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5 | Joint optimization of wavefront sensing and
reconstruction with automatic differentiation

Adapted from

R. Landman, C.U. Keller, E.H. Por, S.Y. Haffert, D. Doelman, T.
Stockmans

Proc. SPIE 12185 (2022)

High-contrast imaging instruments need extreme wavefront control to directly im-
age exoplanets. This requires highly sensitive wavefront sensors which optimally
make use of the available photons to sense the wavefront. Here, we propose to
numerically optimize Fourier-filtering wavefront sensors using automatic differ-
entiation. First, we optimize the sensitivity of the wavefront sensor for different
apertures and wavefront distributions. We find sensors that are more sensitive
than currently used sensors and close to the theoretical limit, under the assump-
tion of monochromatic light. Subsequently, we directly minimize the residual
wavefront error by jointly optimizing the sensing and reconstruction. This is done
by connecting differentiable models of the wavefront sensor and reconstructor and
alternatingly improving them using a gradient-based optimizer. We also allow for
nonlinearities in the wavefront reconstruction using Convolutional Neural Net-
works, which extends the design space of the wavefront sensor. Our results show
that optimization can lead to wavefront sensors that have improved performance
over currently used wavefront sensors. The proposed approach is flexible, and
can in principle be used for any wavefront sensor architecture with free design
parameters.
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5.1 Introduction

High contrast imaging systems require extreme wavefront precision to directly
image extrasolar planets. To achieve this, wavefront aberrations due to the Earth’s
atmosphere or instrument optics need to be corrected through an Adaptive Op-
tics (AO) system. This AO system uses a wavefront sensor (WFS) to sense the
incoming aberrations and subsequently corrects this through a deformable mir-
ror (DM). While early AO systems used Shack-Hartmann Wavefront Sensors
(SHWFS), the current preference for ground-based high-contrast imaging is the
Pyramid Wavefront Sensor (PWFS) (Ragazzoni, 1996). The PWFS belongs to
the group of Fourier-filtering wavefront sensors (FFWFS) (Fauvarque et al., 2016,
2017). These FFWFS’s use a phase and/or amplitude mask in the focal plane that
filters the electric field and transforms phase fluctuations into intensity variations
in the pupil plane. Another prominent example of a FFWFS is the Zernike Wave-
front Sensor (ZWFS) (N’Diaye et al., 2013). Recent work has studied alterations
of the PWFS (Fauvarque et al., 2015; Gerard et al., 2021; Fauvarque et al., 2017;
Schatz et al., 2021) and ZWFS (Chambouleyron et al., 2021), and showed that
these lead to improved sensitivity or performance under certain conditions. These
alterations were chosen based on intuition, and were not the result of a global
optimization procedure, such as commonly done for the design of coronagraphs
(Soummer et al., 2011; Carlotti, 2013; N’Diaye et al., 2016; Por, 2017). This is a
complicated trade-off between, among others, the sensitivity, dynamic range and
photon efficiency for different spatial frequencies. Furthermore, these WFS are of-
ten designed to have an as much linear response as possible. While this simplifies
the wavefront reconstruction and control, one can extend the design space of such
wavefront sensors by allowing for nonlinearities (Haffert, 2016). The response of
the PWFS is generally already nonlinear for large aberrations and/or in the pres-
ence of residual turbulence (Ragazzoni & Farinato, 1999; Esposito & Riccardi,
2001). This problem can be alleviated by algorithms that track and correct for
the effective gain (Deo et al., 2019; Chambouleyron et al., 2020; Deo et al., 2021;
Haffert et al., 2021) or through nonlinear reconstruction algorithms(Hutterer &
Ramlau, 2018; Frazin, 2018; Shatokhina et al., 2020). A promising area of re-
search for mitigating these nonlinearities is the use of neural networks for learn-
ing a nonlinear mapping between wavefront sensor measurements and wavefront
(Swanson et al., 2018; Landman & Haffert, 2020; Norris et al., 2020; Orban de
Xivry et al., 2021), or for nonlinear control (Landman et al., 2021; Wong et al.,
2021b; Pou et al., 2022; Nousiainen et al., 2022). Furthermore, the similarities
between optical systems and Neural Networks have lead to studies exploiting au-
tomatic differentiation algorithms, initially developed for training NNs, for opti-
mizing elements in the optical system (Pope et al., 2021; Wong et al., 2021a) or
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more efficient wavefront control (Will et al., 2021a,b). Automatic differentiation
allows us to obtain gradients with respect to the free design parameters, even for
complex optical systems with multiple elements and planes.

In this work, we attempt to numerically optimize the focal plane mask in a
Fourier-filtering wavefront sensor using automatic differentiation. First, we opti-
mize the sensitivity of the WFS for different apertures and wavefront distributions.
After that, we will directly minimize the residual wavefront after correction, by
jointly optimizing the WFS and reconstructor. These optimized wavefront sensors
(OWFS) are obtained by connecting a differentiable model of the optical system
with a differentiable model of the reconstruction algorithm. We then alternatingly
improve them by performing a gradient step with a gradient-based optimizer. With
this approach, one can also use a nonlinear reconstructor (e.g. a Neural Network),
thereby allowing for nonlinearities in the response of the WFS. While we apply it
here to a Fourier-filtering wavefront sensor architecture, our method can generally
be used to optimize the parameters of any kind of wavefront sensor system with
free parameters.

5.2 Methods

5.2.1 Differentiable optical simulation

We simulate our optical system using a custom framework based on HCIPy (Por
et al., 2018). All operations are implemented using TensorFlow (Abadi et al.,
2016), such that we can retrieve the gradients with respect to our free parameters
using automatic differentiation. The optical setup of a Fourier Filtering wavefront
sensor consists of a set of lenses with a focal plane mask inbetween (Fauvarque
et al., 2016). The resulting image I of the wavefront sensor for a specific aperture
A, input phase ϕ and focal plane mask m, is then given by:

I(ϕ; m) = |F −1[m × F (A exp iϕ)]|2, (5.1)

where F is the Fourier Transform operator. The propagation was implemented
using a Matrix Fourier Transform (Soummer et al., 2007) in TensorFlow, and
thus consist of a single large matrix multiplication. Eq. 5.1 shows that the relation
between incoming phase and WFS image is indeed generally nonlinear. While the
current framework allows for polychromatic simulations, we will only consider
monochromatic light at 1 micron in this work. For all simulations, we assume we
have total of 106 photons in each frame and add photon noise accordingly.
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5.2.2 Wavefront reconstruction

The inverse operation of retrieving the wavefront from the wavefront measure-
ments can be written as:

ϕrec(I) = R(I; θ), (5.2)

where R is the reconstruction model with free parameters θ. This reconstruction
can be done in a modal basis of choice. One can find the best set of parameters θ
for the reconstructor through calibration. The most common approach is to have
a linear reconstruction model:

R(I, θ) = θI, (5.3)

for which θ can be found by through a regularized linear least-squares regression.
For example, with Tikhonov regularization, the linear least squares solution is
given by:

θ = (AT A + λI)−1AT , (5.4)

where A is the measured interaction matrix in the chosen modal basis, λ a regular-
ization parameter and I the identity matrix. However, we are not limited to linear
models and are generally free to choose the parameterization of R. For example,
one can use nonlinear function approximators, such as Neural Networks (NN),
for this. In this case, the optimal parameters of the reconstructor can no longer
be found using a linear least squares. Instead, gradient-based optimizers are com-
monly used to find good sets of parameters for these models. Here, we will use
a Convolutional Neural Network (CNN) as our nonlinear reconstructor. These
CNN’s have been used in many inverse problems involving images, and have led
to impressive results (He et al., 2015; Ronneberger et al., 2015). The CNN archi-
tecture used here is based on U-net (Ronneberger et al., 2015), and is illustrated
in Fig. 5.1. The output of our CNN has the same shape as the original image and
consists of a correction term on the intensity image of the WFS. This correction
term is added to the intensity image, which is then propagated through a MVM
to reconstruct the wavefront in the chosen basis. This approach was motivated by
the hybrid approach in Landman & Haffert (2020). This also decouples the non-
linearity correction of the WFS and the projection onto a modal basis, allowing
flexibility in the choice of modal basis after training the CNN.

5.2.3 Optimization

Using our differentiable optical simulations and reconstruction, we can optimize
the free parameters of our wavefront sensor and reconstructor using gradient-
based optimization methods. In particular, we want to optimize the Fourier fil-
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tering focal plane mask for 1) maximum sensitivity and 2) minimum residual
wavefront error.

Maximum sensitivity

First, we will directly optimize for the sensitivity of the wavefront sensor. We
use the definition from Chambouleyron et al. (2021) for the sensitivity s of the
wavefront sensor with respect to a wavefront mode ϕi:

s(ϕi) =
||δI(ϕi; m)||2
||ϕi||2

, (5.5)

where δI(ϕi,m) is obtained using a "push-pull" of the wavefront mode ϕi for a
small amplitude ϵ:

δI(ϕi; m) =
I(ϵϕi; m) − I(−ϵϕi; m)

2ϵ
. (5.6)

Chambouleyron et al. (2021) showed that one can increase the sensitivity to higher
spatial frequencies by increasing the size of the Zernike dot, at the cost of de-
creased sensitivity to tip-tilt. The wavefront sensor with the optimal effective
sensitivity thus depends on the modes we want to be sensitive to. Furthermore,
the sensitivity of one mode is not independent of other modes, as there is non-
linear cross-talk. This is for example shown by the reduction in sensitivity of the
PWFS under residual turbulence (Deo et al., 2019). To account for both effects,
we generate different phase screen realizations for a given statistical distribution
and optimize for the expected sensitivity over this distribution:

Loss(m) = −Eϕin

[
s(ϕin)

]
. (5.7)

Here, E denotes the expectation value over the chosen wavefront distribution. The
expectation value is taken over batches of 32 randomly generated wavefronts from
this distribution. One issue is that this metric only considers the response, and
does not consider our ability to reconstruct the wavefront from the measurements.
This could for example lead to WFS’s with high cross-talk, a very nonlinear re-
sponse, or a small dynamic range.

Minimum residual phase through joint optimization

To solve this, we will also jointly optimize the WFS and reconstructor. Using this,
we can directly optimize for the residual error in the wavefront estimation. This
way we take into account all relevant effects, including cross-talk, dynamic range
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and noise propagation through the reconstruction. For maximum Strehl ratio, we
have to minimize the residual mean squared error:

Loss(m, θ) = Eϕin

[
⟨(ϕin − ϕrec)2⟩

]
, (5.8)

with
ϕrec = R(I(ϕin; m); θ). (5.9)

Here, ⟨·⟩ denotes the average over the aperture. It is best to take the expectation
value over the expected residual phase aberrations that are seen in closed-loop on-
sky. However, this distribution is hard to estimate and inherently depends on the
properties of the WFS and reconstructor itself. Instead, we use the loss function
from Landman & Haffert (2020), which uses the following relative loss:

Loss(m, θ) = E
 ⟨(ϕin − ϕrec)2⟩

⟨ϕ2
in⟩ + ϵ

 , (5.10)

where ϵ is a term to avoid diverging loss for small input wavefront aberrations.
This loss function makes sure that we get good performance both in the large and
small aberration regime, and that the system converges in closed-loop.

Since both our forward model I(ϕin; m) and reconstructor R(I; θ) are differ-
entiable, we can then find the gradients with respect to θ and m using automatic
differentiation. This is illustrated in Fig. 5.2. When the gradients are known, we
can optimize the mask and reconstructor using a gradient-based optimizer. We al-
ternatingly do a gradient step for the mask and then three steps for reconstructor to
make sure that the reconstructor is properly updated for the new mask. The opti-
mization is done using the Adam algorithm (Kingma & Ba, 2014) with a learning
rate of 0.01 and 0.001 for the focal mask phase and reconstructor respectively, and
again a batch size of 32. Every 500 gradient updates we decay both learning rates
with a factor 0.96.

5.3 Results

5.3.1 Maximum sensitivity

First, we optimize for maximum sensitivity to a certain wavefront distribution, as
explained in section 5.2.3. We have tested four different cases:

1. The VLT aperture with maximum sensitivity w.r.t. the actuators modes, for
which we have used a 40x40 DM similar to current high-contrast imaging
instruments. This represents the case with a flat spatial power spectrum
within the control radius.
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2. The VLT aperture with maximum sensitivity w.r.t the first 300 Zernikes
distributed according to Noll (1976).

3. Same as 2 but with the LUVOIR-A aperture.

4. The GMT pupil with optimized sensitivity w.r.t. segment piston.

We optimize for very small abberations with an RMS of 0.1 nm. The resulting
optimal masks with corresponding WFS image and response are shown in Fig.
5.3. This shows that the optimization ends up on masks similar to the ZWFS,
with a π/2 phase shift for the Airy core. When optimizing for the actuator modes
(flat power spectrum), we get a larger dot diameter than when optimizing for the
Zernike modes. This is in agreement with Chambouleyron et al. (2021), who
find that increasing the dot diameter increases the sensitivity to higher spatial
frequencies. Furthermore, the diffraction structures due to the spiders also get a
π/2 phase shift, and light inside the control radius gets a different phase shift than
outside. For the optimized mask for the Zernike modes, we get a copy of the
point spread function (PSF), with a slowly declining phase amplitude going to the
outer Airy rings. If we change the aperture shape, e.g. in the LUVOIR-A case, the
optimal masks changes according to the new structure of the PSF. Finally, the case
for optimal sensitivity to differential piston for the GMT results in a more exotic
phase mask in the focal plane. This case is just to illustrate that the methodology
can in principle be adjusted to different science cases.

We show the sensitivity curve of the two optimized wavefront sensors (OWFS)
for the VLT aperture in Fig. 5.4, following the definition from Eq. 5.5. We also
show the sensitivity curves of the unmodulated PWFS, the classical ZWFS with
a 1.06 λ/D dot (N’Diaye et al., 2013), and the Zernike2 WFS (Z2WFS) with a 2
λ/D dot size(Chambouleyron et al., 2021). We again see the enhanced sensitivity
of the Z2WFS over the ZWFS for spatial frequencies > 1 cycle/pupil, at the cost
of decreased sensitivity to tip/tilt. The OWFS for the actuator modes follows
this trend, with very low sensitivity to small spatial frequencies, but a maximum
sensitivity of 2 to mid spatial frequencies, after which it then again drops of. The
OWFS for the Zernike modes retains sensitivity to tip-tilt, while also providing
increased sensitivity to the higher spatial frequencies over the classical Zernike. It
appears that this OWFS has a lower sensitivity than the Z2WFS for higher spatial
frequencies, but this may simply be the result of our choice of only including the
first 300 Zernike modes in the optimization. A large caveat to these results is that
these are monochromatic simulations and the improvement may degrade when
working over a larger bandwidth. While the chromaticity of the phase mask may
be avoided using liquid crystal technology (Doelman et al., 2017, 2019), the phase
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mask would not exactly align with the PSF shape anymore, which could lead to
decreased sensitivity.
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Figure 5.4: Sensitivity of the different wavefront sensors to aberrations of different
spatial frequencies. The Pyramid is the unmodulated case here.

Additionally, the sensitivity as defined in Eq. 5.5 is not the entire story, as
we need to be able to reconstruct the wavefront from the measurements. If the
response of different modes is very correlated, the reconstruction might lead to a
large noise amplification. The response to the first 10 Zernike modes of the OWFS
optimized for the VLT aperture is shown in Fig. 5.5. This shows that the OWFS
for the actuator modes sees lower order modes (e.g. astigmatism) as higher order
modes. This may lead to degeneracies between different modes and thus noise
amplification with the reconstruction. To investigate this, we use the approach
from Fauvarque et al. (2015), and look at the diagonal entries of (AT A)−1 for the
first 300 Zernike modes, with A the interaction matrix. This is shown in Fig. 5.6.
This shows that while the OWFS for the actuators gives the highest sensitivity
according to Eq. 5.5, it has higher noise propagation than the one obtained for the
Zernike modes. The OWFS for the Zernike modes has lower noise propagation
than the classical ZWFS for all modes, even for tip-tilt, and thus seems to be a
more sensitive WFS than the ZWFS and Z2WFS. Still, the sensitivity defined as
in Eq. 5.5 is not the correct metric to optimize for.

5.3.2 Joint optimization

Therefore, we will here optimize directly for the residual wavefront error by con-
sidering the wavefront reconstruction, as described in section 5.2.3. We do this for
both a linear reconstructor and the CNN shown in Fig. 5.1. We will consider two
edge cases for the input distribution: The case of Kolmogorov turbulence with a
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-11/3 power spectral density (PSD), and a random combination of actuator pokes,
which is a flat PSD within the control radius. In reaility, the closed-loop distribu-
tion will be somewhere in between those cases. The RMS of the input wavefront
is sampled from a log-uniform distribution between 1 nm and 3 µm, such that
we optimize over the full range of aberration scales that are seen in closed-loop
operation. We only consider the VLT aperture here and the resulting optimized
focal plane masks are shown in Fig. 5.7. For the actuator modes, we get a very
similar result as for the maximum sensitivity, with a π/2 phase shift for the PSF.
There is an additional defocus term, which might help with the linearity range
of the sensor. The result for the nonlinear optimization is almost the same as for
the linear one. For the power-law turbulence in the linear case, we end up with
a phase mask that is a combination of an axicone and a phase shift of the Airy
core and first Airy ring, similar to the ZWFS. This combination of a pyramidal-
like structure combined with a ZWFS is similar to the bright/dark PWFS concept
from Gerard et al. (2021). The response of the optimized masks for the linear
reconstructors is shown in Fig. 5.8.
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Figure 5.7: Resulting focal mask phase after jointly optimizing the mask and
reconstructor for two different input distributions: 1. Random combination of
actuator pokes, 2. Kolmogorov turbulence.

Finally, we study the performance of the various masks and reconstructors
by looking at the residual wavefront error. Fig. 5.9 shows the residual RMS
divided by the input RMS as a function of the input RMS. This factor shows
the improvement in wavefront quality we get after a single correction. If this
ratio reaches 1, we can not improve the wavefront and have reached the limits of
the wavefront sensor. The limit for small RMS is set by the noise propagation,
while the limit for large RMS is set by the capture range. These curves show
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Figure 5.8: Response of the jointly optimized wavefront sensors to the first 10
Zernike modes.

that the optimization can lead to wavefront sensors with enhanced capture range,
especially when using a nonlinear reconstructor, with minimal loss in sensitivity.
Future work will compare the performance of these optimized wavefront sensors
in more detail.

5.4 Conclusions

We have shown that optimizing the focal plane mask in a Fourier-filtering wave-
front sensors can lead to more sensitive and better performing wavefront sensors.
We find that the mask for optimal sensitivity depends on the modes one wants to
be sensitive to and the shape of the point spread function. Our optimization leads
to wavefront sensors that are more sensitive than the Zernike and Pyramid wave-
front sensors and have a sensitivity close to the theoretical optimum. However, we
find that sensitivity is not the correct metric to optimize for, as it does not consider
noise propagation through the reconstruction. By jointly optimizing the wavefront
sensor and reconstructor, one considers all relevant effects and directly minimizes
the residual wavefront aberrations. Furthermore, by using a nonlinear reconstruc-
tor, we can extend the design space of these WFS’s and extend the capture range.
Initial results from joint optimization show that this can lead to wavefront sensors
with improved capture range. Future work will explore polychromatic simula-
tions, optimal modulation schemes, and closed-loop performance simulations.
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