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6 | Making the unmodulated Pyramid wavefront
sensor smart.
Closed-loop demonstration of neural network wave-
front reconstruction with MagAO-X
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D. Long, J. Lumbres, E. A. McEwen, A. McLeod, and L. Schatz

Astronomy & Astrophysics, 684, A114 (2024)

Almost all current and future high-contrast imaging instruments will use a Pyra-
mid wavefront sensor (PWFS) as a primary or secondary wavefront sensor. The
main issue with the PWFS is its nonlinear response to large phase aberrations,
especially under strong atmospheric turbulence. Most instruments try to increase
its linearity range by using dynamic modulation, but this leads to decreased sen-
sitivity, most prominently for low-order modes, and makes it blind to petal-piston
modes. In the push toward high-contrast imaging of fainter stars and deeper con-
trasts, there is a strong interest in using the PWFS in its unmodulated form. Here,
we present closed-loop lab results of a nonlinear reconstructor for the unmodu-
lated PWFS of the Magellan Adaptive Optics eXtreme (MagAO-X) system based
on convolutional neural networks (CNNs). We show that our nonlinear recon-
structor has a dynamic range of >600 nm root-mean-square (RMS), significantly
outperforming the linear reconstructor that only has a 50 nm RMS dynamic range.
The reconstructor behaves well in closed loop and can obtain >80% Strehl at 875
nm under a large variety of conditions and reaches higher Strehl ratios than the
linear reconstructor under all simulated conditions. The CNN reconstructor also
achieves the theoretical sensitivity limit of a PWFS, showing that it does not lose
its sensitivity in exchange for dynamic range. The current CNN’s computational
time is 690 µs, which enables loop speeds of >1 kHz. On-sky tests are foreseen
soon and will be important for pushing future high-contrast imaging instruments
toward their limits.
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6.1 Introduction

The direct imaging of extrasolar planets and circumstellar disks requires high con-
trast at small angular separations (Bowler, 2016). A crucial component of ground-
based high-contrast imaging (HCI) instruments is an extreme adaptive optics (AO)
system that corrects for optical distortions from the atmosphere and the instru-
ment itself (Guyon, 2018). To push HCI toward fainter stars and deeper contrasts,
AO systems need highly sensitive wavefront sensors (WFSs) that optimally use
all the photons to sense the incoming wavefront. Most current and future HCI
instruments will use or are already using a Pyramid wavefront sensor (PWFS;
Ragazzoni, 1996) as their main WFS (e.g., Pinna et al., 2016; Kasper et al., 2021;
Males et al., 2022a,b; Haffert et al., 2022; Bond et al., 2022). Furthermore, up-
grades of other HCI instruments are also planning to use a PWFS as a primary or
second-stage WFS (Fitzsimmons et al., 2020; Perera et al., 2022; Boccaletti et al.,
2022). The increased preference for the PWFS over the Shack-Hartmann WFS is
mostly due to its improved sensitivity (Ragazzoni & Farinato, 1999; Chambouley-
ron et al., 2023). This enhanced sensitivity allows AO systems to run at faster loop
speeds, improving the achievable contrast at small angular separations. Addition-
ally, its sensitivity can further be optimized by changing the binning fraction of
the detector.

The main issue with the unmodulated PWFS is its nonlinear response to in-
coming wavefront aberrations, especially in the presence of strong turbulence (Es-
posito & Riccardi, 2001). Without modulation, the linearity range of the PWFS
is much smaller than the phase aberrations that are typically observed from at-
mospheric turbulence. As a result, most instruments use dynamic modulation to
increase its linearity. However, this modulation reduces its sensitivity, especially
to low-order modes, decreasing its performance on faint stars and limiting its loop
speed. Additionally, it strongly reduces its ability to sense petal-piston modes,
which are crucial for upcoming giant segmented telescopes (Bertrou-Cantou et al.,
2022; Hedglen et al., 2022; Engler et al., 2022). Even when modulated, the
PWFS still exhibits a nonlinear response to large aberrations. Furthermore, if a
deformable mirror (DM) upstream of the PWFS is used to dig a dark hole or cor-
rect non-common path aberrations, the PWFS may need to operate with a nonzero
offset, limiting its linearity range even more.

Many different solutions have been suggested to mitigate the nonlinearity of
the PWFS. Some works have proposed a first-order correction to this nonlinearity
in the form of an optical gain compensation (Deo et al., 2019; Chambouleyron
et al., 2020, 2021). However, this requires knowledge of the turbulence statistics
and cannot account for nonlinear modal cross-talk. On the other hand, nonlin-
ear reconstructors provide a software-based solution that can do higher-order cor-
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rection without a reduction in sensitivity. Nonlinear reconstructors can be split
into model-based and data-driven algorithms. Model-based methods rely on an
accurate model of the optical system of the PWFS and accurate WFS to DM cal-
ibration. Model-based methods include reconstructors based on gradient descent
(Hutterer & Ramlau, 2018; Frazin, 2018; Hutterer et al., 2023) and the Gerchberg-
Saxton algorithm (Chambouleyron et al., 2024). These methods often need mul-
tiple iterations to converge to an accurate wavefront estimation. Alternatively,
data-driven nonlinear reconstructors have shown promising results. These meth-
ods use the ability of neural networks (NNs) to approximate arbitrary functions
to learn the inverse relation between WFS measurements and the incoming wave-
front (Swanson et al., 2018; Landman & Haffert, 2020; Archinuk et al., 2023;
Wong et al., 2023). While these methods show promising results, there is a lack
of closed-loop lab and on-sky demonstrations of these techniques. Finally, nonlin-
ear or adaptive controllers may help alleviate some of the nonlinearity problems
of the PWFS using time-domain information (Landman et al., 2021; Wong et al.,
2021; Deo et al., 2021; Haffert et al., 2021; Nousiainen et al., 2022; Pou et al.,
2022).

In this work we present lab-based closed-loop tests of a convolutional neural
network (CNN) reconstructor for the unmodulated PWFS of the Magellan Adap-
tive Optics eXtreme (MagAO-X) system. Section 6.2 discusses the calibration and
architecture of the CNN reconstructor. Section 6.3 presents the open-loop perfor-
mance of the reconstructor compared to a linear reconstructor, while Section 6.4
compares the performance in a closed loop. Finally, Section 6.5 summarizes the
results and lists our conclusions.

6.2 Methods

6.2.1 MagAO-X

MagAO-X is an extreme AO instrument for the 6.5 meter Magellan Clay Tele-
scope at Las Campanas Observatory (LCO) in Chile. The instrument is shipped
back and forth between Steward Observatory in Tucson, Arizona, and LCO. Ship-
ping the instrument back and forth allows us 100% access to the instrument when
it is in Tucson. All the experiments shown in this work were performed at Steward
Observatory.

MagAO-X is split into two optical benches that are connected by a periscope
relay. The upper bench has the telescope simulator that is fed by a single-mode
fiber-coupled super continuum laser (SuperK from NKT photonics). This source
goes through the telescope simulator that generates an f/11 beam, which is equal
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to focal ratio of the Magellan Telescope. A pupil mask is used in an intermediate
pupil to create the exact aperture of the Magellan Telescope. This beam is injected
into the instrument and passes through several optics on the upper optical bench.
The most important ones are the DMs. MagAO-X uses a woofer-tweeter architec-
ture with a ALPAO-97 DM as woofer and a Boston Micromachines 2K tweeter
(Males et al., 2018; Close et al., 2018; Males et al., 2022a). The beam is relayed
by the periscope mirrors to the lower optical table, which contains the PWFS and
the science instrumentation. A beamsplitter directly after the periscope system
splits the light off into two paths; one for the PWFS for wavefront sensing and
one for the science instrumentation. The AO beam goes through some additional
flat mirrors and is collimated onto a high-speed piezo modulator. This beam is
focused on the MagAO-X pyramid prism (Schatz et al., 2018). A custom triplet
camera lens collimates the beam onto an electron-multiplying CDD (OCAM2K
camera). The four PWFS pupils are sampled by 56 pixels across the pupil with
a separation of 60 pixels. The science beam is focused by an off-axis parabola
that creates a f/69 beam onto the science cameras. The science cameras sample
the point spread function (PSF) with 3 pixels per λ/D at Hα, which is 5.98 mas
pixel−1 on-sky (Long et. al. in prep).

6.2.2 Training data

One of the most important components toward obtaining a data-driven nonlinear
reconstructor is generating an appropriate training set. This training set needs to
be representative of the data that are seen on-sky. This is not trivial, as the distri-
bution of aberrations in closed loop depends on among others on the turbulence
statistics, loop gain and noise propagation for different spatial frequencies. To per-
form well over a large variety of conditions in a closed loop, we generate phase
screens with random power-law power spectral densities and root-mean-square
(RMS) phase. We uniformly sampled power-law indices between -1 and -3 and
RMS values uniformly distributed in log-space between 0.2 nm and 600 nm. This
ensures that the dataset contains the full range of aberrations that are seen on-sky
in a closed-loop setting, from the large aberrations when closing the loop to the
small aberrations after convergence. These phase screens were then projected on
the controllable modes of the tweeter. For the reconstruction, we chose to re-
construct 1000 modes in a Fourier basis. We only reconstructed and controlled
1000 modes in to allow for the simulated turbulence, which is introduced using
the same DM, to include a larger number of modes than we control. This mimics
the situation on-sky, where we have to deal with the fitting error and subsequent
optical gain effects. The modal coefficients for the training set were obtained by
projecting the phase screens onto this modal basis. In total, we generated 100,000
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phase screens, which were used for training, validation, and testing in a 60%,
15%, and 25% split. All the data were collected with the ND2 neutral density fil-
ter inserted, which reduces the flux level by a factor of 100. This creates a photon
flux that is roughly equivalent to observing a ∼ 0th magnitude star (I-band) at 2
kHz with MagAO-X.

6.2.3 Neural network

Artificial NNs are arbitrary function approximators. They consist of multiple se-
quential matrix vector multiplications (MVMs) with a nonlinear activation func-
tion in between, enabling them to learn nonlinear input-output relations. To make
the model fitting tractable one can use domain knowledge to limit the amount of
free parameters. The most prominent example of this are CNNs, which use the
assumption that features are local and translationally invariant to drastically re-
duce the amount of free parameters. These CNNs have been used extensively for
image processing tasks over the last decade and have revolutionized many fields
of science. Since we are also dealing with images here, we chose to use CNNs as
our model architecture. The architecture used here closely follows the one used
in Landman et al. (2022) and is based on U-net (Ronneberger et al., 2015), which
uses skip connections to reduce the vanishing gradient problem. The input con-
sists of square images of 64x64 pixels around the center of the pyramid pupils
concatenated along its depth, resulting in an input of 64x64x4, as visualized in
Fig. 6.1. These images were normalized by their total intensity and scaled by a
fixed constant such that the input data are between 0 and 1. This passes trough
the nonlinear part of the network, which consists of an encoder and decoder. The
leaky ReLU activation was used for each of the layers in the nonlinear part of the
model. The output of this nonlinear part is a correction on the intensity image,
which is added to the original image. This is subsequently mapped to the modal
coefficients with a standard MVM, or a "fully connected" layer. These modal
coefficients were scaled by a fixed constant, given by the standard deviation in
the training set. The MVM here is optimized as part of the NN and is not the
same as the linear reconstructor derived in Section 6.2.4. The main advantage of
this architecture is the presence of a direct linear connection between the input
image and the output modal coefficients, allowing it to mimic a linear reconstruc-
tor with ease. This integrates the linear term that was found necessary for stable
closed-loop operation in Landman & Haffert (2020) and Pou et al. (2022). The
loss function J used here is based on the relative loss used in Landman & Haffert
(2020) and is given by the ratio of the residual RMS error divided by the input
RMS, with a constant ϵ to avoid divergence for very small input RMS. The loss is
defined as follows:
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J =
〈 √∑

i(ytrue,i − ypred,i)2√∑
i y

2
true,i + ϵ

〉
, (6.1)

where <> denotes the mean over a sampled batch, ytrue,i the applied modal coef-
ficients for mode i and ypred,i the predicted modal coefficients by the NN for that
mode. This loss ensures that the model focuses in equal amounts on the small
and large aberrations. If we simply used the residual RMS as the loss, this would
disproportionately focus on the large aberrations. This would lead to suboptimal
closed-loop performance, as the residuals in closed loop are often small (Land-
man & Haffert, 2020). Throughout this work we use ϵ = 2 nm, as this was found
to be the limiting precision for the linear model.

We found that this model was initially overfitting to the training data and we
subsequently added regularization. We used Dropout (Srivastava et al., 2014)
layers after the first two convolutional layers with 10% dropout and one with 30%
dropout before the MVM. Additionally, we used L2 regularization with a value
of 10−5 in the final MVM layer, as that layer has most of the free parameters.
The Adam optimizer (Kingma & Ba, 2014) was used to train the CNN with an
initial learning rate of 0.003, which was decayed after every epoch by a factor of
0.96, and a batch size of 32. Training of the model took about 1 hour on a single
GeForce RTX 2080 Ti GPU.

6.2.4 Linear model

The linear model was constructed using the same data that were used to train the
CNN. However, we only included data with an RMS phase smaller than 20 nm
to ensure we are in a regime where the WFS is mostly linear. We calculated the
reduced PWFS intensities by subtracting the zero-point reference and dividing
by the total intensity. The reconstruction matrix, R, was then obtained using a
regularized linear least squares:

R = (XT X + ρI)−1XT Y, (6.2)

where X is the matrix with in its rows the measured reduced intensities, Y the
matrix with in its rows the applied modal coefficients, ρ the regularization param-
eter and I the identity matrix. We only included the first 14,000 measurements
in the regression to make the inversion feasible, which was calculated using a
singular value decomposition. The regularization parameter was optimized on a
test dataset of 3,000 samples. This was done by trying different values of ρ and
choosing the one that gave the lowest reconstruction RMS on the test dataset. We
found an optimal value of ρ = 3 × 10−4 for the regularization parameter.
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6.3 Open-loop reconstruction

6.3.1 Reconstruction accuracy

First, we compared the ability of the models to reconstruct the wavefront in an
open-loop setting. To do this, we used the last 25% of the generated data and
evaluated the RMS error of the reconstruction, defined as

RMS =
√∑

i

(ytrue,i − ypred,i)2. (6.3)

The reconstruction RMS error as a function of the RMS of the input wavefront
is shown in Fig. 6.2. We see that the NN has significantly reduced reconstruc-
tion RMS compared to the linear model. For the largest aberrations in our dataset
(600 nm) there is a factor of 3 to 4 improvement in reconstruction accuracy with
respect to the linear model, showing the increased dynamic range that can be ob-
tained with a nonlinear reconstructor. The improvement factor, which is given by
the residual RMS after reconstruction divided by the RMS of the input wavefront
is shown on the right side of Fig. 6.2. When this curve intersects one the recon-
struction does not lead to an improvement in wavefront quality. The intersection
at the smallest input RMS therefore represents the sensitivity limit, while the in-
tersection at the largest RMS determines the dynamic range. We observe that the
NN is able to obtain a better sensitivity limit than the linear model. This is likely
already due to nonlinearities, as the linear model was calibrated with wavefronts
until 20 nm RMS, which is outside the fully linear regime of the unmodulated
PWFS. The sensitivity limit for both reconstructors will be studied in more detail
in the next section.

6.3.2 Reconstruction accuracy for fainter stars

The main advantage of the unmodulated PWFS is its increased sensitivity, which
allows for better AO performance on faint stars (Guyon, 2005; Agapito et al.,
2023). However, this performance benefit requires that the nonlinear reconstructor
does not have stronger noise amplification than the linear model. Furthermore, in
the case of noisy measurements, the NN may struggle to resolve nonlinear struc-
ture in the data, as this can be washed out by noise. To test the performance of
the reconstructor on noisy data, we artificially increased the noise level of the test
data and evaluated its open-loop reconstruction performance. This was done by
adding Poisson noise for a given stellar magnitude. We ignored read noise as pho-
ton noise dominates for most WFSs using modern electron-multiplying CCDs,
especially for the relatively bright natural guide stars in HCI. We converted the
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Figure 6.3: Comparison of the reconstruction accuracy for the nonlinear CNN
with a linear model on the test dataset (same as Fig. 6.2), but now for an eighth
magnitude star.

stellar magnitude to a total photon flux using the known zero point I-band magni-
tude for MagAO-X for the WFS arm 1.

We then used transfer learning to convert the model used in the previous sec-
tion to one that can deal with these noisy measurements. This was done by training
the model on the same dataset again, but now randomly sampling stellar magni-
tudes between 0 and 10. We then evaluated the open-loop reconstruction perfor-
mance at the noise level for an eight magnitude star.

The optimal linear reconstructor also depends on the noise properties of the
WFS measurements, and we therefore re-optimized the regularization strength
for the linear model for this noise level. We found that 20 nm was within the
noise limit, so we had to increase the maximum RMS that was used for the linear
regression to 100 nm. The results are shown in Fig. 6.3, showing a decrease
in performance of the nonlinear reconstructor on these noisy data. This is likely
because it starts to struggle to distinguish between nonlinear structure and noise.
This is in good agreement with our previous results (Landman & Haffert, 2020),
in which we showed that the nonlinear correction gives the most improvement for
bright stars. However, we still observe a major improvement over the linear model
for large aberrations at this noise level.

1MagAO-x filter throughputs https://magao-x.org/docs/handbook/observers/filters.html
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6.3.3 Sensitivity limit

To study the noise propagation properties of our reconstructor, we calculated the
open-loop reconstruction performance for different stellar magnitudes. We then
determined its sensitivity limit by finding the point at which the reconstruction
RMS is 95% of the input RMS, that is, the limit of the smallest aberrations that
can still be reconstructed. The resulting RMS sensitivity limit as a function of
stellar magnitude is shown in Fig. 6.4. We show both the model trained on the
noisy data ("Nonlinear faint") as well as the model only trained on the original
high signal-to-noise ratio data ("Nonlinear bright"). The noise propagation of a
Fourier-filtering WFS for a mode ϕi was derived in Chambouleyron et al. (2023).
If dominated by photon noise, this is given by

σ2(ϕi) =
1

s2
γ(ϕi)Nph

, (6.4)

where σ(ϕi) is the RMS for mode ϕi, sγ the photon noise sensitivity of the WFS to
that mode and Nph the total number of photons in the incoming beam. Assuming
that the photon noise sensitivity for the unmodulated PWFS is roughly the same
for each mode, the total RMS is given by

σ =
1
sγ

√
Nmodes

Nph
, (6.5)

where Nmodes denotes the number of reconstructed modes. The unmodulated
PWFS has sγ ≈ 1.4 (Guyon, 2005; Chambouleyron et al., 2023). The curve
for this theoretical performance, assuming 1000 modes are reconstructed, is also
shown in Fig. 6.4. Additionally, we recalibrated the linear model on the high
signal-to-noise ratio data by only including input wavefronts up until 6 nm. This
avoids the linear model being limited by nonlinearities and allows us to really
obtain the sensitivity limit. Fig. 6.4 shows that for the brightest stars we are lim-
ited by systematics caused by bench turbulence, which is why the curve flattens
of to a limit of ∼ 1.5 nm RMS. We see that both the linear model and the bright
nonlinear model follow the same trend until a magnitude of ∼5, after which the
CNN has much stronger noise amplification than the linear model. On the other
hand, the nonlinear model trained on noisy data has better performance than the
linear model and appears to even improve upon the analytical performance. We
also see that it does not follow the classical ∝ 1/

√
Nph curve. This is likely the

result of the intrinsic regularization that is obtained by training the NN on noisy
data. This effectively leads to the CNN being able to adapt the number of modes
it reconstructs based on the WFS measurement. Furthermore, it can result in a bi-
ased estimator that, for example, always slightly underestimates noisy high-order
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modes, thereby decreasing the noise propagation for these modes. The more ad-
vanced (nonlinear) regularization methods may help NNs deal with these noisy
measurements, as was also noted in Wong et al. (2021). This added regularization
comes at the cost of slightly decreased reconstruction accuracy for the brightest
stars.
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Figure 6.4: Smallest wavefront RMS that can be reconstructed as a function of
the stellar I-band magnitude for the different reconstruction models. The analyti-
cal curve assumes a constant photon noise sensitivity of 1.4 for the unmodulated
PWFS and the reconstruction of 1000 modes. The "Nonlinear bright" model refers
to the model trained only on high signal-to-noise ratio data, while the "Nonlinear
faint" model refers to the model that is also trained on noisy data.

6.4 Closed-loop tests

We evaluated the performance of the NN in closed loop for a variety of observing
conditions. For all of these tests, we used a leaky integrator as our controller
with a global gain (g) of 0.4 and leakage (l) of 1%, which are typical value used
for MagAO-X on-sky, and the CNN only trained on the high signal-to-noise ratio
data. For each iteration, the DM voltages were updated as follows:

DMt+1 = (1 − l)DMt + gypred. (6.6)

Additionally, we used a separate tip-tilt loop as we observed small drifts in long-
term tests. This was likely the result of tip-tilt drifts during the acquisition of the
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training data and not explicitly using tip-tilt in our modal basis. We used a linear
reconstructor for this tip-tilt loop with the total normalized intensity in each of the
four pupils as inputs . This separate tip-tilt loop was run with a gain of 0.2 and
leakage of 1%.

We generated atmospheric turbulence with statistics similar as expected at
LCO using hcipy (Por et al., 2018) and the data from Prieto et al. (2010); Thomas-
Osip et al. (2010); Males & Guyon (2018), and projected this on the modes
spanned by the tweeter. This means higher order modes that cannot be produced
by the tweeter are not present in these tests. Still, this includes a bit over 1000
more modes than the 1000 that we are controlling, indicating that our model is
not influenced by the presence of higher-order modes in closed loop. We ran tests
for seeing values of 0.55, 0.7 and 1.1 arcseconds, which correspond to slight better
than median, slightly worse than median and 75% percentile conditions at LCO.
As mentioned before, the tweeter cannot reproduce full atmospheric turbulence
because of the limited number of modes. The fitting-error-limited Strehl using
first-order estimates (Hardy, 1998) for these cases are 95%, 92%, and 85%, re-
spectively. We neglected the effect of the actuator influence function during the
projection. The shape of the DM influence functions reduces the amplitude of
higher-order modes (Ruane et al., 2020), and this creates slightly better seeing
conditions than expected. We also tested the impact of the effective wind speed
on the closed-loop performance by testing two different values, the median wind
speed with an C2

n weighted value of 18 ms−1 and double the median value at 36
ms−1. While the tests were run using Python and not in real-time, we assumed an
effective loop speed of 2 kHz in the simulation of the turbulence, which is the de-
fault loop speed for MagAO-X on bright stars (Males et al., 2022a). We repeated
each of the experiments five times in order to test the stability and variance in
performance.

The Strehl ratio was estimated from the focal plane images taken with the
MagAO-X science camera. All Strehl measurements in this manuscript were done
with the MagAO-X CH4 narrowband filter that has a center wavelength of 875
nm and a bandwidth of 26 nm 2. We did this by calculating the encircled energy
within a radius of 1 λ/D around the PSF peak. We normalized this by a reference
Strehl measurement, which we obtained by closing the loop without applying
any turbulence. The Strehl ratios shown throughout this work are relative to this
reference measurement. We also found that the internal source had small drifts
over time. To correct for this, we fitted a second order polynomial to the total
intensity in the images over time and subsequently normalized the images. The
resulting Strehl ratio curves are shown in Fig. 6.5. We observe an increase in

2https://magao-x.org/docs/handbook/observers/filters.html
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Strehl ratio by using the nonlinear reconstructor over the linear reconstructor for
each of the tested observing conditions. While the linear model is able to obtain
> 80% only in good seeing conditions, the nonlinear model is able to do this even
with 1.1" seeing. The Strehl that is achieved by the nonlinear model is in good
agreement with the fitting-error-limited estimates. The difference between the
reconstructors becomes even larger in the case of strong winds, as shown in the
bottom row of Fig. 6.5. The nonlinearity of the PWFS leads to an underestimation
of the wavefront with a linear model. If the change of the wavefront in a single
iteration is larger than this correction, it is stuck in the highly nonlinear regime and
is unable to converge to a high Strehl. On the other hand, the improved estimation
of large aberrations with the nonlinear reconstructor leads to higher convergence
rates and a better estimation of the residuals in closed loop.

6.4.1 Long-term stability

The long-term stability of nonlinear models in closed loop cannot be guaranteed.
For example, modes to which the WFS is not sensitive can start to creep onto the
DM, requiring a lower gain or higher leakage to ensure long-term stability. Fur-
thermore, if the model is overly sensitive to the WFS camera or pupil alignment,
it may not be stable over multiple days and might require recalibration often. We
found this to not be a big issue in our case. For example, the tests shown in the
previous section were conducted two days after the collection of the data that were
used to train the model. This might not seem very long but after power cycling
MagAO-X, its pupil always has to be realigned on the tweeter and a separate lin-
ear stage must be used to align the PWFS pupil on the WFS camera. These steps
are currently done by hand, which means there is some amount of randomness in
the alignment every time the system is powered on. Being able to close the loop
with the CNN several days after the data were taken shows that it is quite robust
against misalignment. We therefore do not expect to need many recalibrations of
the CNN model. Even in the case of a required recalibration, we expect the recal-
ibration to not take more than half an hour, as the previously calibrated model can
be fine-tuned on newly collected data.

To test its long-term stability, we ran a closed-loop test for 2000 iterations. We
observed stable behavior of the PSF and no modal creep. The total integrated PSF
for this test, while excluding the first 100 iterations, is shown in Fig. 6.6. This
shows the increased PSF stability with the nonlinear reconstructor as compared to
the linear reconstructor, which will help boost exoplanet detection limits.
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6.4.2 Performance on fainter stars

Next, we tried to close the loop on a flux level that the CNN was not trained on.
While Fig. 6.4 shows that the models can obtain good reconstruction accuracy
over a large range of flux levels, the closed-loop stability is not necessarily guar-
anteed. We evaluated this by testing the "bright" model, which was only trained
on high signal-to-noise ratio data, in closed loop with the ND5 filter. This reduces
the flux level by a factor of 103 with respect to the training data and is equivalent
to observing a ∼7.5th magnitude star with MagAO-X, similar to the flux level for
Proxima Centauri. We found that we did not have to tune the gain or leakage,
as we observed stable behavior with the previously used values. The resulting
Strehl ratios obtained during the closed-loop tests for different turbulence con-
ditions is shown in Fig. 6.7. This shows a generally decreased performance of
the AO system compared to the previous tests for both the linear and nonlinear
model, which is due to the noisier WFS measurements. Still, the CNN has stable
behavior in closed loop and can reach higher Strehl ratios than the linear recon-
structor, showing that the nonlinear reconstructor can operate for a large range
of stellar magnitudes. We note that Fig. 6.4 showed that the linear model has a
better sensitivity limit for this stellar magnitude than the "bright" CNN, which we
used for these test. However, the performance in closed-loop is still dominated by
the nonlinearity error, as we are not operating around a diffraction-limited beam.
This explains the improved performance of the CNN over the linear model, even
though it has stronger noise propagation.

6.4.3 Inference time

Finally, we tested the inference speed of our model. We converted the trained
model to a TensorRT optimized model with half precision, and tested the models
on a single GeForce RTX 2080 Ti GPU. To remove the effect of overheads such
as data transfer to the GPU on these measurements, we compared the inference
speed of our models to an empty model, which returns a constant and does not
do any processing. We find that reconstruction of a single WFS measurement
takes on average 690 ± 50 µs, compared to 170 ± 50 µs for the linear model.
This means that the inference is too slow to be run at 2 kHz, but loop speeds of
>1 kHz are feasible. Pruning of the model could be used to further increase the
inference speed (Asif et al., 2019). Alternatively, the size of the nonlinear model
could be decreased. This comes at a slight decrease in reconstruction accuracy
in the nonlinear regime, but in our experience this decrease is relatively small.
Integration of TensorRT within the MagAO-X software environment, which is
based on CACAO (Guyon et al., 2018), is currently ongoing. A true test of the
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inference speed and jitter of the model will be conducted after this integration
and the model will be adjusted such that the standard 2 kHz loop speed can be
achieved.

6.5 Conclusions

We have presented the first closed-loop lab demonstration of a CNN-based recon-
structor for the unmodulated PWFS with MagAO-X. Our nonlinear reconstructor
has a significantly improved dynamic range of >600 nm RMS compared to the
∼ 50 nm RMS dynamic range for classical linear reconstruction. While its abil-
ity to accurately reconstruct the wavefront in the nonlinear regime decreases for
fainter stars, we still observed a major improvement over a linear reconstructor.
We have shown that the nonlinear reconstructor can reach the sensitivity limit of
the PWFS and does not lead to stronger noise amplification when including noisy
data in the training process. In this case, the nonlinear model does not obey the
standard noise propagation scaling due to its intrinsic regularization properties.
Closed-loop tests confirmed the increased dynamic range, with the nonlinear re-
constructor reaching higher Strehl ratios than a classical linear reconstructor. The
improved performance is the most pronounced when conditions are suboptimal,
as the linear reconstructor is not able to converge in closed loop for the worst sim-
ulated conditions. We have extensively tested the stability of the nonlinear model
and found that it is stable over multiple days, in long-term closed-loop tests and
when tested on a different flux level than the one it was originally trained on. The
presented work demonstrates that it is possible to use the unmodulated PWFS in
most atmospheric conditions and that it might not be necessary to modulate the
PWFS anymore in the future.

The obvious next step is to test the nonlinear reconstructor on-sky. Current
work focuses on decreasing the computational complexity to reach 2 kHz speeds
and implementing the TensorRT framework within the MagAO-X software en-
vironment to enable on-sky testing. This will make MagAO-X a pathfinder AO
system for testing nonlinear control with (deep) NNs.
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