. A large λ can lead to less noise
and more connected components of equal value. For more information on total
variation regularization we refer to Rudin-Osher-Fatemi [203].

Experiments

We perform an experiment on simulated 2D foam-like phantoms of size 256× 256.
These phantoms contain both large and small scale features (see Figure 3.16(a)).
We simulate parallel beam projections from an angular range of -60◦ to 60◦, creating
missing wedge artifacts, and add Poisson noise to the projection data (see Figure
3.16(b) for an example FBP reconstruction). For TV reconstruction (Figures
3.16(c) and (d)), this creates a situation where a small λ keeps smaller features, but
creates a high noise reconstruction, while a larger λ removes more noise but creates
connected components of voxels which removes smaller features. We created a
training dataset of 100 randomly generated target phantoms, and corresponding
noisy limited angle projections. In our experiments we in each case have the

3.4. CASE STUDIES 53

(a) Phantom (b) FBP reconstruction (c) TV (λ = 10−5) (d) TV (λ = 10−2)

Figure 3.16: (a) Foam CT binary phantom, (b) FBP reconstruction of phantom
projections with added severe noise, (c) TV reconstruction with λ = 10−8, and (d)
TV reconstruction with λ = 10−2.

noisy projections as input data, and use the original phantom as target data. Our
implementation of total variation reconstruction uses PyTorch primitives, and λ can
therefore be optimized end-to-end with gradient-based approaches in conjunction
with deep learning algorithms. In total, we trained four pipelines end-to-end.

1. FBP + Small CNN: An FBP reconstruction is input for a small CNN that
denoises the image. The CNN consists of 3 layers of 3× 3 kernels arranged
in 1× 64, 64× 32, and 32× 1 channels (19.393 parameters in total). Only
the CNN weights are learned.

2. Single TV + Small CNN: A single TV reconstruction is input for a small
CNN that denoises the image. The CNN consists of 3 layers of 3× 3 kernels
arranged in 1× 64, 64× 32, and 32× 1 channels (19.393 parameters in total).
Both λ and the CNN weights are learned jointly. λ is initialized at λ = 10−3.

3. Double TV + Small CNN: Two TV reconstructions with different λ are
input for a small CNN that uses both inputs to create a single denoised
output image. The CNN consists of 3 layers of 3 × 3 kernels arranged in
2×64, 64×32, and 32×1 channels (19.969 parameters in total). Both λ1, λ2,
and the CNN weights are learned jointly. The λ’s are initialized as λ1 = 10−3,
and λ2 = 10−8.

4. FBP + Large CNN: An FBP reconstruction is input for a larger CNN that
densoises the image. The CNN consists of 4 layers of 3× 3 kernels arranged
in 1 × 160, 160 × 96, 96 × 64, and 64 × 1 channels (195.873 parameters in
total). Only the CNN weights are learned.

A diagram of the Double TV + Small CNN pipeline is shown in Figure 3.17.
All 4 experiments are run for an equal number of training iterations, and were
performed on a workstation with 64GB RAM, an NVidia RTX 2070 Super GPU, and
AMD Ryzen 7 3800X CPU. For validating the results we generated an additional
random phantom that was not in the training set. The resulting denoised validation
reconstructions are shown in Figure 3.18.

54 CHAPTER 3. AUTO-DIFFERENTIATION FOR CT WORKFLOWS

Projection data

TV Reconstruction
λ1

TV Reconstruction
λ2

CNN
weights

Mean squared error

Ground truth data

Optimizable parametersInput data Objective function

Figure 3.17: Pipeline for supervised denoising of CT data.

Phantom FBP+small CNN TV+small CNN 2xTV+small CNN FBP+large CNN

Phantom (zoom) FBP+small CNN TV+small CNN 2xTV+small CNN FBP+large CNN

Figure 3.18: (Top): From left to right; Foam phantom, output of FBP reconstruction
followed by a small CNN, output of a single total variation reconstruction followed
by a CNN, output of two total variation reconstructions followed by a CNN, output
of FBP reconstruction followed by a larger CNN. (Bottom): Zoom of top row.

We see that all pipelines can denoise the reconstruction significantly, but
struggle to remove artifacts introduced by the missing angular information. The
FBP+SmallCNN pipeline seemingly performs worse on visual inspection of the
zoomed images. Arguably, both TV pipelines perform better than FBP+LargeCNN,
even though the larger CNN had 10 times more parameters. This suggests that
the prior knowledge incorporated by total variation makes for an easier denoising
problem for the CNN. It is unclear whether the addition of a second total variation
operator benefited the denoising quality. However, in validation loss the double
total variation operator performs better with 1.805 · 10−2 loss versus 1.864 · 10−2

for the single TV operator. The validation loss for the FBP+SmallCNN pipeline is
2.322 · 10−2, and for the FBP+LargeCNN pipeline 2.268 · 10−2.

3.5. DISCUSSION 55

0 2000 4000 6000 8000 10000

Training iteration

10−2

10−1

M
ea

n
sq

u
ar

ed
er

ro
r

Training loss TV+CNN experiment on foam phantoms

FBP+SmallCNN

TV+SmallCNN

2xTV+SmallCNN

FBP+LargeCNN

(a) Training losses

0 2000 4000 6000 8000 10000

Training iteration

10−8

10−7

10−6

10−5

10−4

10−3

λ

TV regularization λ value per iteration

Sinlge TV λ

Double TV λ1

Double TV λ2

(b) λ values

Figure 3.19: (a) Mean squared error loss during training. (b) TV regularization λ
values during training.

We plot the training losses and λ values during training in Figure 3.19. An
interesting observation is that single TV learned a λ with a value in between λ1

and λ2 of the double TV pipeline. We hypothesize that the single TV pipeline
had to compromise λ between leaving small features intact, and denoising the
reconstruction.

Running total variation in a training procedure comes at large computational
cost; a single training step (100 images) took 99.6, and 198.3 seconds for single
and double TV respectively whereas FBP + large CNN took 1.82 seconds. For
3D it could therefore be infeasible to train this pipeline. For single scan tuning of
λ a surrogate TV approach can be considered during optimization, such as [118].
Alternatively, λ could be tuned on the central slice for 3D cases.

Overall the experiment shows how embedding classical CT algorithms, such as
TV reconstruction, in GPU accelerated auto-differentiation frameworks allows for
the easy prototyping of mixed classical and deep learning pipelines. We were able to
replace a large CNN with 200 thousand parameters by a stack of two TV operators
to achieve better denoising accuracy, and reduce the CNN size to 20 thousand
parameters. In addition, the total variation pipelines are more interpretable as
the behaviour of TV for small or large λ is well understood. In general, this easy
interfacing of deep learning and classical methods enables end-to-end learning of
parameters, which opens up new areas of research. Additionally, the resulting
pipeline may be more interpretable since parameters of classical algorithms are
often linked to physical or mathematical concepts that are better understood.

3.5 Discussion
Our four use cases and the corresponding experiments demonstrate that a broad
range of CT workflows can be implemented as end-to-end optimized pipelines
using auto-differentiation. Depending on the particular use case, this approach

56 CHAPTER 3. AUTO-DIFFERENTIATION FOR CT WORKFLOWS

yields several benefits, which we will now discuss in more detail. When all pieces
of a data processing pipeline facilitate gradient propagation, parameters at all
steps of the pipeline can be optimized jointly for a criterion calculated at any
given step. In combination with explicit quality criteria this allowed us to design
workflows where the learnable parameters were used in the earlier stages of the
pipeline, while the objective function was more naturally defined at the end of the
pipeline. For example, in both the rotation axis alignment and beam hardening
correction experiments we were able to optimize parameters that are used in the
projection domain for metrics computed in the volume domain. Another benefit is
that this approach allows for efficient automatic optimization of parameters that
may otherwise be chosen manually. This additionally improves the transferability
of CT workflows when applied to new data as the parameters can be optimized in
an objective manner using the same quality criterion.

Our approach made it possible to implement workflows more efficiently by using
existing building blocks, and by defining the workflow in a declarative manner,
i.e., implementing the forward model and then optimizing its parameters with a
generic off-the-shelf optimizer. Creating workflows in this manner is typically less
time consuming to develop and more flexible compared to specialized methods. For
example, in the beam hardening experiment we showed that a gradient descent
on the forward model of the physical effect results in a quality comparable to a
specialized correction method.

Using our design principles allowed for seamless compatibility between classical
and deep learning-based approaches. As classical approaches often come with an
intuition of their behaviour, this combination of classical algorithms and deep
learning can lead to more robust and interpretable workflows. In the last experi-
ment we showed that using existing classical algorithms in conjunction with deep
learning can create workflows that perform similarly to purely deep learning based
approaches while using smaller neural networks.

Even though gradient-based end-to-end optimization has several potential
benefits, our approach can create certain practical challenges. First, convergence of
a gradient descent optimizer is not always guaranteed, and can potentially produce
suboptimal solutions. Second, the learning rate needs to be picked manually, which
is especially challenging when the involved parameters have significantly different
magnitudes. Despite the disadvantages, as we have seen in the field of deep learning,
this approach often still produces strong results in practice, and well-performing
heuristic solutions to mathematically complicated problems were found.

3.6 Conclusion
We have shown how implementing classical CT algorithms in an auto-differentiation
framework can improve their transferability and interpretability, enable efficient
automatic end-to-end optimization, and allow for solving real-world problems with-
out having to develop specialized algorithms. We have explored four use cases
experimentally: rotation axis alignment, phase contrast imaging, beam hardening

3.6. CONCLUSION 57

correction, and end-to-end denoising with deep learning and total variation recon-
struction, demonstrating that a wide range of CT workflows can be implemented
in such a framework. In the future, the key benefits demonstrated in this paper
can be utilized in computational toolboxes that leverage auto-differentiation for
improved construction and execution of advanced CT workflows.

4
LEAN: graph-based pruning

for convolutional neural
networks by extracting

longest chains

4.1 Introduction
In recent years, convolutional neural networks (CNNs) have become state-of-the-art
for many image-to-image translation tasks [121], including image segmentation
[202], and denoising [232]. They are increasingly used as a subcomponent of a
larger system, e.g., visual odometry [254], as well as in energy-limited and real-time
applications [255]. In these situations, the applicability of high-accuracy CNNs
may be limited by large computational resource requirements. Small networks may
be more applicable in such settings, but may lack accuracy.

Neural network pruning [109, 156] has recently gained popularity as a technique
to reduce the size of neural networks [18]. Neural networks consist of learnable
parameters, including the scalar components of the convolutional filters. When
pruning, the neural network is reduced in size by removing such scalar parameters
while trying to maintain high accuracy. We distinguish between individual pa-
rameter pruning [80], where each parameter of an operation is ranked and pruned
separately, and structured pruning [125, 142], where entire convolutional filters are
ranked and pruned. As convolution operators can only be removed once all scalar
parameters of the filter kernel have been pruned, structured pruning is favored over

59

60
CHAPTER 4. LEAN: GRAPH-BASED PRUNING FOR CONVOLUTIONAL

NEURAL NETWORKS BY EXTRACTING LONGEST CHAINS

individual pruning when aiming to improve computational performance [178]. In
the remainder of this paper, we focus on structured pruning.

Although structured pruning methods take into account the division of a neural
network into operations, they do not take into account the fact that the output of
the network is formed by a sequence of such operations. This has two drawbacks.
First, since the relative scaling of individual convolutions may vary without changing
the output of the whole chain, pruning methods that prune individual operators
could potentially prune a suboptimal set of operators from the chain. Second, to
significantly reduce evaluation time, a severe pruning regime must be considered,
i.e., a pruning ratio (percentage of remaining parameters after pruning) of 1–10%.
In this regime, pruning can result in network disjointness, i.e., the network contains
sections that are not part of some path from the input to the network output.
Some existing pruning methods take into account network structure to a limited
degree [206]. In practice, however, these methods do not contain safeguards to
avoid network disjointness.

In this paper, we present a novel pruning method called LongEst-chAiN (LEAN)
pruning, which as opposed to conventional pruning approaches uses graph-based
algorithms to keep or prune chains of operations collectively. In LEAN, a CNN
is represented as a graph that contains all the CNN operators, with the operator
norm of each operator as edge weights. We argue that strong subnetworks in a
CNN can be discovered by extracting the longest (multiplicative) paths, using
computationally efficient graph algorithms. The main focus of this work is to show
how LEAN pruning can significantly improve the computation speed of CNNs for
real-world image-to-image applications, and obtain high accuracy in the severe
pruning regime that is difficult to achieve with existing approaches.

This paper is structured as follows. In Section 4.2, we explore existing pruning
approaches. In Section 4.3, we outline the preliminaries on CNNs, pruning filters,
and the operator norm. Next, in Section 4.4, we introduce LEAN pruning and
describe how to calculate the operator norm of various convolutional operators. We
discuss the setup of our experiments in Section 4.5. In Section 4.6, we demonstrate
the results of the proposed pruning approach on a series of image segmentation
problems and report practically realized wall time speedup. Our final conclusions
are presented in Section 4.7.

4.2 Related work
Reducing the size of neural networks by removing parameters has been studied for
decades [82, 109, 156]. Several works take into account the structure of the network
to some degree. In [130] filters are pruned at runtime based on the feature maps
[130]. Alternatively, one can prune entire channels [87], or decide which channels
to keep so that the feature maps approximate the output of the unpruned network
over several training examples [142]. In recent work, a graph is built for each
convolutional layer, and filters are pruned based on the properties of this graph
[245]. In [206] a neural network is represented as a graph and interdependencies

4.3. PRELIMINARIES 61

are determined using the Ising model.
Many pruning approaches are aimed at reducing neural network size with

little accuracy drop [53, 86, 154, 261], as opposed to sacrificing accuracy in favor
of computation speed. These approaches rarely exceed a pruning ratio of 12–
50% [18, 131, 142]. When a high pruning ratio is used, e.g., a range of 5–10%
[130, 138], a significant drop in accuracy is observed. Pruning ratios of 2–10%
can be achieved with an accuracy drop of 1-3% by learning-rate rewinding [198].
However, the reduction in FLOPs was less substantial (1.5–4.8 times). In [256]
severe pruning ratios of up to 1% have been considered, but the approach achieved
limited improvements in terms of FLOPs reduction compared with existing pruning
methods.

Criteria for deciding which elements of a neural network to prune have been
extensively studied. A parameter’s importance is commonly scored using its abso-
lute value. Whether this is a reasonable metric has been questioned [122]. Singular
values (which determine certain operator norms) have been used to compress
network layers [46] and to prune feed-forward networks [3]. Efficient methods for
the computation of singular values have been developed for convolutional layers
[223]. Furthermore, a definition of ReLU singular values was proposed recently
with an accompanying upper bound [49].

4.3 Preliminaries

4.3.1 CNNs for segmentation
A common image to image translation task is semantic image segmentation. The
goal of semantic image segmentation is to assign a class label to each pixel in an
image. A segmentation CNN computes a function f : Rm×n → [0, 1]k×m×n, which
specifies the probability of each pixel being in one of the k classes for an m × n
image.

CNNs are composed of layers of operations which pass images from one layer
to the next. Every operation, e.g., convolution, has an input x and output y. The
input and output consist of one or more images, called channels. For clarity, we
distinguish throughout this paper between an operation, which may have several
input and output channels, and an operator, which computes the relation between
a single input channel and a single output channel. For instance, in a convolutional
operation with input channels x1, . . . ,xN , an output channel yj is computed by
convolving input images with learned filters

yj =

(
N∑
i=1

hij ∗ xi
)

+ bj . (4.1)

Here hij is the filter related to the convolution operator that acts between channel xi

and yj, and bj is an additive bias parameter. In a similar way, every CNN operation
produces an output which consists of a number of channels. The exact arrangement
of operations, and connections between them, depends on the architecture.

62
CHAPTER 4. LEAN: GRAPH-BASED PRUNING FOR CONVOLUTIONAL

NEURAL NETWORKS BY EXTRACTING LONGEST CHAINS

A common operator to downsample images is the strided convolution. The
stride defines the step size of the convolution kernel. A convolution with stride s
defines a map h : Rm×n → Rm

s ×ns . Upsampling images can be done by transposed
convolutions. Transposed convolutions intersperse the input image pixels with
zeroes so that the output image has larger dimensions.

In addition to convolution operators, other common operators such as pooling
and batch normalization are often used. A batch normalization operator [101]
normalizes the input images for convolutional layers. A batch normalization
operator scales and shifts an image xi by

yi = γ
xi − µB√
σ2
B + ε

+ β. (4.2)

Here, γ and β are scaling and bias parameters which are learned during training,
and µB and σ2

B are the running mean and variance of the mini-batch, i.e., the set
of images used for the current training step. For an overview of CNN components
we refer to [68].

4.3.2 Pruning convolution filters
Pruning techniques aim to remove extraneous parameters from a neural network.
Several schemes exist to prune parameters from a network, but retraining the
network after pruning is critical to avoid significantly impacting accuracy [81].
Pruning a network once after training is called one-shot pruning. Alternatively, a
network can be fine-tuned, where the network is repeatedly pruned by a certain
percentage and is retrained for a few epochs after every pruning step. Fine-tuning
typically gives better results than one-shot pruning [198].

Generic pruning algorithm: All pruning methods used in this work make use
of the fine-tuning pruning algorithm outlined in Algorithm 1. The selection criteria
for determining which filters to keep for each step define the different pruning
methods. The pruning ratio pRatio is the fraction of remaining convolutions we
ultimately want to keep, and stepRatio is the fraction of convolutions that is
pruned at each step.

Algorithm 1 Fine-tuning pruning algorithm
1: procedure Prune(model, pRatio, nSteps, epochs)
2: stepRatio← eln(pRatio)/nSteps

3: for step ← 0 to nSteps do
4: pruneParams← selectPrunePars(model, stepRatio)
5: model← removePars(model, pruneParams)
6: for k ← 0 to epochs do
7: model← trainOneEpoch(model, trainData)

return model

Here, we focus on structured pruning. In structured pruning, a common
approach to decide which filters to remove is structured magnitude pruning. When

4.4. METHOD 63

Conv 3x3, ReLU

Avg Pool 2x2

BatchNorm

Upconv 2x2

CNN

In
p

u
t

2

2

O
u
tp

u
t2 1

1

Pruning Graph(A) (B)

1

2
 i
n
p

u
t

ch
a
n
n
e
ls

ReLU ReLU

ReLU

2

Figure 4.1: (A) Example CNN architecture with the number of channels indicated
above each layer. (B) Associated pruning graph. Every channel is a node, and
every operator is an edge connecting input and output nodes. The edge weights
are the corresponding operator norms.

using structured magnitude pruning, a convolution filter h ∈ Rk×k is scored by
its L1 vector norm ||h||1. Filters with norms below a threshold are pruned. The
threshold is determined by sorting a group of filters, and removing a percentage
based on the pruning ratio. Thresholds can be set per layer or globally. Setting
thresholds globally can give higher accuracy than setting thresholds per layer [18].

4.3.3 Operator norm
As an alternative to the L1-norm, one can interpret a convolution h as a linear
operator which acts on the input image, and score it according to an operator
norm. The (induced) operator norm ‖·‖p is defined as

‖h‖p := sup
{
‖h ∗ x‖p

∣∣∣ x ∈ Rn, ‖x‖p = 1
}
. (4.3)

A common operator norm is the spectral norm, which is induced by the Euclidean
norm (p = 2). The spectral norm can be obtained by calculating the largest singular
value of the matrix H associated with h, ‖h‖2 = σmax(H) [148]. A property that
we will use is that the spectral norm is submultiplicative, i.e., we have

‖AB‖ ≤ ‖A‖ · ‖B‖, for all A,B ∈ Rn×n. (4.4)

4.4 Method
The idea behind LEAN is to construct a weighted graph structure formed by the
operators of the CNN and having their respective norms as edge weights, such that
the multiplicative longest paths in this graph are selected as important subnetworks.
The remaining unselected operators will then be pruned. The motivation for LEAN
is two-fold. The first consideration is that since convolutions are linear operators,
the scaling of an individual convolution within a chain of convolutions is somewhat
arbitrary. For a scalar λ and chain of linear operators A1 ◦ · · · ◦Am, we have that

64
CHAPTER 4. LEAN: GRAPH-BASED PRUNING FOR CONVOLUTIONAL

NEURAL NETWORKS BY EXTRACTING LONGEST CHAINS

any chain (λ1A1)◦ · · · ◦ (λmAm) is equivalent if
∏
λi = 1. Since ‖λiAi‖ = |λi|‖Ai‖,

this can lead to any arbitrary ranking of operators. However, the chain as a whole
gives the same output for each input. We argue that this can lead to incorrect
pruning when pruning individual operators based on norms, rather than entire
chains. We hypothesize that these scaling properties still approximately hold in
the presence of non-linear operators. Since LEAN ranks chains of operators, it
is invariant under these scaling properties. Second, by extracting chains LEAN
combats network disjointness.

4.4.1 LEAN: creating the pruning graph
Graph structure: In this section, we define the pruning graph that is the basis
of the LEAN algorithm. As discussed in Section 4.3.1, we say that every CNN
operation has an input x and an output y, consisting of channels xi and yi. For
each channel, we add a single node in the pruning graph. An edge connects two
nodes corresponding to input channel xi and output channel yi if channel xi is
used in the computation of channel yi. In the terminology of Section 4.3.1, each
edge corresponds to an operator. For instance, a convolution operation is converted
by adding an edge from each input channel xi to every output channel yj , each
corresponding to exactly one filter hij . Certain CNN operations may be performed
in-place in practice, but we consider them as separate nodes in the pruning graph.
A combined convolution and ReLU operation, for instance, results in a node for
the output of the convolution and a separate node for the output of the ReLU, as
shown in Figure 4.1.

Edge weights: To each edge, we assign as weight the operator norm of its
corresponding operator. That is, we calculate the maximal scaling that an input
could undergo as a result of applying the operator. In this calculation, we ignore
any additive bias terms. For instance, applying a batch normalization results in a
scaling of |γ|/

√
σ2
B+ε (see Equation (4.2)). The scaling of non-linear operators in

neural networks is sometimes bounded, as in the case of the ReLU for instance, to
which we assign a weight of 1. We describe the calculation of operator norms for
various convolution operators in Section 4.4.3.

Path lengths: The length of a path in the graph is determined by multiplying
the edge weights. LEAN aims to model the norm of the composition of the
operators corresponding to the edges. Equation (4.4) states that ‖A‖ · ‖B‖ is
an upper bound for ‖AB‖. For LEAN, we assume that ‖AB‖ ≈ ‖A‖ · ‖B‖ is a
reasonable approximation, although it may not hold generally. By defining the path
length as the multiplication of the edge weights (operator norms), path lengths are
invariant under scaling linear operators in a chain if the scalars multiply to 1.

There are some edge cases to consider. First, some CNNs contain operations that
are meant to distribute features throughout the network, but are not implemented
with learnable parameters, e.g., residual connections in ResNet [84]. We include
residual connections in the pruning graph with an edge weight of 1, but label them
as unprunable to prevent the residual connections from being removed from the
network. Second, we do not consider CNNs with recurrent connections. Therefore,

4.4. METHOD 65

the pruning graph is a Directed Acyclic Graph (DAG). Large pruning graphs can
be reduced in size, e.g., by merging nodes that are connected by a single edge (see
Appendix A.1.2).

4.4.2 LEAN: extracting chains from the graph

The LEAN method prunes chains of convolutions based on paths in the graph; we
keep the longest paths (with the highest multiplicative operator norm). We refer
to this as LongEst-chAiN (LEAN) pruning. When we perform LEAN pruning, we
iteratively extract such paths from the graph until we have reached the pruning
ratio. This means that the edges that are not extracted are pruned. Finding paths
is done by iteratively running an all-pairs longest path algorithm [42].

Algorithm 2 LEAN
1: procedure LEAN(model, pruneRatio)
2: graph← createPruningGraph(model)
3: retainedConvs← []
4: while fractionRemainingConvs < 1− pruneRatio do
5: bestChain← longestPath(graph)
6: retainedConvs← retainedConvs+ bestChain
7: graph← removeFromGraph(graph, bestChain)

8: convsToPrune← convsInModel− retainedConvs
9: return convsToPrune

LEAN pruning is incorporated in the fine-tuning procedure. For each pruning
step in the fine-tuning procedure, Algorithm 2 is used to select the filters to prune
(line 4 in Algorithm 1). For DAGs, the longest path in a graph can be found in
O(|V |+|E|) time, where V is the set of nodes, and E is the set of edges [222]. For
a CNN with m channels (nodes), and k operators (edges), we can extract a longest
path in O(m+ k) time. As we extract at least one operator with every execution
of line 5 in Algorithm 2, the longest path algorithm is run at most k(1− p) times.
So the worst-case complexity of Algorithm 2 is O(k(1− p)(m+ k)) for a pruning
ratio p. Unprunable edges can be part of a longest path to extract operators, but
do not count towards the pruning ratio.

After every LEAN pruning step is concluded, some post-processing is performed.
In some cases there are channels which receive no input data at all, or which
are equal to a homogeneous constant image for all input data. We therefore
remove nodes without incoming edges as well as nodes where the succeeding batch
normalization has running variance below some threshold (10−40 by default). A
low running variance can occur when the output of a convolution is always zero
after applying the ReLU activation function, for instance. Second, bias terms are
removed from the CNN when all associated convolution or batch normalization
operations are pruned.

66
CHAPTER 4. LEAN: GRAPH-BASED PRUNING FOR CONVOLUTIONAL

NEURAL NETWORKS BY EXTRACTING LONGEST CHAINS

Figure 4.2: The output of a stride-2 convolution can be obtained by adding the
result of 4 convolutions. Split the image and filter into the coloured sections, with
white entries representing zeroes, and sum the outputs pixel-wise. The dots in the
image represent the positions of the center of the filter as it moves over the image.

4.4.3 Operator norm calculation
Operator norm of convolutions: For a convolution filter h and an n×n image,
h+ is the filter padded with zeros to size n× n. The singular values of h are the
magnitudes of the complex entries of the 2D Fourier transform F2D(h+) (Section 5
of [103])

σmax(H) = max {|F2D(h+)|} (4.5)

Downsampling: operator norm for strided convolutions: A strided
convolution is equal to the sum of regular convolutions on smaller input images (see
Figure 4.2). A single parameter of a stride-2 convolution filter is multiplied only
with every other pixel (horizontally and vertically). Similarly, filter parameters
which are 2 apart are multiplied with the same pixels. Here, we calculate the
operator norm for a stride-2 convolution operator h. Let h[i] and X [i] be the
partitioned convolution kernels and input images, both zero-padded to the correct
size. For a stride-2 convolution we have

h ∗2 X =

4∑
i=1

h[i] ∗X [i]. (4.6)

We can apply Equation 4.5 to obtain the singular values of h[i]. Equation 4.6 is
analogous to the equation of a convolutional layer with 4 input channels, and 1
output channel. The operator norm of a convolutional layer can be computed by
means of a tensor P ∈ R4×1×n×n [223]

Pcin,cout,i,j = F2D(h[cin]+)i,j .

According to Theorem 6 of [223], the spectral norm of the convolutional layer
equals the maximum of the singular values of the 4× 1 matrices P:,:,i,j . Since the
matrices are single-column, their singular value equals their L2-norm. Therefore,
the spectral norm of h equals

‖h‖ = max
i,j

{∑
cin

P 2
cin,:,i,j

}
. (4.7)

4.5. EXPERIMENTAL SETUP 67

Upsampling: operator norm for transposed convolutions: The matrix
of a stride-s transposed convolution is the transposed matrix of a stride-s con-
volution [139]. Since we have ‖A‖ =

∥∥AT∥∥, for a transposed convolution h, the
operator norm can be computed by Equation 4.7.

4.5 Experimental setup

In our experiments, we compare LEAN pruning to several structured pruning
methods across three image segmentation datasets and three CNN architectures:
MS-D, U-Net4, and ResNet50. We assess the performance of pruned neural networks
across 5 independent runs of fine-tuning (Algorithm 1). For each dataset, we have
trained a single model as a starting point for pruning. In every experimental run,
the same trained model was pruned.

For all pruning methods, we measure the pruning ratio as the fraction of
convolutions remaining:

∑
h∈HM(h)/|H| where H is the set of all convolutions in a

network, and M(h) is 0 if a convolution h ∈ H is pruned and 1 otherwise. This
means that other parameters, such as batch normalization and bias parameters,
are pruned when the associated convolutions are pruned, but do not count towards
the pruning ratio.

The MS-D networks were pruned to a pruning ratio of 1% in 45 steps. The
U-Net4, and ResNet50 networks were pruned to a ratio of 0.1% in 30 steps. All
were retrained for 5 epochs after each step. We chose relatively severe pruning
ratios because we are interested in significant computational speedup. U-Net4
and ResNet50 are pruned to a lower ratio as they have orders of magnitude more
convolutions than the MS-D network.

4.5.1 Structured pruning methods

We compare LEAN to two layer-wise pruning methods, and two global pruning
methods. The layer-wise pruning methods are geometric median pruning (GM)
[86], and soft filter pruning (SFP) [85]. The first global pruning method we
compare to is structured magnitude pruning, i.e., pruning entire filters by
their L1-norm (see Section 4.3.2), and the second global method we compare to
is operator norm pruning, i.e., pruning entire filters using the operator norm.
Here, we choose to use the spectral norm. The difference between LEAN and
structured magnitude pruning is 1) the operator norm; 2) the consideration of
network structure. The comparison of LEAN to structured operator norm pruning
measures the effect of incorporating the network structure.

We compare LEAN to structured magnitude pruning and operator norm pruning
for all CNN architectures. Both GM and SFP contain implementations to prune
ResNet50 but not MS-D or U-Net4, and hence are used only in the ResNet50
experiments.

68
CHAPTER 4. LEAN: GRAPH-BASED PRUNING FOR CONVOLUTIONAL

NEURAL NETWORKS BY EXTRACTING LONGEST CHAINS

4.5.2 CNN architectures
In this section, we describe three fully-convolutional CNN architectures that are
used in the experiments: the Mixed-Scale Dense convolutional neural network
(MS-D) network [183], U-Net [202], and ResNet [84]. Table 4.1 outlines which
operators are present in the networks. The networks were trained using ADAM
[113] with lr = 0.001, minimizing the negative log likelihood function.

Convolution
CNN Strided Transposed Dilated Pooling
MS-D No No Yes No
ResNet50 Yes No Yes Yes
U-Net4 No Yes No Yes

Batch # Edges in
normalization Parameters pruning graph

MS-D No 4.57 · 104 5.05 · 103

ResNet50 Yes 3.29 · 107 1.44 · 107

U-Net4 Yes 1.48 · 107 1.84 · 106

Table 4.1: Operators present in MS-D, ResNet50, U-Net4 architectures.

In our experiments we use MS-D networks as described in [183] and implemented
in [89]. Every layer has 1 channel and all convolutions have a dilated 3× 3 filter,
except the final 1× 1-layer. The dilations for layer i were set to 1 + (i mod 10).
The final layer is excluded from pruning as it contributes less than 0.5% of FLOPs.

As U-Net architecture we use a fully-convolutional (FCN) U-Net4 network,
i.e., a U-Net with 4 scaling operations. We used a U-Net4 architecture from the
PyTorch-UNet repository [149]. As ResNet architecture, we use an FCN-ResNet50
network [84]. The ResNet50 model is adapted from PyTorch’s model zoo code. We
replace the max pooling layers of ResNet and U-Net with average pooling layers as
average pooling is a linear operator which can be modeled as a strided convolution
for which we can compute the operator norm. In some cases U-Net with average
pooling can perform better than with max pooling [8].

4.5.3 Datasets
In our experiments, we consider three datasets: a high-noise, but relatively simple,
segmentation dataset [183] (CS dataset); the well-known CamVid dataset [24, 25];
and a real-world X-ray CT dataset [38, 39] to test the methods in practice. The
CS dataset is a 5-class segmentation dataset of 1000 training, 250 validation, and
100 test images. As a starting point for pruning, we trained a 100-layer MS-D
network with an accuracy of 97.5%, ResNet50 with 95.8% accuracy, and U-Net4
with 97.6% accuracy.

The X-ray CT dataset consists of 9216 training, 2048 validation, and 1536 test
images. As in [209], we use the F1-score to quantify results. As a starting point
for pruning, we trained a 100-layer MS-D network with a 0.88 F1-score, ResNet50

4.6. RESULTS 69

with a 0.85 F1-score, and U-Net4 with a 0.88 F1-score. As in [180], experimental
results on the CamVid dataset are quantified using mean Intersection-over-Union
(mIoU). As a starting point for pruning, we trained a 150-layer MS-D with 0.52
mIoU, ResNet50 with 0.71 mIoU, and U-Net4 with 0.65 mIoU. More details on the
datasets can be found in Appendix A.1.1.

4.6 Results

4.6.1 Experimental results for severe pruning
The results of the pruning experiments are displayed in Figure 4.3, showing that
LEAN pruning at similar accuracy obtains networks with a lower pruning ratio
than the four compared methods. The pruning ratio that can be achieved without
significant loss of accuracy depends on the network architecture and the complexity
of the dataset.

In the CS dataset results, we notice a drop-off point where performance decreased
significantly for all networks. On average over 5 runs of pruning, LEAN achieved a
3.4%, 0.79%, and 0.79% pruning ratio for MS-D, U-Net4, and ResNet50, with an
average accuracy reduction of 1.4%, 2.5%, and 2.1% respectively. On ResNet50, at
an accuracy reduction of 3% compared to the unpruned network, LEAN achieves a
43% reduction in the number of convolutions compared to GM and SFP. Below
15% accuracy reduction SFP and GM perform better, but the network no longer
reliably segments the data at these accuracies.

On the dynamic X-ray CT dataset, we notice large fluctuations in F1 for MS-D
and U-Net4. This may be due to the F1-score which is defined as a reciprocal. In
addition, on U-Net4, LEAN performs better than the structured pruning methods
right from the start. On average over 5 runs, LEAN achieved a 5.1% and 6.3%
pruning ratio for MS-D and U-Net4, with an average F1 drop of 5.7%, and 3.3%
respectively. For ResNet50, a drop-off point is again observed, which occurs at a
significantly lower pruning ratio for LEAN than for both global pruning methods.
GM and SFP exhibit a more gradual reduction in F1-score.At an F1-score reduction
of 3% compared to the unpruned network, LEAN achieves a 92% reduction in the
number of convolutions compared to GM and SFP.

On the CamVid dataset, we observe a declining mIoU for MS-D and U-Net4 as
pruning progresses on this challenging dataset. On ResNet50 we notice an initial
drop in mIoU, but subsequent pruning steps increase the performance initially.
These observations could indicate that 5 epochs of retraining are not sufficient for
the CamVid dataset to recover performance. Interestingly for U-Net4, we notice
that for two pruning ratios, structured magnitude pruning appears to perform
slightly better than LEAN. Given the variance between different runs, possibly
due to the limited number of retraining epochs, we suspect that this difference
is not statistically significant. After the initial drop in mIoU, we notice a later
drop-off pruning ratio on ResNet50. LEAN achieves a 6.3% pruning ratio with
an average mIoU reduction of 14.3% on ResNet50, whereas the best performing

70
CHAPTER 4. LEAN: GRAPH-BASED PRUNING FOR CONVOLUTIONAL

NEURAL NETWORKS BY EXTRACTING LONGEST CHAINS

Dynamic X-ray CT (real-time application)

CamVid (challenging)

U-Net4
1.5 x 107 parameters

ResNet50
3.3 x 107 parameters

MS-D
4.5 x 104 parameters

CircleSquare (simulated)

Figure 4.3: Comparison of structured pruning methods and LEAN pruning on
three datasets (rows). Pruning methods are applied to MS-D, U-Net4, ResNet50
network architectures. The base model is pruned to a ratio of 1% (MS-D) or 0.1%
(ResNet50, U-Net4) for all datasets. This is repeated five times (translucent lines)
and the average is taken (solid lines).

4.7. CONCLUSION 71

11.1x

Figure 4.4: Practically realized speedup of pruned MS-D networks evaluated on
the test dataset.

other method dropped-off at a 20.0% pruning ratio. Interestingly, both layer-wise
pruning methods GM and SFP exhibit a sustained reduction in test mIoU rather
than the drop-off we observe for the global pruning methods.

4.6.2 Speedup real-world dynamic X-ray CT segmentation
In addition to measuring the achievable pruning ratios, we measure the practically
realized wall-time speedup. We tested this on the dynamic X-ray CT dataset for
which a speedup has immediate benefits in practice. Existing pruning support
in PyTorch only masks pruned filters, thereby not creating a faster network.
Therefore, we implemented a custom MS-D model which loads only the unpruned
filters. During the experiments, an MS-D network pruned to a ratio of 2.5%
(40-fold reduction) with LEAN achieved an F1-score of 0.83 (drop of 5.4%). This
network was 11.1 times faster than the unpruned network in practice. The speed
of evaluating the entire test set is impacted by the batch size, which we take into
account as shown in Figure 4.4. For comparison, we included the best performing
pruned MS-D network by an other pruning method (operator norm pruning) which
achieved a pruning ratio of 15.8% with an F1-score of 0.83. We show differences
between MS-D networks pruned with different pruning methods in Appendix A.1.3.

4.7 Conclusion
In this paper, we have introduced a novel pruning method (LEAN) for CNN pruning
by extracting the highest value paths of operators. We incorporate existing graph
algorithms and computationally efficient methods for determining the operator
norm. We show that LEAN pruning permits removing significantly more operators
while retaining better network accuracy than several existing pruning methods.
Our results show that LEAN pruning can increase the speed of the network, both
in theoretical speedup (FLOPs reduction) and in practice. In conclusion, LEAN

72
CHAPTER 4. LEAN: GRAPH-BASED PRUNING FOR CONVOLUTIONAL

NEURAL NETWORKS BY EXTRACTING LONGEST CHAINS

enables severe pruning of CNNs while maintaining a high accuracy, by effectively
exploiting the interdependency of network operations.

Future work could be split along several lines. First, there are more CNN
operators for which methods to compute their operator norms could be developed.
Notably, we have mostly disregarded non-linear operators in this work. Next, LEAN
approximates the norm of a chain of operators using the submultiplicative property
upper bound ‖AB‖ ≤ ‖A‖ · ‖B‖. New methods for approximating the norm of a
chain of composed operators could strengthen LEAN as it more accurately extracts
chains with strong operator norms. In addition, new graph theoretic approaches
for extracting meaningful paths from the graph could be explored. Such algorithms
are already abundant in the field of graph theory, and could quite readily be carried
over to neural network pruning research. Lastly, LEAN currently works by greedily
extracting high-value paths. Approaches such as [75] could be considered to avoid
greedy selection of operators.

5
Benchmarking optimization

kernels for auto-tuning
GPU kernels

5.1 Introduction
Graphics Processing Units (GPUs) have revolutionized the HPC landscape in the
past decade [88], and are seen as one of enabling factors in recent breakthroughs in
Artificial Intelligence (AI) [121]. GPUs originated as processors for gaming and
then adapted to more general workloads as co-processors in many HPC systems.
Over the past decade, GPUs have started to again penetrate new markets such
as IoT devices [152] and autonomous vehicles [135]. The range of applications
of GPUs as such continues to expand. Because of their relatively low cost with
respect to their parallel processing power, more and more supercomputers come
equipped with GPUs, and in 2020, the majority of modern supercomputers use
GPUs [236] as the major source of compute power.

The sections of code that run on a GPU, called kernels, can be challenging to
configure such that they run efficiently for a varying combinations of datasets and
GPU architectures [248]. The kernel parameters can be split into those defined
by the program, and those that are a consequence of the underlying architecture
and models behind the GPU. The hardware-specific parameters define how the
thousands of threads in a GPU are grouped. An ineffective layout can cause
underutilization of GPU resources. In general, the computational efficiency can
drop by an order of magnitude depending on certain implementation choices.
Typically, only a small subset of the possible configurations lead to a large increase

73

74
CHAPTER 5. BENCHMARKING OPTIMIZATION KERNELS FOR

AUTO-TUNING GPU KERNELS

in performance [220]. Therefore, it is vital to be able to select an efficient kernel
configuration.

The search space for this problem is formed by all feasible combinations of
GPU kernel parameters. This space is discrete and non-convex [185], making it
hard to carry out the optimization. For most GPU kernels used in practice, the
size of this search space is such that traversing the options by hand or brute-force
is infeasible. An additional complication in optimizing kernel parameters is that
evaluating the performance of each configuration requires costly recompilation and
test runs. Furthermore, the same GPU kernel often requires re-tuning for different
input data, hardware, or after changes to the code [107, 127, 166, 167]. Large
throughput pipelines often rely on computationally expensive GPU kernels that
consume large amount of resources [218, 221], and cannot be tuned exhaustively
due to the aforementioned reasons.

Automatic performance tuning (auto-tuning) techniques rely on empirical results
and feedback to optimize the kernel parameters with respect to desired performance
metrics. These techniques aim to be widely applicable across architectures. For this
reason, auto-tuning can be used to find configurations with increased performance
for GPU programs. As the search space for the auto-tuning task depends on
various aspects (kernel source, code layout, input data, GPU-architecture), the
optimization framework must deal with a broad variety of search spaces and
constraints. We, therefore, treat the problem as a black-box optimization task.
This raises the question of which optimization algorithm is best suited to find
highly efficient settings for GPU kernels, and how these optimization algorithms
need to be configured to tune GPU kernels.

The main contribution of this work is to determine which optimization algo-
rithms produce the fastest GPU kernels for different tuning-time ranges. To do
so, we conduct a survey of 16 evolutionary optimization algorithms for 9 different
NVidia and AMD GPUs, and run 3 real-world applicable benchmark kernels. We
select our benchmark problems such that we are able (given ample time) to compute
the entire search space, and make these spaces publicly available. To benchmark
the GPU kernels we use the Kernel Tuner package [246]. We use the wide range of
optimization algorithms present in Kernel Tuner for a large-scale comparison, and
provide favourable default hyperparameters for GPU tuning for each algorithm.
In addition, we extend Kernel Tuner with several highly-efficient optimization
algorithms, including iterative local search (ILS) and dual annealing that cannot
be found in any other generic auto-tuning framework.

Secondly, we aim to quantify tuning difficulty for these seemingly challenging
and capricious search spaces. To do so, we introduce the fitness flow graph (FFG),
which is a network of the points in the search space, with directed edges between
neighbours with a better fitness. By computing the likelihood of local search
walks terminating in good local minima, we use FFGs to better understand the
discrepancies between optimization algorithms, and subsequently tailor them to
better suit GPU tuning. In addition, FFGs can help explain the differences across
GPU manufactures, architectures, and kernel programs, and such knowledge can
help steer future development. To quantify tuning difficulty per kernel, we introduce

5.2. RELATED WORK 75

a novel metric based on Google’s PageRank algorithm [21, 173].
This work is structured as follows. In section 5.2 we discuss existing GPU

kernel tuning approaches. In section 5.3 we introduce the preliminaries on GPU
kernels, and describe the optimization algorithms that are considered in this survey.
In section 5.4, we describe certain implementation details of Kernel Tuner and our
Python optimization package BlooPy. We discuss the setup of our experiments
in section 5.5. In section 5.6 we tune the hyperparameters of the algorithms, and
present our findings on optimization algorithm performance. In section 5.7 we
introduce fitness flow graphs (FFGs) and quantify tuning difficulty for kernel search
spaces. Finally, we present our conclusions in section 5.8.

5.2 Related work

5.2.1 Automated performance tuning
It is well-known that GPU tuning can yield considerable gains in computational
efficiency and utilization for large-scale, high-throughput pipelines that run on
compute clusters. As an example, we mention the AMBER pipeline [218, 221],
which is used to detect Fast Radio Bursts (FRBs) and other single pulse radio
transients in astronomy. The pipeline has a throughput of 2 TB/s, and uses a
large amount of resources. Benchmarking a single configuration is expensive, and
the search space consists of millions of configurations, meaning that sophisticated
tuning approaches have to be developed.

Research in automated performance tuning (auto-tuning) can be grouped into
two main categories: (1) auto-tuning compiler-generated code optimizations [111,
179, 193, 234], and (2) software auto-tuning [127, 259]. Ashouri et al. [7] wrote an
excellent survey on machine-learning methods for compiler-based auto-tuning. In
this chapter, we limit our scope to (2), i.e., optimizations methods for software auto-
tuning, which is sometimes referred to as automated design space exploration [159].
Software auto-tuning allows developers to automatically optimize individual func-
tions and allows, for example, to tune for entirely different implementations and
parallelizations that solve the same problem.

As such, auto-tuning techniques are often employed to optimize the source code
of high-performance libraries and applications for the CPU, e.g. ATLAS [249] or
FFTW [63], as well as for GPUs [71, 127, 145, 220, 235, 247, 259].

A number of generic auto-tuning frameworks have been introduced in recent
years. OpenTuner [5] was one of the first generic software auto-tuning frameworks,
supporting a number of different search optimization algorithms, but with no
support for tuning individual GPU kernels. GPTune [137] and HyperMapper [159]
are recently proposed frameworks that both use Bayesian Optimization for auto-
tuning on different platforms, but do not target GPUs.

Grauer-Gray et al. [70] have applied auto-tuning to the high-level directive-
based HMPP framework, which can compile to CUDA or OpenCL code. They
demonstrate significant performance improvements using auto-tuning over unopti-

76
CHAPTER 5. BENCHMARKING OPTIMIZATION KERNELS FOR

AUTO-TUNING GPU KERNELS

mized HMPP kernels in the PolyBench benchmark suite. Wang et al. [243] take a
similar compiler-based approach to automatically convert shared memory OpenMP
applications into OpenCL code for GPUs. They use a machine-learning approach,
which based on the number of compute operations and memory accesses in the
kernels, predicts the best performing hardware platform to execute the kernels
either the multi-core CPU using OpenMP, or on the GPU using OpenCL. Hou et
al. [97] proposed a data-sensitive auto-tuning framework for sparse matrix vector
(SpMV) multiplication that automatically finds the best parallelization strategy.
They use a two-step machine learning approach in which they first determine the
optimal way to group data into bins and then select the most suitable kernel to
process the rows in each bin.

CLTune [166] was the first generic auto-tuning framework with specific support
for directly tuning GPU kernels written in the OpenCL programming language.
CLTune supports several optimization algorithms, including simulated annealing
and particle swarm optimization, but these do not outperform random search [166].
Kernel Tuning Toolkit (KTT) [60] is developed specifically to support online
auto-tuning and pipeline tuning, which allows for the exploration of combinations
of tunable parameters over multiple kernels. An interesting feature of KTT is
the support to keep track of hardware performance counters, such as L2 cache
utilization, during benchmarking, which can also be used in advanced search
strategies [61]. Auto-Tuning Framework (ATF) [195] implements an innovative
way to generate auto-tuning search spaces, for efficient storage and fast exploration
of constrained search spaces, but does not focus on introducing new optimization
algorithms.

In earlier work, we have introduced Kernel Tuner [246], a generic auto-tuning
framework specifically designed to be an easy-to-use and easy to extend tool for
researching auto-tuning optimization algorithms. Kernel Tuner is a state-of-the-art
framework that implements the largest range of search optimization strategies of all
generic auto-tuning frameworks, and was the first generic framework to implement
multiple search strategies that consistently outperformed random search [246].

5.2.2 Analyzing auto-tuning search spaces
In this chapter, we do not only compare the performance of different optimization
algorithms on the GPU auto-tuning problem, but we also investigate the properties
of the search spaces to understand why certain optimization algorithms outper-
form others, and gain insight into the difficulty of the optimization problem. A
comprehensive introduction to GPU tuning difficulty is given in [219].

Ryoo et al. [205] were one of the first to study the properties of optimization
spaces for GPU applications. They defined two performance metrics to model
the efficiency and utilization of a CUDA kernel and used these to find kernel
configurations on the pareto curve that maximizes the two metrics. A downside of
this approach is that the performance metrics have to be constructed for each kernel
individually and require manual inspection and counting instructions in assembly
code. Lim et al. [128] also look into search space properties to preselect certain

5.3. METHOD: OPTIMIZATION PROBLEM 77

parameter values using static code analysis in order to try to limit exploration of
the search space by an auto-tuner.

In [169], Ochoa et al introduce the concept of Local Optima Networks (LONs).
When constructing LONs the search space is partitioned into basins of attraction,
i.e., sets of points where a local search algorithm will terminate in the same local
minimum. A LON is a graph with the local optima as vertices, and a directed
edge between nodes if a local search step transforms a solution from one basin
of attraction to another. We build upon this idea to define fitness flow graphs
(FFGs), which as opposed to LONs contain all the points in the search space. Due
to the large number of points with “failure fitnesses” (when a configuration fails to
compile) in GPU kernel spaces, defining the basin of attraction is difficult. Instead,
we simplify the ideas behind LONs to the entire search space, and quantify how
likely local search algorithms terminate in good local optima. To do so, we look at
PageRank centrality of local optima. In [93] the idea of using PageRank centrality
for LONs as predictor of performance for local-seach based heuristics was proposed,
and in [92] the PageRank was used to rank space difficulty. We extend this idea to
FFGs to determine GPU tuning difficulty.

5.3 Method: Optimization problem
In this section, we define the performance optimization of GPU kernels as a
mathematical optimization problem, and we present the optimization algorithms
that are part of our experiments.

5.3.1 GPU kernels
GPU kernels are executed by millions of threads in parallel to perform data-parallel
computations on the GPU. However, the compute performance of a GPU kernel
depends on how the software has been optimized for the hardware.

There are various different design choices that have an impact on the perfor-
mance of GPU kernels, and this impact is challenging to accurately predict. For
example, the way that a computation is parallelized and mapped on the thread
blocks and individual threads affects the utilization of the GPU cores. Other
design choices include what data types and data layouts to use in the various
memory spaces available to GPU applications. There may also be entirely different
algorithms to choose from to implement certain parts of the computation.

Other tunable parameters are introduced through code optimizations that can
be enabled and may in turn introduce new parameters, such as tiling factors,
vector data types, or partial loop unrolling factors. GPU kernels also have a
number inherent parameters in terms of the number of thread blocks and the
number of threads per block that are used to execute the kernel. The multitude
of implementation choices for GPU kernels result in sizeable, non-convex, and
discontinuous kernel design spaces.

78
CHAPTER 5. BENCHMARKING OPTIMIZATION KERNELS FOR

AUTO-TUNING GPU KERNELS

To automate the kernel design space exploration process, GPU code can be
parameterized, either using a kernel template or a code generator. An auto-tuner
can take such a kernel template or code generator and empirically benchmark
different kernel configurations, until it has found an efficient implementation. The
search performed by the auto-tuner can be treated as a mathematical optimization
problem of the form:

x∗ = arg min
x∈X

f(x) (5.1)

where f(x) is the performance metric to be minimized, for kernel configuration
x for a combination of kernel, GPU device, and input settings. In this work the
performance metric to be minimized will be the runtime of the kernel.

5.3.2 GPU kernel search spaces
The search space of possible settings for a GPU kernel can be characterized as a
finite subset X ⊂ Zn for n different parameters. Specifically, for each dimension
1 ≤ i ≤ n, every entry xi of a point x ∈ X takes values from a finite set Si ⊂ Z.
For example, the block dimension might allow values in {16, 32, 64, 128}. The total
search space is the Cartesian product of these finite sets

X = S1 × S2 × · · · × Sn.
The local structure of a search space depends on the definition of neighbouring

points. A common definition of the neighbours of a point are the points which differ
only in one dimension, and are equal for all other dimensions. Mathematically,
according to this definition the set of neighbours N(x) of a point x is

N(x) :=

n⋃
i=1

{y ∈ X \ {x} | yj = xj , ∀j 6= i} . (5.2)

Here, we will consider a more restrictive type of neighbourhood concept where
we place the additional requirement that the parameter that differs from xi should
have a value adjacent to xi in the list Si. For example, if the block dimension is
allowed to be [16, 32, 64, 128], then neighbours of xi = 64 would be 32 and 128,
and the neighbour of 128 would only be 64. We consider this restriction because
this definition gives information on whether closely related parameter values are
related in performance.

Points of special interest in the search space are local minima. A point is a local
minimum if all neighbouring points have a worse fitness. In other words, there are
no improvements to be found in the local neighbourhood. Algorithms that scan
local neighbourhoods can get stuck in local minima as there are no close points
with better fitness.

5.3.3 Black-box optimization algorithms
As the search space is typically too large to iterate over all feasible points, a range
of more sophisticated optimization algorithms are used in practice. In this section

5.3. METHOD: OPTIMIZATION PROBLEM 79

we describe the optimization algorithms that are considered in the experiments.
As a categorization of these algorithms, we distinguish continuous, and discrete
algorithms, and algorithms that learn about the stochasticity of the problem.

Optimization - discrete algorithms

Since tuning GPU kernels involves choosing the best from a finite set of possibilities,
it makes sense to consider discrete optimization algorithms. These algorithms are
considered in this work:

• Random sampling randomly generates solutions and records the highest
scoring one. This strategy serves as a baseline comparison to determine if
optimization algorithms offer significant benefits.

We consider several local search (or hill climb) algorithms which iteratively
check for a neighbouring solution of lower fitness to visit, until a local minimum is
reached. For all local search algorithms we distinguish between best-improvement
search, where we move to the best neighbour next, and first-improvement, where
we examine neighbours in a random order and move to one when we encounter an
improvement.

Local search algorithms can vary the neighbourhood function that they use
to generate new candidates. The algorithms can use both the version outlined in
equation 5.2 (called Hamming), and the more restrictive neighbourhood definition
in section 5.3.2 (called adjacent). First-improvement variants can decide whether
they continue checking the remaining variables first after finding an improvement,
or if they restart the search (hyperparameter restart search).

• Multi-start local search (MLS) repeatedly generates random starting
solutions, and hill climbs them until a local minimum is reached.
Hyperparameters: neighbourhood, restart.

• Iterative local search (ILS) [141] is similar to MLS but inherits part of
the original local minimum when generating a new starting solution. After
reaching a minimum, ILS performs several random permutations to generate
a new starting solution. This perturbation size is a tunable parameter. In
addition, a tunable exit after no improve hyperparameter randomly restarts if
no improvement is found after a that many iterations, which helps to escape
basins of attraction for small perturbation sizes.
Hyperparameters: perturbation size, exit after no improve, neighbourhood,
restart.

• Tabu search [65] maintains a queue of previously visited solutions which
the algorithm is not allowed to visit. The tunable hyperparameter tabu size
defines the queue size, and ensures that the new solution has not been visited
for tabu size iterations. Tabu search always picks a new solution, whether it
is an improvement or not.
Hyperparameters: tabu size, neighbourhood.

80
CHAPTER 5. BENCHMARKING OPTIMIZATION KERNELS FOR

AUTO-TUNING GPU KERNELS

• Simulated annealing (SA) [114] maintains a temperature parameter that,
together with the fitness values, determines the probability that we move
to a (potentially worse) neighbouring solution. The temperature parameter
is decreased each iteration to mimic the behaviour of cooling processes in
material physics. A tunable exploration parameter determines the size of the
mutation of the current solution that is performed at each iteration. A hill
climber subsequently optimizes the new solution, which is accepted with a
certain probability.

Hyperparameters: exploration, hill climber, neighbourhood

We also consider two discrete population-based algorithms, which require a
population size parameter to determine the number of solutions they maintain.
Population-based methods iteratively create a next generation of solutions by
mixing solutions from the previous generation. A reproduction operator creates
new initial solutions from existing ones, e.g., with two-point crossover a section of
the solution vector is swapped between two solutions. After new solutions have
been created, and their fitnesses determined, a selection mechanism determines
which solutions are kept for this generation. For example, in tournament selection
a number of randomly picked solutions compete for a spot in the next generation.

• Genetic local search (GLS) [102] (or memetic algorithm) is a population-
based method where every solution in a generation is subsequently hill climbed.
The initial population is made up of randomly generated solutions, which
after hill climbing are all local minima. Next, a number of children is created
by reproduction, and a new initial starting population is selected from the
batch. These solutions are subsequently hill climbed and the procedure is
repeated.

Hyperparameters: hill climber, population size, reproduction, selection.

• Genetic algorithm (GA) [151] is similar to GLS, but instead of hill climb-
ing each solution, it performs a single mutation only, e.g., permuting a single
parameter. Instead of a hill climbing algorithm, GA has a tunable hyper-
paramter mutation that determines the fraction of variables of a solution
that are mutated each generation.

Hyperparameters: mutation, population size, reproduction, selection.

Optimization - continuous algorithms

As an alternative to discrete algorithms, we can consider continuous optimization
algorithms which operate on real-valued solutions. In order to apply algorithms
which assume continuous variables to a discrete problem such as GPU kernel tuning,
we need to define a mapping between a real-valued vector, and the discrete values
in the search space. Suppose the search space allows values x1, x2, . . . , xn for a

5.3. METHOD: OPTIMIZATION PROBLEM 81

GPU Specifications
CUDA cores Band- Peak
/Stream Device Boost width compute

GPU model Year processors memory clock (GB/s) (GFLOP/s)
NVidia Tesla K20 2012 2496 5 GB 0.76 GHz 208 3524
NVidia GTX 2015 3072 12 GB 1.08 GHz 336 6605
Titan X
NVidia Tesla 2016 3584 12 GB 1.30 GHz 549 9340
P100 PCIe
NVidia GTX 2017 3584 11 GB 1.58 GHz 484 11340
1080 Ti
NVidia Tesla 2017 5120 32 GB 1.37 GHz 900 14899
V100 PCIe
AMD Radeon 2018 3840 16 GB 1.73 GHz 1024 13300
Instinct MI50
NVidia Titan RTX 2018 4608 24 GB 1.77 GHz 672 16312
NVidia RTX 2019 2560 8 GB 1.77 GHz 448 9060
NVidia A100 2020 6912 40GB 1.41 GHz 1555 19500
Tesla PCIe

Table 5.1: Specifications of graphical processing unints (GPUs) used to create
experimental data.

particular variable, then a continuous variable y ∈ [0, 1] gets mapped to the closest
grid point ȳ:

B = { 1

2n
,

3

2n
, . . . ,

2n− 1

2n
}

j∗ = arg min
i=1,...,n

{|Bi − y|}

ȳ = xj∗ .

Effectively, this ensures that all possible discrete values are equally spaced across
the interval [0, 1], and the continuous variable is mapped to the closest one. The
continuous optimization algorithms operate on real-valued vectors with dimensions
equal to the number of parameters that are to be optimized. Each entry is bounded
to the unit interval.

The mapping ensures that points close together in real-valued space can get
mapped to the same point in the GPU tuning space. While this can negatively
impact the performance of continuous algorithms, it does not automatically lead to
poor performance, as illustrated by the strong performance of continuous algorithms
in Kernel Tuner [246]. Furthermore, this mapping allows us to explore a new class
of algorithms. Here, we consider two local search algorithms.

• Basin hopping [241] is a global stepping algorithm that chooses new starting
positions for local minimization. It requires the local minimizer method and a
temperature parameter to be chosen. The temperature parameter determines
the accept–reject criterion. Currently supported minimization methods are
the nonlinear conjugate gradient (CG) [164], simplex (Nelder-Mead) [161],

82
CHAPTER 5. BENCHMARKING OPTIMIZATION KERNELS FOR

AUTO-TUNING GPU KERNELS

conjugate direction (Powell) [190], L-BFGS-B [28], Constrained Optimization
BY Linear Approximation (COBYLA) [189], and Sequential Least Squares
Programming (SLSQP) [115] methods.

Hyperparameters: minimizer method, temperature.

• Dual annealing [237] is an extension of generalized simulated annealing,
paired with a local minimization method. It combines global and local search
procedures, and it requires users to choose a local minimization method.

Hyperparameters: minimizer method.

Lastly, we consider two population-based algorithms.

• Particle swarm optimization (PSO) [110] initializes a number of particles
at random in the search space. Each iteration, these particles update their
position and velocity. Particles transmit information to a certain number of
neighbours, thereby influencing the movement of the other particles.

Hyperparameters: #particles, neighbours evaluated.

• Differential evolution [228] is similar to a genetic algorithm, but mixing
strategies are based on real-valued solutions. Typically they involve mixing
the best solution with a random candidate, and accepting the result with a
certain probability.

Hyperparameters: mixing method, population size, mutation size, recombina-
tion probability.

Optimization - tuning algorithms for stochastic optimization

In this survey we consider two state-of-the-art parameter tuning algorithms;

• Sequential Model Algorithm Configuration (SMAC) [132] is a ran-
dom forest-based Bayesian optimization method that is designed for opti-
mization of stochastic problems. However, it can also be used to optimize
deterministic problems. SMAC requires the model type of its Bayesian opti-
mizer to be chosen. The gp-mcmc model was significantly slower and worse
than gp in the preliminary experiments. We therefore use the gp model
type in this work. The acquisition function of the BO is another tunable
hyperparameter.

Hyperparameters: acquisition function.

• Iterated racing (irace) [140] is a statistical approach for selecting the best
configuration out of a set of candidates for stochastic optimization problems.
After consulting the authors [140], we set firstTest and nbConfigurations as
tunable hyperparameters for irace.

Hyperparameters: firstTest, nbConfigurations.

5.4. IMPLEMENTATION 83

5.4 Implementation

In this section we comment on certain implementation details for the software
developed for this work. The algorithms and analysis tools are implemented in
the BlooPy Python package, and the tuning of the GPU kernels is performed by
Kernel Tuner.

5.4.1 BlooPy and SOTA packages

The algorithms evaluated in this work are implemented in the discrete optimization
package BlooPy (BLackbOx Optimization Python) [214]. The package implements
the algorithms by encoding solutions as bitstrings. BlooPy implements several
functions for converting discrete solutions that are encoded as lists or arrays to
bitstrings. Similarly, continuous solutions are mapped to discrete solution vectors
using the mapping outlined in section 5.3.3. BlooPy requires the search space
to be finite. Using the bitstring encodings, BlooPy’s algorithms can make use
of the computationally efficient Python module bitarray which implements fast
low-level bitstrings in C. In addition, the algorithms are automatically applicable
to benchmark bitstring-based optimization problems such as randomized Nk-
landscapes [252].

Optimization algorithms in BlooPy maintain a cache of previously visited
solutions. This means that a solution that has been visited before does not count
as a function evaluation, and instead the cached value is returned. In addition
to a variety of optimization algorithms, BlooPy implements several search space
analysis tools. For example, it implements functions to determine the type of points
in the search space, e.g., local minima and saddle points. Furthermore, BlooPy
implements functions to compute the fitness flow graphs outlined in section 5.7.2.
BlooPy can be installed from the GitHub source repository [214], or by package
manager. To perform experiments with SMAC we used the Python package [133],
and for irace we used the R package [143].

5.4.2 Kernel Tuner

Kernel Tuner [246] implements a wide range of optimization algorithms, and builds
on top of various backends (e.g. PyOpenCL, PyCUDA, Cupy, GCC) that take
care of the compilation process.

Kernel Tuner runs Python code, provided by the user, which calls the tuner
function. In addition, the user needs to provide a code generator or parameterized
template for the kernel they wish to optimize. An optimization algorithm then
selects different kernel configurations for benchmarking.

84
CHAPTER 5. BENCHMARKING OPTIMIZATION KERNELS FOR

AUTO-TUNING GPU KERNELS

#local #variables #failed
Kernel #points minima to tune points
Convolution∗ 18432 89 6 12656∗
GEMM 82944 64 5 64988
Point-in-polygon 8184 220 10 335

Table 5.2: Statistics (averaged across GPU models) of kernel spaces. Number of
failed points refers to the average number of configurations in the kernel space that
failed to compile.
∗Convolution has 864 points for AMD MI50, and 450 fail points.

5.5 Experimental Setup
To analyze the structure of different kernel spaces, and find the optimization
algorithm best suited to finding strong kernel settings, we run experiments on 9
different GPUs, for 3 real-world applicable kernel programs (26 kernels in total).

• Convolution [247] operations are an essential tool in image processing, and
are often used for tasks such as edge detection, blurring, or sharpening. They
also feature prominently in deep learning methods for image processing as
they form the backbone of the convolutional neural network (CNN).

• GEMM (Generalized dense matrix–matrix multiplication) [165] is one of the
most widely-used kernels across many application domains, including neural
networks. Here we perform the calculation C = αA ·B + βC for 4096× 4096
matrices A,B,C, and constants α and β.

• PnPoly (Point-in-Polygon) kernel is used by Goncalves et al. [67] as part of
a geospatial database management system to, for example, return all objects
within the outline of a specific area.

Some statistics on the kernel spaces is given in Table 5.2. For convolution and
GEMM the majority of the points in the kernel space fail to compile, 68% and
78% respectively. In the case of a failed compilation we attribute a “fail” fitness of
1010 to this point. The exact kernel spaces can be found in the table of tunable
parameters (Table A.1) in Appendix A.2.1.

We selected these kernels programs since they are tunable common subroutines
in real-world applications, but also have a compact parameter space which can be
fully explored, given ample computation time. Note that this is not feasible for
many other kernels used in practice (see section 5.2.1). We have generated cache
files of the entire search space for each kernel by brute-force calculation. This allows
us to know the optimal settings for each problem, and therefore score solutions
returned by algorithms. It also allows us to develop analysis metrics on the entire
search space, which could at a later stage be adapted to work when sampling only
small parts of the space. We supply our cache files for benchmarking optimization

5.5. EXPERIMENTAL SETUP 85

Maximum number of function evaluations
(budget)

Basin hopping 25 50 100 200 400 800 1600
method Powell COBYLA SLSQP

temperature 0.1 1.0
Dual annealing 25 50 100 200 400 800 1600

method COBYLA Powell
Differential evolution 25 50 100 200 400 800 1600

population size 1 2 4 8 16 32
method best1bin best2bin best1exp

recombination 0.5 0.7
mutation (0.2, 0.7)

Particle swarm
optimization 25 50 100 200 400 800 1600

Number of particles 25 10 20 40 80 160
neighbours evaluated 5 10 20 26 32

FirstILS 25 50 100 200 400 800 1600
perturbation size 1.0 0.05

Exit after no improve 25 10
neighbour method Hamming adjacent

restart search False True
BestILS 25 50 100 200 400 800 1600

perturbation size 1.0 0.05
Exit after no improve 25
neighbour method adjacent Hamming adjacent

FirstTabu 25 50 100 200 400 800 1600
tabu size 4 2000

neighbour method Hamming
BestTabu 25 50 100 200 400 800 1600
tabu size 2000

neighbour method Hamming
FirstMLS 25 50 100 200 400 800 1600

restart search True False True
neighbour method Hamming

BestMLS 25 50 100 200 400 800 1600
neighbour method adjacent Hamming

Simulated annealing 25 50 100 200 400 800 1600
explore (p) 1.0 0.7 0.1
hill climber None RandomFirst

neighbour method Hamming

Table 5.3: (Part 1:) Selected hyperparameters across different budgets (25 to 1600)
for the optimization algorithms used in this work. The budgets columns are given
in red. These hyperparameters were optimized using the convolution, GEMM, and
PnPoly kernels on the NVidia P100 GPU.

86
CHAPTER 5. BENCHMARKING OPTIMIZATION KERNELS FOR

AUTO-TUNING GPU KERNELS

Maximum number of function evaluations
(budget)

Genetic local search 25 50 100 200 400 800 1600
hill climber RandomFirst

population size 2 2 4 16 20 40 80
reproductor uniform 2point uniform
selector RTS

neighbour method Hamming
Genetic algorithm 25 50 100 200 400 800 1600

mutation 0.02 0.05 0.02
population size 8 10 20 40 80 128 320
reproductor 1point 2point
selector tour8 tour4
SMAC 25 50 100 200 400 800 1600

model type gp NA
acquisition function LCB NA

irace 25 50 100 200 400 800 1600
firstTest NA 2

nbConfigurations NA 0

Table 5.4: (Part 2:) Selected hyperparameters across different budgets (25 to 1600)
for the optimization algorithms used in this work. The budgets columns are given
in red. These hyperparameters were optimized using the convolution, GEMM, and
PnPoly kernels on the NVidia P100 GPU.

5.6. RESULTS: BENCHMARKING OPTIMIZATION ALGORITHMS ON
RUNTIME 87

algorithms [215], similar to other computationally expensive applications such as
neural architecture search [52].

The 9 GPUs that are used for testing are given in Table 5.1. The convolution
kernel is implemented in CUDA, GEMM in OpenCL, and PnPoly is a heterogeneous
kernel that runs partly on the CPU, and partly on the GPU using CUDA. The
PnPoly kernel uses CUDA-specific features that are not available on AMD GPUs.
We have used CUDA Version 11.2, OpenCL 1.2, Python 3.8.5, PyCUDA v2021.1,
PyOpenCL v2020.3.1, and BlooPy version 0.4.2.

Experimental setup: The GPU kernels are tuned with respect to runtime
(ms). The runtime of a GPU kernel is stochastic, and can vary slightly per execution.
Kernel Tuner automatically benchmarks a given configuration 32 times to acquire
a mean runtime per configuration. In most cases, the compilation time for a
given kernel configuration significantly exceeds the time needed to benchmark
32 runs. Therefore, most of our experiments are performed in a deterministic
setting where the fitness of a configuration is the mean runtime. However, we also
perform a stochastic experiment where a single kernel runtime is returned for every
evaluation. This means that the fitness for the same point in the search space can
vary, and algorithms that learn stochastic information, such as irace and SMAC,
can potentially benefit.

After discussion with the authors [140] we decided to benchmark irace only for
the stochastic experiment. This was decided as it was deemed inappropriate for
the deterministic setting since the point of using irace is to dynamically handle
stochasticity in expensive problems.

The algorithms are evaluated based on the fraction of the optimal runtime
they can find within a limited budget of evaluations. For each algorithm, we run
experiments with a maximum function evaluation limit (budget) of 25, 50, 100,
200, 400, 800, 1600. The goal of our experiments is to benchmark algorithms
when traversing only a fraction of the search space. Therefore, we set the highest
budget limit at 1600 since it is already approximately 20% of the Point-in-polygon
search space. Every run is performed 50 times in order to get an indication of the
spread. Due to computational demand, SMAC and irace experiments are ran 20
times. SMAC is only run up to a budget of 400 evaluations due to the high tuning
time. Data and scripts for the experiments and figures can be found in the GitHub
repository [215].

5.6 Results: Benchmarking optimization algorithms
on runtime

In this section, we first discuss how to initialize each algorithm with favourable
hyperparameters. Next, we discuss which algorithms are best suited to tuning
GPU kernels.

88
CHAPTER 5. BENCHMARKING OPTIMIZATION KERNELS FOR

AUTO-TUNING GPU KERNELS

5.6.1 Setting hyperparameters
In order to compare the optimization algorithms fairly for the GPU tuning problem,
we need to choose sensible hyperparameters. Which hyperparameters can be varied
per algorithm is outlined in italics in section 5.3.3. We test different combinations
of hyperparameters on the P100, RTX 2070 Super, and GTX 1080Ti, for all three
kernels (9 out of 26 kernels). This way we select reasonable hyperparameters
across various architectures and kernels, which users can use as defaults for new
GPU tuning problems. We performed a bruteforce search over all combinations
of parameter values, and ran each set 20 times for each algorithm. For PSO we
kept the w, c1, c2, p parameters constant as these appeared to have little effect on
algorithm performance. Note that the time required to tune hyperparameters varies
greatly between algorithms due to this exhaustive search. The hyperparameters
chosen are in Tables 5.3 and 5.4.

To choose hyperparameters, we first group settings which perform similarly
statistically, and attempt to find one set of hyperparameters that performs well
across all 9 kernels. For a budget p, let fp,best be the lowest average fitness achieved
for a set of hyperparameters, and σp,best the standard deviation. We perform the
following selection approach:

1. For every kernel, we create a set of hyperparameter settings whose average
found fitness is within k · σp,best of fp,best.

2. For each budget, intersect the acceptable settings for convolution, GEMM,
and PnPoly, across the 3 GPUs.

3. For each budget, if this intersection is non-empty, reduce k and repeat. If
the intersection is empty, increase k and repeat. Repeat until only one set of
hyperparameters remains in the intersection.

5.6.2 Kernel tuning algorithm comparison
To quantify which kernel tuning algorithms perform best for certain budgets, we
can check whether an algorithm provided statistically significantly better results
than others for a certain experiment. To do so, we use a two-sample independent
t-test [62] with α = 0.05. For each GPU, kernel, and budget combination, we
perform the t-test to see if an algorithm A performed significantly better than
algorithm B. We subsequently combine the total number of “wins” for algorithm A
across all GPUs (excluding those that were used for tuning).

We split the competitions into low-range (200 evaluations or fewer), and medium-
range budgets. The competition tables at different function evaluation splits can be
found in the Appendix A.2.2. The full plots per GPU and algorithm can be found
in Appendix A.2.3. The results of these inter-algorithm competitions are given in
the heatmaps displayed in Figures 5.1, 5.2, and 5.3. The competition heatmaps
display how often the column algorithm found a statistically better solution than
the row algorithm in that budget range.

5.6. RESULTS: BENCHMARKING OPTIMIZATION ALGORITHMS ON
RUNTIME 89

Kernel tuning: deterministic fitness

In this section we present the results of our deterministic experiments, i.e., the
algorithms have to minimize the runtime of a GPU kernel where the runtime is
fixed at the mean of 32 runs.

Low-range budget: For 200 function evaluations or fewer, for convolution
dual annealing was statistically better than all other algorithms for all GPU models
(see column with “DualAnnealing” for convolution ≤ 200 function evaluations),
with simulated annealing as second. For GEMM, basin hopping and dual annealing
perform equally with dual annealing beating basin hopping 5 times, and basin
hopping beating dual annealing 6 times. For PnPoly dual annealing was again
best, followed by SMAC. We show the total number of wins and losses across all
kernels and GPUs in Table 5.5. Here we see that for low budgets dual annealing
has significantly more wins, and fewer losses than all other algorithms.

Interestingly, SMAC was second for PnPoly, in the best half of algorithms for
convolution, but did not even beat random sampling for GEMM. We hypothesize
this is either due to the number of variables to optimize for each of the three
kernels (see Table 5.2), or the increasing fraction of fail fitnesses for these kernels.
We hypothesize that the Bayesian optimizer could not fit a proper surrogate for
GEMM with a low budget, and many failed compilations.

Medium budget: For more than 200 function evaluations, FirstMLS and
GLS performed best for convolution, followed by FirstILS. For GEMM, FirstILS
and simulated annealing performed best, followed by GLS. For PnPoly, FirstMLS
is the strongest algorithm, followed by simulated annealing and GLS. As can be
seen from Table 5.5, FirstILS and simulated annealing have the most number of
total wins, and simulated annealing and genetic local search have the least number
of losses.

Additional remarks: In general, best-improvement local search algorithms
performed significantly worse than the first-improvement variants. In fact, for the
low range, they proved statistically worse than random sampling for PnPoly, and in
general have fewer wins and more losses. This can be explained due to the fact that
exploring all the neighbours before taking a step costs many evaluations, and leads
to only exploring a single neighbourhood for low budgets. For the population-based
methods, GLS is the best performing algorithm for medium budgets, but does worse
than differential evolution and GA for low budgets. PSO performed significantly
worse.

Interestingly, dual annealing, which works on real-valued solution vectors,
performs well for low budgets. It seems that the mapping from [0, 1]n to discrete
space does not prevent dual annealing from finding strong solutions quickly. One of
the main drawbacks of using continuous algorithms is that if a continuous algorithm
updates its real-valued solution vector, it could mean that it does not actually
update the discrete solution vector it is mapped to. However, since our algorithms
cache previously visited solutions (only for the deterministic experiments), such
redundant optimization steps do not cost any budget. We think this may negatively
impact gradient-based algorithms as the subroutines Powell and COBYLA, which

90
CHAPTER 5. BENCHMARKING OPTIMIZATION KERNELS FOR

AUTO-TUNING GPU KERNELS

Low budget Medium budget
total wins total losses total wins total losses

Basin hopping 403 204 131 393
Dual annealing 680 65 227 233

Differential evolution 426 192 150 347
PSO 290 327 136 368

FirstILS 352 233 361 77
BestILS 125 472 257 126
FirstTabu 148 430 255 183
BestTabu 35 677 220 185
FirstMLS 317 205 341 64
BestMLS 143 466 226 174

Simulated annealing 412 150 360 59
Genetic local search 320 216 329 59
Genetic algorithm 376 162 201 207

SMAC 356 344 48 145
Random sampling 222 463 7 629

Table 5.5: Total number of wins: sum of occurrences when the algorithm found
statistically better solutions than other algorithms (summed over all kernels). A
win (and corresponding loss for the other algorithm) is counted when 50 runs for a
budget are statistically significantly better according to a two-sample independent
t-test (α = 0.05). Low budget is for ≤ 200 budgets, medium budget is for > 200
budgets. Top 3 cells are coloured green.

5.6. RESULTS: BENCHMARKING OPTIMIZATION ALGORITHMS ON
RUNTIME 91

do not require derivatives to be known, are the selected solvers for dual annealing
during hyperparameter tuning.

As a final remark, we notice that SMAC performs poorly in the medium budgets.
Note that SMAC only has 1/3 as many data points in the medium budget since
we do not perform the 800 and 1600 budget experiments for SMAC. Nevertheless
the algorithm performs poorly on the 400 budget compared to other methods. It
seems that SMAC is unsuccessful in fitting a meaningful surrogate model for kernel
tuning. This could be due to the deterministic setup of this experiment, or due to
the high number of fail configurations with “infinite” fitness.

92
CHAPTER 5. BENCHMARKING OPTIMIZATION KERNELS FOR

AUTO-TUNING GPU KERNELS

Ba
sin

Ho
pp

in
g

Be
st

IL
S

Be
st

M
LS

Be
st

Ta
bu

Di
ffe

re
nt

ia
lE

vo
lu

tio
n

Du
al

An
ne

al
in

g

Fir
st

IL
S

Fir
st

M
LS

Fir
st

Ta
bu GL

S

Ge
ne

tic
Al

go
rit

hm

Pa
rti

cle
Sw

ar
m

Ra
nd

om
Sa

m
pl

in
g

SM
AC

4B
B

Si
m

ul
at

ed
An

ne
al

in
g

BasinHopping
BestILS

BestMLS
BestTabu

DifferentialEvolution
DualAnnealing

FirstILS
FirstMLS
FirstTabu

GLS
GeneticAlgorithm

ParticleSwarm
RandomSampling

SMAC4BB
SimulatedAnnealing

0 4 5 5 13 19 9 8 4 9 9 10 4 6 10
6 0 2 2 13 19 5 7 3 7 7 9 6 8 12
6 2 0 1 12 16 10 8 5 6 10 11 7 11 11

10 9 12 0 16 21 14 16 5 15 18 13 12 14 20
3 4 4 1 0 17 7 9 3 5 4 1 1 8 8
1 0 0 0 1 0 4 2 0 0 1 0 0 1 3
4 1 1 1 7 16 0 3 1 2 6 8 5 9 7
5 0 0 0 10 14 5 0 1 3 8 8 6 8 7
7 6 8 2 13 20 12 10 0 9 14 13 7 11 14
5 0 0 1 8 15 5 3 0 0 6 6 4 7 6
2 0 2 0 3 17 7 6 1 4 0 1 0 6 3
5 7 5 3 6 19 10 8 2 8 8 0 1 8 9
9 11 11 7 16 24 13 12 7 13 13 16 0 14 11
1 5 6 4 11 20 9 7 2 8 8 7 1 0 9
3 0 0 0 6 16 5 2 0 1 3 3 1 6 0

Algorithm Column beats Row - convolution feval <= 200

Ba
sin

Ho
pp

in
g

Be
st

IL
S

Be
st

M
LS

Be
st

Ta
bu

Di
ffe

re
nt

ia
lE

vo
lu

tio
n

Du
al

An
ne

al
in

g

Fir
st

IL
S

Fir
st

M
LS

Fir
st

Ta
bu GL

S

Ge
ne

tic
Al

go
rit

hm

Pa
rti

cle
Sw

ar
m

Ra
nd

om
Sa

m
pl

in
g

SM
AC

4B
B

Si
m

ul
at

ed
An

ne
al

in
g

BasinHopping
BestILS

BestMLS
BestTabu

DifferentialEvolution
DualAnnealing

FirstILS
FirstMLS
FirstTabu

GLS
GeneticAlgorithm

ParticleSwarm
RandomSampling

SMAC4BB
SimulatedAnnealing

0 10 10 6 7 11 13 13 5 13 10 7 3 3 12
1 0 0 1 0 2 4 6 1 3 0 2 0 0 5
1 1 0 2 0 2 5 6 1 3 1 0 0 0 5
4 10 10 0 4 9 13 13 1 14 8 5 0 2 13
5 11 9 4 0 10 13 14 3 14 8 2 0 0 14
1 5 3 3 1 0 8 9 3 10 1 1 0 1 7
2 1 0 1 0 3 0 4 1 2 0 0 0 0 0
0 1 0 1 0 1 2 0 1 1 0 0 0 0 0
5 10 11 1 4 7 12 15 0 13 8 5 0 1 12
0 0 0 1 0 1 2 0 1 0 0 0 0 0 1
2 4 5 3 0 3 9 10 2 7 0 0 0 0 9
5 10 11 5 8 10 15 13 5 14 9 0 0 2 14

12 16 17 16 14 15 17 17 16 17 14 17 0 5 17
1 3 3 2 2 3 4 5 2 5 2 1 0 0 4
2 2 2 2 0 4 3 4 1 5 0 0 0 0 0

Algorithm Column beats Row - convolution feval > 200

Figure 5.1: (Convolution:) Occurrences when the column algorithm found better
solutions than the row algorithm. An occurrence is counted when 50 runs for a
budget are statistically significantly better according to a two-sample independent
t-test (α = 0.05). (Top): Heatmap for low ≤ 200 budgets (25, 50, 100, 200).
(Bottom): Heatmap for mid and high > 200 budgets (400, 800, 1600). Algorithms
with low values (blue) in their rows were not often beaten for those budgets, and
algorithms with high values in their column (red) often beat other algorithms.

5.6. RESULTS: BENCHMARKING OPTIMIZATION ALGORITHMS ON
RUNTIME 93

Ba
sin

Ho
pp

in
g

Be
st

IL
S

Be
st

M
LS

Be
st

Ta
bu

Di
ffe

re
nt

ia
lE

vo
lu

tio
n

Du
al

An
ne

al
in

g

Fir
st

IL
S

Fir
st

M
LS

Fir
st

Ta
bu GL

S

Ge
ne

tic
Al

go
rit

hm

Pa
rti

cle
Sw

ar
m

Ra
nd

om
Sa

m
pl

in
g

SM
AC

4B
B

Si
m

ul
at

ed
An

ne
al

in
g

BasinHopping
BestILS

BestMLS
BestTabu

DifferentialEvolution
DualAnnealing

FirstILS
FirstMLS
FirstTabu

GLS
GeneticAlgorithm

ParticleSwarm
RandomSampling

SMAC4BB
SimulatedAnnealing

0 1 1 0 2 5 3 3 0 3 1 1 0 0 4
16 0 5 0 17 20 18 17 1 13 14 12 11 9 19
17 1 0 0 17 19 11 6 1 8 13 11 7 7 16
20 12 18 0 22 22 21 22 6 17 22 18 14 16 23
13 1 2 0 0 11 7 3 0 4 1 0 0 0 5
6 0 3 0 1 0 4 4 0 3 0 1 0 0 3

11 0 0 0 8 13 0 0 0 0 5 8 6 5 7
14 0 0 0 11 15 2 0 0 1 6 9 7 5 8
20 7 13 0 20 21 17 15 0 14 19 15 14 13 21
15 0 2 0 12 15 6 1 0 0 8 10 9 5 12
14 0 1 0 8 16 7 7 0 5 0 2 1 0 7
18 5 6 0 15 18 11 11 0 9 10 0 1 1 10
23 11 11 1 21 22 14 12 2 11 15 11 0 5 14
23 9 10 1 23 23 15 12 3 12 17 14 10 0 18
13 0 1 0 9 12 4 1 0 2 2 2 2 1 0

Algorithm Column beats Row - GEMM feval <= 200

Ba
sin

Ho
pp

in
g

Be
st

IL
S

Be
st

M
LS

Be
st

Ta
bu

Di
ffe

re
nt

ia
lE

vo
lu

tio
n

Du
al

An
ne

al
in

g

Fir
st

IL
S

Fir
st

M
LS

Fir
st

Ta
bu GL

S

Ge
ne

tic
Al

go
rit

hm

Pa
rti

cle
Sw

ar
m

Ra
nd

om
Sa

m
pl

in
g

SM
AC

4B
B

Si
m

ul
at

ed
An

ne
al

in
g

BasinHopping
BestILS

BestMLS
BestTabu

DifferentialEvolution
DualAnnealing

FirstILS
FirstMLS
FirstTabu

GLS
GeneticAlgorithm

ParticleSwarm
RandomSampling

SMAC4BB
SimulatedAnnealing

0 15 16 11 12 15 16 17 14 17 12 12 0 0 17
1 0 0 6 0 1 12 4 6 3 0 1 0 0 9
1 6 0 7 0 2 11 7 9 8 0 1 0 0 15
0 3 3 0 2 3 5 5 3 4 3 2 0 0 5
2 15 16 9 0 12 18 18 13 18 12 11 0 0 18
1 14 12 10 0 0 16 13 12 14 5 5 0 0 17
0 1 0 2 0 0 0 2 4 2 0 1 0 0 5
0 6 2 5 0 0 9 0 7 2 0 0 0 0 10
1 3 2 2 1 4 9 5 0 5 3 2 0 0 5
0 3 0 5 0 0 8 0 7 0 0 0 0 0 8
1 13 12 9 0 4 16 15 11 14 0 4 0 0 17
1 13 13 8 0 6 16 16 11 16 4 0 0 0 15

18 18 18 17 18 18 18 18 17 18 18 18 0 4 18
5 6 6 5 6 6 6 6 4 6 6 6 0 0 6
0 0 0 3 0 0 6 0 5 0 0 0 0 0 0

Algorithm Column beats Row - GEMM feval > 200

Figure 5.2: (GEMM:) Occurrences when the column algorithm found better solu-
tions than the row algorithm. An occurrence is counted when 50 runs for a budget
are statistically significantly better according to a two-sample independent t-test
(α = 0.05). (Top): Heatmap for low ≤ 200 budgets (25, 50, 100, 200). (Bottom):
Heatmap for mid and high > 200 budgets (400, 800, 1600). Algorithms with low
values (blue) in their rows were not often beaten for those budgets, and algorithms
with high values in their column (red) often beat other algorithms.

94
CHAPTER 5. BENCHMARKING OPTIMIZATION KERNELS FOR

AUTO-TUNING GPU KERNELS

Ba
sin

Ho
pp

in
g

Be
st

IL
S

Be
st

M
LS

Be
st

Ta
bu

Di
ffe

re
nt

ia
lE

vo
lu

tio
n

Du
al

An
ne

al
in

g

Fir
st

IL
S

Fir
st

M
LS

Fir
st

Ta
bu GL

S

Ge
ne

tic
Al

go
rit

hm

Pa
rti

cle
Sw

ar
m

Ra
nd

om
Sa

m
pl

in
g

SM
AC

4B
B

Si
m

ul
at

ed
An

ne
al

in
g

BasinHopping
BestILS

BestMLS
BestTabu

DifferentialEvolution
DualAnnealing

FirstILS
FirstMLS
FirstTabu

GLS
GeneticAlgorithm

ParticleSwarm
RandomSampling

SMAC4BB
SimulatedAnnealing

0 2 2 1 2 10 6 4 5 7 8 1 2 10 5
13 0 2 0 17 18 12 16 16 18 19 14 15 17 17
17 8 0 0 17 18 16 17 18 19 17 16 17 17 19
17 10 2 0 17 20 19 20 19 20 19 14 16 17 19
6 1 1 0 0 15 6 5 6 6 7 1 1 11 4
1 0 0 0 0 0 5 2 3 5 1 0 0 5 5

10 2 0 0 11 12 0 8 6 8 7 5 11 12 7
5 0 0 0 6 13 2 0 2 4 4 4 5 11 6
7 0 0 0 7 12 3 4 0 6 6 5 7 12 6
7 0 0 0 5 12 1 1 1 0 5 3 7 10 3
5 0 0 0 1 11 4 1 3 4 0 0 2 8 3
7 1 1 0 8 17 8 11 9 8 14 0 6 15 8

11 3 3 3 7 17 8 7 7 8 11 5 0 16 7
3 2 3 2 3 8 6 5 5 6 5 2 0 0 6
4 0 0 0 4 12 1 1 1 0 5 0 6 11 0

Algorithm Column beats Row - pnpoly feval <= 200

Ba
sin

Ho
pp

in
g

Be
st

IL
S

Be
st

M
LS

Be
st

Ta
bu

Di
ffe

re
nt

ia
lE

vo
lu

tio
n

Du
al

An
ne

al
in

g

Fir
st

IL
S

Fir
st

M
LS

Fir
st

Ta
bu GL

S

Ge
ne

tic
Al

go
rit

hm

Pa
rti

cle
Sw

ar
m

Ra
nd

om
Sa

m
pl

in
g

SM
AC

4B
B

Si
m

ul
at

ed
An

ne
al

in
g

BasinHopping
BestILS

BestMLS
BestTabu

DifferentialEvolution
DualAnnealing

FirstILS
FirstMLS
FirstTabu

GLS
GeneticAlgorithm

ParticleSwarm
RandomSampling

SMAC4BB
SimulatedAnnealing

0 7 7 7 9 8 8 8 8 8 9 6 0 2 9
5 0 0 5 4 5 5 5 6 6 6 3 0 3 5
7 5 0 6 5 7 6 9 8 8 6 3 0 3 7
3 2 2 0 4 3 4 4 2 3 3 3 2 3 3
4 6 5 8 0 8 6 9 8 8 6 0 0 1 9
3 3 2 7 5 0 7 6 9 7 5 0 0 1 6
5 4 2 3 3 5 0 5 3 4 5 1 0 2 4
2 0 0 2 1 1 1 0 3 1 2 0 0 2 1
4 3 3 1 3 3 2 3 0 3 3 2 2 2 3
2 1 0 2 3 2 2 1 5 0 1 0 0 2 1
3 2 0 5 2 2 4 3 7 3 0 0 0 1 5
6 8 9 11 10 10 12 14 12 12 11 0 0 1 12

12 13 13 13 15 15 14 14 13 14 15 13 0 5 14
0 2 2 2 4 4 3 3 3 3 3 2 0 0 3
3 1 0 1 3 2 1 2 2 1 2 0 0 2 0

Algorithm Column beats Row - pnpoly feval > 200

Figure 5.3: (PnPoly:) Occurrences when the column algorithm found better
solutions than the row algorithm. An occurrence is counted when 50 runs for a
budget are statistically significantly better according to a two-sample independent
t-test (α = 0.05). (Top): Heatmap for low ≤ 200 budgets (25, 50, 100, 200).
(Bottom): Heatmap for mid and high > 200 budgets (400, 800, 1600). Algorithms
with low values (blue) in their rows were not often beaten for those budgets, and
algorithms with high values in their column (red) often beat other algorithms.

5.6. RESULTS: BENCHMARKING OPTIMIZATION ALGORITHMS ON
RUNTIME 95

25 50 100 200 400 800 1600 3200 6400
Max budget

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fr
ac

tio
n

of
 o

pt
im

al
 fi

tn
es

s

Fraction of optimal fitness (stochastic) for convolution

GreedyILS
DualAnnealing
GeneticAlgorithm
SMAC4BB
irace

25 50 100 200 400 800 1600 3200 6400
Max budget

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fr
ac

tio
n

of
 o

pt
im

al
 fi

tn
es

s

Fraction of optimal fitness (stochastic) for GEMM

GreedyILS
DualAnnealing
GeneticAlgorithm
SMAC4BB
irace

25 50 100 200 400 800 1600 3200 6400
Max budget

0.80

0.85

0.90

0.95

1.00

Fr
ac

tio
n

of
 o

pt
im

al
 fi

tn
es

s

Fraction of optimal fitness (stochastic) for pnpoly

GreedyILS
DualAnnealing
GeneticAlgorithm
SMAC4BB
irace

Figure 5.4: Fraction of optimal runtime for max budget supplied over all GPUs.
Each point is the mean fraction of optimal runtime found (y-axis) for each budget
limit (x-axis) over all GPUs, with the shaded region indicating 95% confidence
interval. Left: convolution kernel. Middle: GEMM kernel. Right: PnPoly kernel
(logarithmic x-axis).

96
CHAPTER 5. BENCHMARKING OPTIMIZATION KERNELS FOR

AUTO-TUNING GPU KERNELS

Kernel tuning: stochastic fitness

For the stochastic experiments the algorithms have to minimize the runtime of a
GPU kernel where the runtime is a random draw from the 32 timings. In addition
to running SMAC and irace, we also run FirstILS, GA and dual annealing which
did well for deterministic fitnesses. We remark that irace throws an error if the
budget is too small with respect to the number of variables, and therefore starts at
a budget of 200 for convolution and PnPoly, and 400 for GEMM.

The experimental results are shown in Figure 5.4. Here we aggregate the results
per kernel for all GPU models by showing the mean fraction of optimum (and 95%
confidence interval) for a given max budget. We see that GA and dual annealing
are best for low budgets in the stochastic experiments. FirstILS does well for
budgets ≥ 100. Irace is the best method for GEMM with budgets ≥ 800, but for
convolution and pnpoly irace is not as good as GA, dual annealing, and FirstILS.

SMAC consistently achieves a lower fraction of optimality than the competing
algorithms across kernels and budgets. Again, we hypothesize that this is because
of the high number of fail fitnesses in the search spaces (see Table 5.2). This makes
it hard for the Bayesian optimizer to fit a meaningful surrogate.

Stochastic or deterministic: Overall, we notice that higher budgets are
necessary to find good solutions for the stochastic experiments than in the deter-
ministic case. This leads to a higher overall tuning time. We therefore recommend
to treat GPU kernel tuning as a deterministic optimization problem, with the
mean runtime as fitness. The added stochastic information does not appear to
allow SMAC or irace to consistently outperform conventional black-box algorithms.
This could be because the runtime does not vary much; the average (normalized)
runtime and standard deviation is 1.000±0.011. Second, the high number of failure
configurations could confuse models that try to learn stochastic information.

5.7 Quantifying GPU tuning difficulty
In this section we want to gain insight into the difficulty of the GPU kernel tuning
optimization problem, and quantify kernel spaces according to tuning difficulty.
When attempting to understand why certain GPU kernel spaces appear difficult
to optimize we found that relatively simple metrics do not coincide with our
experimental results. We outline discrepancies between an intuitive simple metric
and our experimental results, and introduce a novel refined approach that does
correlate with our results.

5.7.1 Naive metric: fraction of optimal fitness of local minima
Method: As an example of a simple metric that intuitively could explain the
results, we consider the fraction of optimal fitness of local minima. For a minimum
xi, and optimal fitness fopt, we can consider the fraction of optimal fitness of the
minimum fopt/f(xi). In this case, we divide the global minimal runtime by the
runtime of the minima.

5.7. QUANTIFYING GPU TUNING DIFFICULTY 97

V100 A100 P100 GTX 1080Ti GTX TitanX MI50 RTX 2070 Super K20 Titan RTX
GPU

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 g

lo
ba

l f
itn

es

Fraction of global optimal fitness for minima (convolution)

Figure 5.5: Fraction of optimal fitness of local minima for each GPU model, for
the convolution kernel. The box plots shows the median line, the box designates
the quartiles, and the whiskers the full extend of the distribution. Additionally, a
scatter plot of the fitness for each local minimum is shown. The GPUs are ordered
in descending median fraction of optimal fitness from left to right.

Results: In Figure 5.5 we show a scatter plot of the fraction of optimal fitness
for the local minima for the convolution kernel (per GPU model). According to
this distribution, the V100 and A100 GPUs have the closest to optimal median
fitness for local minima. This means that an algorithm that randomly explores
local minima with equal probability will obtain the closest to optimal runtime for
these kernels.

Analysis: To empirically check how difficult the GPU kernels are to tune,
we can plot the fraction of optimal fitness that optimization algorithms managed
to achieve for certain budgets. If fj is the lowest fitness found for a single run
for some budget p, a point in the plot is the average over 50 runs computed as
f̃p := (1/50) ·∑50

j=1(fopt/fj,p). In Figures 5.6 and 5.7 we plot f̃p for dual annealing
and FirstILS. We chose dual annealing and FirstILS as they represent the strongest
algorithms for low, and medium budgets respectively.

We see that for convolution on the A100 GPU both algorithms returned solutions
which were furthest away from the optimum, while for the V100 both optimizers
return close to optimal solutions for few function evaluations. These observations
are opposite to what would be expected on the basis of Figure 5.5. Hence, the
distribution of fitness of the local optima does not properly explain tuning difficulty.

98
CHAPTER 5. BENCHMARKING OPTIMIZATION KERNELS FOR

AUTO-TUNING GPU KERNELS

0 200 400 600 800 1000 1200 1400
Average function evaluations used

0.70

0.75

0.80

0.85

0.90

0.95

1.00
Fr

ac
tio

n
of

 o
pt

im
um

DualAnnealing performance for convolution per GPU

A100
V100
GTX_Titan_X
TITAN_RTX
MI50
K20

0 200 400 600 800 1000 1200 1400
Average function evaluations used

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Fr
ac

tio
n

of
 o

pt
im

um

DualAnnealing performance for GEMM per GPU

TITAN_RTX
A100
MI50
K20
V100
GTX_Titan_X

102

Average function evaluations used

0.90

0.92

0.94

0.96

0.98

1.00

Fr
ac

tio
n

of
 o

pt
im

um

DualAnnealing performance for pnpoly per GPU

V100
TITAN_RTX
K20
A100
GTX_Titan_X

Figure 5.6: Dual annealing: Fraction of optimal runtime for different budgets
(per GPU). Each point is the average fraction of optimal runtime found (y-axis)
for each budget, with respect to the average number of evaluations actually used
(x-axis) for that budget (counts only the visited unique settings). Left: convolution
kernel. Middle: GEMM kernel. Right: PnPoly kernel (logarithmic x-axis).

5.7. QUANTIFYING GPU TUNING DIFFICULTY 99

0 200 400 600 800
Average function evaluations used

0.5

0.6

0.7

0.8

0.9

1.0
Fr

ac
tio

n
of

 o
pt

im
um

GreedyILS performance for convolution per GPU

MI50
GTX_Titan_X
K20
A100
V100
TITAN_RTX

0 200 400 600 800 1000
Average function evaluations used

0.5

0.6

0.7

0.8

0.9

1.0

Fr
ac

tio
n

of
 o

pt
im

um

GreedyILS performance for GEMM per GPU

GTX_Titan_X
MI50
V100
K20
TITAN_RTX
A100

102 103

Average function evaluations used

0.75

0.80

0.85

0.90

0.95

1.00

Fr
ac

tio
n

of
 o

pt
im

um

GreedyILS performance for pnpoly per GPU

GTX_Titan_X
A100
V100
TITAN_RTX
K20

Figure 5.7: FirstILS: Fraction of optimal runtime for different budgets (per GPU).
Each point is the average fraction of optimal runtime found (y-axis) for each budget,
with respect to the average number of evaluations actually used (x-axis) for that
budget (counts only the visited unique settings). Left: convolution kernel. Middle:
GEMM kernel. Right: PnPoly kernel (logarithmic x-axis).

100
CHAPTER 5. BENCHMARKING OPTIMIZATION KERNELS FOR

AUTO-TUNING GPU KERNELS

5.7.2 Refined approach: Fitness flow graphs and PageRank
Method: A more refined metric to quantify GPU tuning difficulty may be to
compute how likely local search algorithms terminate in local minima. For this
purpose, we introduce the fitness flow graph (FFG), which contains all points in the
search space, and creates a directed edge to a neighbouring point if the neighbour
has lower fitness. This means that a random walk across the FFG mimics the
behaviour of a randomized first-improvement local search algorithm. The expected
proportion of arrivals of each minimum then gives a metric for weighting reachability
of each minimum. We show two example FFGs in Figure 5.8.

To compute the likelihood of arrival per local minima, we compute the PageRank
node centrality, which was originally used to determine the relevance of a webpage
[21, 173]. Let AG be the adjacency matrix of a directed graph G, rescaled such
that each column adds up to 1. Essentially, this means that for every node, the
column is a probability vector of visiting adjacent nodes with equal likelihood. The
PageRank values are then the values of the dominant right eigenvector of AG. For
an FFG, this means that the PageRank value of a local minimum is the probability
of arriving in that minimum after a long random walk through the graph.

As a measure of difficulty we consider how likely a certain subset of “suitably
good” local minima are to be visited by a local search algorithm relative to the rest.
Suppose that fopt is the optimal fitness, and let L(X) be the set of local minima
of X. Given a proportion p, we take the set of nodes Lp(X) consisting of local
minima with fitness less than (1 + p)fopt (for minimization problems, otherwise
(1− p)fopt). For a centrality function cG, we define the p-proportion of centrality

Cp(G,X) =

∑
x∈Lp(X) cG(x)∑
x∈L(X) cG(x)

. (5.3)

Results: The proportion of centrality for strong local minima for each FFG
is shown in Figure 5.9. We calculate the proportion of centrality for different
acceptance percentages with respect to the global minimum of p = 0, 1, 2, . . . , 15%.

Revisiting the A100 and V100 convolution kernel comparison, we see that the
proportion of centrality matches the experimental observations for dual annealing
and FirstILS. Figure 5.9 shows that the NVidia V100 has the most central local
minima, whereas the A100 has the least central local minima. For the GEMM
and PnPoly kernels, Figures 5.6 and 5.7 align with the expectations based on the
proportion of centrality. For example, the group of PnPoly kernels with lowest
proportion of centrality (P100, GTX Titan X, K20, GTX 1080Ti) are indeed the
hardest to tune for both algorithms.

One exception is the K20 GEMM kernel, where proportion of centrality does not
entirely reflect the perceived difficulty for dual annealing. This suggests that the
proportion of centrality may correlate with GPU tuning difficulty better for certain
optimization algorithms. This is to be expected since the PageRank centrality on
the FFG in expectation mimics the performance of randomized first-improvement
local search. Algorithms that are substantially different than first-improvement

5.7. QUANTIFYING GPU TUNING DIFFICULTY 101

Figure 5.8: Fitness flow graphs of PnPoly kernel search spaces of the (top) NVidia
Titan RTX, and (bottom) NVidia GTX 1080Ti. Each node is a point in the search
space. There is a directed edge between neighbouring points from higher to lower
fitness. Points are coloured within a fitness range of +25% with respect to the
global minimal fitness (global minimum in green), i.e., each point is coloured by
its fraction of optimal fitness, and points with a fraction below 0.75 are given the
same colour. Local minima are represented as larger nodes.

102
CHAPTER 5. BENCHMARKING OPTIMIZATION KERNELS FOR

AUTO-TUNING GPU KERNELS

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
Percentage acceptable minima

10 2

10 1

100
Pr

op
or

tio
n

of
 c

en
tra

lit
y

Proportion of centrality for convolution per GPU

GTX_1080Ti
GTX_Titan_X
K20
MI50
A100
V100
P100
TITAN_RTX
RTX_2070_SUPER

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
Percentage acceptable minima

10 1

100

Pr
op

or
tio

n
of

 c
en

tra
lit

y

Proportion of centrality for GEMM per GPU

P100
V100
A100
TITAN_RTX
GTX_1080Ti
GTX_Titan_X
MI50
RTX_2070_SUPER
K20

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
Percentage acceptable minima

10 2

10 1

100

Pr
op

or
tio

n
of

 c
en

tra
lit

y

Proportion of centrality for pnpoly per GPU

P100
V100
A100
GTX_1080Ti
RTX_2070_SUPER
TITAN_RTX
GTX_Titan_X
K20

Figure 5.9: Proportion of centrality for FFGs for each GPU. The proportion of
centrality is computed by taking the sum of PageRank centrality for local minima
within p% of the optimal fitness, divided by the total PageRank centrality of all
local minima. From top to bottom are convolution, GEMM, and PnPoly kernel.

5.8. CONCLUSION 103

local search will therefore also correlate less with the expected difficulty on the
basis of proportion of centrality.

Analysis: Overall, the experimental results suggest that the proportion of
centrality is a suitable metric for estimating tuning difficulty for GPU kernels. By
using FFGs and the PageRank algorithm, we are able to observe kernel differences
that were otherwise unknown. For example, both the A100 and V100 convolution
kernels have few outlier minima with a close to optimal fitness. In fact, the existence
of only a few kernel configurations that lead to large increases in performance is a
general property of certain GPU kernels [246]. Crucially however, the likelihood of
local search algorithms arriving in such minima differs greatly between the A100
and V100. The proportion of centrality of an FFG gives us a tool to quantify this
likelihood. However, further research is necessary to quantitatively determine how
well our proposed metric correlates with GPU tuning difficulty.

As a final remark on kernel differences, the experimental results shows that the
difficulty of tuning a particular kernel can greatly differ from one GPU to the next,
and that these changes do not appear to be correlated with release time of the
models. The A100 is the most recent GPU in our set, while the K20 is the oldest.
For GEMM and PnPoly, we can say that it has become easier to tune these kernels
with more recent GPUs, but the convolution kernel has become more difficult to
tune, except on the V100.

5.8 Conclusion
In this chapter, we have investigated which optimization algorithms produce the
fastest GPU kernel configurations across different tuning-time ranges. To do so,
we analyzed 26 GPU kernel spaces for 9 GPUs. We computed sets of optimal
hyperparameters for GPU tuning for each optimization algorithm. From among
the tested algorithms in this set of experiments, we conclude that dual annealing
performs best as GPU kernel tuner when a limited amount of function evaluations
is desirable. When more evaluations are possible, first-improvement local searchers
such as FirstILS proved the best GPU kernel tuners. Using these algorithms,
we are convinced that GPU programmers can reliably auto-tune GPU kernels to
close to optimal runtime while requiring relatively few re-compilations of the code.
Furthermore, we conclude that treating GPU tuning as a deterministic optimization
problem is preferred over treating the runtime as a stochastic variable.

We showed that the basic metric of fraction of optimality of local minima is
not suitable for explaining the results observed in the experimental benchmarks.
To make steps towards a metric for tuning difficulty, we introduced the concept
of fitness flow graphs, and proportion of centrality. Our results suggest that the
proportion of centrality can be used to quantify tuning difficulty. For future
work, in cases where exhaustive exploration is infeasible, perhaps a procedure to
dynamically update the proportion of centrality of FFGs can be used. Such dynamic
estimates of tuning difficulty could be used for automatic algorithm selection within
frameworks such as Kernel Tuner. Furthermore, the pagerank centrality of strong

104
CHAPTER 5. BENCHMARKING OPTIMIZATION KERNELS FOR

AUTO-TUNING GPU KERNELS

local minima within FFGs can be used to investigate why certain minima are
unlikely to be visited, for example because neighbouring configurations fail to
compile. Lastly, in this work we fully computed 26 kernel spaces, and made these
publicly available. We aim to extend this to a benchmark dataset for evolutionary
computation algorithms.

6
Going green: optimizing

GPUs for energy efficiency
through model-steered

auto-tuning

6.1 Introduction
Huge amounts of compute power are powering today’s industrial and scientific
applications, at huge energy and environmental costs. Energy is among the largest
expenses of supercomputers and data centres, and this consumption will double
every four years [43]. The computational demands in deep learning (artificial
intelligence) applications have been increasing at a exponential rate, 300,000×
from 2012 to 2018 [217]. The carbon footprint of these applications is a great
concern for the environment, as training a single large model produces as much
carbon dioxide as five cars in their lifetime, including fuel [229]. In addition, many
applications have stringent energy constraints; embedded and automotive systems
have limited battery capacity, offshore applications where a connection to the power
grid is not possible, and also large-scale scientific instruments, such as the Square
Kilometre Array (SKA) built partially in the desert [47]. Graphics Processing
Units (GPUs) are powering nearly all large-scale AI and HPC applications, and
are in large part responsible for the total power consumption of these systems [182,
253]. For instance, 8.3 MW out of the total 13 MW by the Summit Supercomputer
is consumed by its GPUs [227]. There is a clear urgency to improving the energy

105

106
CHAPTER 6. GOING GREEN: OPTIMIZING GPUS FOR ENERGY

EFFICIENCY THROUGH MODEL-STEERED AUTO-TUNING

efficiency of these applications.
While GPUs are relatively energy-efficient processors, energy consumption

greatly depends on how well the application is optimized to efficiently use the
underlying hardware [51, 127]. The optimization of GPU applications is a complex
problem that requires finding the best performing combination of many implemen-
tation choices and code optimization parameters in a large and discontinuous search
space [128, 166, 205, 226]. As such, auto-tuning, the process of automatically
searching for the best performing configuration, is often used to optimize the
compute performance of these applications [71, 145, 235, 259].

This has led to the rise of generic GPU code auto-tuners, such as CLTune [166],
Kernel Tuner [246], Kernel Tuning Toolkit (KTT) [60], and Auto-Tuning Framework
(ATF) [195], which facilitate the creation of auto-tuned GPU applications, and
support different optimization strategies to accelerate the search process. These
frameworks focus on auto-tuning user-defined code parameterizations, which is
more generic and powerful than compiler-based auto-tuning [7], because it allows
users to tune for entirely different ways to parallelize a computation, with different
algorithms to compare, and different data layouts, loop permutations, and code
optimizations. However, none of these generic GPU auto-tuners has built-in
support for energy optimization, and the differences between auto-tuning for
compute performance and energy efficiency have not yet been studied in detail.

In this chapter, we introduce new energy monitoring capabilities in Kernel
Tuner, which allows us to use the existing frameworks to study and optimize
energy efficiency. We use these capabilities to investigate how different compute
performance tuning (lowest kernel runtime) is from energy tuning, and whether
the tuning difficulty differs from the perspective of blind optimization algorithms.
In addition, we compare two methods for tuning energy efficiency of GPUs; power
capping and fixing clock frequencies. Lastly, we introduce a method to efficiently
model GPU power consumption, which allows us to significantly narrow the range of
clock frequencies to search for the most energy efficient configuration. All together,
we provide a method and open-source tool for tuning GPU applications for both
performance and/or energy efficiency. Moreover, these tools can be used for further
auto-tuning and high performance computing research.

6.2 Related Work
OpenTuner [5] was one of the first generic software auto-tuning frameworks, sup-
porting a number of different search optimization algorithms, but lacks support
for tuning individual GPU kernels. CLTune [166] was one of the first of a new
breed of generic auto-tuning tools with specific support for tuning GPU kernels
written in OpenCL. Kernel Tuning Toolkit (KTT) [60] is developed specifically to
support online auto-tuning and pipeline tuning, which allows for exploration of
combinations of tunable parameters over multiple kernels. An interesting feature
of KTT is its support for keeping track of hardware performance counters during
benchmarking, which can also be used in advanced search strategies [61]. Auto-

6.2. RELATED WORK 107

Tuning Framework (ATF) [195] implements a way to generate search spaces, using
a chain-of-tree search space structure for efficient storage and fast exploration of
constrained search spaces. HyperMapper [159] is a tuning framework that focuses
on multi-objective optimization and exploitation of user prior knowledge. Kernel
Tuner [246] is specifically designed to be an easy-to-use and easy to extend tool
for the development of tunable GPU kernels, and in particular supports a large
selection of search optimization strategies. In this chapter, we extend Kernel
Tuner [246] with functionality for auto-tuning energy efficiency, which cannot be
found in any of the existing generic auto-tuning frameworks.

Research in auto-tuning GPU applications for energy efficiency is still in its
infancy, despite spanning more than 12 years of research. There is no state-of-the-
art method for GPU energy tuning, as comparisons between studies or even to
a shared baseline are non-existent. The majority of studies only tune individual
parameters, e.g. thread block dimensions [40, 95, 129, 177, 233, 244], or clock
frequencies [4, 29, 58, 64, 147, 191]. Only two studies actually combine auto-tuning
code optimizations with execution parameters, such as clock frequencies, but only
for a single application on a single GPU [41, 153].

All generic auto-tuning frameworks use empirical performance measurements,
most likely because it is difficult to create generalized performance models that
capture the complex system that arises from the combination of hardware and
software [30, 192, 207]. Some GPU energy tuning studies use highly-inaccurate
performance models, with up to 50% error, to estimate energy consumption without
evaluating the impact of these inaccuracies on the auto-tuning results [104, 129].
Therefore, most studies take an empirical approach, in particular using the GPU’s
internal power sensor [4, 58, 74, 83, 126, 191, 208], but also through external
power sensors [44, 79, 99, 107, 197, 230] often based on custom-built measurement
equipment. Internal power sensors are included in most modern GPUs and can
be read by software, e.g., using the NVIDIA Management Library (NVML) for
NVIDIA GPUs. Such power sensors are therefore highly accessible, but may
suffer from low sampling frequencies and low accuracy [200]. Some researchers
try to compensate for these limitations by measuring individual functions for
long periods of time [6, 182, 191]. This approach, however, is impractical for use
in auto-tuners, which often have to benchmark many configurations to find the
optimum [220]. As such, Kernel Tuner supports an external power sensor, namely
PowerSensor2 [200], which is accurate within 1% error and at a sampling frequency
of 2.87 kHz. This means that PowerSensor2 is capable of accurately measuring the
energy consumption of a kernel without the need to prolong the kernel execution
time. We have used PowerSensor2 to validate the power measurements taken using
NVML.

Many studies claim that there is a clear difference between the optimization
objectives of compute performance and energy efficiency, and that the two require
different optimization algorithms and parameters [33, 41, 58, 95, 117, 153]. How-
ever, such claims are often not experimentally verified. The relationship between
performance and energy efficiency is complicated, and many authors simply opti-
mize energy efficiency by minimizing the kernel execution time, an approach that is

108
CHAPTER 6. GOING GREEN: OPTIMIZING GPUS FOR ENERGY

EFFICIENCY THROUGH MODEL-STEERED AUTO-TUNING

sometimes referred to as race-to-idle [6]. In [37], a model for energy is proposed that
predicts that energy usage differs from runtime because energy costs for memory
operations cannot be hidden while the algorithm is running. Therefore, energy
optimality does not depend solely on optimizing FLOPs, but also on balancing
energy usage between memory and compute operations. In this chapter, we aim to
experimentally verify the differences between tuning for compute performance and
energy efficiency.

6.3 Methodology

6.3.1 GPU power consumption model
The energy consumed by a GPU over a time interval [t0, t1] is related to its power
usage P (t) according to

E =

∫ t1

t0

P (t) dt.

The power consumption P (t) = V (t)I(t) can be determined by measuring the
current I, and voltage V . In practice, one can either approximate the integral
numerically by, e.g., trapezoidal integration using the power readings, or simply
multiplying the average power consumption by the elapsed time E = 〈P 〉(t1 − t0).
We employ the latter method in this work, where we take the median power reading
for 〈P 〉.

The power consumption of a GPU is affected by several factors, including the
workload and operating frequency of the GPU. The workload is implementation
dependent, and in most cases can be optimized by tuning kernel parameters, or
by changing the kernel code. Furthermore, different GPU models contain different
components, such as memory and chips, that operate at certain clock frequencies
which can vary at runtime. These operating frequencies are commonly taken as is.

Throughout this work, we use a variety of GPUs with distinct architectures.
Moreover, even within one architecture (e.g. the Ampere architecture) we cannot
assume that the energy characteristics of two different models are identical. The
Tesla A100 and RTX A4000 GPUs for instance use a different chip (GA100 versus
GA102), are produced at a different process size (7 nm versus 8 nm), and have
a very different mix and number of execution units. Moreover, the Tesla A100
has HBM2e memory, while the RTX A4000 uses GDDR6. The NVIDIA drivers
currently do not expose an option to tune the clock frequency of the HBM memory.
For the RTX A4000 and a compute-bound kernel, we measured only a marginally
lower energy consumption when reducing the memory clock frequency. Therefore,
we consider solely the graphics clock (core) frequency in this work.

Contemporary GPUs usually operate at a base core frequency and can boost
up to a certain turbo frequency to increase performance, but only when the
temperature and power consumption of the device allows for it. This technique
is commonly referred to as Dynamic Voltage Frequency Scaling (DVFS). Price

6.3. METHODOLOGY 109

Kernel code

User interface

Strategies

Runners

Python script

Observers

Device function interface
CUDA

Functions
OpenCL

Functions
C

Functions

NVMLObserver

NVML wrapper
PowerSensor

Observer

PyCUDA Cupy PyOpenCL GCC PyNVML PowerSensor2

User input

Kernel Tuner

Backends

Figure 6.1: Extended software architecture of Kernel Tuner.

et al. [191] showed a relation between core frequency and the voltage required to
operate on a given frequency, and a power consumption model is given by

Pgpu = Pstatic +NcCfV
2, (6.1)

where C is load capacitance, Nc the number of switches, f is frequency, and V is
voltage. V typically increases with f . Consequently, the turbo frequency may be
good for performance, but not necessarily for energy efficiency.

To steer frequency tuning, we fit a GPU power consumption model to data
in section 6.5.4, using a non-linear least squares approach (Levenberg-Marquardt
algorithm [155]).

6.3.2 Energy measurements in Kernel Tuner
We introduce several new features in Kernel Tuner to acquire energy measurements
of GPU kernel executions, namely observers, user-defined metrics, and custom
tuning objectives. The software architecture and basic functionality of Kernel
Tuner is described in [246], and a diagram of software hierarchy can be found
in Figure 6.1. An observer can be implemented to execute functions and can
extend results obtained during benchmarking before, during and after kernel
execution. For the experiments in this work, we implemented the NVMLObserver
and PowerSensorObserver in Kernel Tuner.

PowerSensorObserver

To facilitate accurate energy measurements at high sampling frequency, we im-
plemented the PowerSensorObserver (using PyBind111) as an interface to Pow-
erSensor2 [200]. The user can select this observer to record power and/or energy
1https://pybind11.readthedocs.io/en/stable/

110
CHAPTER 6. GOING GREEN: OPTIMIZING GPUS FOR ENERGY

EFFICIENCY THROUGH MODEL-STEERED AUTO-TUNING

Figure 6.2: NVML power readings while executing matrix multiplication kernel
(GEMM) over time on three different GPUs.

consumption of kernel configurations during auto-tuning. This allows Kernel
Tuner to accurately determine the power and energy consumption of all kernel
configurations it benchmarks during auto-tuning.

NVMLObserver

Measurements with the PowerSensor2 require wiring external hardware to a GPU,
and the sensor is not available to most users, the bulk of our measurements will be
performed using NVIDIA’s internal sensors. The NVIDIA Management Library
(NVML) [168] can be used for power measurements on almost all NVIDIA GPUs, so
using this library is much more accessible to end-users compared to solutions that
require custom hardware, such as PowerSensor2. To this end we implemented the
NVMLObserver in Kernel Tuner, which allows the user to observe the power usage,
energy consumption, core and memory frequencies, core voltage and temperature
as reported by NVML.

As opposed to PowerSensor2, the power usage reported by NVML has a signifi-
cantly lower temporal resolution. Furthermore, NVML only reports a time-averaged
power consumption rather than instantaneous power consumption [26].

Figure 6.2 shows the GPU power consumption over time as reported by NVML,
while continuously executing a matrix multiplication kernel (GEMM see section
6.4) for one second. The jumps in the graph are caused by the fact that the
time-averaged value reported by NVML only refreshes at a frequency of about
10 Hz (9.75 Hz on RTX A6000, 14.5 Hz on Tesla A100, and 12.4 Hz on Titan
RTX). We can see that on the Titan RTX and Tesla A100, the power consumption

6.4. EXPERIMENTAL SETUP 111

GPU Architecture Cores Bandwidth Peak SP TDP (W)

RTX A4000 Ampere (GA104) 6,144 448 19,170 140
RTX A6000 Ampere (GA104) 10,752 768 38,709 300
Tesla A100 Ampere (GA100) 6,912 1,555 19,500 250
Tesla V100 Volta (GV100) 5,120 900 14,028 250
Titan RTX Turing (TU102) 4,608 672 16,312 320

Table 6.1: GPUs used in our experiments. Bandwidth in GB/s. Peak compute
performance in GFLOP/s. TDP in Watts.

as report by NVML stabilizes after about 0.3 seconds into the run. For the RTX
A6000, power consumption gradually ramps up until hitting the Thermal Design
Power (TDP) right before the end of our 1-second interval.

To ensure that the NVML power measurements in Kernel Tuner more accurately
reflect the power consumption of the kernel, the NVMLObserver executes the kernel
repeatedly for a user-specified duration (1 second by default), and takes the final
energy measurement, thereby ensuring a more accurate measurement with NVML.
The downside of this approach is that it significantly increases benchmarking time.

6.3.3 Tunable parameters and objectives for energy tuning
Using application-specific clock frequencies is one of the most common approaches to
tuning energy efficiency on GPU systems. Recently, Krzywaniak and Czarnul [117]
have shown promising results with setting application-specific power limits, also
called power capping, to optimize energy consumption. For this work, we have
implemented support in Kernel Tuner for users to tune their applications under
different clock frequencies and power limits. Specifically, NVML tunable parameters,
such as nvml_gr_clock, nvml_mem_clock, and nvml_pwr_limit, can be set using
Kernel Tuner. Note that changing these settings requires root privileges on most
systems. As such, these features may not be available to all users on all systems.

Lastly, to perform energy tuning, we need to specify metrics that we aim to
minimize or maximize. Using the aforementioned observers, we can collect power
readings (in Watts) during kernel execution. Furthermore, Kernel Tuner’s flexible
user-defined metrics allows us to define other metrics such as compute performance
in floating point operations per second (GFLOP/s). This allows us to define energy
efficiency as GFLOPs/W (same as GFLOP/J) which is a measure of the energy
used to perform a billion floating point operations.

6.4 Experimental setup
To investigate energy tuning on GPUs, we run several real-world applicable kernel
programs, on a few different GPUs available in either the DAS-6 cluster (Turing
and Ampere architecture) [10], or in the LOFAR COBALT-2 correlator system

112
CHAPTER 6. GOING GREEN: OPTIMIZING GPUS FOR ENERGY

EFFICIENCY THROUGH MODEL-STEERED AUTO-TUNING

(Tesla V100) [22]. Table 6.1 lists the properties of these GPUs. In addition to
the widely-used GEMM kernel, we validate our results on several computationally
expensive radio astronomy kernels currently processing data for the Low Frequency
Array (LOFAR) radio-telescope [78]. These kernels will be used in section 6.5.5 to
determine the practically obtained energy reduction for a real-world application.
All kernels are compute-bound, except for the TDD kernel which is memory-bound.
For the experiments in this section,

GEMM (Generalized dense matrix–matrix multiplication) is one of the most
widely-used kernels across many application domains, including neural networks.
Here we perform the calculation C = αA ·B+βC for 4096×4096 matrices A,B,C,
and constants α and β. We use the highly-tunable OpenCL implementation
available in CLBlast [165].

The CLBlast GEMM kernel can be tuned with many parameters, here we
summarize the most important ones:

• Mwg, Nwg, and Kwg represent the total size of the tile processed by a single
thread block in the M, N, and K matrix dimensions.

• MdimC and NdimC are the thread block dimensions in M and N.

• SA and SB can be used to enable or disable using shared memory as a
software managed cache for matrix A and matrix B.

• Mvec and Nvec are the vector widths for loading and storing to global memory,
Mvec is used for matrices A and C, and Nvec for matrix B.

• Kwi is the unrolling factor used for the loop over K.

While the GEMM kernel can use several code optimizations, none of the code
optimizations have been introduced to optimize the kernel specifically for energy
efficiency. All tunable parameters combined describe a large space, of which many
portions are restricted. Using the parameters employed by CLBlast, the search
space consists of 17472 valid kernel configurations, that will all be compiled and
benchmarked when performing an exhaustive search. However, when we add
additional tunable parameters for energy tuning, such as a power limit or clock
frequency, the search space grows combinatorially from a grid search perspective.
For example, if we want to tune all parameters in the search space in combination
with 7 different clock frequencies, the total size of the search space becomes
17,472× 7 = 122,304.

LOFAR Correlator is the correlator application used for real-time processing
of LOFAR (Low Frequency Array) data [78]. It combines measurements from
the radio telescope into a data product to be processed further by other (offline)
processing pipelines (see other kernels). The correlator kernel was tuned by
hand for the Kepler architecture, e.g. by unrolling loops and using fixed block
and grid dimensions. Consequently, there is only a single tuning parameter left:
NR_STATIONS_PER_THREAD. This parameter is used to choose between one of four
different kernels.

6.4. EXPERIMENTAL SETUP 113

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Energy (J)

Tesla
A100

RTX
A4000

RTX
A6000

race-to-idle
energy-to-solution-maxclock
race-to-idle+clocks
energy-to-solution+clocks
global energy-to-solution

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Energy (J)

TITAN
RTX

Figure 6.3: GEMM: Lowest energy configuration for the Tesla A100, RTX
A4000, RTX A6000, and TITAN RTX GPUs for the race-to-idle, energy-to-
solution-maxclock, race-to-idle+clocks, energy-to-solution+clocks, and global energy-
to-solution tuning methods. The energy measurements for the TITAN RTX were
acquired using PowerSensor2, the others using NVML.

114
CHAPTER 6. GOING GREEN: OPTIMIZING GPUS FOR ENERGY

EFFICIENCY THROUGH MODEL-STEERED AUTO-TUNING

TCC (Tensor-Core Correlator) is similar to the LOFAR correlator, leveraging
the Tensor Cores of contemporary NVIDIA GPUs [201]. Tensor Cores are mixed-
precision compute units that operate on matrix-like inputs. By using these compute
units, the Tensor-Core correlator is both much faster and much more energy-efficient
compared to previous correlators. This kernel is hand-tuned and uses fixed thread
block dimensions. There is one tuning-parameter: PORTABLE, which determines
whether the output is written using asynchronous writes (not supported on all
GPUs) or via shared memory.

IDG (Image-Domain Gridding) is an algorithm for radio astronomical imaging,
of which the gridder and degridder kernels are the most compute intensive. IDG
moves the computation (which resembles convolution) from the frequency domain
to the image domain by introducing subgrids and Fourier transformations for
processing input data in smaller subsets [238, 239]. The GPU implementation
of the gridder has the following tuning parameters: BLOCK_SIZE_X, the number
of threads in a thread block; UNROLL_PIXELS, the number of pixels to process by
a thread; NUM_BLOCKS, the number of threads blocks per SM; USE_EXTRAPOLATE,
option to reduce the number of trigonometric operations, at the cost of having to
perform more fused multiply-add operations. The degridder kernel has the same
options, except for UNROLL_PIXELS.

Dedispersion is used in time-domain astronomy to detect transient effects (e.g.
fast radio bursts) and pulsars. The signal received by the telescope is dispersed
(shifted) in time of the frequency band, and dedispersion is needed to correct for
this. Dedispersion can either be performed in the time domain (TDD), or in the
Fourier domain (FDD) [12]. TDD has two tuning parameters: SAMPS_PER_THREAD,
controls the number of samples to be processed per thread; USE_TEXTURE_MEM,
whether to use texture memory as a cache when loading input data. FDD has the
following tuning parameters: NFREQ_BATCH_GRID and NDM_BATCH_GRID control the
number of input samples to process per kernel invocation; NCHAN_BATCH_THREAD,
the number of input samples (in the frequency dimension) that every GPU thread
processes; USE_SHARED_MEMORY, use shared memory as software-managed cache
when reading input data; USE_EXTRAPOLATE, reduces the number of trigonometric
operations (same as for IDG, see above.).

6.5 Experimental results

6.5.1 Impact of energy tuning versus race-to-idle
In this section, we experimentally answer whether auto-tuning for energy efficiency
(global energy-to-solution) is different from auto-tuning for the lowest kernel runtime
across all clock frequencies (race-to-idle). Furthermore, we report the lowest energy
configuration at max clocks. We compare with a practical compromise where we
first tune for time, and then select a clock frequency for the best energy efficiency.
We call this last approach race-to-idle+clocks. Conversely, we also consider energy-
to-solution+clocks where we fix the frequency at the base clock frequency, tune for

6.5. EXPERIMENTAL RESULTS 115

energy, and then select a clock frequency to further maximize energy efficiency.
In Figure 6.3, we show the lowest energy configuration in the GEMM search

space with each of the aforementioned methods across several GPUs. For the
TITAN RTX we used the PowerSensor2 measurements to validate the findings. We
use relatively widely spaced equidistant samples from the range of supported SM
clock frequencies (7-points) due to the high cost of obtaining all measurements (9
days per GPU).

First, Figure 6.3 shows that the fastest configuration returned by race-to-idle
is not the most energy efficient for any of the GPUs. Second, for most GPUs,
the energy usage of the configurations found by race-to-idle+clocks and energy-to-
solution+clocks are close to the global lowest energy configuration, but they never
have the same parameters. Note that for race-to-idle+clocks, we first tuned for
time with the clock frequency fixed to the maximum, before tuning only the clock
frequency for energy efficiency.

The exception is the Tesla A100, where we see a gap in energy usage between
all five methods. This means that there is a particular combination of tunable
parameter values that results in a configuration that is more energy-efficient than
anything returned by the two-step optimization approaches. In other words, to
find the global optimum in terms of energy-to-solution it is necessary to search the
combined configuration space of all tunable parameters, including clock frequencies.

Our experimental results show that auto-tuning the GEMM kernel for energy
efficiency does not lead to the same optimal configuration as tuning for time, as all
five methods produce different configurations, with a different energy usage. This
raises the question of how kernel speed and energy efficiency are related. In Figure
6.4 we plot the compute performance in GFLOP/s for every GEMM configuration
over energy efficiency in GFLOPs/W, together with the Pareto front in red. By
looking at the points on the Pareto front for the RTX A4000 and Tesla A100, we
see that the trade-off between speed and energy efficiency differs between GPUs.
For the RTX A4000, a speed reduction of 28.4% leads to an increase in energy
efficiency of just 5.8%. However, for the Tesla A100, a speed reduction of 27.5.%
leads to an increase in energy efficiency of 50.9%. Therefore, the trade-off between
kernel runtime and energy usage is GPU specific.

Overall, our results show that, for the GEMM kernel, tuning for lowest energy
leads to different configurations than tuning for lowest execution time. However,
depending on the GPU, it may be sufficient to treat the optimization as a two-
stage optimization problem; first optimizing for minimal energy with a fixed clock
frequency, and then optimizing for the most energy efficient frequency, can result
in close to optimal energy efficiency on certain GPUs.

6.5.2 Speed vs energy: tuning difficulty of optimization spaces
Tuning a kernel for energy typically requires a larger search space compared to
tuning only for execution time. For energy, the search space is typically enlarged
with tunable parameters such as clock frequency, or power limit, and possibly other
specific optimizations that affect energy usage (e.g. the use of shared memory).

116
CHAPTER 6. GOING GREEN: OPTIMIZING GPUS FOR ENERGY

EFFICIENCY THROUGH MODEL-STEERED AUTO-TUNING

Figure 6.4: Kernel speed (GFLOP/s) over energy efficiency (GFLOPs/W) for all
GEMM configurations for the RTX A4000 (top) and Tesla A100 (bottom). The
red line is the Pareto front, i.e., neither performance or efficiency can be improved
without decreasing the other. Points are coloured according to the core frequency.

6.5. EXPERIMENTAL RESULTS 117

This raises the question whether the search space for energy tuning, compared
to tuning execution time, is only larger, or whether energy is actually harder to
optimize with optimization algorithms.

The proportion of PageRank centrality [213] quantifies search difficulty for blind
optimization algorithms. Here, a fitness flow graph (FFG) is created where all the
points in the search space are represented as nodes, and a directed edge from a
node to its neighbour is added if the neighbour has better fitness (energy or time).
A random walk across the FFG has the property that it mimics a randomized
first-improvement local search algorithm. The PageRank centrality of a local
minimum in the FFG is the proportion of arrivals in that minimum for a random
walk, i.e., the proportion of arrivals of a first-improvement local searcher during
optimization. Since local searchers terminate in local minima, the proportion of
centrality metric considers the fraction of centrality of “suitably good” local minima,
among all minima in the space. In other words, it gives the expected fraction of
local search terminations in “good” local minima. If near-optimal minima have high
centrality, a local searcher will find a close to optimal solution in fewer evaluations.
Here, “suitably good” means that the fitness of the minimum is within p · foptimal
for some p ≥ 1.

In Figure 6.5, we plot the proportion of centrality as a function of p for GEMM,
for the RTX A4000, RTX A6000, and Tesla A100 GPUs. For every GPU we plot the
proportion of centrality curve for performance (time) tuning, energy tuning with
clock frequency, and energy tuning with power limits. There does not appear to be
a significant difference in difficulty for the RTX A4000 GPU. For the RTX A6000
GPU, the minima with more than 125% runtime of the optimum are less central.
However, as these minima are already significantly worse than the near-optimal
solutions, we conclude that performance tuning is not significantly harder than
energy tuning for the RTX A6000. For the Tesla A100, we find that energy tuning
is significantly harder than performance tuning. For minima ≤ 110% of optimal
fitness, a local search algorithm is 2-4× less likely to terminate in these minima
when minimizing energy.

Overall, in our experiments, energy tuning is either similar in tuning difficulty
or harder depending on the GPU. As such, these search spaces remain infeasibly
large to traverse fully within a day, and picking many sampling clock frequencies
or power limits will compound this problem.

6.5.3 Power capping versus frequency tuning
In this section, we compare two methods that frequently appear in the literature;
power capping [117], which is fixing the power limit of the GPU, and frequency
tuning [4, 29, 58, 64, 147, 191], which aims to find the optimal application-specific
GPU clock frequency.

In Figure 6.6, we analyse the impact of both frequency tuning and power
capping on GPU power consumption. At the same measured frequencies, power
consumption seems a bit higher when using a fixed clock frequency compared to
setting a power limit. We observe that power capping does not cover the entire

118
CHAPTER 6. GOING GREEN: OPTIMIZING GPUS FOR ENERGY

EFFICIENCY THROUGH MODEL-STEERED AUTO-TUNING

100 110 120 130 140 150
% Fitness (time or energy) of global minimum

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n
of

 c
en

tra
lit

y

RTX A4000

EnergyPwrLimit

EnergyClockFreq

RunTime

100 110 120 130 140 150
% Fitness (time or energy) of global minimum

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n
of

 c
en

tra
lit

y

RTX A6000

EnergyPwrLimit

EnergyClockFreq

RunTime

100 110 120 130 140 150
% Fitness (time or energy) of global minimum

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n
of

 c
en

tra
lit

y

Tesla A100

EnergyPwrLimit

EnergyClockFreq

RunTime

Figure 6.5: Proportion of centrality for tuning execution time, energy tuning (power
limit), and energy tuning (clock frequency) for the RTX A4000, RTX A6000, and
Tesla A100 GPUs.

6.5. EXPERIMENTAL RESULTS 119

range of clock frequencies supported by the GPU. Therefore, using frequency tuning,
we can reduce the power consumption below the minimum power limit, which
may be beneficial for some applications. Moreover, by operating at a fixed clock
frequency (below the point where throttling may occur), GPU behaviour is more
predictable.

To compare the two methods globally, we add to the existing tunable GEMM
parameters either a set of power limits or clock frequencies. We take a 7-point
equidistant sample from the range of power limits in case of power capping, and the
range of supported SM clock frequencies in case of frequency tuning. Using these
parameters, we have performed a full combined search space exploration of the
GEMM application on the RTX A4000, RTX A6000, Tesla A100 and TITAN RTX
GPUs. On the Titan RTX, we measured power consumption using PowerSensor2
instead of NVML.

The lowest measured energy for power capping and frequency tuning is given
in Figure 6.7. For the RTX A4000 and A6000 GPUs, power capping results in a
marginally lower energy configuration, but not for the Tesla A100. For the TITAN
RTX, where we used 20 sampling points for frequency tuning (300 MHz to 2100
MHz in steps of 75 MHz) and 9 for power capping (100 W to 300 W in steps of
25 W), we see that frequency tuning finds a significantly more energy efficient
configuration. This seems to suggest that given sufficient sampling points, due
to the increased frequency range, frequency tuning can result in a more energy
efficient configuration. However, this leads to an increase in search points in an
already large search space. To combat this, in Section 6.5.4, we investigate the
relationship between frequency and voltage, and how this can be used to steer
fine-grained frequency tuning.

6.5.4 Model-steered frequency tuning
In this section, we analyse the impact of clock frequency scaling on the power
consumption of the GPU, with the goal of identifying a range of suitable clock
frequencies that likely results in energy-efficient configurations. The GPU core
voltage can be queried by calling NVIDIA-smi -q -d VOLTAGE. In our experience,
this option is only available with fairly recent NVIDIA drivers (510 and newer) in
combination with Ampere GPUs (e.g. A100, A4000, A6000).

We plot the frequency-voltage curves for Tesla A100 and RTX A4000 in Fig-
ure 6.8. We observe that there is indeed a non-linear relation between core frequency
and voltage, as discussed in Section 6.3.1. For both the Tesla A100 and RTX
A4000, the voltage remains unchanged for a range of core frequencies, after which
the voltage increases seemingly quadratically. We will refer to the point where this
increase occurs as the ridge point. The RTX A4000 seems to be capped at 1875
MHz, as the core voltage does not increase beyond this point. This is likely due to
its power limit of 140W. This is not observed for the Tesla A100, potentially due
to its lower maximum operating frequency and higher power limit of 250W. At the
ridge points, the clock frequency for the GPUs is 72% and 70% of the peak clock
frequency, for the Tesla A100 and RTX A4000 respectively. Interestingly, for both

120
CHAPTER 6. GOING GREEN: OPTIMIZING GPUS FOR ENERGY

EFFICIENCY THROUGH MODEL-STEERED AUTO-TUNING

Figure 6.6: Tuning using a power limit (triangles) versus tuning using frequency
(circles) for TITAN RTX (top left), Tesla A100 (top right) and RTX A4000 (bottom)
for a synthetic workload that fully occupies the GPU. For all three GPUs, the
power consumption coincides with the configured power limit (indicated with the
dashed lines). Moreover, we observe that for this workload, the TITAN RTX and
RTX A4000 can not sustain their maximum advertised turbo clock frequency of
1770 MHz and 1560 MHz, respectively.

6.5. EXPERIMENTAL RESULTS 121

0.0 0.5 1.0 1.5 2.0
Energy (J)

RTX
A4000

RTX
A6000

Tesla
A100

frequency tuning
power limit tuning

0.0 0.5 1.0 1.5 2.0
Energy (J)

TITAN
RTX

Figure 6.7: Lowest found energy for power capping or frequency tuning for GEMM,
for the RTX A4000, RTX A6000, Tesla A100, and TITAN RTX GPUs. The energy
measurements for the TITAN RTX were acquired using the PowerSensor2 instead
of the NVML energy.

GPUs, the ridge point does not coincide with the base frequency.

Estimating GPU power consumption

Equation 6.1 shows that the power consumption of a GPU can be modelled
as the sum of the idle power and the dynamic power. In our model we take
the idle power consumption as a constant, and the dynamic power consumption
has a linear dependence on frequency, and a quadratic dependence on voltage.
Moreover, for GPUs that are prone to power-limit throttling (e.g. RTX A4000),
the power consumption of the GPU is capped. The model for estimated GPU
power consumption is

P ∗load = min(Pmax, P
∗
idle + α ∗ f ∗ v2). (6.2)

P ∗load, Pmax, and P
∗
idle denote the estimated, maximum and idle power consumption

of a GPU respectively. An initial value for Pmax can be obtained by measuring the
maximum power consumption observed when executing a kernel that fully loads
the GPU, or simply by looking up the TDP of the device. Pidle can be obtained
by measuring the power consumption when no kernel is being executed. α is a
constant, f is the core frequency of the GPU, and v denotes the GPU core voltage.

122
CHAPTER 6. GOING GREEN: OPTIMIZING GPUS FOR ENERGY

EFFICIENCY THROUGH MODEL-STEERED AUTO-TUNING

Figure 6.8: Top: GPU core frequency versus voltage curves for Tesla A100 and RTX
A4000. The base clock frequency, the ridge point and peak frequency for each GPU
are highlighted with a dashed line and label. Bottom: estimated performance under
the assumption that GPU performance scales linearly with the clock frequency up
to the point where throttling (if any) occurs. Estimated performance is normalized
according to the performance for the highest possible clock frequency.

6.5. EXPERIMENTAL RESULTS 123

Estimating GPU core voltage

For GPUs that do not support voltage readings, such as the Tesla V100 and Titan
RTX, we extend the methodology outlined above to include a voltage estimate as
a function of core frequency. We assume based on our observations that for these
GPUs there exists a threshold τft after which the voltage increases with a rate
β. As input, our method requires a number of power measurements for a uniform
sample of all the clock frequencies that the GPU supports. These data points are
used to fit equation 6.2 to estimate Pload, where v is substituted by:

v(f) =

{
1 f < τft

β ∗ (f − τft) f >= τft
(6.3)

Fitting the model

We test our model by configuring Kernel Tuner to record core frequency and power
usage while running a simple synthetic kernel (array dot product) that fully loads
the GPU. We only need a few samples, spaced uniformly along the supported core
frequencies. Using the measurements obtained with Kernel Tuner, for every GPU,
we fit equation 6.2 to the data as outlined in section 6.3.1. When fitting the model
for P ∗load, the frequency f runs till the highest clock frequency before throttling (if
any) occurs.

The left plot in Figure 6.9 illustrates that the estimated power consumption
closely follows the power consumption measured using NVML. Next, the estimated
power consumption is used to compute estimated energy usage as a function of
absolute power (P ∗load) divided by clock frequency (f). For each of the GPUs, there
is a core frequency that minimizes estimated energy usage, see Figure 6.9 (right).
For both the Tesla A100 and RTX A4000, the predicted most energy-efficient clock
frequencies (985 MHz and 1298 MHz) are close to the observed ridge points at
1025 MHz and 1290 MHz as identified in Figure 6.8.

Reducing the clock frequency beyond the ridge point does not make the GPU
more energy efficient, as performance drops with f while v is constant below the
ridge point. This leads to a higher total energy usage for non-zero Pidle. On the
other hand, there is a trade-off between performance and energy when considering
higher clock frequencies than the ridge point, up to the point where throttling
starts to occur (at about 1700 MHz for the RTX A4000 and 2000 MHz for Titan
RTX). As energy increases quadratically with voltage, and compute performance
linearly with frequency, it is unnecessary to consider frequencies significantly higher
than the ridge point.

To conclude, prior to energy tuning a particular GPU kernel, we recommend
running a kernel that fully loads the GPU for a range of clock frequencies. Our
model can then be used to fit a power consumption curve and find an estimate
for the most energy-efficient frequency. Next, energy tuning can be run with a
fine-grained sampling of clock frequencies around the estimated optimal frequency.

124
CHAPTER 6. GOING GREEN: OPTIMIZING GPUS FOR ENERGY

EFFICIENCY THROUGH MODEL-STEERED AUTO-TUNING

Figure 6.9: Top: Power consumption of dot product kernel that fully loads the GPU,
for the Tesla A100, RTX A4000, RTX A6000, Tesla V100, and Titan RTX. The
dots indicate measurements, while the lines show the modelled power consumption
(equation 6.2). Bottom: Corresponding estimated energy usage, with frequency
that leads to minimal energy usage.

6.5. EXPERIMENTAL RESULTS 125

GOPs GOPs GOPs TOP TOP TOP Freq-
/W /W /W /s /s /s uency

GPU Kernel before after gained before after gained (MHz)

Tesla
A100

Gridder 64.7 102.6 58.6% 16.3 12.0 -26.5% 1035
Degridder 59.8 97.5 63.1% 14.5 10.7 -26.2% 1035
FD 62.2 92.8 49.1% 9.7 7.3 -24.6% 1035
Dedispersion
TD 13.3 21.5 61.3% 3.4 2.5 -26.4 % 1035
Dedispersion
Tensor-Core 684.8 1264.2 84.6% 148.4 135.2 -8.9% 1035
Correlator
LOFAR 58.9 125.8 113.8% 12.2 10.7 -12.0% 1035
Correlator

RTX
A4000

Gridder 77.6 107.5 38.6% 11.0 8.1 -25.8% 1200
Degridder 90.8 131.6 44.9% 10.2 9.4 -8.1% 1470
FD 77.6 111.9 44.3% 8.3 6.7 -19.2% 1290
Dedispersion
TD 12.9 17.2 33.0% 1.5 1.1 -22.2% 1200
Dedispersion
Tensor-Core 571.2 606.8 6.2% 57.2 55.2 -3.6% 1290
Correlator
LOFAR 98.9 119.3 20.6% 8.7 8.4 -4.2% 1470
Correlator

TITAN
RTX

Gridder 55.2 68.6 24.2% 14.3 9.0 -37.2% 1260
Degridder 48.4 65.6 35.4% 13.7 8.2 -39.7% 1155
FD 39.9 59.9 50.2% 10.2 5.5 -45.4% 1050
Dedispersion
TD 8.0 12.1 50.7% 2.1 1.3 -40.0% 1050
Dedispersion
Tensor-Core 140.5 209.5 49.1% 34.7 23.4 -32.6% 1155
Correlator
LOFAR 51.5 78.0 51.6% 12.8 7.2 -43.4% 1155

Tesla
V100

Gridder 59.6 73.6 23.6% 11.6 9.5 -18.0% 1110
Degridder 61.7 74.2 20.2% 11.0 8.8 -19.9% 1110
FD 58.6 69.2 18.1% 7.4 6.0 -19.2% 1110
Dedispersion
TD 11.6 15.7 34.9% 2.2 1.3 -37.8% 1110
Dedispersion
Tensor-Core 260.8 301.5 15.6% 34.2 27.7 -18.9% 1110
Correlator
LOFAR 74.7 86.8 16.3% 9.9 7.6 -23.5% 1110
Correlator

Table 6.2: Energy efficiency (GOPs/W) and compute performance (TOP/s) before
and after model-steered frequency tuning, i.e., select the most energy-efficient
frequency within ±10% MHz of the ridge points found in Figure 6.9. All kernels
use floating point operations (FLOPs) except the Tensor-Core correlator, which
uses 16-bit integer operations.
∗Note: The before measurements are already tuned for time by a domain expert.

126
CHAPTER 6. GOING GREEN: OPTIMIZING GPUS FOR ENERGY

EFFICIENCY THROUGH MODEL-STEERED AUTO-TUNING

Figure 6.10: Modelled energy usage (J) with power consumption model for core
clock frequencies (MHz) of LOFAR kernels for the Tesla V100, Titan RTX, Tesla
A100 and RTX A4000 GPUs.

6.6. CONCLUSIONS 127

This feature is included in Kernel Tuner2 (version 0.4.4). In this work, we use a
range of ±10% of the optimal frequency estimated with the model.

6.5.5 Practical efficiency gain for radio astronomy kernels
To verify the energy gains on a real-world high-throughput pipeline, we apply
our model-steered frequency tuning method to the six radio astronomy LOFAR
kernels (see section 6.4) currently running on the DAS-6 system [10], and LOFAR
COBALT-2 system [22] (can receive more than 1 Tbit/s). By using model-steered
frequency tuning we reduce the size of the searchspaces by 82.4%, 78.9%, 77.8%,
and 80.0% for the Tesla A100, RTX A4000, Titan RTX, and Tesla V100 respectively.
The measured compute performance and energy efficiency before and after model-
steered tuning is given in Table 6.2. Note that all six kernels have previously been
optimized for compute performance, which means that the reduction in compute
performance may be more severe than in most cases.

After model-steered frequency tuning, the LOFAR kernels gained between ∼15–
113% in energy efficiency, while losing ∼3–45% compute performance. Gains in
energy efficiency, and losses in compute performance, varied significantly between
GPU models and kernels. Two notable outliers are the Tensor-Core correlator on
the RTX A4000, where efficiency increased only 6%, and the LOFAR correlator
on the Tesla A100, where an efficiency gain of 113.8% was achieved while losing
only 12% compute performance. Overall, the mean energy efficiency gain was
42.0± 24.1%, and the mean compute performance loss was −24.3± 12.1%.

The estimated energy usage curves for each application using the power con-
sumption model are given in Figure 6.10. We can see that sometimes the estimated
optimal frequency is close to the measured optimal frequency in Table 6.2, and
sometimes differs more significantly. In future work, we plan to expand the model
by adding memory- and temperature-dependent terms.

6.6 Conclusions
We have investigated several GPU kernel tuning approaches for improving energy
efficiency, and extended Kernel Tuner’s capabilities for measuring GPU power
consumption and for tuning energy usage. On a commonly-used benchmark matrix
multiplication kernel (GEMM) – designed for compute performance without energy-
specific tunable parameters – we found that with a speed reduction of 27.5% an
increase in energy efficiency of 50.9% is possible on the Tesla A100. Additionally,
the combined search space of all tunable parameters (including clock frequency)
contains a globally lower energy configuration, compared to tuning for performance
and then tuning clock frequency separately. However, for most GPUs tuning
the frequency separately did lead to a close to optimal energy usage. When
investigating energy tuning methods, we found that clock frequency tuning gives

2https://github.com/KernelTuner/kernel_tuner

128
CHAPTER 6. GOING GREEN: OPTIMIZING GPUS FOR ENERGY

EFFICIENCY THROUGH MODEL-STEERED AUTO-TUNING

more fine-grained control over GPU power consumption than power capping, and
enables a larger (and lower) range of power consumption.

Due to the prohibitively large search spaces when tuning both kernel parameters
and clock frequency, we introduced a model to estimate GPU power consumption.
We show that a single core clock frequency is the most energy efficient when
the other tunable parameters are constant. This clock frequency can easily be
estimated using our power consumption model. We verified the potential energy
efficiency gains when tuning around ±10% of our estimated frequency on a number
of real-world radio astronomy kernels, and increased energy efficiency more than
two fold at a loss of 12% compute performance. Overall, the mean energy efficiency
gain was 42.0± 24.1%, and the mean compute performance loss was −24.3± 12.1%.
Using our model-steered frequency tuning approach, we were able to dramatically
reduce the size of the auto-tuning search spaces by 77.8− 82.4%.

7
Conclusion and outlook

The main goal of the research presented in this thesis was to develop approaches
for optimizing computationally demanding imaging pipelines from several different
angles. A subordinate goal was to try and support the research questions with
practical problems from real-world applications and test the techniques on real
data as much as possible. In this chapter, we summarize the contributions of this
thesis, discuss its limitations, and suggest directions for future research.

7.1 Contributions and limitations
The contributions of Chapter 2 can be categorized as an attempt to practically
realize the computationally challenging task of doing real-time reconstruction and
segmentation, and how machine learning can help in this regard. Conceptually,
design choices were made in the RECAST3D framework to perform quasi-3D recon-
struction, and to use an omnidirectional CNN. On a software level, RECAST3D
is created as a modular system with separate servers running visualization and
reconstruction separately, and communication is done via data packets. This allows
the system to be extended by different plugins that can asynchronously compute
processing steps, e.g., filtering of the projection data can be done while earlier
reconstructed slices are being annotated. On the hardware level, this modular
system also has benefits since processing steps can be split among different GPUs,
or even different machines to avoid blocking the pipeline. Practically, such a compu-
tational pipeline potentially represents an important step for online and real-time
analysis of tomographic experiments. A limitation of the approach is related to the
generalizability of the neural network to new data. For accurate segmentation, the
training data needs to be representative of the data that will be segmented during
the scanning procedure, meaning similar CT data needs to be available ahead of
the experiment. Nevertheless, using such a pipeline, one can perform real-time

129

130 CHAPTER 7. CONCLUSION AND OUTLOOK

and online segmentation of quasi-3D volumes, enabling immediate feedback and
analysis during experiments.

The main contribution of Chapter 3 is that the study outlines what benefits arise
from connecting traditional CT approaches with modern auto-differentiation frame-
works. While the convergence of a gradient descent-based optimization method
is not guaranteed, the study shows that in practice the method still produces
strong results. A large benefit comes from the engineering perspective, where the
user can now trial different learned CT workflows and turn optimization on or off
for selected parameters at will, without having to design complicated specialized
algorithms. Connecting existing building blocks to an auto-differentiation frame-
work means that users can experiment in a plug-and-play nature to solve common
image processing tasks. Despite these benefits, several limitations of the approach
emerged in the study. First, the current setup requires a large effort to implement
existing algorithms in PyTorch, which inhibits adoption of the approach in practice.
Second, the learning rate needs to be picked manually which is challenging when
multiple parameters of different magnitude are involved.

The main contribution of Chapter 4 is a method that significantly prunes
CNNs which does not require hyperparameters to be set. Furthermore, the graph
representation allows for efficient pruning of redundant operations, which further
reduces the size of the CNN. A drawback of the method thus far is that PyTorch
implements pruning by masking the model parameters with binary tensors, thereby
natively not producing any computational speedup. For the MS-D network, we
implemented a pruned model that loads a sparse MS-D network to measure actual
acceleration, but this is a time-consuming process if it has to be done for any CNN
architecture.

Chapter 5 contributes practically usable methods to the GPU auto-tuning
community that are implemented in the Kernel Tuner package. It further provides
a ranking of black-box optimization methods for tuning GPU kernels, and the
learnings from the study contributed to the methodology paper [250] that was set
up by the GPU auto-tuning community to streamline research into optimization
algorithms in the future. Secondly, the study contributes a difficulty quantification
(and visualization) method for discrete search spaces based on graph theory. The
application of this method need not be limited to GPU auto-tuning as it generalizes
to any discrete search space. Computational limitations of the approach could
come into play when the graph becomes too large to store in memory. Second, the
entire search space needs to be traversed before the method can be applied. This
means that it is currently only useful for post-optimization analysis, and not for
steering optimization of unknown GPU kernels.

Finally, Chapter 6 provides a practical method to improve the energy efficiency
of GPUs. With growing environmental concerns, methods that focus not only on
maximizing compute performance but also take into consideration the environmental
footprint of computations are of large importance. The simplicity of the method,
i.e. a handful of executions of a small kernel that is shipped with the script, means
that it can easily be applied on many different systems. Steering the GPU towards
energy efficiency proved potentially highly effective as for the Tesla A100 GPU we

7.2. OUTLOOK 131

were able to increase its energy efficiency by 113.8% while losing only 12.0% in
speed. This highlights that such a trade-off may be worthwhile on many systems
if it is not crucial to extract maximal performance. A drawback of the current
implementation is that it only works for NVidia server-grade GPUs. While the
method was also designed to work for older models (those that do not support
voltage measurements), it does not work for models where setting the core clock
frequency is not allowed. It appears that this functionality has been disabled on
consumer-grade GPUs, something we hope to see changed with future releases.

7.2 Outlook
Several promising research directions are unfolding to optimize computational
imaging pipelines that we want to discuss in turn. A promising direction to further
develop the idea of optimizing legacy pipelines with modern auto-differentiation
tools is to develop infrastructure that approximates the gradients instead of com-
puting them analytically. With this approach, the traditional building blocks are
registered in the auto-differentiation framework by e.g. wrapping them in a Python
class. Instead of computing gradients by traversing the computational graph, which
requires expensive re-implementation of the existing algorithms, we use a method
to approximate the gradients such as a finite differences method. In fact, instead
of wrapping the legacy code and calling it from the auto-differentiation framework,
a client-server model can be designed that separates the environments. In this
manner, the auto-differentiation framework can work with external C or Fortran
code or even an executable. Users would need to set up a lightweight server that
can run on the legacy side and run the legacy code for a set of parameters (by for
example passing them as CLI arguments, or writing them to a .txt file). Hopefully,
such infrastructure would allow us to extend the learnings from Chapter 3 to a
larger range of legacy pipelines, many of which cannot easily be reimplemented in
PyTorch.

An alternative to approximating the gradient during pipeline optimization
would be to approximate the forward model. If the forward model is prohibitively
expensive to run repeatedly, it may be possible to approximate the forward model
by a surrogate and optimize the parameters using the surrogate model instead.
For example, in [118], a surrogate to TV reconstruction is introduced which could
be used to tune the regularization parameter λ. Potentially, approaches could be
developed that are suitable to approximate many computational building blocks.
For example, neural networks are generic surrogate models that, if given the
dimensions of the input and output space of a computational block, could be used
to replace that block during pipeline optimization.

Another research direction is to investigate methods that can adaptively adjust
gradient-based optimization methods for traditional algorithms. When parameters
have significantly different magnitudes, it is challenging to find a combination of
step sizes that makes the optimization method converge. Furthermore, approaches
similar to batch normalization in deep learning could be used in between traditional

132 CHAPTER 7. CONCLUSION AND OUTLOOK

building blocks to normalize input and output data to avoid vanishing gradient
problems. Next, in principle for N parameters, a single finite differences approxi-
mation requires 2N executions (f(x+ h) and f(x− h)). If an approximation of
the gradient is used such as finite differences, approaches could be applied that
limit the amount of executions necessary to run a finite differences method.

To improve the usefulness of neural network pruning, more development could
be done on methods that create sparse models from the current PyTorch imple-
mentation with masked parameters. Potentially, the computational graph itself
could be used to construct the pruning graph that LEAN uses, and the masked
tensors could be used to remove branches of the computational graph altogether.

A major issue in auto-tuning research is the lack of proper algorithm comparisons.
Most studies demonstrate their optimization algorithms on a specific dataset
and only compare them to selected methods using different quality metrics. As
mentioned, a proposed methodology by the auto-tuning community to improve
reproducibility and transferability of results is currently in preparation [250].
Another interesting direction of research could be if methods can be developed that
approximate the FFG on the fly, and use it as a heuristic to guide optimization.

As mentioned in Chapter 6, a major limitation to improving the energy efficiency
of GPUs is that consumer-grade GPUs do not support core clock frequency tuning.
In my view, vendors must expose functionality that can help with improving the
energy efficiency of as many models as possible. Furthermore, we want to extend
the power consumption model to work for other vendors. The model in principle is
generically applicable, but code needs to be developed that can query the relevant
measurements for non-NVidia GPUs. Another dimension of the GPU auto-tuning
problem that was not explored in this thesis is the incorporation of memory energy
efficiency. In addition to core clock frequency, GPUs have several memory clock
frequencies which influence its performance and energy consumption. Thus far,
there are usually only a few available memory clock frequencies, but if future
GPUs allow for a larger range of memory clock frequencies, these would need to be
incorporated into the power consumption model for further gains.

Bibliography

[1] W. van Aarle, W. J. Palenstijn, J. Cant, E. Janssens, F. Bleichrodt, A.
Dabravolski, J. D. Beenhouwer, K. J. Batenburg, and J. Sijbers. “Fast and
flexible X-ray tomography using the ASTRA toolbox”. Optics Express 24.22
(2016), pp. 25129–25147 (cit. on pp. 5, 22, 25, 38).

[2] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp,
G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg,
D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens,
B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan,
F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and
X. Zheng. TensorFlow: Large-Scale Machine Learning on Heterogeneous
Systems. Software available from tensorflow.org. 2015 (cit. on p. 8).

[3] S. Abid, F. Fnaiech, and M. Najim. “A new Neural Network pruning method
based on the singular value decomposition and the weight initialisation”. In:
2002 11th European Signal Processing Conference. 2002, pp. 1–4 (cit. on
p. 61).

[4] S. Akiki, Z. Yang, C. Liu, J. Tang, and S. Liu. “Energy-Aware Automatic
Tuning of Many-Core Platform via Gradient Descent”. In: 2018 IEEE
SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted
Computing, Scalable Computing & Communications, Cloud & Big Data
Computing, Internet of People and Smart City Innovation. 2018 (cit. on
pp. 107, 117).

[5] J. Ansel, S. Kamil, K. Veeramachaneni, J. Ragan-Kelley, J. Bosboom, U.-M.
O’Reilly, and S. Amarasinghe. “OpenTuner: An extensible framework for
program autotuning”. In: 2014 23rd International Conference on Parallel
Architecture and Compilation Techniques (PACT). 2014, pp. 303–315 (cit. on
pp. 75, 106).

[6] H. Anzt, B. Haugen, J. Kurzak, P. Luszczek, and J. Dongarra. “Experiences
in autotuning matrix multiplication for energy minimization on GPUs”.
Concurrency and Computation: Practice and Experience 27.17 (2015) (cit.
on pp. 107, 108).

[7] A. H. Ashouri, W. Killian, J. Cavazos, G. Palermo, and C. Silvano. “A
Survey on Compiler Autotuning Using Machine Learning”. ACM Computing
Surveys 51.5 (2018) (cit. on pp. 75, 106).

[8] I. P. Astono, J. S. Welsh, S. Chalup, and P. Greer. “Optimisation of 2D
U-Net Model Components for Automatic Prostate Segmentation on MRI”.
Applied Sciences 10.7 (2020) (cit. on p. 68).

133

134 Bibliography

[9] V. Badrinarayanan, A. Kendall, and R. Cipolla. “Segnet: A deep convolu-
tional encoder-decoder architecture for image segmentation”. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence 39.12 (2017), pp. 2481–
2495 (cit. on pp. 22, 166).

[10] H. Bal, D. Epema, C. de Laat, R. van Nieuwpoort, J. Romein, F. Seinstra, C.
Snoek, and H. Wijshoff. “A Medium-Scale Distributed System for Computer
Science Research: Infrastructure for the Long Term”. IEEE Computer 49.5
(May 2016), pp. 54–63 (cit. on pp. 111, 127).

[11] J. Ballé, V. Laparra, and E. P. Simoncelli. “End-to-end optimized image
compression”. In: International Conference on Learning Representations
(ICLR). 2017 (cit. on p. 8).

[12] Bassa, C. G., Romein, J. W., Veenboer, B., van der Vlugt, S., and Wijnholds,
S. J. “Fourier-domain dedispersion”. Astronomy & Astrophysics 657 (2022),
A46 (cit. on p. 114).

[13] S. Basu and Y. Bresler. “O(N3 logN) backprojection algorithm for the
3-D Radon transform”. IEEE Transactions on Medical Imaging 21 (2002),
pp. 76–88 (cit. on p. 19).

[14] A. Beck and M. Teboulle. “Fast Gradient-Based Algorithms for Constrained
Total Variation Image Denoising and Deblurring Problems”. IEEE Transac-
tions on Image Processing 18.11 (2009), pp. 2419–2434 (cit. on pp. 4, 20,
21).

[15] S. Bhadra, V. A. Kelkar, F. J. Brooks, and M. A. Anastasio. “On hallucina-
tions in tomographic image reconstruction”. IEEE Transactions on Medical
Imaging 40.11 (2021), pp. 3249–3260 (cit. on p. 33).

[16] T. Bicer, D. Gürsoy, R. Kettimuthu, F. D. Carlo, G. Agrawal, and I. T. Foster.
“Rapid Tomographic Image Reconstruction via Large-Scale Parallelization”.
In: European Conference on Parallel Processing. 2015 (cit. on p. 19).

[17] C. M. Bishop and N. M. Nasrabadi. Pattern recognition and machine learning.
Vol. 4. 4. Springer, 2006 (cit. on p. 6).

[18] D. Blalock, J. J. G. Ortiz, J. Frankle, and J. Guttag. “What is the state of
neural network pruning?” Proceedings of Machine Learning and Systems
(2020) (cit. on pp. 59, 61, 63).

[19] R. Boţ and C. Hendrich. “A Douglas–Rachford type primal-dual method for
solving inclusions with mixtures of composite and parallel-sum type mono-
tone operators”. SIAM Journal on Optimization 24 (Jan. 2013), pp. 2541–
2565 (cit. on p. 28).

[20] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclau-
rin, G. Necula, A. Paszke, J. VanderPlas, S. Wanderman-Milne, and Q.
Zhang. JAX: composable transformations of Python+NumPy programs. Ver-
sion 0.3.13. 2018 (cit. on p. 8).

Bibliography 135

[21] S. Brin and L. Page. “The anatomy of a large-scale hypertextual web search
engine”. Computer networks and ISDN systems 30.1-7 (1998), pp. 107–117
(cit. on pp. 17, 75, 100).

[22] P. C. Broekema, J. J. D. Mol, R. Nijboer, A. van Amesfoort, M. Brentjens,
G. M. Loose, W. Klijn, and J. Romein. “Cobalt: A GPU-based correlator and
beamformer for LOFAR”. Astronomy and Computing 23 (2018), pp. 180–192
(cit. on pp. 112, 127).

[23] R. A. Brooks and G. Di Chiro. “Beam hardening in X-ray reconstructive
tomography”. Physics in medicine and biology 21.3 (1976), p. 390 (cit. on
p. 47).

[24] G. J. Brostow, J. Fauqueur, and R. Cipolla. “Semantic object classes in
video: A high-definition ground truth database”. Pattern Recognition Letters
30.2 (2009), pp. 88–97 (cit. on pp. 68, 166).

[25] G. J. Brostow, J. Shotton, J. Fauqueur, and R. Cipolla. “Segmentation
and recognition using structure from motion point clouds”. In: European
Conference on Computer Vision (ECCV). Springer. 2008, pp. 44–57 (cit. on
pp. 68, 166).

[26] M. Burtscher, I. Zecena, and Z. Zong. “Measuring GPU power with the K20
built-in sensor”. In: Proceedings of Workshop on General Purpose Processing
Using GPUs. 2014 (cit. on p. 110).

[27] J.-W. Buurlage, H. Kohr, W. J. Palenstijn, and K. J. Batenburg. “Real-time
quasi-3D tomographic reconstruction”. Measurement Science and Technology
29.6 (2018), p. 064005 (cit. on pp. 19, 22).

[28] R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu. “A limited memory algorithm for
bound constrained optimization”. SIAM Journal on Scientific Computing
16.5 (1995), pp. 1190–1208 (cit. on p. 82).

[29] E. Calore, S. F. Schifano, and R. Tripiccione. “Energy-performance tradeoffs
for HPC applications on low power processors”. In: European Conference on
Parallel Processing. 2015 (cit. on pp. 107, 117).

[30] K. W. Cameron. “Energy Oddities, Part 2: Why Green Computing Is Odd”.
IEEE Computer 46.3 (2013) (cit. on p. 107).

[31] J.-E. Campagne, F. Lanusse, J. Zuntz, A. Boucaud, S. Casas, M. Karamanis,
D. Kirkby, D. Lanzieri, Y. Li, and A. Peel. “JAX-COSMO: An End-to-End
Differentiable and GPU Accelerated Cosmology Library”. arXiv preprint
arXiv:2302.05163 (2023) (cit. on p. 35).

[32] S. Chakraborty, N. K. Nagwani, and L. Dey. “Performance Comparison of
Incremental K-means and Incremental DBSCAN Algorithms”. International
Journal of Computer Applications 27.11 (2011), pp. 14–18 (cit. on p. 20).

136 Bibliography

[33] A. Chaparala, C. Novoa, and A. Qasem. “Autotuning GPU-Accelerated QAP
Solvers for Power and Performance”. In: IEEE International Conference on
High Performance Computing and Communications, International Sympo-
sium on Cyberspace Safety and Security, and International Conference on
Embedded Software and Systems. New York, NY, 2015 (cit. on p. 107).

[34] J. Chen, L. Wu, J. Zhang, L. Zhang, D. Gong, Y. Zhao, Q. Chen, S. Huang,
M. Yang, X. Yang, et al. “Deep learning-based model for detecting 2019
novel coronavirus pneumonia on high-resolution computed tomography”.
Scientific reports 10.1 (2020), pp. 1–11 (cit. on p. 33).

[35] T. Chen, B. Xu, C. Zhang, and C. Guestrin. “Training deep nets with
sublinear memory cost”. arXiv preprint arXiv:1604.06174 (2016) (cit. on
p. 36).

[36] S. Cheng, M. Kim, L. Song, Z. Wu, S. Wang, and N. Hovakimyan. “DiffTune:
Auto-Tuning through Auto-Differentiation”. arXiv preprint arXiv:2209.10021
(2022) (cit. on p. 34).

[37] J. W. Choi, D. Bedard, R. Fowler, and R. Vuduc. “A roofline model of
energy”. In: IEEE 27th International Symposium on Parallel and Distributed
Processing. 2013 (cit. on p. 108).

[38] S. B. Coban and F. Lucka. Dynamic 3D X-ray micro-CT data of a tablet
dissolution in a water-based gel. Oct. 2019 (cit. on pp. 28, 68, 167).

[39] S. B. Coban, F. Lucka, W. J. Palenstijn, D. van Loo, and K. J. Batenburg.
“Explorative Imaging and Its Implementation At the Flex-Ray Laboratory”.
Journal of Imaging 6.4 (2020), p. 18 (cit. on pp. 28, 40, 68, 167).

[40] T. Connors, A. Qasem, and Q. Yi. “Modeling the Impact of Thread Config-
uration on Power and Performance of GPUs”. Machine Learning: Theory
and Applications (2015) (cit. on p. 107).

[41] J. Coplin and M. Burtscher. “Effects of source-code optimizations on GPU
performance and energy consumption”. In: Proceedings of Workshop on
General Purpose Processing Using GPUs. 2015 (cit. on p. 107).

[42] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
algorithms. MIT press, 2009 (cit. on p. 65).

[43] D. R. Danilak. Why Energy Is A Big And Rapidly Growing Problem For
Data Centers. Forbes Technology Council (cit. on p. 105).

[44] K. Datta, M. Murphy, V. Volkov, S. Williams, J. Carter, L. Oliker, D.
Patterson, J. Shalf, and K. Yelick. “Stencil computation optimization and
auto-tuning on state-of-the-art multicore architectures”. In: Proceedings of
the 2008 ACM/IEEE conference on Supercomputing. 2008 (cit. on p. 107).

[45] F. De Carlo, D. Gürsoy, D. J. Ching, K. Joost Batenburg, W. Ludwig,
L. Mancini, F. Marone, R. Mokso, D. M. Pelt, J. Sijbers, and M. Rivers.
“TomoBank: a tomographic data repository for computational X-ray science”.
Measurement Science and Technology 29.3 (2018), p. 034004 (cit. on pp. 14,
45).

Bibliography 137

[46] E. L. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fergus. “Exploiting
linear structure within convolutional networks for efficient evaluation”. In:
Advances in Neural Information Processing Systems. 2014, pp. 1269–1277
(cit. on p. 61).

[47] P Dewdney, W Turner, R Millenaar, R McCool, J Lazio, and T Cornwell.
“SKA1 system baseline design”. Document number SKA-TEL-SKO-DD-001
Revision (2013) (cit. on p. 105).

[48] N. Dhanachandra, K. Manglem, and Y. J. Chanu. “Image segmentation
using K-means clustering algorithm and subtractive clustering algorithm”.
Procedia Computer Science 54 (2015), pp. 764–771 (cit. on p. 22).

[49] S. Dittmer, E. J., and P. Maass. “Singular Values for ReLU Layers”. IEEE
Transactions on Neural Networks and Learning Systems (2019), pp. 1–12
(cit. on p. 61).

[50] T. Donath, F. Beckmann, and A. Schreyer. “Automated determination of
the center of rotation in tomography data”. Journal of the Optical Society
of America A 23.5 (2006), pp. 1048–1057 (cit. on p. 40).

[51] T. Dong, V. Dobrev, T. Kolev, R. Rieben, S. Tomov, and J. Dongarra.
“A step towards energy efficient computing: Redesigning a hydrodynamic
application on CPU-GPU”. In: IEEE International Parallel and Distributed
Processing Symposium (IPDPS). 2014 (cit. on p. 106).

[52] X. Dong, L. Liu, K. Musial, and B. Gabrys. “NATS-Bench: Benchmarking
NAS Algorithms for Architecture Topology and Size”. IEEE Transactions
on Pattern Analysis and Machine Intelligence 44.7 (2022), pp. 3634–3646
(cit. on p. 87).

[53] X. Dong and Y. Yang. “Network pruning via transformable architecture
search”. In: Advances in Neural Information Processing Systems. 2019,
pp. 760–771 (cit. on p. 61).

[54] M. Du, S. Kandel, J. Deng, X. Huang, A. Demortiere, T. T. Nguyen, R.
Tucoulou, V. De Andrade, Q. Jin, and C. Jacobsen. “Adorym: A multi-
platform generic X-ray image reconstruction framework based on automatic
differentiation”. Optics Express 29.7 (2021), pp. 10000–10035 (cit. on p. 35).

[55] M. Du, Y. S. G. Nashed, S. Kandel, D. Gürsoy, and C. Jacobsen. “Three
dimensions, two microscopes, one code: Automatic differentiation for X-ray
nanotomography beyond the depth of focus limit”. Science Advances 6.13
(2020) (cit. on p. 35).

[56] D. Eigen and R. Fergus. “Predicting depth, surface normals and semantic
labels with a common multi-scale convolutional architecture”. In: IEEE
International Conference on Computer Vision (ICCV). 2015, pp. 2650–2658
(cit. on p. 166).

[57] M. Endrizzi. “X-ray phase-contrast imaging”. Nuclear instruments and meth-
ods in physics research section A: Accelerators, spectrometers, detectors and
associated equipment 878 (2018), pp. 88–98 (cit. on p. 42).

138 Bibliography

[58] K. Fan, B. Cosenza, and B. Juurlink. “Accurate Energy and Performance
Prediction for Frequency-Scaled GPU Kernels”. Computation 8.2 (2020)
(cit. on pp. 107, 117).

[59] L. A. Feldkamp, L. C. Davis, and J. W. Kress. “Practical cone-beam algo-
rithm”. Journal of the Optical Society of America A 1.6 (1984), pp. 612–619
(cit. on pp. 4, 20, 37).

[60] J. Filipovič, F. Petrovič, and S. Benkner. “Autotuning of OpenCL kernels
with global optimizations”. In: Proceedings of the 1st workshop on autotuning
and adaptivity approaches for energy efficient HPC systems. 2017 (cit. on
pp. 76, 106).

[61] J. Filipovič, J. Hozzová, A. Nezarat, J. Ol’ha, and F. Petrovič. “Using
hardware performance counters to speed up autotuning convergence on
GPUs”. Journal of Parallel and Distributed Computing 160 (2022), pp. 16–
35 (cit. on pp. 76, 106).

[62] D. Freedman, R. Pisani, and R. Purves. Statistics. 3rd ed. W.W. Norton,
1998 (cit. on p. 88).

[63] M. Frigo and S. G. Johnson. “The Design and Implementation of FFTW3”.
Proceedings of the IEEE 93.2 (2005), pp. 216–231 (cit. on p. 75).

[64] R. Ge, R. Vogt, J. Majumder, A. Alam, M. Burtscher, and Z. Zong. “Effects
of Dynamic Voltage and Frequency Scaling on a K20 GPU”. In: International
Conference on Parallel Processing (ICPP). 2013 (cit. on pp. 107, 117).

[65] F. Glover. “Tabu search—part I”. ORSA Journal on computing 1.3 (1989),
pp. 190–206 (cit. on p. 79).

[66] G. van Gompel, K. van Slambrouck, M. Defrise, K. J. Batenburg, J. De Mey,
J. Sijbers, and J. Nuyts. “Iterative correction of beam hardening artifacts in
CT”. Medical physics 38.S1 (2011), S36–S49 (cit. on pp. 47–49).

[67] R. Goncalves, T. van Tilburg, K. Kyzirakos, et al. “A Spatial Column-store
to Triangulate the Netherlands on the Fly.” In: 24th ACM SIGSPATIAL
International Conference on Advances in Geographic Information Systems.
New York, NY, USA: ACM, 2016, 80:1–80:4 (cit. on p. 84).

[68] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio. Deep learning. Vol. 1.
MIT Press, 2016 (cit. on pp. 7, 62).

[69] L. Grady. “Random Walks for Image Segmentation”. IEEE Transactions
on Pattern Analysis and Machine Intelligence 28.11 (2006), pp. 1768–1783
(cit. on p. 24).

[70] S. Grauer-Gray, L. Xu, R. Searles, S. Ayalasomayajula, and J. Cavazos.
“Auto-tuning a high-level language targeted to GPU codes”. In: Innovative
Parallel Computing (InPar). 2012, pp. 1–10 (cit. on p. 75).

Bibliography 139

[71] D. Grewe and A. Lokhmotov. “Automatically Generating and Tuning GPU
Code for Sparse Matrix-Vector Multiplication from a High-Level Represen-
tation”. In: Proceedings of Workshop on General Purpose Processing Using
GPUs. GPGPU-4. 2011 (cit. on pp. 11, 75, 106).

[72] A. Griewank and A. Walther. Evaluating derivatives: principles and tech-
niques of algorithmic differentiation. SIAM, 2008 (cit. on p. 34).

[73] F. C. Groen, I. T. Young, and G. Ligthart. “A comparison of different focus
functions for use in autofocus algorithms”. Cytometry: The Journal of the
International Society for Analytical Cytology 6.2 (1985), pp. 81–91 (cit. on
p. 40).

[74] J. Guerreiro, A. Ilic, N. Roma, and P. Tomás. “Multi-kernel auto-tuning
on GPUs: Performance and energy-aware optimization”. In: 23rd Euromi-
cro International Conference on Parallel, Distributed, and Network-Based
Processing. 2015 (cit. on p. 107).

[75] Y. Guo, A. Yao, and Y. Chen. “Dynamic Network Surgery for Efficient DNNs”.
In: Advances in Neural Information Processing Systems. 2016, 1387–1395
(cit. on p. 72).

[76] D. Gürsoy, F. De Carlo, X. Xiao, and C. Jacobsen. “TomoPy: a framework
for the analysis of synchrotron tomographic data”. Journal of synchrotron
radiation 21.5 (2014), pp. 1188–1193 (cit. on p. 40).

[77] F. Guzzi, A. Gianoncelli, F. Billè, S. Carrato, and G. Kourousias. “Automatic
Differentiation for Inverse Problems in X-ray Imaging and Microscopy”. Life
13.3 (2023) (cit. on p. 35).

[78] M. P. van Haarlem et al. “LOFAR: The LOw-Frequency ARray”. Astronomy
& Astrophysics 556 (2013) (cit. on pp. 11, 12, 112).

[79] D. Hackenberg, T. Ilsche, J. Schuchart, R. Schöne, W. E. Nagel, M. Simon,
and Y. Georgiou. “HDEEM: High Definition Energy Efficiency Monitoring”.
In: Energy Efficient Supercomputing Workshop. 2014, pp. 1–10 (cit. on
p. 107).

[80] S. Han, H. Mao, and W. J. Dally. “Deep compression: Compressing deep
neural networks with pruning, trained quantization and huffman coding”.
International Conference on Learning Representations (ICLR) (2016) (cit.
on p. 59).

[81] S. Han, J. Pool, J. Tran, and W. Dally. “Learning both weights and con-
nections for efficient neural network”. In: Advances in Neural Information
Processing Systems. 2015, pp. 1135–1143 (cit. on p. 62).

[82] B. Hassibi, D. G. Stork, and G. J. Wolff. “Optimal brain surgeon and general
network pruning”. In: International conference on neural networks. IEEE.
1993, pp. 293–299 (cit. on p. 60).

[83] A. B. Hayes, L. Li, D. Chavarría-Miranda, S. L. Song, and E. Z. Zhang.
“Orion: A Framework for GPU Occupancy Tuning”. In: 17th International
Middleware Conference. 2016 (cit. on p. 107).

140 Bibliography

[84] K. He, X. Zhang, S. Ren, and J. Sun. “Deep Residual Learning for Im-
age Recognition”. In: IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). 2016, pp. 770–778 (cit. on pp. 24, 64, 68).

[85] Y. He, G. Kang, X. Dong, Y. Fu, and Y. Yang. “Soft Filter Pruning for
Accelerating Deep Convolutional Neural Networks”. In: 27th International
Joint Conference on Artificial Intelligence. 2018 (cit. on p. 67).

[86] Y. He, P. Liu, Z. Wang, Z. Hu, and Y. Yang. “Filter Pruning via Geometric
Median for Deep Convolutional Neural Networks Acceleration”. In: IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). 2019
(cit. on pp. 61, 67).

[87] Y. He, X. Zhang, and J. Sun. “Channel pruning for accelerating very deep
neural networks”. In: IEEE International Conference on Computer Vision
(ICCV). 2017, pp. 1389–1397 (cit. on p. 60).

[88] S. Heldens, P. Hijma, B. van Werkhoven, et al. “The landscape of exascale
research: a data-driven literature analysis”. ACM Computing Surveys 53.2
(2020), pp. 1–43 (cit. on p. 73).

[89] A. A. Hendriksen. Mixed-scale Dense Networks for PyTorch. https://
github.com/ahendriksen/msd_pytorch. 2020 (cit. on pp. 24, 68).

[90] A. A. Hendriksen, D. Schut, W. J. Palenstijn, N. Viganó, J. Kim, D. M.
Pelt, T. van Leeuwen, and K. J. Batenburg. “Tomosipo: fast, flexible, and
convenient 3D tomography for complex scanning geometries in Python”.
Optics Express 29.24 (2021), pp. 40494–40513 (cit. on p. 38).

[91] G. T. Herman. “Correction for beam hardening in computed tomography”.
Physics in Medicine and Biology 24.1 (1979), p. 81 (cit. on p. 47).

[92] S. Herrmann. “Determining the difficulty of landscapes by PageRank cen-
trality in local optima networks”. In: Evolutionary Computation in Combi-
natorial Optimization. Springer. 2016, pp. 74–87 (cit. on p. 77).

[93] S. Herrmann and F. Rothlauf. “Predicting heuristic search performance with
PageRank centrality in local optima networks”. In: Annual Conference on
Genetic and Evolutionary Computation. 2015, pp. 401–408 (cit. on p. 77).

[94] P. Hijma, S. Heldens, A. Sclocco, B. van Werkhoven, and H. E. Bal. “Op-
timization techniques for GPU programming”. ACM Computing Surveys
55.11 (2023), pp. 1–81 (cit. on p. 11).

[95] H. H. Holm, A. R. Brodtkorb, and M. L. Sætra. “GPU Computing with
Python: Performance, Energy Efficiency and Usability”. Computation 8.1
(2020) (cit. on p. 107).

[96] R. Horst, P. M. Pardalos, and N. Van Thoai. Introduction to global opti-
mization. Springer Science & Business Media, 2000 (cit. on p. 8).

https://github.com/ahendriksen/msd_pytorch
https://github.com/ahendriksen/msd_pytorch

Bibliography 141

[97] K. Hou, W.-c. Feng, and S. Che. “Auto-tuning strategies for parallelizing
sparse matrix-vector (spmv) multiplication on multi-and many-core proces-
sors”. In: International Symposium on Parallel and Distributed Processing
Symposium Workshops (IPDPSW). IEEE. 2017, pp. 713–722 (cit. on p. 76).

[98] K.-L. Hua, C.-H. Hsu, S. C. Hidayati, W.-H. Cheng, and Y.-J. Chen.
“Computer-aided classification of lung nodules on computed tomography
images via deep learning technique”. OncoTargets and therapy 8 (2015)
(cit. on p. 33).

[99] S. Huang, S. Xiao, and W.-c. Feng. “On the energy efficiency of graphics
processing units for scientific computing”. In: IEEE 23rd International
Symposium on Parallel and Distributed Processing. 2009 (cit. on p. 107).

[100] Z. Huang, H. Liu, J. Wu, and C. Lv. “Differentiable integrated motion
prediction and planning with learnable cost function for autonomous driving”.
IEEE Transactions on Neural Networks and Learning Systems (2023) (cit.
on p. 34).

[101] S. Ioffe and C. Szegedy. “Batch normalization: Accelerating deep network
training by reducing internal covariate shift”. International Conference on
Machine Learning (ICML) (2015) (cit. on p. 62).

[102] H. Ishibuchi and T. Murata. “A multi-objective genetic local search algorithm
and its application to flowshop scheduling”. IEEE Transactions on Systems,
Man, and Cybernetics, Part C (Applications and Reviews) 28.3 (1998),
pp. 392–403 (cit. on p. 80).

[103] A. K. Jain. Fundamentals of Digital Image Processing. USA: Prentice-Hall,
Inc., 1989 (cit. on p. 66).

[104] W. Jia, E. Garza, K. A. Shaw, and M. Martonosi. “GPU performance and
power tuning using regression trees”. ACM Transactions on Architecture
and Code Optimization (TACO) 12.2 (2015) (cit. on p. 107).

[105] A. S. Jurling and J. R. Fienup. “Applications of algorithmic differentiation
to phase retrieval algorithms”. Journal of the Optical Society of America A
31.7 (2014), pp. 1348–1359 (cit. on p. 35).

[106] A. C. Kak and M. Slaney. Principles of computerized tomographic imaging.
SIAM, 2001 (cit. on pp. 2, 3, 20, 37).

[107] S. Kamil, C. Chan, L. Oliker, J. Shalf, and S. Williams. “An auto-tuning
framework for parallel multicore stencil computations”. In: IEEE Inter-
national Symposium on Parallel & Distributed Processing (IPDPS). 2010
(cit. on pp. 74, 107).

[108] S. Kandel, S. Maddali, M. Allain, S. O. Hruszkewycz, C. Jacobsen, and
Y. S. G. Nashed. “Using automatic differentiation as a general framework
for ptychographic reconstruction”. Optics Express 27.13 (2019), pp. 18653–
18672 (cit. on p. 35).

142 Bibliography

[109] E. D. Karnin. “A simple procedure for pruning back-propagation trained neu-
ral networks”. IEEE Transactions on Neural Networks 1.2 (1990), pp. 239–
242 (cit. on pp. 59, 60).

[110] J. Kennedy and R. Eberhart. “Particle swarm optimization”. In: International
Conference on Neural Networks. Vol. 4. IEEE. 1995, pp. 1942–1948 (cit. on
p. 82).

[111] N. Khouzami, F. Michel, P. Incardona, J. Castrillon, and I. F. Sbalzarini.
“Model-based autotuning of discretization methods in numerical simulations
of partial differential equations”. Journal of Computational Science 57 (2022),
p. 101489 (cit. on p. 75).

[112] D. Kim, S. Ramani, and J. A. Fessler. “Combining Ordered Subsets and
Momentum for Accelerated X-Ray CT Image Reconstruction”. IEEE Trans-
actions on Medical Imaging 34.1 (2015), pp. 167–178 (cit. on p. 19).

[113] D. Kingma and J. Ba. “Adam: A Method for Stochastic Optimization”.
International Conference on Learning Representations (ICLR) (Dec. 2014)
(cit. on pp. 7, 23, 24, 36, 68).

[114] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. “Optimization by simulated
annealing”. Science 220.4598 (1983), pp. 671–680 (cit. on p. 80).

[115] D. Kraft. A software package for sequential quadratic programming. Deutsche
Forschungs- und Versuchsanstalt für Luft- und Raumfahrt Köln: Forschungs-
bericht. Wiss. Berichtswesen d. DFVLR, 1988 (cit. on p. 82).

[116] A. Krizhevsky, I. Sutskever, and G. E. Hinton. “Imagenet classification
with deep convolutional neural networks”. Advances in Neural Information
Processing Systems 25 (2012) (cit. on p. 7).

[117] A. Krzywaniak and P. Czarnul. “Performance/energy aware optimization
of parallel applications on GPUs under power capping”. In: International
Conference on Parallel Processing and Applied Mathematics. 2019 (cit. on
pp. 107, 111, 117).

[118] M. J. Lagerwerf, W. J. Palenstijn, F. Bleichrodt, and K. J. Batenburg.
“An Efficient Interpolation Approach for Exploring the Parameter Space
of Regularized Tomography Algorithms”. Fundamenta Informaticae 172.2
(2020), pp. 143–167 (cit. on pp. 55, 131).

[119] M. J. Lagerwerf, S. B. Coban, and K. J. Batenburg. High-resolution cone-
beam scan of twenty-one walnuts with two dosage levels. Zenodo. Apr. 2020
(cit. on p. 40).

[120] A. Laugros, R. Schoonhoven, L. Pavlovic, A. Kuan, C. Bosch, A. Hendriksen,
A. Diaz, M. Holler, W. C. Lee, A. Schaefer, K. J. Batenburg, P. Cloetens,
N. Vigano, and A. Pacureanu. “Self-supervised image restoration in coherent
X-ray neuronal microscopy”. To be submitted (2024) (cit. on p. 155).

[121] Y. LeCun, Y. Bengio, and G. Hinton. “Deep learning”. Nature 521.7553
(2015), pp. 436–444 (cit. on pp. 7, 59, 73).

Bibliography 143

[122] Y. LeCun, J. S. Denker, and S. A. Solla. “Optimal brain damage”. In:
Advances in Neural Information Processing Systems. 1990, pp. 598–605
(cit. on p. 61).

[123] T. van Leeuwen, S. Maretzke, and K. J. Batenburg. “Automatic alignment
for three-dimensional tomographic reconstruction”. Inverse Problems 34.2
(2018), p. 024004 (cit. on p. 38).

[124] C. Li and P. K.-S. Tam. “An iterative algorithm for minimum cross entropy
thresholding”. Pattern Recognition Letters 19 (1998), pp. 771–776 (cit. on
pp. 20, 22, 24).

[125] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf. “Pruning Filters
for Efficient ConvNets”. In: International Conference on Learning Represen-
tations (ICLR). 2017 (cit. on p. 59).

[126] L. Li and C. Kessler. “MeterPU: a generic measurement abstraction API
enabling energy-tuned skeleton backend selection”. In: IEEE Trustcom/Big-
DataSE/ISPA. Vol. 3. 2015 (cit. on p. 107).

[127] Y. Li, J. Dongarra, and S. Tomov. “A note on auto-tuning GEMM for GPUs”.
In: International Conference on Computational Science (ICCS). Springer.
2009, pp. 884–892 (cit. on pp. 11, 74, 75, 106).

[128] R. Lim, B. Norris, and A. Malony. “Autotuning GPU kernels via static and
predictive analysis”. In: International Conference on Parallel Processing
(ICPP). IEEE. 2017, pp. 523–532 (cit. on pp. 76, 106).

[129] C.-S. Lin, S.-M. Teng, and P.-A. Hsiung. “Auto-tuning for GPGPU applica-
tions using performance and energy model”. Journal of Systems Architecture
62 (2016) (cit. on p. 107).

[130] J. Lin, Y. Rao, J. Lu, and J. Zhou. “Runtime neural pruning”. In: Advances
in Neural Information Processing Systems. 2017, pp. 2181–2191 (cit. on
pp. 60, 61).

[131] S. Lin, R. Ji, C. Yan, B. Zhang, L. Cao, Q. Ye, F. Huang, and D. Doermann.
“Towards Optimal Structured CNN Pruning via Generative Adversarial
Learning”. In: IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR). 2019 (cit. on p. 61).

[132] M. Lindauer, K. Eggensperger, M. Feurer, A. Biedenkapp, D. Deng, C. Ben-
jamins, T. Ruhkopf, R. Sass, and F. Hutter. “SMAC3: A versatile Bayesian
optimization package for hyperparameter optimization”. The Journal of
Machine Learning Research 23.1 (2022), pp. 2475–2483 (cit. on p. 82).

[133] M. Lindauer, K. Eggensperger, M. Feurer, A. Biedenkapp, D. Deng, C.
Benjamins, R. Sass, and F. Hutter. Sequential Model Algorithm Configuration
(SMAC). https://github.com/automl/SMAC3. 2021 (cit. on p. 83).

[134] G. Litjens, T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi, M. Ghafoorian,
J. A. van der Laak, B. van Ginneken, and C. I. Sánchez. “A survey on deep
learning in medical image analysis”. Medical image analysis 42 (2017),
pp. 60–88 (cit. on p. 23).

https://github.com/automl/SMAC3

144 Bibliography

[135] S. Liu, J. Tang, Z. Zhang, and J.-L. Gaudiot. “Computer architectures for
autonomous driving”. Computer 50.8 (2017), pp. 18–25 (cit. on p. 73).

[136] W. Liu, Z. Wang, X. Liu, N. Zeng, Y. Liu, and F. E. Alsaadi. “A survey of
deep neural network architectures and their applications”. Neurocomputing
234 (2017), pp. 11–26 (cit. on p. 7).

[137] Y. Liu, W. M. Sid-Lakhdar, O. Marques, X. Zhu, C. Meng, J. W. Dem-
mel, and X. S. Li. “GPTune: Multitask learning for autotuning exascale
applications”. In: ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming. 2021, 234–246 (cit. on p. 75).

[138] Z. Liu, M. Sun, T. Zhou, G. Huang, and T. Darrell. “Rethinking the value
of network pruning”. International Conference on Learning Representations
(ICLR) (2019) (cit. on p. 61).

[139] J. Long, E. Shelhamer, and T. Darrell. “Fully convolutional networks for
semantic segmentation”. In: IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). 2015, pp. 3431–3440 (cit. on p. 67).

[140] M. López-Ibáñez, J. Dubois-Lacoste, L. P. Cáceres, M. Birattari, and T.
Stützle. “The irace package: Iterated racing for automatic algorithm con-
figuration”. Operations Research Perspectives 3 (2016), pp. 43–58 (cit. on
pp. 82, 87).

[141] H. R. Lourenço, O. C. Martin, and T. Stützle. “Iterated local search”. In:
Handbook of metaheuristics. Springer, 2003, pp. 320–353 (cit. on p. 79).

[142] J.-H. Luo, J. Wu, and W. Lin. “Thinet: A filter level pruning method for
deep neural network compression”. In: IEEE International Conference on
Computer Vision (ICCV). 2017, pp. 5058–5066 (cit. on pp. 59–61).

[143] M. López-Ibáñez, L. Pérez Cáceres, and J. Dubois-Lacoste. irace: Iterated
Racing for Automatic Algorithm Configuration. https://github.com/
MLopez-Ibanez/irace. 2021 (cit. on p. 83).

[144] A. K. Maier, C. Syben, B. Stimpel, T. Würfl, M. Hoffmann, F. Schebesch, W.
Fu, L. Mill, L. Kling, and S. Christiansen. “Learning with known operators
reduces maximum error bounds”. Nature machine intelligence 1.8 (2019),
pp. 373–380 (cit. on p. 35).

[145] A. Mametjanov, D. Lowell, C.-C. Ma, and B. Norris. “Autotuning stencil-
based computations on GPUs”. In: IEEE International Conference on Cluster
Computing. 2012, pp. 266–274 (cit. on pp. 75, 106).

[146] C. McLeavy, M. Chunara, R. Gravell, A Rauf, A Cushnie, C. S. Talbot,
and R. Hawkins. “The future of CT: deep learning reconstruction”. Clinical
radiology 76.6 (2021), pp. 407–415 (cit. on p. 33).

[147] X. Mei, L. S. Yung, K. Zhao, and X. Chu. “A measurement study of GPU
DVFS on energy conservation”. In: Workshop on Power-Aware Computing
and Systems. 2013 (cit. on pp. 107, 117).

https://github.com/MLopez-Ibanez/irace
https://github.com/MLopez-Ibanez/irace

Bibliography 145

[148] C. D. Meyer. Matrix analysis and applied linear algebra. Vol. 71. Siam, 2000
(cit. on p. 63).

[149] A. Milesi. UNet: semantic segmentation with PyTorch. https://github.
com/milesial/Pytorch-UNet. 2020 (cit. on p. 68).

[150] Y. Mingqiang, K. Kidiyo, and R. Joseph. “A survey of shape feature ex-
traction techniques”. Pattern Recognition 15.7 (2008), pp. 43–90 (cit. on
p. 20).

[151] M. Mitchell. An introduction to genetic algorithms. MIT press, 1998 (cit. on
p. 80).

[152] S. Mittal. “A Survey on optimized implementation of deep learning models
on the NVIDIA Jetson platform”. Journal of Systems Architecture 97 (2019),
pp. 428–442 (cit. on p. 73).

[153] T. Miyazaki, I. Sato, and N. Shimizu. “Bayesian Optimization of HPC
Systems for Energy Efficiency”. In: IEEE International Conference on High
Performance Computing. 2018 (cit. on p. 107).

[154] P. Molchanov, A. Mallya, S. Tyree, I. Frosio, and J. Kautz. “Importance
Estimation for Neural Network Pruning”. In: IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). 2019 (cit. on p. 61).

[155] J. J. Moré. “The Levenberg-Marquardt algorithm: Implementation and
theory”. In: Numerical Analysis. Vol. 630. 1978 (cit. on p. 109).

[156] M. C. Mozer and P. Smolensky. “Skeletonization: A Technique for Trimming
the Fat from a Network via Relevance Assessment”. In: Advances in Neural
Information Processing Systems. Ed. by D. S. Touretzky. Morgan-Kaufmann,
1989, pp. 107–115 (cit. on pp. 59, 60).

[157] R Muthukrishnan and M. Radha. “Edge detection techniques for image
segmentation”. International Journal of Computer Science and Information
Technology 3.6 (2011), p. 259 (cit. on p. 22).

[158] P. Márquez-Neila, L. Baumela, and L. Alvarez. “A Morphological Approach
to Curvature-Based Evolution of Curves and Surfaces”. IEEE Transactions
on Pattern Analysis and Machine Intelligence 36.1 (2014), pp. 2–17 (cit. on
p. 24).

[159] L. Nardi, A. Souza, D. Koeplinger, and K. Olukotun. “HyperMapper: a Prac-
tical Design Space Exploration Framework”. In: IEEE International Sympo-
sium on Modeling, Analysis, and Simulation of Computer and Telecommu-
nication Systems (MASCOTS). 2019 (cit. on pp. 75, 107).

[160] Y. S. Nashed, T. Peterka, J. Deng, and C. Jacobsen. “Distributed Automatic
Differentiation for Ptychography”. Procedia Computer Science 108 (2017),
pp. 404–414 (cit. on p. 35).

[161] J. A. Nelder and R. Mead. “A simplex method for function minimization”.
The computer journal 7.4 (1965), pp. 308–313 (cit. on p. 81).

https://github.com/milesial/Pytorch-UNet
https://github.com/milesial/Pytorch-UNet

146 Bibliography

[162] Y. E. Nesterov. “A method for solving the convex programming problem with
convergence rate O(1/k2)”. In: Doklady Akademii Nauk. Vol. 269. Russian
Academy of Sciences. 1983, pp. 543–547 (cit. on p. 36).

[163] P. Neubert and P. Protzel. “Compact Watershed and Preemptive SLIC: On
Improving Trade-offs of Superpixel Segmentation Algorithms”. In: Inter-
national Conference on Pattern Recognition. 2014, pp. 996–1001 (cit. on
pp. 20, 22, 24).

[164] J. Nocedal and S. J. Wright. “Conjugate gradient methods”. Numerical
optimization (2006), pp. 101–134 (cit. on p. 81).

[165] C. Nugteren. “CLBlast: A tuned OpenCL BLAS library”. In: International
Workshop on OpenCL. ACM, 2018, 5:1–5:10 (cit. on pp. 84, 112).

[166] C. Nugteren and V. Codreanu. “CLTune: A generic auto-tuner for OpenCL
kernels”. In: IEEE International Symposium on Embedded Multicore/ Many-
core Systems-on-Chip. 2015, pp. 195–202 (cit. on pp. 74, 76, 106).

[167] A. Nukada and S. Matsuoka. “Auto-tuning 3-D FFT library for CUDA
GPUs”. In: Proceedings of the Conference on High Performance Computing
Networking, Storage and Analysis. ACM. 2009, p. 30 (cit. on p. 74).

[168] NVIDIA. NVIDIA Management Library (NVML). 2011. url: https://
developer.nvidia.com/nvidia- management- library- nvml (cit. on
p. 110).

[169] G. Ochoa, M. Tomassini, S. Vérel, and C. Darabos. “A study of NK land-
scapes’ basins and local optima networks”. In: Annual Conference on Genetic
and Evolutionary Computation. 2008, pp. 555–562 (cit. on p. 77).

[170] N. Otsu. “A Threshold Selection Method from Gray-Level Histograms”.
IEEE Transactions on Systems, Man, and Cybernetics 9.1 (1979), pp. 62–66
(cit. on pp. 20, 22, 24, 43).

[171] T. Ozturk, M. Talo, E. A. Yildirim, U. B. Baloglu, O. Yildirim, and U.
Rajendra Acharya. “Automated detection of COVID-19 cases using deep
neural networks with X-ray images”. Computers in Biology and Medicine
121 (2020), p. 103792 (cit. on p. 33).

[172] D. Paganin, S. C. Mayo, T. E. Gureyev, P. R. Miller, and S. W. Wilkins.
“Simultaneous phase and amplitude extraction from a single defocused image
of a homogeneous object”. Journal of microscopy 206.1 (2002), pp. 33–40
(cit. on p. 42).

[173] L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank citation
ranking: Bringing order to the web. Tech. rep. Stanford InfoLab, 1999 (cit. on
pp. 17, 75, 100).

[174] W. Palenstijn, K. Batenburg, and J Sijbers. “Performance improvements for
iterative electron tomography reconstruction using graphics processing units
(GPUs)”. Journal of Structural Biology 176.2 (2011), pp. 250–253 (cit. on
p. 19).

https://developer.nvidia.com/nvidia-management-library-nvml
https://developer.nvidia.com/nvidia-management-library-nvml

Bibliography 147

[175] G. Pang, C. Yan, C. Shen, A. v. d. Hengel, and X. Bai. “Self-trained
deep ordinal regression for end-to-end video anomaly detection”. In: IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). 2020,
pp. 12173–12182 (cit. on p. 8).

[176] V. Panin, G. Zeng, and G. Gullberg. “Total variation regulated EM algorithm
[SPECT reconstruction]”. IEEE Transactions on Nuclear Science 46.6 (1999),
pp. 2202–2210 (cit. on p. 52).

[177] H. Park, Y. W. Ko, J. So, and J.-G. Lee. “Performance/Power Design Space
Exploration and Analysis for GPU Based Software”. International Journal
of Control and Automation 6.6 (2013) (cit. on p. 107).

[178] J. Park, S. Li, W. Wen, P. T. P. Tang, H. Li, Y. Chen, and P. Dubey. “Faster
CNNs with direct sparse convolutions and guided pruning”. International
Conference on Learning Representations (ICLR) (2017) (cit. on p. 60).

[179] S. Park, S. Latifi, Y. Park, A. Behroozi, B. Jeon, and S. Mahlke. “SRTuner:
Effective Compiler Optimization Customization by Exposing Synergistic
Relations”. In: IEEE/ACM International Symposium on Code Generation
and Optimization (CGO). 2022, pp. 118–130 (cit. on p. 75).

[180] A. Paszke, A. Chaurasia, S. Kim, and E. Culurciello. “ENet: A deep neural
network architecture for real-time semantic segmentation”. International
Conference on Learning Representations (ICLR) (2017) (cit. on pp. 69, 166).

[181] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,
Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf, E. Yang, Z. DeVito,
M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and
S. Chintala. “Pytorch: An imperative style, high-performance deep learning
library”. Advances in Neural Information Processing Systems 32 (2019)
(cit. on pp. 8, 36).

[182] P. J. Pavan, M. S. Serpa, E. D. Carreño, V. Martínez, E. L. Padoin, P. O.
Navaux, J. Panetta, and J.-F. Mehaut. “Improving Performance and Energy
Efficiency of Geophysics Applications on GPU Architectures”. In: Latin
American High Performance Computing Conference. 2018 (cit. on pp. 105,
107).

[183] D. M. Pelt and J. A. Sethian. “A mixed-scale dense convolutional neural
network for image analysis”. Proceedings of the National Academy of Sciences
115.2 (2018), pp. 254–259 (cit. on pp. 23, 24, 68, 166).

[184] M Persson, D Bone, and H Elmqvist. “Total variation norm for three-
dimensional iterative reconstruction in limited view angle tomography”.
Physics in Medicine and Biology 46.3 (2001), p. 853 (cit. on p. 52).

[185] F. Petrovič, D. Střelák, J. Hozzová, et al. “A benchmark set of highly-efficient
CUDA and OpenCL kernels and its dynamic autotuning with Kernel Tuning
Toolkit”. Future Generation Computer Systems 108 (2020), pp. 161–177
(cit. on p. 74).

148 Bibliography

[186] G. Pilikos, L. Horchens, K. J. Batenburg, T. van Leeuwen, and F. Lucka. “Fast
ultrasonic imaging using end-to-end deep learning”. In: IEEE International
Ultrasonics Symposium (IUS). 2020, pp. 1–4 (cit. on p. 35).

[187] G. Pilikos, C. L. de Korte, T. van Leeuwen, and F. Lucka. “Single Plane-
Wave Imaging using Physics-Based Deep Learning”. In: IEEE International
Ultrasonics Symposium (IUS). 2021, pp. 1–4 (cit. on p. 35).

[188] L. Pineda, T. Fan, M. Monge, S. Venkataraman, P. Sodhi, R. T. Chen,
J. Ortiz, D. DeTone, A. Wang, S. Anderson, et al. “Theseus: A library
for differentiable nonlinear optimization”. Advances in Neural Information
Processing Systems 35 (2022), pp. 3801–3818 (cit. on p. 34).

[189] M. J. Powell. “A direct search optimization method that models the ob-
jective and constraint functions by linear interpolation”. In: Advances in
optimization and numerical analysis. Springer, 1994, pp. 51–67 (cit. on
p. 82).

[190] M. J. Powell. “An efficient method for finding the minimum of a function of
several variables without calculating derivatives”. The computer journal 7.2
(1964), pp. 155–162 (cit. on p. 82).

[191] D. C. Price, M. A. Clark, B. R. Barsdell, R. Babich, and L. J. Greenhill.
“Optimizing performance-per-watt on GPUs in high performance computing”.
Computer Science-Research and Development 31.4 (2016) (cit. on pp. 107,
109, 117).

[192] G. Procaccianti, P. Lago, A. Vetro, D. M. Fernandez, and R. Wieringa. “The
Green Lab: Experimentation in Software Energy Efficiency”. In: IEEE/ACM
International Conference on Software Engineering. 2015 (cit. on p. 107).

[193] M. Puschel, J. M. Moura, J. R. Johnson, et al. “SPIRAL: Code generation
for DSP transforms”. Proceedings of the IEEE 93.2 (2005), pp. 232–275
(cit. on p. 75).

[194] W. Rahmaniar and W.-J. Wang. “Real-Time automated segmentation and
classification of calcaneal fractures in CT images”. Applied Sciences 9.15
(2019), p. 3011 (cit. on p. 20).

[195] A. Rasch, R. Schulze, M. Steuwer, et al. “Efficient Auto-Tuning of Parallel
Programs with Interdependent Tuning Parameters via Auto-Tuning Frame-
work (ATF)”. ACM Transactions on Architecture and Code Optimization
(TACO) 18.1 (2021) (cit. on pp. 76, 106, 107).

[196] W. Rawat and Z. Wang. “Deep convolutional neural networks for image
classification: A comprehensive review”. Neural computation 29.9 (2017),
pp. 2352–2449 (cit. on p. 7).

[197] D.-Q. Ren and R. Suda. “Global optimization model on power efficiency of
GPU and multicore processing element for SIMD computing with CUDA”.
Computer Science-Research and Development 27.4 (2012) (cit. on p. 107).

Bibliography 149

[198] A. Renda, J. Frankle, and M. Carbin. “Comparing rewinding and fine-
tuning in neural network pruning”. International Conference on Learning
Representations (ICLR) (2020) (cit. on pp. 61, 62).

[199] A. Rodriguez, H. Zhang, K. Wiklund, T. Brodin, J. Klaminder, P. Andersson,
and M. Andersson. “Refining particle positions using circular symmetry”.
PLOS ONE 12.4 (Apr. 2017), pp. 1–23 (cit. on p. 20).

[200] J. W. Romein and B. Veenboer. “PowerSensor 2: A Fast Power Measurement
Tool”. In: IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS). 2018 (cit. on pp. 107, 109).

[201] Romein, John W. “The Tensor-Core Correlator”. Astronomy & Astrophysics
656 (2021), A52 (cit. on p. 114).

[202] O. Ronneberger, P. Fischer, and T. Brox. “U-net: Convolutional networks for
biomedical image segmentation”. In: International Conference on Medical
image computing and computer-assisted intervention. Springer. 2015, pp. 234–
241 (cit. on pp. 22, 24, 59, 68).

[203] L. I. Rudin, S. Osher, and E. Fatemi. “Nonlinear total variation based
noise removal algorithms”. Physica D: nonlinear phenomena 60.1-4 (1992),
pp. 259–268 (cit. on p. 52).

[204] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. “Learning representations
by back-propagating errors”. Nature 323.6088 (1986), pp. 533–536 (cit. on
p. 8).

[205] S. Ryoo, C. I. Rodrigues, S. S. Stone, S. S. Baghsorkhi, S.-Z. Ueng, J. A.
Stratton, and W.-m. W. Hwu. “Program optimization space pruning for a
multithreaded GPU”. In: IEEE/ACM International Symposium on Code
Generation and Optimization (CGO). 2008, pp. 195–204 (cit. on pp. 76,
106).

[206] H. Salehinejad and S. Valaee. “Pruning of Convolutional Neural Networks
using ising Energy Model”. In: IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). 2021, pp. 3935–3939 (cit. on p. 60).

[207] E. Saxe. “Power-efficient software”. Communications of the ACM 53.2 (2010)
(cit. on p. 107).

[208] P. Schiffmann, D. Martin, G. Haase, and G. Offner. “Optimizing a RBF
Interpolation Solver for Energy on Heterogeneous Systems”. In: Proceedings
of the International Conference on Parallel Computing. Vol. 32. 2017 (cit. on
p. 107).

[209] R. Schoonhoven, J. W. Buurlage, D. M. Pelt, and K. J. Batenburg. “Real-
time segmentation for tomographic imaging”. In: IEEE 30th International
Workshop on Machine Learning for Signal Processing (MLSP). 2020, pp. 1–6
(cit. on pp. 68, 155, 167).

[210] R. Schoonhoven, A. A. Hendriksen, D. M. Pelt, and K. J. Batenburg. “Lean:
Graph-Based Pruning for Convolutional Neural Networks By Extracting
Longest Chains”. CoRR (2020). arXiv: 2011.06923 [cs.LG] (cit. on p. 155).

https://arxiv.org/abs/2011.06923

150 Bibliography

[211] R. Schoonhoven, A. Skorikov, W. J. Palenstijn, D. M. Pelt, A. A. Hendriksen,
and K. J. Batenburg. “How auto-differentiation can improve CT workflows:
classical algorithms in a modern framework”. Optics Express 32.6 (2024),
pp. 9019–9041 (cit. on p. 155).

[212] R. Schoonhoven, B. Veenboer, B. van Werkhoven, and K. J. Batenburg.
“Going green: optimizing GPUs for energy efficiency through model-steered
auto-tuning”. In: IEEE/ACM International Workshop on Performance Mod-
eling, Benchmarking and Simulation of High Performance Computer Systems
(PMBS). 2022, pp. 48–59 (cit. on p. 155).

[213] R. Schoonhoven, B. van Werkhoven, and K. J. Batenburg. “Benchmarking
optimization algorithms for auto-tuning GPU kernels”. IEEE Transactions
on Evolutionary Computation (2022) (cit. on pp. 117, 155).

[214] R. A. Schoonhoven. BlooPy: Black-box optimization Python for bitstring,
categorical, and numerical discrete problems with local, and population-based
algorithms. https://github.com/schoonhovenrichard/BlooPy. 2021 (cit.
on p. 83).

[215] R. A. Schoonhoven. Data and Plotting scripts for GPU Benchmarking 2021
paper. https://github.com/schoonhovenrichard/GPU_benchmarking_
paper. 2021 (cit. on p. 87).

[216] R. A. Schoonhoven. Optimizing CT workflows with auto-differentiation 2023
paper. https://github.com/schoonhovenrichard/AutodiffCTWorkflows.
2023 (cit. on p. 38).

[217] R. Schwartz, J. Dodge, N. A. Smith, and O. Etzioni. “Green AI”. Communi-
cations of the ACM 63.12 (2020), pp. 54–63 (cit. on p. 105).

[218] A. Sclocco, S. Heldens, and B. van Werkhoven. “AMBER: A real-time
pipeline for the detection of single pulse astronomical transients”. SoftwareX
12 (2020), p. 100549 (cit. on pp. 74, 75).

[219] A. Sclocco. “Accelerating Radio Astronomy with Auto-Tuning” (2017) (cit.
on p. 76).

[220] A. Sclocco, H. E. Bal, J. Hessels, J. Van Leeuwen, and R. V. Van Nieuwpoort.
“Auto-tuning dedispersion for many-core accelerators”. In: IEEE Interna-
tional Parallel and Distributed Processing Symposium (IPDPS). IEEE. 2014,
pp. 952–961 (cit. on pp. 74, 75, 107).

[221] A. Sclocco, J. van Leeuwen, H. E. Bal, and R. V. Van Nieuwpoort. “A
real-time radio transient pipeline for ARTS”. In: IEEE Global Conference on
Signal and Information Processing (GlobalSIP). 2015, pp. 468–472 (cit. on
pp. 74, 75).

[222] R. Sedgewick and K. Wayne. Algorithms. 4th ed. Addison-wesley professional,
2011, pp. 661–666 (cit. on p. 65).

[223] H. Sedghi, V. Gupta, and P. M. Long. “The singular values of convolutional
layers”. International Conference on Learning Representations (ICLR) (2019)
(cit. on pp. 61, 66).

https://github.com/schoonhovenrichard/BlooPy
https://github.com/schoonhovenrichard/GPU_benchmarking_paper
https://github.com/schoonhovenrichard/GPU_benchmarking_paper
https://github.com/schoonhovenrichard/AutodiffCTWorkflows

Bibliography 151

[224] E. Y. Sidky, J. H. Jørgensen, and X. Pan. “Convex optimization problem
prototyping for image reconstruction in computed tomography with the
Chambolle–Pock algorithm”. Physics in Medicine and Biology 57.10 (2012),
p. 3065 (cit. on p. 52).

[225] K. Simonyan and A. Zisserman. “Very deep convolutional networks for large-
scale image recognition”. arXiv preprint arXiv:1409.1556 (2014) (cit. on
p. 7).

[226] K. Spafford, J. Meredith, and J. Vetter. “Maestro: Data Orchestration
and Tuning for OpenCL Devices”. In: European Conference on Parallel
Processing. 2010 (cit. on p. 106).

[227] M. Stachowski, A. Fiebig, and T. Rauber. “Autotuning based on frequency
scaling toward energy efficiency of blockchain algorithms on graphics pro-
cessing units”. Journal of Supercomputing (2020) (cit. on p. 105).

[228] R. Storn and K. Price. “Differential evolution–a simple and efficient heuristic
for global optimization over continuous spaces”. Journal of global optimiza-
tion 11.4 (1997), pp. 341–359 (cit. on p. 82).

[229] E. Strubell, A. Ganesh, and A. McCallum. “Energy and Policy Considerations
for Deep Learning in NLP”. In: Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics. 2019 (cit. on p. 105).

[230] R. Suda, L. Cheng, and T. Katagiri. “A mathematical method for online
autotuning of power and energy consumption with corrected temperature
effects”. Procedia Computer Science 18 (2013) (cit. on p. 107).

[231] M. Thies, F. Wagner, Y. Huang, M. Gu, L. Kling, S. Pechmann, O. Aust,
A. Grüneboom, G. Schett, S. Christiansen, and A. Maier. “Calibration
by differentiation–Self-supervised calibration for X-ray microscopy using a
differentiable cone-beam reconstruction operator”. Journal of Microscopy
287.2 (2022), pp. 81–92 (cit. on p. 35).

[232] C. Tian, Y. Xu, and W. Zuo. “Image denoising using deep CNN with batch
renormalization”. Neural Networks 121 (2020), pp. 461–473 (cit. on p. 59).

[233] C. Timm, F. Weichert, P. Marwedel, and H. Müller. “Design space ex-
ploration towards a realtime and energy-aware GPGPU-based analysis of
biosensor data”. Computer Science-Research and Development 27.4 (2012)
(cit. on p. 107).

[234] A. Tiwari, C. Chen, J. Chame, M. Hall, and J. K. Hollingsworth. “A scalable
auto-tuning framework for compiler optimization”. In: IEEE International
Symposium on Parallel and Distributed Processing (IPDPS). 2009, pp. 1–12
(cit. on p. 75).

[235] S. Tomov, R. Nath, H. Ltaief, and J. Dongarra. “Dense linear algebra
solvers for multicore with GPU accelerators”. In: International Symposium
on Parallel and Distributed Processing Symposium Workshops (IPDPSW).
IEEE. 2010, pp. 1–8 (cit. on pp. 75, 106).

152 Bibliography

[236] Top500. List–November 2020. https://top500.org/lists/top500/2020/
11/. (accessed November 27, 2020) (cit. on p. 73).

[237] C. Tsallis and D. A. Stariolo. “Generalized simulated annealing”. Physica A
233.1-2 (1996), pp. 395–406 (cit. on p. 82).

[238] B. Veenboer and J. W. Romein. “Radio-astronomical imaging on graphics
processors”. Astronomy and Computing 32 (2020), p. 100386 (cit. on p. 114).

[239] B. Veenboer and J. W. Romein. “Radio-Astronomical Imaging: FPGAs
vs GPUs”. In: European Conference on Parallel Processing. 2019 (cit. on
p. 114).

[240] C. R. Vogel and M. E. Oman. “Iterative Methods for Total Variation
Denoising”. SIAM Journal on Scientific Computing 17.1 (1996), pp. 227–238
(cit. on p. 52).

[241] D. J. Wales and J. P. Doye. “Global optimization by basin-hopping and
the lowest energy structures of Lennard-Jones clusters containing up to 110
atoms”. The Journal of Physical Chemistry A 101.28 (1997), pp. 5111–5116
(cit. on p. 81).

[242] S. van der Walt, J. L. Schönberger, J. Nunez-Iglesias, F. Boulogne, J. D.
Warner, N. Yager, E. Gouillart, T. Yu, and the scikit-image contributors.
“Scikit-image: image processing in Python”. PeerJ 2 (June 2014), e453 (cit.
on p. 28).

[243] Z. Wang, D. Grewe, and M. F. O’boyle. “Automatic and portable mapping
of data parallel programs to opencl for gpu-based heterogeneous systems”.
ACM Transactions on Architecture and Code Optimization (TACO) 11.4
(2014), pp. 1–26 (cit. on p. 76).

[244] Z. Wang, X. Xu, N. Xiong, L. T. Yang, and W. Zhao. “Analysis of parallel
algorithms for energy conservation with GPU”. In: IEEE/ACM International
Conference on Green Computing and Communications & International
Conference on Cyber, Physical and Social Computing. 2010 (cit. on p. 107).

[245] Z. Wang, C. Li, and X. Wang. “Convolutional neural network pruning with
structural redundancy reduction”. In: IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). 2021, pp. 14913–14922 (cit. on p. 60).

[246] B. van Werkhoven. “Kernel Tuner: A search-optimizing GPU code auto-
tuner”. Future Generation Computer Systems 90 (2018) (cit. on pp. 16, 74,
76, 81, 83, 103, 106, 107, 109).

[247] B. van Werkhoven, J. Maassen, H. E. Bal, et al. “Optimizing convolution
operations on GPUs using adaptive tiling”. Future Generation Computer
Systems 30 (2014), pp. 14–26 (cit. on pp. 75, 84).

[248] B. van Werkhoven, W. J. Palenstijn, and A. Sclocco. “Lessons learned in a
decade of research software engineering GPU applications”. In: International
Conference on Computational Science (ICCS). Springer. 2020, pp. 399–412
(cit. on p. 73).

https://top500.org/lists/top500/2020/11/
https://top500.org/lists/top500/2020/11/

Bibliography 153

[249] R. C. Whaley and J. J. Dongarra. “Automatically Tuned Linear Algebra
Software”. In: Proceedings of the ACM/IEEE Conference on Supercomputing.
1998 (cit. on p. 75).

[250] F.-J. Willemsen, R. Schoonhoven, J. Filipovič, J. Tørring, R. van Nieuw-
poort, and B. van Werkhoven. “A Methodology for Comparing Auto-Tuning
Optimization Algorithms”. Future Generation Computer Systems (2024)
(cit. on pp. 130, 132, 155).

[251] P. J. Withers. “X-ray nanotomography”. Materials Today 10.12 (2007),
pp. 26–34 (cit. on p. 42).

[252] A. H. Wright, R. K. Thompson, and J. Zhang. “The Computational Com-
plexity of N-K Fitness Functions”. IEEE Transactions on Evolutionary
Computation 4.4 (2000), 373–379 (cit. on p. 83).

[253] Xizhou Feng, Rong Ge, and K. Cameron. “Power and Energy Profiling of
Scientific Applications on Distributed Systems”. In: IEEE International
Parallel and Distributed Processing Symposium (IPDPS). Denver, CO, USA,
2005 (cit. on p. 105).

[254] N. Yang, L. v. Stumberg, R. Wang, and D. Cremers. “D3vo: Deep depth,
deep pose and deep uncertainty for monocular visual odometry”. In: IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). 2020,
pp. 1281–1292 (cit. on p. 59).

[255] T. Yang, Y. Chen, and V. Sze. “Designing Energy-Efficient Convolutional
Neural Networks Using Energy-Aware Pruning”. In: IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). 2017, pp. 6071–6079
(cit. on p. 59).

[256] S.-K. Yeom, P. Seegerer, S. Lapuschkin, A. Binder, S. Wiedemann, K.-R.
Müller, and W. Samek. “Pruning by explaining: A novel criterion for deep
neural network pruning”. Pattern Recognition 115 (2021), p. 107899 (cit. on
p. 61).

[257] M. T. Zeegers, T. van Leeuwen, D. M. Pelt, S. B. Coban, R. van Liere,
and K. J. Batenburg. “A tomographic workflow to enable deep learning for
X-ray based foreign object detection”. Expert Systems with Applications 206
(2022), p. 117768 (cit. on p. 49).

[258] M. T. Zeegers. A collection of 131 CT datasets of pieces of modeling clay
containing stones - Part 1 of 5. Zenodo. Jan. 2022 (cit. on p. 49).

[259] Y. Zhang and F. Mueller. “Auto-generation and auto-tuning of 3D stencil
codes on GPU clusters”. In: IEEE/ACM International Symposium on Code
Generation and Optimization (CGO). 2012, pp. 155–164 (cit. on pp. 11, 75,
106).

[260] Y. Zhang and H. Yu. “Convolutional Neural Network Based Metal Artifact
Reduction in X-Ray Computed Tomography”. IEEE Transactions on Medical
Imaging 37.6 (2018), pp. 1370–1381 (cit. on p. 33).

154 Bibliography

[261] C. Zhao, B. Ni, J. Zhang, Q. Zhao, W. Zhang, and Q. Tian. “Variational
Convolutional Neural Network Pruning”. In: IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). 2019 (cit. on p. 61).

[262] A. Ziabari, S. Venkatakrishnan, M. Kirka, P. Brackman, R. Dehoff, P.
Bingham, and V. Paquit. “Beam Hardening Artifact Reduction in X-Ray CT
Reconstruction of 3D Printed Metal Parts Leveraging Deep Learning and
CAD Models”. In: ASME International Mechanical Engineering Congress
and Exposition. Vol. 2B: Advanced Manufacturing. American Society of
Mechanical Engineers. 2020 (cit. on p. 33).

List of publications

Publications that are part of this thesis:

1. R. Schoonhoven, J. W. Buurlage, D. M. Pelt, and K. J. Batenburg. “Real-
time segmentation for tomographic imaging”. In: IEEE 30th International
Workshop on Machine Learning for Signal Processing (MLSP). 2020, pp. 1–6.

2. R. Schoonhoven, A. Skorikov, W. J. Palenstijn, D. M. Pelt, A. A. Hendriksen,
and K. J. Batenburg. “How auto-differentiation can improve CT workflows:
classical algorithms in a modern framework”. Optics Express 32.6 (2024),
pp. 9019–9041.

3. R. Schoonhoven, A. A. Hendriksen, D. M. Pelt, and K. J. Batenburg. “Lean:
Graph-Based Pruning for Convolutional Neural Networks By Extracting
Longest Chains”. CoRR (2020). arXiv: 2011.06923 [cs.LG].

4. R. Schoonhoven, B. van Werkhoven, and K. J. Batenburg. “Benchmarking
optimization algorithms for auto-tuning GPU kernels”. IEEE Transactions
on Evolutionary Computation (2022).

5. R. Schoonhoven, B. Veenboer, B. van Werkhoven, and K. J. Batenburg.
“Going green: optimizing GPUs for energy efficiency through model-steered
auto-tuning”. In: IEEE/ACM International Workshop on Performance
Modeling, Benchmarking and Simulation of High Performance Computer
Systems (PMBS). 2022, pp. 48–59.

Publications that are not part of this thesis:

1. F.-J. Willemsen, R. Schoonhoven, J. Filipovič, J. Tørring, R. van Nieuw-
poort, and B. van Werkhoven. “A Methodology for Comparing Auto-Tuning
Optimization Algorithms”. Future Generation Computer Systems (2024).

2. A. Laugros, R. Schoonhoven, L. Pavlovic, A. Kuan, C. Bosch, A. Hendriksen,
A. Diaz, M. Holler, W. C. Lee, A. Schaefer, K. J. Batenburg, P. Cloetens,
N. Vigano, and A. Pacureanu. “Self-supervised image restoration in coherent
X-ray neuronal microscopy”. To be submitted (2024).

155

https://arxiv.org/abs/2011.06923

Samenvatting

Veel van onze industriële en wetenschappelijke taken zijn tegenwoordig afhankelijk
van krachtige computersystemen die enorme hoeveelheden gegevens verwerken. Deze
taken worden uitgevoerd door computationele pijplijnen die vaak uit verschillende
algoritmen bestaan, en die berekeningen op data uitvoeren en aan elkaar doorgeven.
Conceptueel gezien bestaat het ontwerpproces van een computationele pijplijn uit
verschillende fasen.

• De ideeën fase: Hier ontwerpen we de pijplijn, beslissen we welke algoritmen
we gaan gebruiken en hoe ze op elkaar aansluiten. Figuur S1 toont een
conceptueel voorbeeld van hoe we de procedure zouden kunnen ontwerpen.

• De softwarefase: Hier beslissen we hoe elk algoritme zijn taak moet uit-
voeren. We proberen de code zo te schrijven om de algoritmes zo efficiënt en
nauwkeurig mogelijk te maken.

• De hardwarefase: Hier wordt bepaald welke computerhardware elk algo-
ritme tot zijn beschikking heeft en hoe de berekening efficiënt uitgevoerd kan
worden op die hardware.

Figuur S1: Voorbeeld van een computationele pijplijn waar data door verschillende
algoritmen wordt verwerkt en doorgegeven wordt totdat het uiteindelijke resultaat
is berekend.

Het praktisch draaien van zo’n computationele pijplijn kan een uitdaging zijn.
We moeten vaak de manier waarop de algoritmen werken aanpassen, ervoor zorgen
dat ze geen tijd en energie verspillen, de hardware verbeteren en soms moeten we
de hele pijplijn opnieuw ontwerpen om het beste resultaat te krijgen. Bovendien
moeten we, gezien de huidige milieu overwegingen, ook proberen om onze pijplijn
milieuvriendelijker te maken. Om dit te doen richten we ons in dit proefschrift op
alle drie de fasen om onze computationele pijplijnen te optimaliseren.

Een van de toepassingen waar zulke uitdagende computationele pijplijnen
voorkomen is bij de röntgen-computertomografie. Computertomografie (CT) is
een techniek om de binnenkant van objecten te visualiseren door middel van
bestraling (Figuur S2). Dit is een krachtige technologie omdat we de binnenkant

157

158 Samenvatting

van objecten kunnen bestuderen zonder ze te beschadigen of open te maken. Één
van de computationele uitdagingen komt voort uit het feit dat CT meestal in 3D
wordt uitgevoerd, wat betekent dat het om grote hoeveelheden gegevens gaat en
dat elke computationele stap ook een grote hoeveelheid gegevens moet werken.
Bovendien bevatten CT-pijplijnen meestal verschillende verwerkingsstappen die we
willen optimaliseren.

X-ray source

Rotation

 table

Object

Detector

Figuur S2: Een voorbeeld CT opstelling die men in vaak in laboratoria aantreft.

Verschillende instellingen van een CT-scanner, zoals de energie van de bundel en
vanuit welke positie de röntgenopnames worden opgevangen, moeten correct worden
gekozen om een scherp CT-beeld met een hoog contrast te krijgen. Dit creëert een
uitdaging vanuit een optimalisatie oogpunt. Vaak is het gewenste resultaat pas aan
het einde van de berekening zichtbaar, terwijl het veroorzaakt kan worden door
een instelling aan het begin van de CT procedure. De uitlijning van de machine
kan bijvoorbeeld niet goed zijn, of we hebben onze algoritmen met de verkeerde
parameters gedraaid. Het probleem wordt nog verergerd doordat men vaak extra
bewerkingsstappen wil uitvoeren aan het einde van de reconstructies.

In hoofdstuk 2 proberen we met AI een zogenaamde segmentatiestap toe te
voegen aan een CT procedure, zodat de berekening live kan worden uitgevoerd. In
hoofdstuk 3 proberen we het optimalisatieprobleem aan te pakken om algoritmische
parameters over de gehele pijplijn tegelijk te optimaliseren. In hoofdstuk 4 kijken
we nog eens naar de AI die we gebruikten in hoofdstuk 2, en proberen we deze
aanzienlijk te versnellen. We doen dit door een nieuwe methode te ontwikkelen die
het neurale netwerk kan afslanken tot een veel kleinere versie van zichzelf, maar met
een vergelijkbare nauwkeurigheid. In hoofdstuk 5 kijken we naar de hardwarefase.
In het bijzonder kijken we naar de grafischekaart (Graphics Processing Unit of GPU
genoemd), en bekijken we welke algoritmen het beste zijn voor het structureren
van deze GPU berekeningen. In hoofdstuk 6 bekijken we GPU berekeningen
vanuit een milieu- en energieverbruik perspectief, en introduceren we een model
om deze energie-efficiënter te maken. Uiteindelijk bekijken we hoeveel energie onze
methode bespaart voor een groot Europees netwerk van radiotelescopen genaamd
de Low-frequency Array (LOFAR).

Summary

Today, many of our industrial and scientific tasks rely heavily on powerful com-
puter systems that process huge amounts of data. These tasks are performed by
computational pipelines that often consist of several algorithms that calculate the
data, and pass the results on to each other. Conceptually, the process of designing
a computational pipeline for these tasks has different stages.

• The Idea Stage: This is where we plan how the pipeline will work, deciding
which algorithms to use and how they connect. Figure S3 shows a conceptual
example of how we might design the workflow.

• The Software Stage: Here, we decide how each algorithm must perform
its task. We try to write the code to make the algorithms as efficient and
accurate as possible.

• The Hardware Stage: This is about deciding what computational hardware
each algorithm will have available, and how to efficiently run the computation
on that hardware.

Figure S3: Example computational pipeline illustrating how input data is processed
by different algorithms and passed on until the final result is computed.

Running such a pipeline can be challenging. We often need to tweak the way
the algorithms work, make sure they’re not wasting time and energy, upgrade their
hardware, and sometimes, we need to redesign the whole pipeline to get the best
result. Plus, with today’s environmental challenges, we must also try to make our
pipeline eco-friendly. To do this, in this thesis, we focus on all three stages to
optimize our computational pipelines.

One of the applications where such challenging computational pipelines occur
is in the field of X-ray computed tomography. Computed tomography (CT) is
a technique for visualizing the interior of objects with some form of radiation
(Figure S4). This makes it a powerful tool as we can study the internals of objects
without damaging them, or opening them up. One of the computational challenges
comes from the fact that CT is typically done in 3D, which means that large
amounts of data are involved, and any computational step needs to work on a
large batch of data. Furthermore, CT pipelines usually come with several different
processing steps that we would like to optimize.

159

160 Summary

X-ray source

Rotation

 table

Object

Detector

Figure S4: An example setup of an X-ray CT scanner that is common in laboratories.

Several settings of a CT scanner, such as the beam’s energy and from which
position it captures the X-ray photographs, need to be chosen correctly to get a
sharp CT image with high contrast. This creates a challenge from an optimization
point of view. Often, the desired result (or an undesirable image feature) is only
visible at the very end, whereas it may be caused by a setting at the beginning of
the CT workflow. For example. the alignment of the machine may be off, or we ran
our algorithms with the wrong parameters. The problem is compounded because
users often want to perform extra processing steps at the end of the reconstruction.

In Chapter 2, we attempt to add a so-called segmentation step to an X-ray CT
workflow using AI, such that it can perform the computation in real time (meaning
the operator gets a live view). In Chapter 3, we attempt to tackle the problem of
optimizing algorithmic parameters along the whole pipeline for a final result. In
Chapter 4, we revisit the AI that we used in Chapter 2, and attempt to speed it
up significantly using a technique called “pruning”. In Chapter 5, we look at the
final hardware stage. In particular, we look at a type of chip called a Graphics
Processing Unit (GPU), and which optimization algorithms are best for structuring
these GPU computations. In Chapter 6, we look at GPU computations from an
environmental and energy consumption perspective, and propose a model to make
them more energy efficient. In the end, we look at how much energy our method
saves for a large European network of radio telescopes called the Low-frequency
Array (LOFAR).

Curriculum Vitae

Richard Schoonhoven was born in 1995 in Utrecht, the Netherlands. He com-
pleted his secondary education at RSG Broklede in Breukelen, the Netherlands.
Afterwards, he completed bachelor’s degrees (both cum laude) in mathematics and
physics at Utrecht University in 2016, and obtained master’s degrees (both cum
laude) in mathematics and computer science in 2019 from Utrecht University. The
master’s thesis with the title “Improving cryo-ET reconstructions of ER-associated
ribosomes with tomographic reconstruction methods and deep learning” was su-
pervised by Dr. Tristan van Leeuwen. In 2019, he started as a PhD candidate at
Centrum Wiskunde & Informatica (the national research institute for mathemat-
ics and computer science in Amsterdam) under the supervision of Prof.dr. K.J.
Batenburg.

161

Acknowledgments

First, I thank my advisors, Prof. Joost Batenburg and Dr. Daniël Pelt, for the
time and energy they have put into providing motivating, educational, and fun
supervision of our research projects. In particular, I would like to thank them for
providing me with large amounts of freedom to pursue different research directions,
which has made the past four years a thoroughly enjoyable part of my career.

In addition, I would like to thank Dr. Ben van Werkhoven for his energetic and
stimulating approach to research and supervision, which has made several of our
projects a great pleasure to collaborate on.

I would also like to thank my colleague Dr. Alexander Skorikov for his compan-
ionable collaboration, and his tireless energy for dealing with my ceaseless stream
of thoughts, and at times, tumultuous working style.

A special thank you goes out to my co-authors at the ESRF who have hosted me
for several weeks on many occasions, and for their efforts to make me feel welcome
and show me around their impressive facilities. I have to mention in particular
Dr. Alexandra Pacureanu who was kind enough to allow me to stay in their city
apartment in Grenoble during these trips.

I would like to thank my co-authors Allard Hendriksen, Bram Veenboer, and
Jan-Willem Buurlage, who have greatly helped me with my research projects and
spent time and effort teaching me more about new topics.

In particular, I would like to thank Willem Jan Palenstijn for his expert and
patient help on countless problems I encountered.

I thank the colleagues whom I shared an office with, Vladyslav Andriiashen,
Mathé Zeegers, Adriaan Graas, Poulami Ganguly, Francien Bossema, Jordi Min-
nema, Dirk Schut, Maximilian Kiss, Tianyuan Wang, Rien Lagerwerf for providing
stimulating conversations and a pleasant work environment.

Many others contributed to a great research environment, among which Floris-
Jan, Jiayang, Serban, Alex, Nicola, Henri, Maureen, Dzemila, Georgios, Sophia,
Felix, Rob, Robert, Hamid, Roozbeh, Ajynkya, Jan, and Tristan.

I would like to thank my family and friends for their support, and camaraderie
over the years.

Finally, I would like to thank Sasha for her love, infinite patience, and whole-
hearted support.

163

A
Appendices

165

166 APPENDIX A. APPENDICES

A.1 Appendix: (LEAN) graph-based pruning for con-
volutional neural networks by extracting longest chains

A.1.1 Datasets
In this appendix we discuss some more details on the datasets used for experimen-
tation.

Figure A1: Example input and target images of the (top left) Circle-Square (CS),
(top right) CamVid, (bottom) real-world dynamic CT datasets.

Simulated Circle-Square (CS) dataset: We used a simulated high-noise
5-class segmentation dataset containing 256 × 256 images of randomly placed
squares and circles (CS dataset) [183] (see Figure A1). The objects were assigned
a random grey value and Gaussian noise was added to the images. In total, we
generated 1000 training, 250 validation, and 100 test images. Experimental results
on the CS dataset are quantified using global accuracy, i.e., the ratio of correctly
classified pixels, regardless of class, to the total number of pixels.

CamVid: The Cambridge-driving Labeled Video Database (CamVid) [24, 25]
is a collection of videos with labels, captured from the perspective of a driving
automobile. In total, 700 labeled frames are split into 367 training, 100 validation,
and 233 test images. As there are few training images, we combined the training and
validation datasets and trained for a fixed 500 epochs. Similar to other papers that
apply CNNs to CamVid [9, 180], we use 11 classes, and a single class representing
unlabeled pixels (see Figure A1).

We used median frequency balancing [56] to balance classes for training, and set
the unlabeled class weights to zero. During training, we used data augmentation
by cropping and (horizontally) flipping input images.

A.1. APPENDIX: (LEAN) GRAPH-BASED PRUNING FOR
CONVOLUTIONAL NEURAL NETWORKS BY EXTRACTING LONGEST
CHAINS 167

0 20 40 60 80 100

0

20

40

60

80

100

Unpruned

0 20 40 60 80 100

0

20

40

60

80

100

Random

0 20 40 60 80 100

0

20

40

60

80

100

Magnitude

0 20 40 60 80 100

0

20

40

60

80

100

Operator norm

0 20 40 60 80 100

0

20

40

60

80

100

LEAN

Figure A2: Adjacency matrices of active convolutions (in white) after pruning. All
pruned network were pruned to a ratio of 10%. From left to right, we have the
unpruned matrix of a 100-layer MS-D network trained on the real-world dynamic CT
dataset, randomly pruned convolutions, structured magnitude pruning, structured
operator norm pruning, and LEAN.

Real-world dynamic CT dataset: The real-time dynamic X-ray CT dataset
contains images of a dissolving tablet suspended in gel [38, 39]. The bubbles are to
be segmented within a glass container filled with gel [209] (see Figure A1). The
dataset consists of 512×512 images, split into 9216 training images, 2048 validation
images, and 1536 test images. As in [209], we use the F1-score because the large
amount of background pixels make global accuracy an unsuitable metric.

A.1.2 Reducing the size of the pruning graph
The procedure outlined in Section 4.4 can lead to large pruning graphs, but the size
of the graph can be reduced. First, according to Equation 4.3, the operator norm
of ReLU is 1. Therefore, the combination of a convolution followed by a ReLU can
be combined into a single edge whose weight equals the norm of the convolution.

Batch normalization often succeeds a convolution. Batch-normalization scaling
is applied with different learned parameters per input channel, and output a
single channel. Therefore, the input convolution edge and the following batch
normalization edges can be combined. The edges can be combined into a single
edge whose weight is the product of the two edge weights, preserving the path
length.

A.1.3 Structure of pruned MS-D networks
To investigate the structure of pruned networks we plotted the adjacency matrices
of pruned networks where an entry is 0 if it is pruned (black) and 1 if it is still
active (white). Here, we show the adjacency matrices of MS-D networks pruned to
a ratio of 10% in Figure A2. After pruning, LEAN retains only connections linked
to nearby layers in the densely connected MS-D network. Compared to individual
filter pruning, LEAN exposes a distinct structure which may suggest that LEAN
could be used for architecture discovery.

168 APPENDIX A. APPENDICES

A.2 Appendix: Benchmarking optimization algorithms
for auto-tuning GPU kernels

A.2.1 Tunable parameters per GPU kernel

In Table A.1 we show the tunable parameters per kernel, and the values each
parameter could take. For the convolution kernel, the MI50 GPU (the only AMD
model) required a different problem setup due to hardware constraints.

Kernel parameter to tune list of values number of
possible values

Convolution block_size_x 1, 2, 4, 8, 16, 32, 48, 12
(except MI50) 64, 80, 96, 112, 128

block_size_y 1, 2, 4, 8, 16, 32 6
tile_size_x 1, 2, 3, 4, 5, 6, 7, 8 8
tile_size_y 1, 2, 3, 4, 5, 6, 7, 8 8
use_padding 0, 1 2
read_only 0, 1 2

Convolution block_size_x 16, 32, 48, 64, 8
(MI50) 80, 96, 112, 128

block_size_y 1, 2, 4, 8, 16, 32 6
tile_size_x 1, 2, 4 3
tile_size_y 1, 2, 4 3
use_padding 0, 1 2

GEMM MWG 16, 32, 64, 128 4
NWG 16, 32, 64, 128 4

MDIMC 8, 16, 32 3
NDIMC 8, 16, 32 3
MDIMA 8, 16, 32 3
NDIMB 8, 16, 32 3
VWM 1, 2, 4, 8 4
VWN 1, 2, 4, 8 4
SA 0, 1 2
SB 0, 1 2

Point-in-polygon block_size_x 32, 64, 96, 128, 160, 192, 224, 31
256, 288, 320, 352, 384, 416,
448, 480, 512, 544, 576, 608,
640, 672, 704, 736, 768, 800,
832, 864, 896, 928, 960, 992

tile_size 1, 2, 4, 6, 8, 10, 11
12, 14, 16, 18, 20

between_method 0, 1, 2, 3 4
use_precomputed_slopes 0, 1 2

use_method 0, 1, 2 3

Table A.1: Tunable parameters per kernel, and list of possible values for each
parameter.

A.2. APPENDIX: BENCHMARKING OPTIMIZATION ALGORITHMS FOR
AUTO-TUNING GPU KERNELS 169

A.2.2 Alternative splits for competition heatmaps
In Figures A1 and A6 we show the algorithm competition heatmaps such as in
Figures 5.1, 5.2 and 5.3, but when split at 100 and 400 budgets instead of 200.

170 APPENDIX A. APPENDICES

Ba
sin

Ho
pp

in
g

Be
st

IL
S

Be
st

M
LS

Be
st

Ta
bu

Di
ffe

re
nt

ia
lE

vo
lu

tio
n

Du
al

An
ne

al
in

g

Fir
st

IL
S

Fir
st

M
LS

Fir
st

Ta
bu GL

S

Ge
ne

tic
Al

go
rit

hm

Pa
rti

cle
Sw

ar
m

Ra
nd

om
Sa

m
pl

in
g

SM
AC

4B
B

Si
m

ul
at

ed
An

ne
al

in
g

BasinHopping
BestILS

BestMLS
BestTabu

DifferentialEvolution
DualAnnealing

FirstILS
FirstMLS
FirstTabu

GLS
GeneticAlgorithm

ParticleSwarm
RandomSampling

SMAC4BB
SimulatedAnnealing

0 2 3 3 11 16 6 5 2 6 7 9 3 5 6
5 0 1 2 12 16 4 5 2 6 7 9 6 7 9
6 2 0 1 11 15 8 7 5 5 10 10 7 11 10
8 7 7 0 15 17 11 11 4 12 16 13 11 12 15
1 1 0 0 0 13 4 4 1 2 1 0 0 5 3
1 0 0 0 0 0 2 0 0 0 0 0 0 1 0
3 1 0 1 7 14 0 1 1 2 6 8 5 8 6
5 0 0 0 10 13 3 0 0 2 7 8 6 8 5
5 2 4 1 12 16 8 5 0 5 11 12 7 9 9
4 0 0 1 8 13 4 2 0 0 6 6 4 6 5
1 0 0 0 2 14 5 2 0 2 0 1 0 5 0
3 3 1 0 4 15 6 4 1 4 4 0 1 6 4
5 5 5 2 11 18 7 7 3 7 7 11 0 10 5
0 1 2 1 8 15 5 3 1 4 4 4 1 0 5
2 0 0 0 6 14 4 1 0 1 3 3 1 5 0

Algorithm Column beats Row - convolution feval <= 100

Ba
sin

Ho
pp

in
g

Be
st

IL
S

Be
st

M
LS

Be
st

Ta
bu

Di
ffe

re
nt

ia
lE

vo
lu

tio
n

Du
al

An
ne

al
in

g

Fir
st

IL
S

Fir
st

M
LS

Fir
st

Ta
bu GL

S

Ge
ne

tic
Al

go
rit

hm

Pa
rti

cle
Sw

ar
m

Ra
nd

om
Sa

m
pl

in
g

SM
AC

4B
B

Si
m

ul
at

ed
An

ne
al

in
g

BasinHopping
BestILS

BestMLS
BestTabu

DifferentialEvolution
DualAnnealing

FirstILS
FirstMLS
FirstTabu

GLS
GeneticAlgorithm

ParticleSwarm
RandomSampling

SMAC4BB
SimulatedAnnealing

0 12 12 8 9 14 16 16 7 16 12 8 4 4 16
2 0 1 1 1 5 5 8 2 4 0 2 0 1 8
1 1 0 2 1 3 7 7 1 4 1 1 0 0 6
6 12 15 0 5 13 16 18 2 17 10 5 1 4 18
7 14 13 5 0 14 16 19 5 17 11 3 1 3 19
1 5 3 3 2 0 10 11 3 10 2 1 0 1 10
3 1 1 1 0 5 0 6 1 2 0 0 0 1 1
0 1 0 1 0 2 4 0 2 2 1 0 0 0 2
7 14 15 2 5 11 16 20 0 17 11 6 0 3 17
1 0 0 1 0 3 3 1 1 0 0 0 0 1 2
3 4 7 3 1 6 11 14 3 9 0 0 0 1 12
7 14 15 8 10 14 19 17 6 18 13 0 0 4 19

16 22 23 21 19 21 23 22 20 23 20 22 0 9 23
2 7 7 5 5 8 8 9 3 9 6 4 0 0 8
3 2 2 2 0 6 4 5 1 5 0 0 0 1 0

Algorithm Column beats Row - convolution feval > 100

Figure A1: (Convolution:) Occurrences when the column algorithm found better
solutions than the row algorithm. An occurrence is counted when 50 runs for a
budget are statistically significantly better according to a two-sample independent
t-test (α = 0.05). (Top): Heatmap for low ≤ 100 budgets (25, 50, 100). (Bottom):
Heatmap for mid and high > 100 budgets (200, 400, 800, 1600). Algorithms
with low values (blue) in their rows were not often beaten for those budgets, and
algorithms with high values in their column (red) often beat other algorithms.

A.2. APPENDIX: BENCHMARKING OPTIMIZATION ALGORITHMS FOR
AUTO-TUNING GPU KERNELS 171

Ba
sin

Ho
pp

in
g

Be
st

IL
S

Be
st

M
LS

Be
st

Ta
bu

Di
ffe

re
nt

ia
lE

vo
lu

tio
n

Du
al

An
ne

al
in

g

Fir
st

IL
S

Fir
st

M
LS

Fir
st

Ta
bu GL

S

Ge
ne

tic
Al

go
rit

hm

Pa
rti

cle
Sw

ar
m

Ra
nd

om
Sa

m
pl

in
g

SM
AC

4B
B

Si
m

ul
at

ed
An

ne
al

in
g

BasinHopping
BestILS

BestMLS
BestTabu

DifferentialEvolution
DualAnnealing

FirstILS
FirstMLS
FirstTabu

GLS
GeneticAlgorithm

ParticleSwarm
RandomSampling

SMAC4BB
SimulatedAnnealing

0 0 0 0 1 4 1 2 0 2 0 0 0 0 1
15 0 4 0 16 18 14 12 1 10 14 12 11 9 15
15 1 0 0 15 16 8 4 1 7 12 11 7 7 12
18 8 13 0 18 18 16 16 4 13 18 15 14 16 17
12 0 0 0 0 10 3 1 0 1 0 0 0 0 2
6 0 0 0 0 0 1 0 0 0 0 0 0 0 0

11 0 0 0 8 13 0 0 0 0 5 8 6 5 6
13 0 0 0 11 14 2 0 0 1 6 9 7 5 7
17 5 9 0 17 18 12 11 0 11 16 13 14 13 16
14 0 2 0 12 14 4 0 0 0 8 10 9 5 9
13 0 0 0 7 14 3 2 0 2 0 2 1 0 2
15 1 2 0 12 15 6 6 0 5 5 0 1 1 5
17 5 5 0 15 16 8 6 0 5 9 6 0 3 8
17 3 4 0 17 17 9 6 0 6 11 9 8 0 12
13 0 1 0 9 12 3 1 0 1 2 2 2 1 0

Algorithm Column beats Row - GEMM feval <= 100

Ba
sin

Ho
pp

in
g

Be
st

IL
S

Be
st

M
LS

Be
st

Ta
bu

Di
ffe

re
nt

ia
lE

vo
lu

tio
n

Du
al

An
ne

al
in

g

Fir
st

IL
S

Fir
st

M
LS

Fir
st

Ta
bu GL

S

Ge
ne

tic
Al

go
rit

hm

Pa
rti

cle
Sw

ar
m

Ra
nd

om
Sa

m
pl

in
g

SM
AC

4B
B

Si
m

ul
at

ed
An

ne
al

in
g

BasinHopping
BestILS

BestMLS
BestTabu

DifferentialEvolution
DualAnnealing

FirstILS
FirstMLS
FirstTabu

GLS
GeneticAlgorithm

ParticleSwarm
RandomSampling

SMAC4BB
SimulatedAnnealing

0 16 17 11 13 16 18 18 14 18 13 13 0 0 20
2 0 1 6 1 3 16 9 6 6 0 1 0 0 13
3 6 0 7 2 5 14 9 9 9 1 1 0 0 19
2 7 8 0 6 7 10 11 5 8 7 5 0 0 11
3 16 18 9 0 13 22 20 13 21 13 11 0 0 21
1 14 15 10 1 0 19 17 12 17 5 6 0 0 20
0 1 0 2 0 0 0 2 4 2 0 1 0 0 6
1 6 2 5 0 1 9 0 7 2 0 0 0 0 11
4 5 6 2 4 7 14 9 0 8 6 4 0 0 10
1 3 0 5 0 1 10 1 7 0 0 0 0 0 11
2 13 13 9 1 6 20 20 11 17 0 4 0 0 22
4 17 17 8 3 9 21 21 11 20 9 0 0 0 20

24 24 24 18 24 24 24 24 19 24 24 23 0 6 24
11 12 12 6 12 12 12 12 7 12 12 11 2 0 12
0 0 0 3 0 0 7 0 5 1 0 0 0 0 0

Algorithm Column beats Row - GEMM feval > 100

Figure A2: (GEMM:) Occurrences when the column algorithm found better so-
lutions than the row algorithm. An occurrence is counted when 50 runs for a
budget are statistically significantly better according to a two-sample independent
t-test (α = 0.05). (Top): Heatmap for low ≤ 100 budgets (25, 50, 100). (Bottom):
Heatmap for mid and high > 100 budgets (200, 400, 800, 1600). Algorithms
with low values (blue) in their rows were not often beaten for those budgets, and
algorithms with high values in their column (red) often beat other algorithms.

172 APPENDIX A. APPENDICES

Ba
sin

Ho
pp

in
g

Be
st

IL
S

Be
st

M
LS

Be
st

Ta
bu

Di
ffe

re
nt

ia
lE

vo
lu

tio
n

Du
al

An
ne

al
in

g

Fir
st

IL
S

Fir
st

M
LS

Fir
st

Ta
bu GL

S

Ge
ne

tic
Al

go
rit

hm

Pa
rti

cle
Sw

ar
m

Ra
nd

om
Sa

m
pl

in
g

SM
AC

4B
B

Si
m

ul
at

ed
An

ne
al

in
g

BasinHopping
BestILS

BestMLS
BestTabu

DifferentialEvolution
DualAnnealing

FirstILS
FirstMLS
FirstTabu

GLS
GeneticAlgorithm

ParticleSwarm
RandomSampling

SMAC4BB
SimulatedAnnealing

0 0 0 0 2 8 4 2 3 5 6 1 2 10 3
11 0 0 0 14 15 9 12 12 14 15 13 13 15 13
15 8 0 0 15 15 13 15 14 14 15 14 15 15 14
15 9 0 0 14 15 15 15 15 15 15 13 14 15 14
5 0 0 0 0 12 4 3 4 4 4 1 1 10 2
0 0 0 0 0 0 3 1 1 2 1 0 0 4 2
8 2 0 0 9 10 0 6 4 5 5 5 9 10 5
4 0 0 0 4 11 1 0 0 1 3 4 4 9 4
6 0 0 0 5 10 1 2 0 3 5 4 6 10 4
6 0 0 0 4 11 1 1 0 0 4 3 6 9 3
4 0 0 0 1 10 2 0 0 1 0 0 2 7 0
6 0 0 0 6 13 5 7 5 4 9 0 4 13 4
7 0 0 0 3 12 5 4 4 4 6 2 0 12 4
2 0 0 0 1 5 3 2 2 3 2 0 0 0 3
3 0 0 0 3 10 1 1 0 0 4 0 5 9 0

Algorithm Column beats Row - pnpoly feval <= 100

Ba
sin

Ho
pp

in
g

Be
st

IL
S

Be
st

M
LS

Be
st

Ta
bu

Di
ffe

re
nt

ia
lE

vo
lu

tio
n

Du
al

An
ne

al
in

g

Fir
st

IL
S

Fir
st

M
LS

Fir
st

Ta
bu GL

S

Ge
ne

tic
Al

go
rit

hm

Pa
rti

cle
Sw

ar
m

Ra
nd

om
Sa

m
pl

in
g

SM
AC

4B
B

Si
m

ul
at

ed
An

ne
al

in
g

BasinHopping
BestILS

BestMLS
BestTabu

DifferentialEvolution
DualAnnealing

FirstILS
FirstMLS
FirstTabu

GLS
GeneticAlgorithm

ParticleSwarm
RandomSampling

SMAC4BB
SimulatedAnnealing

0 9 9 8 9 10 10 10 10 10 11 6 0 2 11
7 0 2 5 7 8 8 9 10 10 10 4 2 5 9
9 5 0 6 7 10 9 11 12 13 8 5 2 5 12
5 3 4 0 7 8 8 9 6 8 7 4 4 5 8
5 7 6 8 0 11 8 11 10 10 9 0 0 2 11
4 3 2 7 5 0 9 7 11 10 5 0 0 2 9
7 4 2 3 5 7 0 7 5 7 7 1 2 4 6
3 0 0 2 3 3 2 0 5 4 3 0 1 4 3
5 3 3 1 5 5 4 5 0 6 4 3 3 4 5
3 1 0 2 4 3 2 1 6 0 2 0 1 3 1
4 2 0 5 2 3 6 4 10 6 0 0 0 2 8
7 9 10 11 12 14 15 18 16 16 16 0 2 3 16

16 16 16 16 19 20 17 17 16 18 20 16 0 9 17
1 4 5 4 6 7 6 6 6 6 6 4 0 0 6
4 1 0 1 4 4 1 2 3 1 3 0 1 4 0

Algorithm Column beats Row - pnpoly feval > 100

Figure A3: (PnPoly:) Occurrences when the column algorithm found better
solutions than the row algorithm. An occurrence is counted when 50 runs for a
budget are statistically significantly better according to a two-sample independent
t-test (α = 0.05). (Top): Heatmap for low ≤ 100 budgets (25, 50, 100). (Bottom):
Heatmap for mid and high > 100 budgets (200, 400, 800, 1600). Algorithms
with low values (blue) in their rows were not often beaten for those budgets, and
algorithms with high values in their column (red) often beat other algorithms.

A.2. APPENDIX: BENCHMARKING OPTIMIZATION ALGORITHMS FOR
AUTO-TUNING GPU KERNELS 173

Ba
sin

Ho
pp

in
g

Be
st

IL
S

Be
st

M
LS

Be
st

Ta
bu

Di
ffe

re
nt

ia
lE

vo
lu

tio
n

Du
al

An
ne

al
in

g

Fir
st

IL
S

Fir
st

M
LS

Fir
st

Ta
bu GL

S

Ge
ne

tic
Al

go
rit

hm

Pa
rti

cle
Sw

ar
m

Ra
nd

om
Sa

m
pl

in
g

SM
AC

4B
B

Si
m

ul
at

ed
An

ne
al

in
g

BasinHopping
BestILS

BestMLS
BestTabu

DifferentialEvolution
DualAnnealing

FirstILS
FirstMLS
FirstTabu

GLS
GeneticAlgorithm

ParticleSwarm
RandomSampling

SMAC4BB
SimulatedAnnealing

0 8 9 8 16 24 14 14 6 15 13 12 5 9 15
6 0 2 3 13 20 7 10 4 7 7 9 6 8 14
6 3 0 3 12 17 13 13 6 7 10 11 7 11 14

10 13 15 0 17 24 18 20 6 19 21 14 12 16 24
3 8 7 3 0 20 11 15 4 10 6 1 1 8 14
1 2 1 2 2 0 7 6 2 3 2 0 0 2 6
4 1 1 2 7 17 0 4 2 3 6 8 5 9 7
5 1 0 1 10 15 5 0 2 4 8 8 6 8 7
7 8 9 2 14 21 15 15 0 12 14 13 7 12 17
5 0 0 2 8 16 5 3 1 0 6 6 4 7 7
2 2 4 2 3 19 11 12 2 7 0 1 0 6 8
6 11 9 6 9 23 16 14 4 14 11 0 1 10 15

12 17 17 13 21 30 19 18 13 19 18 22 0 19 17
2 8 9 6 13 23 13 12 4 13 10 8 1 0 13
3 1 1 2 6 18 5 4 1 3 3 3 1 6 0

Algorithm Column beats Row - convolution feval <= 400

Ba
sin

Ho
pp

in
g

Be
st

IL
S

Be
st

M
LS

Be
st

Ta
bu

Di
ffe

re
nt

ia
lE

vo
lu

tio
n

Du
al

An
ne

al
in

g

Fir
st

IL
S

Fir
st

M
LS

Fir
st

Ta
bu GL

S

Ge
ne

tic
Al

go
rit

hm

Pa
rti

cle
Sw

ar
m

Ra
nd

om
Sa

m
pl

in
g

SM
AC

4B
B

Si
m

ul
at

ed
An

ne
al

in
g

BasinHopping
BestILS

BestMLS
BestTabu

DifferentialEvolution
DualAnnealing

FirstILS
FirstMLS
FirstTabu

GLS
GeneticAlgorithm

ParticleSwarm
RandomSampling

SMAC4BB
SimulatedAnnealing

0 6 6 3 4 6 8 7 3 7 6 5 2 0 7
1 0 0 0 0 1 2 3 0 3 0 2 0 0 3
1 0 0 0 0 1 2 1 0 2 1 0 0 0 2
4 6 7 0 3 6 9 9 0 10 5 4 0 0 9
5 7 6 2 0 7 9 8 2 9 6 2 0 0 8
1 3 2 1 0 0 5 5 1 7 0 1 0 0 4
2 1 0 0 0 2 0 3 0 1 0 0 0 0 0
0 0 0 0 0 0 2 0 0 0 0 0 0 0 0
5 8 10 1 3 6 9 10 0 10 8 5 0 0 9
0 0 0 0 0 0 2 0 0 0 0 0 0 0 0
2 2 3 1 0 1 5 4 1 4 0 0 0 0 4
4 6 7 2 5 6 9 7 3 8 6 0 0 0 8
9 10 11 10 9 9 11 11 10 11 9 11 0 0 11
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 1 0 0 2 3 2 0 3 0 0 0 0 0

Algorithm Column beats Row - convolution feval > 400

Figure A4: (Convolution:) Occurrences when the column algorithm found better
solutions than the row algorithm. An occurrence is counted when 50 runs for a
budget are statistically significantly better according to a two-sample independent
t-test (α = 0.05). (Top): Heatmap for low ≤ 400 budgets (25, 50, 100, 200, 400).
(Bottom): Heatmap for mid and high > 400 budgets (800, 1600). Algorithms
with low values (blue) in their rows were not often beaten for those budgets, and
algorithms with high values in their column (red) often beat other algorithms.

174 APPENDIX A. APPENDICES

Ba
sin

Ho
pp

in
g

Be
st

IL
S

Be
st

M
LS

Be
st

Ta
bu

Di
ffe

re
nt

ia
lE

vo
lu

tio
n

Du
al

An
ne

al
in

g

Fir
st

IL
S

Fir
st

M
LS

Fir
st

Ta
bu GL

S

Ge
ne

tic
Al

go
rit

hm

Pa
rti

cle
Sw

ar
m

Ra
nd

om
Sa

m
pl

in
g

SM
AC

4B
B

Si
m

ul
at

ed
An

ne
al

in
g

BasinHopping
BestILS

BestMLS
BestTabu

DifferentialEvolution
DualAnnealing

FirstILS
FirstMLS
FirstTabu

GLS
GeneticAlgorithm

ParticleSwarm
RandomSampling

SMAC4BB
SimulatedAnnealing

0 4 5 3 3 8 7 8 2 8 2 2 0 0 9
17 0 5 2 17 21 22 20 2 15 14 13 11 9 23
18 2 0 1 17 21 12 10 2 11 13 12 7 7 21
20 13 19 0 23 24 22 25 7 19 23 19 14 16 26
15 5 7 2 0 15 13 9 2 10 5 2 0 0 11
7 3 6 2 1 0 8 7 1 6 1 3 0 0 8

11 0 0 1 8 13 0 2 1 1 5 9 6 5 10
14 0 0 1 11 15 2 0 0 1 6 9 7 5 10
21 9 14 0 21 24 20 19 0 18 21 16 14 13 25
15 0 2 1 12 15 6 1 0 0 8 10 9 5 13
15 3 4 2 8 18 12 12 1 10 0 3 1 0 12
19 8 10 2 15 21 15 16 1 14 11 0 1 1 15
29 17 17 7 27 28 20 18 7 17 21 17 0 9 20
28 15 16 6 29 29 21 18 7 18 23 20 10 0 24
13 0 1 1 9 12 4 1 1 2 2 2 2 1 0

Algorithm Column beats Row - GEMM feval <= 400

Ba
sin

Ho
pp

in
g

Be
st

IL
S

Be
st

M
LS

Be
st

Ta
bu

Di
ffe

re
nt

ia
lE

vo
lu

tio
n

Du
al

An
ne

al
in

g

Fir
st

IL
S

Fir
st

M
LS

Fir
st

Ta
bu GL

S

Ge
ne

tic
Al

go
rit

hm

Pa
rti

cle
Sw

ar
m

Ra
nd

om
Sa

m
pl

in
g

SM
AC

4B
B

Si
m

ul
at

ed
An

ne
al

in
g

BasinHopping
BestILS

BestMLS
BestTabu

DifferentialEvolution
DualAnnealing

FirstILS
FirstMLS
FirstTabu

GLS
GeneticAlgorithm

ParticleSwarm
RandomSampling

SMAC4BB
SimulatedAnnealing

0 12 12 8 11 12 12 12 12 12 11 11 0 0 12
0 0 0 4 0 0 8 1 5 1 0 0 0 0 5
0 5 0 6 0 0 10 3 8 5 0 0 0 0 10
0 2 2 0 1 1 4 2 2 2 2 1 0 0 2
0 11 11 7 0 8 12 12 11 12 8 9 0 0 12
0 11 9 8 0 0 12 10 11 11 4 3 0 0 12
0 1 0 1 0 0 0 0 3 1 0 0 0 0 2
0 6 2 4 0 0 9 0 7 2 0 0 0 0 8
0 1 1 2 0 1 6 1 0 1 1 1 0 0 1
0 3 0 4 0 0 8 0 7 0 0 0 0 0 7
0 10 9 7 0 2 11 10 10 9 0 3 0 0 12
0 10 9 6 0 3 12 11 10 11 3 0 0 0 10

12 12 12 11 12 12 12 12 12 12 12 12 0 0 12
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 2 0 0 6 0 4 0 0 0 0 0 0

Algorithm Column beats Row - GEMM feval > 400

Figure A5: (GEMM:) Occurrences when the column algorithm found better so-
lutions than the row algorithm. An occurrence is counted when 50 runs for a
budget are statistically significantly better according to a two-sample independent
t-test (α = 0.05). (Top): Heatmap for low ≤ 400 budgets (25, 50, 100, 200, 400).
(Bottom): Heatmap for mid and high > 400 budgets (800, 1600). Algorithms
with low values (blue) in their rows were not often beaten for those budgets, and
algorithms with high values in their column (red) often beat other algorithms.

A.2. APPENDIX: BENCHMARKING OPTIMIZATION ALGORITHMS FOR
AUTO-TUNING GPU KERNELS 175

Ba
sin

Ho
pp

in
g

Be
st

IL
S

Be
st

M
LS

Be
st

Ta
bu

Di
ffe

re
nt

ia
lE

vo
lu

tio
n

Du
al

An
ne

al
in

g

Fir
st

IL
S

Fir
st

M
LS

Fir
st

Ta
bu GL

S

Ge
ne

tic
Al

go
rit

hm

Pa
rti

cle
Sw

ar
m

Ra
nd

om
Sa

m
pl

in
g

SM
AC

4B
B

Si
m

ul
at

ed
An

ne
al

in
g

BasinHopping
BestILS

BestMLS
BestTabu

DifferentialEvolution
DualAnnealing

FirstILS
FirstMLS
FirstTabu

GLS
GeneticAlgorithm

ParticleSwarm
RandomSampling

SMAC4BB
SimulatedAnnealing

0 4 4 3 6 13 9 7 8 10 11 3 2 12 8
14 0 2 2 20 22 15 19 19 21 23 17 15 20 20
19 9 0 2 20 21 20 21 22 23 20 18 17 20 22
18 11 3 0 20 22 22 23 21 22 21 16 17 20 21
6 2 2 2 0 17 8 7 8 8 8 1 1 12 6
1 1 0 2 2 0 8 4 7 7 1 0 0 6 7

11 2 0 0 12 13 0 8 6 8 8 6 11 14 7
5 0 0 0 7 14 2 0 3 4 5 4 5 13 6
8 1 1 0 8 13 4 5 0 7 7 6 8 14 7
7 0 0 0 8 13 2 1 3 0 6 3 7 12 3
5 1 0 2 3 12 7 3 7 6 0 0 2 9 6
7 2 3 2 11 20 12 15 13 10 16 0 6 16 11

15 6 6 7 12 22 12 11 11 12 16 10 0 21 11
3 4 5 4 7 12 9 8 8 9 8 4 0 0 9
4 0 0 0 6 13 2 1 2 0 6 0 6 13 0

Algorithm Column beats Row - pnpoly feval <= 400

Ba
sin

Ho
pp

in
g

Be
st

IL
S

Be
st

M
LS

Be
st

Ta
bu

Di
ffe

re
nt

ia
lE

vo
lu

tio
n

Du
al

An
ne

al
in

g

Fir
st

IL
S

Fir
st

M
LS

Fir
st

Ta
bu GL

S

Ge
ne

tic
Al

go
rit

hm

Pa
rti

cle
Sw

ar
m

Ra
nd

om
Sa

m
pl

in
g

SM
AC

4B
B

Si
m

ul
at

ed
An

ne
al

in
g

BasinHopping
BestILS

BestMLS
BestTabu

DifferentialEvolution
DualAnnealing

FirstILS
FirstMLS
FirstTabu

GLS
GeneticAlgorithm

ParticleSwarm
RandomSampling

SMAC4BB
SimulatedAnnealing

0 5 5 5 5 5 5 5 5 5 6 4 0 0 6
4 0 0 3 1 1 2 2 3 3 2 0 0 0 2
5 4 0 4 2 4 2 5 4 4 3 1 0 0 4
2 1 1 0 1 1 1 1 0 1 1 1 1 0 1
4 5 4 6 0 6 4 7 6 6 5 0 0 0 7
3 2 2 5 3 0 4 4 5 5 5 0 0 0 4
4 4 2 3 2 4 0 5 3 4 4 0 0 0 4
2 0 0 2 0 0 1 0 2 1 1 0 0 0 1
3 2 2 1 2 2 1 2 0 2 2 1 1 0 2
2 1 0 2 0 1 1 1 3 0 0 0 0 0 1
3 1 0 3 0 1 1 1 3 1 0 0 0 0 2
6 7 7 9 7 7 8 10 8 10 9 0 0 0 9
8 10 10 9 10 10 10 10 9 10 10 8 0 0 10
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 1 0 1 1 1 0 2 1 1 1 0 0 0 0

Algorithm Column beats Row - pnpoly feval > 400

Figure A6: (PnPoly:) Occurrences when the column algorithm found better
solutions than the row algorithm. An occurrence is counted when 50 runs for a
budget are statistically significantly better according to a two-sample independent
t-test (α = 0.05). (Top): Heatmap for low ≤ 400 budgets (25, 50, 100, 200, 400).
(Bottom): Heatmap for mid and high > 400 budgets (800, 1600). Algorithms
with low values (blue) in their rows were not often beaten for those budgets, and
algorithms with high values in their column (red) often beat other algorithms.

176 APPENDIX A. APPENDICES

A.2.3 Per kernel graphs of experimental results
In Figures A7 to A15 we show plots of algorithm performance in terms of fraction
of optimal fitness found for certain budget used (per GPU).

A.2. APPENDIX: BENCHMARKING OPTIMIZATION ALGORITHMS FOR
AUTO-TUNING GPU KERNELS 177

102 103

Max budget

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 o

pt
im

al
 fi

tn
es

s

A100

102 103

Max budget

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 o

pt
im

al
 fi

tn
es

s

TITAN_RTX

102

Max budget

0.5

0.6

0.7

0.8

0.9

1.0

Fr
ac

tio
n

of
 o

pt
im

al
 fi

tn
es

s

MI50

102 103

Max budget

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 o

pt
im

al
 fi

tn
es

s

V100

102 103

Max budget

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 o

pt
im

al
 fi

tn
es

s

K20

102 103

Max budget

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 o

pt
im

al
 fi

tn
es

s

GTX_Titan_X

GreedyILS
GreedyMLS
DualAnnealing
SimulatedAnnealing
GLS

Algorithm fraction of optimum per GPU for convolution

Figure A7: Convolution: Fraction of optimal runtime per GPU for FirstILS,
FirstMLS, dual annealing, simulated annealing, and GLS over 50 runs. Each
point is the mean fraction of optimal runtime found (y-axis) for mean budget used
(logarithmic x-axis), with error bars indicating the standard deviation in fraction
of optimum.

178 APPENDIX A. APPENDICES

102 103

Max budget

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 o

pt
im

al
 fi

tn
es

s

A100

102 103

Max budget

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 o

pt
im

al
 fi

tn
es

s

TITAN_RTX

101 102

Max budget

0.2
0.0
0.2
0.4
0.6
0.8
1.0

Fr
ac

tio
n

of
 o

pt
im

al
 fi

tn
es

s

MI50

102 103

Max budget

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 o

pt
im

al
 fi

tn
es

s

V100

102 103

Max budget

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 o

pt
im

al
 fi

tn
es

s

K20

102 103

Max budget

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 o

pt
im

al
 fi

tn
es

s

GTX_Titan_X

GeneticAlgorithm
BestMLS
BestILS
BasinHopping
DifferentialEvolution

Algorithm fraction of optimum per GPU for convolution

Figure A8: Convolution: Fraction of optimal runtime per GPU for GA, BestMLS,
BestILS, basin hopping, and differential evolution over 50 runs. Each point is the
mean fraction of optimal runtime found (y-axis) for mean budget used (logarithmic
x-axis), with error bars indicating the standard deviation in fraction of optimum.

A.2. APPENDIX: BENCHMARKING OPTIMIZATION ALGORITHMS FOR
AUTO-TUNING GPU KERNELS 179

102 103

Max budget

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 o

pt
im

al
 fi

tn
es

s

A100

102 103

Max budget

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 o

pt
im

al
 fi

tn
es

s

TITAN_RTX

102 103

Max budget

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 o

pt
im

al
 fi

tn
es

s

MI50

102 103

Max budget

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 o

pt
im

al
 fi

tn
es

s

V100

102 103

Max budget

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 o

pt
im

al
 fi

tn
es

s

K20

102 103

Max budget

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 o

pt
im

al
 fi

tn
es

s

GTX_Titan_X

SMAC4BB
GreedyTabu
BestTabu
ParticleSwarm
RandomSampling

Algorithm fraction of optimum per GPU for convolution

Figure A9: Convolution: Fraction of optimal runtime per GPU for SMAC,
FirstTabu, BestTabu, PSO, and random sampling over 50 runs. Each point is the
mean fraction of optimal runtime found (y-axis) for mean budget used (logarithmic
x-axis), with error bars indicating the standard deviation in fraction of optimum.

180 APPENDIX A. APPENDICES

102 103

Max budget

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 o

pt
im

al
 fi

tn
es

s

A100

102 103

Max budget

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 o

pt
im

al
 fi

tn
es

s

TITAN_RTX

102 103

Max budget

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 o

pt
im

al
 fi

tn
es

s

MI50

102 103

Max budget

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 o

pt
im

al
 fi

tn
es

s

V100

102 103

Max budget

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 o

pt
im

al
 fi

tn
es

s

K20

102 103

Max budget

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 o

pt
im

al
 fi

tn
es

s

GTX_Titan_X

GreedyILS
GreedyMLS
DualAnnealing
SimulatedAnnealing
GLS

Algorithm fraction of optimum per GPU for GEMM

Figure A10: GEMM: Fraction of optimal runtime per GPU for FirstILS, FirstMLS,
dual annealing, simulated annealing, and GLS over 50 runs. Each point is the
mean fraction of optimal runtime found (y-axis) for mean budget used (logarithmic
x-axis), with error bars indicating the standard deviation in fraction of optimum.

A.2. APPENDIX: BENCHMARKING OPTIMIZATION ALGORITHMS FOR
AUTO-TUNING GPU KERNELS 181

102 103

Max budget

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 o

pt
im

al
 fi

tn
es

s

A100

102 103

Max budget

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 o

pt
im

al
 fi

tn
es

s

TITAN_RTX

102 103

Max budget

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 o

pt
im

al
 fi

tn
es

s

MI50

102 103

Max budget

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 o

pt
im

al
 fi

tn
es

s

V100

102 103

Max budget

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 o

pt
im

al
 fi

tn
es

s

K20

102 103

Max budget

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 o

pt
im

al
 fi

tn
es

s

GTX_Titan_X

GeneticAlgorithm
BestMLS
BestILS
BasinHopping
DifferentialEvolution

Algorithm fraction of optimum per GPU for GEMM

Figure A11: GEMM: Fraction of optimal runtime per GPU for GA, BestMLS,
BestILS, basin hopping, and differential evolution over 50 runs. Each point is the
mean fraction of optimal runtime found (y-axis) for mean budget used (logarithmic
x-axis), with error bars indicating the standard deviation in fraction of optimum.

182 APPENDIX A. APPENDICES

102 103

Max budget

0.2

0.4

0.6

0.8

1.0

1.2

Fr
ac

tio
n

of
 o

pt
im

al
 fi

tn
es

s

A100

102 103

Max budget

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 o

pt
im

al
 fi

tn
es

s

TITAN_RTX

102 103

Max budget

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Fr
ac

tio
n

of
 o

pt
im

al
 fi

tn
es

s

MI50

102 103

Max budget

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Fr
ac

tio
n

of
 o

pt
im

al
 fi

tn
es

s

V100

102 103

Max budget

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 o

pt
im

al
 fi

tn
es

s

K20

102 103

Max budget

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Fr
ac

tio
n

of
 o

pt
im

al
 fi

tn
es

s

GTX_Titan_X

SMAC4BB
GreedyTabu
BestTabu
ParticleSwarm
RandomSampling

Algorithm fraction of optimum per GPU for GEMM

Figure A12: GEMM: Fraction of optimal runtime per GPU for SMAC, FirstTabu,
BestTabu, PSO, and random sampling over 50 runs. Each point is the mean fraction
of optimal runtime found (y-axis) for mean budget used (logarithmic x-axis), with
error bars indicating the standard deviation in fraction of optimum.

A.2. APPENDIX: BENCHMARKING OPTIMIZATION ALGORITHMS FOR
AUTO-TUNING GPU KERNELS 183

102 103

Max budget

0.92

0.94

0.96

0.98

1.00

Fr
ac

tio
n

of
 o

pt
im

al
 fi

tn
es

s

A100

102 103

Max budget

0.90

0.95

1.00

1.05

Fr
ac

tio
n

of
 o

pt
im

al
 fi

tn
es

s

TITAN_RTX

100 101

Max budget

0.04

0.02

0.00

0.02

0.04

Fr
ac

tio
n

of
 o

pt
im

al
 fi

tn
es

s

MI50

102 103

Max budget

0.90

0.92

0.94

0.96

0.98

1.00

Fr
ac

tio
n

of
 o

pt
im

al
 fi

tn
es

s

V100

102 103

Max budget

0.6

0.7

0.8

0.9

1.0

Fr
ac

tio
n

of
 o

pt
im

al
 fi

tn
es

s

K20

102 103

Max budget

0.6

0.7

0.8

0.9

1.0

Fr
ac

tio
n

of
 o

pt
im

al
 fi

tn
es

s

GTX_Titan_X

GreedyILS
GreedyMLS
DualAnnealing
SimulatedAnnealing
GLS

Algorithm fraction of optimum per GPU for pnpoly

Figure A13: Point-in-polygon: Fraction of optimal runtime per GPU for FirstILS,
FirstMLS, dual annealing, simulated annealing, and GLS over 50 runs. Each point
is the mean fraction of optimal runtime found (y-axis) for mean budget used
(logarithmic x-axis), with error bars indicating the standard deviation in fraction
of optimum. The point-in-polygon kernel was not implemented for the MI50 GPU.

184 APPENDIX A. APPENDICES

102 103

Max budget

0.80

0.85

0.90

0.95

1.00

1.05

Fr
ac

tio
n

of
 o

pt
im

al
 fi

tn
es

s

A100

102 103

Max budget

0.90

0.95

1.00

1.05

Fr
ac

tio
n

of
 o

pt
im

al
 fi

tn
es

s

TITAN_RTX

100 101

Max budget

0.04

0.02

0.00

0.02

0.04

Fr
ac

tio
n

of
 o

pt
im

al
 fi

tn
es

s

MI50

102 103

Max budget

0.75

0.80

0.85

0.90

0.95

1.00

Fr
ac

tio
n

of
 o

pt
im

al
 fi

tn
es

s

V100

102 103

Max budget

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 o

pt
im

al
 fi

tn
es

s

K20

102 103

Max budget

0.5

0.6

0.7

0.8

0.9

1.0

Fr
ac

tio
n

of
 o

pt
im

al
 fi

tn
es

s

GTX_Titan_X

GeneticAlgorithm
BestMLS
BestILS
BasinHopping
DifferentialEvolution

Algorithm fraction of optimum per GPU for pnpoly

Figure A14: Point-in-polygon: Fraction of optimal runtime per GPU for GA,
BestMLS, BestILS, basin hopping, and differential evolution over 50 runs. Each
point is the mean fraction of optimal runtime found (y-axis) for mean budget used
(logarithmic x-axis), with error bars indicating the standard deviation in fraction
of optimum. The point-in-polygon kernel was not implemented for the MI50 GPU.

A.2. APPENDIX: BENCHMARKING OPTIMIZATION ALGORITHMS FOR
AUTO-TUNING GPU KERNELS 185

102 103

Max budget

0.85

0.90

0.95

1.00

Fr
ac

tio
n

of
 o

pt
im

al
 fi

tn
es

s

A100

102 103

Max budget

0.80

0.85

0.90

0.95

1.00

1.05

Fr
ac

tio
n

of
 o

pt
im

al
 fi

tn
es

s

TITAN_RTX

100 101

Max budget

0.04

0.02

0.00

0.02

0.04

Fr
ac

tio
n

of
 o

pt
im

al
 fi

tn
es

s

MI50

102 103

Max budget

0.80

0.85

0.90

0.95

1.00

Fr
ac

tio
n

of
 o

pt
im

al
 fi

tn
es

s

V100

102 103

Max budget

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 o

pt
im

al
 fi

tn
es

s

K20

102 103

Max budget

0.5

0.6

0.7

0.8

0.9

1.0

Fr
ac

tio
n

of
 o

pt
im

al
 fi

tn
es

s

GTX_Titan_X

SMAC4BB
GreedyTabu
BestTabu
ParticleSwarm
RandomSampling

Algorithm fraction of optimum per GPU for pnpoly

Figure A15: Point-in-polygon: Fraction of optimal runtime per GPU for SMAC,
FirstTabu, BestTabu, PSO, and random sampling over 50 runs. Each point is the
mean fraction of optimal runtime found (y-axis) for mean budget used (logarithmic
x-axis), with error bars indicating the standard deviation in fraction of optimum.
The point-in-polygon kernel was not implemented for the MI50 GPU.

	Introduction
	X-ray CT pipelines
	Deep learning for imaging
	Graphics Processing Units
	Research questions

	Real-time segmentation for tomographic imaging
	Introduction
	Method
	Results and Discussion
	Conclusions

	Auto-differentiation for CT workflows
	Introduction
	Related work
	Methodology
	Case studies
	Discussion
	Conclusion

	LEAN: graph-based pruning for convolutional neural networks by extracting longest chains
	Introduction
	Related work
	Preliminaries
	Method
	Experimental setup
	Results
	Conclusion

	Benchmarking optimization kernels for auto-tuning GPU kernels
	Introduction
	Related work
	Method: Optimization problem
	Implementation
	Experimental Setup
	Results: Benchmarking optimization algorithms on runtime
	Quantifying GPU tuning difficulty
	Conclusion

	Going green: optimizing GPUs for energy efficiency through model-steered auto-tuning
	Introduction
	Related Work
	Methodology
	Experimental setup
	Experimental results
	Conclusions

	Conclusion and outlook
	Contributions and limitations
	Outlook

	Bibliography
	List of publications
	Samenvatting
	Summary
	Curriculum Vitae
	Acknowledgments
	Appendices
	Appendix: (LEAN) graph-based pruning for convolutional neural networks by extracting longest chains
	Appendix: Benchmarking optimization algorithms for auto-tuning GPU kernels

