

Low energy electron transmission through layered materials and chiral organic films

Neu, P.S.

Citation

Neu, P. S. (2024, June 12). *Low energy electron transmission through layered materials and chiral organic films*. Retrieved from https://hdl.handle.net/1887/3762501

Version:	Publisher's Version
License:	Licence agreement concerning inclusion of doctoral thesis in the Institutional Repository of the University of Leiden
Downloaded from:	https://hdl.handle.net/1887/3762501

Note: To cite this publication please use the final published version (if applicable).

LOW ENERGY ELECTRON TRANSMISSION THROUGH LAYERED MATERIALS AND CHIRAL ORGANIC FILMS

Proefschrift

ter verkrijging van

de graad van doctor aan de Universiteit Leiden,

op gezag van rector magnificus prof.dr.ir. H. Bijl,

volgens besluit van het college voor promoties

te verdedigen op woensdag 12 juni 2024

klokke 13:45 uur

door

Peter Sebastian Neu geboren te Duisburg, Duitsland Promotores:

Prof.dr.ir. S.J. van der Molen

Prof.dr.ir. R.M. Tromp

Promotiecommissie: Prof.dr. C. Kumpf (Forschungszentrum Jülich GmbH) Dr. Z. Zanolli (Universiteit Utrecht) Prof.dr. J. Aarts Prof.dr. M.P. van Exter Prof.dr.ir. T.H. Oosterkamp Prof.dr. J.M. van Ruitenbeek

An electronic version of this thesis is available at <u>https://scholarlypublications.universiteitleiden.nl/</u>.

Printed by Gildeprint in Enschede.

The work presented in this dissertation was funded by the Dutch Research Council (NWO).

The cover shows an optical micrograph of molybdenum disulfide (MoS_2) flakes during sample preparation. The mechanically exfoliated MoS_2 flakes are brought into contact with a holey transmission electron microscopy grid. The colorful optical interference fringes appear when the polymer stamp (with the MoS_2 flakes attached) is almost in contact with the substrate.

C	ON	T	EN	TS

1 INTRODUCTION	1
1.1 VAN DER WAALS MATERIALS	2
1.2 PROBING VAN DER WAALS MATERIALS WITH ELECTRONS	3
1.3 Electron-Matter interactions	5
1.3.1 Elastic electron scattering: the electron wave	5
1.3.2 Elastic and Inelastic Mean Free Path	8
1.4 Chirality	9
1.4.1 Chirality-Induced Spin Selectivity (CISS)	11
1.5 Outline of this thesis	14
References	15
2 LOW-ENERGY ELECTRONS: MICROSCOPY AND SPECTROSCOPY	19
2.1 INTRODUCTION	20
2.2 THE ESCHER SETUP	20
2.3 LOW-ENERGY ELECTRON MICROSCOPY (LEEM)	21
2.4 ELECTRON VOLT-TRANSMISSION ELECTRON MICROSCOPY (EV-TEM)	23
2.5 PHOTOEMISSION ELECTRON MICROSCOPY (PEEM) WITH POLARIZED LIGHT	25
References	27
3 EXTRACTING TRANSVERSE ELECTRON MEAN FREE PATHS	IN
GRAPHENE AT LOW ENERGY	29
Abstract	29
3.1 INTRODUCTION	30
3.2 Interference model with losses	31
3.3 Results	33
3.4 Conclusions	38
Appendix	39
References	40
4 SYMMETRIES OF ELECTRON INTERACTIONS WITH HBN-GRAPHE	NE
HETEROSTACKS	43
4.1 Introduction	44
4.2 Results	44
4.2.1 Geometry and images	44
4.2.2 Spectra	47
4.2.3 Calculated spectra and electron density distributions	51
4.2.4 Elastic and inelastic mean free paths	54
4.2.5 Symmetry upon flipping the sample	56
4.3 CONCLUSION	60
Appendix	62
Sample fabrication	62
Flipped sample	63
Free-standing hBN	63
References	65

5 ELECTRON TRANSMISSION AND MEAN FREE PATH IN MOI	LYBDENUM
DISULFIDE AT ELECTRONVOLT ENERGIES	69
Abstract	69
5.1 INTRODUCTION	
5.2 Experiment	70
5.3 Results	71
5.4 Discussion	76
5.5 SUMMARY	77
Appendix	78
Optical Images	
Projected Density of States	
Mean Free Path: comparing with previous work	
References	
6 PHOTOEMISSION FROM CHIRAL MOLECULE FILMS	
6.1 INTRODUCTION	
6.2 Experimental	
6.2.1 Linear polarization and photoemission	
6.2.2 Principal tests on gold structures	
6.2.3 Polarization-dependent Photoemission from BINAP	
6.2.4 Further calculation of transmitted polarization	
6.3 CONCLUSIONS AND RECOMMENDATIONS	
References	
SUMMARY	
SAMENVATTING	
ZUSAMMENFASSUNG	
ACKNOWLEDGEMENTS	
CURRICULUM VITAE	
LIST OF PUBLICATIONS	