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Abstract—Multi-variate time series classification tasks are
prevalent in various real-world engineering domains, including
but not limited to activity recognition and anomaly detection.
However, due to the abundance of sensors available, selecting
the appropriate channels for successful classification can be a
daunting task. In this study, we propose to use a two-sample
hypothesis test, to determine the relevance of channels in time
series classification tasks. We illustrate the industrial usecase that
motivated this algorithm and validate our approach on open-
source benchmarks. The proposed method has the potential to
address the challenge of channel selection in multi-variate time
series classification tasks and can significantly impact various
real-world engineering applications.

Index Terms—Channel Selection, Feature Selection, Time Se-
ries Classification

I. INTRODUCTION

Let X ∼ PX be a stochastic process (channel), where

xt = X(t) is its realization on a time point t and we

let XI = [x1, x2, . . . , xn] to represent the segment of X
observed over a time interval I with n measurement points (ti).
Additionally, we define time series T , a segment-collection of

X , as T = {T1, T2, . . . , Tk}, where Tj = XIj . Time series

classification requires building a machine learning model to

predict the class labels of unseen time series based on k
historical data-label observations T and labels L. Assuming for

each time interval I , we observe M ≥ 2 stochastic processes

simultaneously, i.e., Tj = (X1,Ij , . . . , XM,Ij ), where Xi,Ij is

the segment of channel i on interval Ij . Then the problem be-

comes multivariate or multi-channel time series classification.

When dealing with classification tasks in complex industrial

environments, one of the challenges is the large number

of sensors involved. Each sensor generates a sequence of

outputs (a channel). It is often unclear which sensors have a

direct or indirect relation with the classification target, posing

difficulties in selecting the relevant channels for classification.

To provide a concrete example, we consider the industrial use-

case of classifying the activity of the world’s largest crane

vessel, the Sleipnir, owned by the Heerema company. This

vessel is equipped with over m = 6000 sensors, measuring

various subsystems such as thrusters, ballast pumps, cranes,

and engines. Depending on the activity to be classified,

This publication is part of the project XAIPre (with project number 19455)
of the research program Smart Industry 2020 which is (partly) financed by
the Dutch Research Council (NWO).

many of these channels are potentially relevant, and selecting

a feasible subset of channels is a challenging and time-

consuming task. Hence, this research aims to handle the

following scenario: Given a TSC task on time series T
with M channels (sensors), find the most P ≤M relevant
channels for predicting the segment-wise labels L. For a

robust TSC classifier f , a train set Dtr, a test set Dte, and

a performance metric P (Dte) where a larger value means

better performance. Herewith, we define a channel Xi,∗ is truly
relevant if it satisfies the following criteria:

• Fit f exclusively on Xi,train, L and evaluate performance

on the test data Di,test. Then P (Dte)− P (Di,te) ≤ ε.
• Remove Xi,∗ from Dtr and Dte, and let the new train

and test sets be Di
tr and Di

te. Train f on Di
tr and obtain

its performance P (Di
te), then P (Dte)− P (Di

te) ≥ δ,

where both ε and δ ≥ 0 are scenario-dependent thresholds.

It is possible to determine the relevance by exhaustively

doing leave-one-channel-out runs. However, this violates the

principle of channel selection, namely, saving computational

costs. Thus, we propose a methodology that can quantify and

estimate this relevance based on a functional kernel-based two-

sample test [1] to determine the relevance of channels for a

given TSC task. Due to the confidentiality of our industrial

data, we verify our proposed method on several open-source

benchmarks and demonstrate the effectiveness and limitations

of the proposed approach.

II. RELATED WORK

Although various feature selection methods exist for clas-

sical tabular machine learning, there is a notable research

gap in terms of selecting channels for multi-channel time

series tasks. Some existing methods employ static feature

extraction to determine the relevant channels and compute

inner-correlations, such as entropy, to rank the performance

of different learning algorithms on different feature subsets

or employ a hybrid of these two methods [2], [3]. Another

approach is to study the correlations between channels, in-

cluding joint correlations, using Pearson’s correlation [4], [5].

However, we argue that Pearson’s correlation does not account

for the time-dependency of channels, which makes it imperfect

for time-series analysis.
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III. METHODOLOGY

Time space to function space: It is assumed that each

univariate time series is a function supported over a vector

space, and can be represented by a finite vector [6].

Functional kernel hypothesis test: A functional kernel two-

sample test aims to test the distributional equivalence between

two functions supported by the same vector space. The core

idea is to use a reproducing kernel defined on functional space

to construct and test the metric discrepancies between the

mean embedding of two functions [1].

Based on these preliminaries, for given k time intervals

I = {I1, . . . , Ik}, we observe a univariate time series channel

X = {XI1 , . . . , XIk} and its element-wise labels L =
{L1, . . . , Lk}, i.e., pairs of (XIj , Lj). Additionally, we assume

the time difference (start to end) for all time intervals is the

same but the sampling strategy for measurement points in

each Ij can be different. Consequently, it is feasible for us to

consider that all XIj are defined in the same space but with

different observation grids. Moreover, let the functional kernel

two-sample test algorithm be g(Fp, Fq;κ), where Fp ∼ P and

Fq ∼ Q are functional distributions and κ is the functional

reproducing kernel. Then the g-based relevance of X w.r.t L
is determined as follows:

1) Suppose there are m unique labels in L, namely, A =
{A1, . . . , Am} and note that X → A is surjective-only.

For each unique Ai ∈ A, we find the two subsets Xi =
{XIj | Lj = Ai, ∀j ∈ [1, k]} and X∗

i = {X \Xi}.
2) For each pair of (Xi, X

∗
i ), we determine their

two-sample-test-based test power, namely, ti =
g(Xi, X

∗
i ;κ). It is obvious that here we consider Xi

and X∗
i to be two different functions supported by I .

3) The relevance score of X w.r.t L bounded by κ, namely,

R(X | L, κ) can then be written as:

R(X | L, κ) =
∑m

i=1

ti
m

4) Suppose we have C valid functional reproducing ker-

nels, i.e., Ω = {κ1, . . . , κC}. We do procedures 1 to 3

for C times, each time using a unique κj ∈ Ω. Then the

final channel relevance of X w.r.t L is defined as:

R(X | L) = C
max
j=1

R(X | L, κj)

It is beneficial to use multiple kernels since each kernel is

limited by its form, and can only capture certain types of

hypothesis classes of the functions1.

IV. EXPERIMENTS

Setup: Recall the initial goal of finding the top P ≤ M
relevant channels for TSC task. For efficiency, we generalize

relevance to multi-channels by considering or removing a

batch of channels that fall into a certain range of relevance.

To verify the soundness of our proposed channel relevance,

1However, considering two channels both with high relevancy but are based
on fundamentally different kernels, then multiple kernels can be misleading
since a classifier may fail to process two intrinsically different function classes.

we perform benchmarking on the well-established UCR time

series suites [7]. The experiments are organized as follows:

1) Given a m-channels multi-variate TSC dataset (T =
{X1,∗, . . . , Xm,∗}). For each channel Xi,∗, we compute

its channel relevance score R(Xi,∗|L) based on the

aforementioned algorithm.

2) Grouping channels by their channel relevance, e.g.,

S[a,b] = {Xj,∗ | R(Xj,∗|L) ∈ [a, b], ∀j ∈ [1, . . . ,m]}.
3) Training and testing the performance of a classifier on

each of the S[a,b].

For each of the used datasets, the classifier which yields

the best results w.r.t the extensive review by Ruiz et al. [8]

is used for benchmarking, where each classifier has been

independently run 10 times on the dataset.

In addition to the benchmark settings, we outline the five

kernels that are utilized in this experiment. Suppose we are

distinguishing between two functional distributions Fp ∼ P

and Fq ∼ Q supported over Rd, the kernel can be written as:

κ(Fp, Fq) = e
− ‖T (Fp)−T (Fq)‖2

2η2 ,

where η is intrinsically the bandwidth of the Gaussian kernel,

T is a Borel measurable, continuous, and injective transfor-

mation that is capable of mapping both functions into a real

and separable Hilbert space. In this study, we consider the

following five kernels from [1]:

• Standard: T (a) = a, the original Gaussian RBF kernel

• Cosine (Cos): point-wise cosine transformation

• Squaring feature expansion (Sqr): summing up two ker-

nels. One with T (a) = a and another one with T (a) = a2

• FPCA: T is functional PCA.

• Covariance (Cov): it is different from other kernels, the

outcome is the inner product between Fp and Fq .

Results: Four symbolic results obtained on four datasets

from the UCR multivariate suite [9] are shown in Table I,II,III

and IV.

TABLE I
RESULTS OBTAINED ON RacketSports

Range of channel relevance
(0.4,0.6] (0.6,0.8] (0.8,1.0]

F1

0.80 0.82 0.83
0.85 0.83

0.80 0.88
0.86

N 2 2 2

TABLE II
RESULTS OBTAINED ON HandMovementDirection

Range of channel relevance
[0,0.1] (0.1,0.2] (0.2,0.3] (0.3,0.4]

F1

0.39 0.45 0.46 0.48
0.43 0.55

0.47 0.48
0.39 0.52

0.52
N 4 3 2 1
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We first give an example of how to read the tables, ”F1”

means the (weighted) f1 scores (averaged over 10 independent

runs) and N means the number of channels that falls into the

relevance range (denoted at the top of each column). The two

results in the second row of Table II shows the f1 scores

0.43 and 0.55 obtained by the classifier on channels whose

relevance are between [0, 0.2] and (0.2, 0.4], respectively. The

darker the color of a cell is, the better the performance. The

best results per data set are shown in bold font.
It can be seen from Table I, by leaving out the two channels

with lower relevance, the classifier yields better performance

than using all channels. Similar and more encouraging results

can be seen in Table II, where only relying on the top 3
relevant channels outperforms using all 10 channels.

TABLE III
RESULTS OBTAINED ON Heartbeat

Range of channel relevance
[0,0.15] (0.15,0.3] [0.3,0.45] [0.45,0.6] (0.6,0.75] (0.75,0.9] (0.9,1.0]

F1

0.70 0.71 0.70 0.73 0.76 0.69 0.76
0.70 0.77

0.71 0.77
0.70 0.76

0.72 0.77
0.74 0.76

0.74 0.76
0.77

N 1 2 2 5 10 10 31

TABLE IV
RESULTS OBTAINED ON NATOPS

Range of channel relevance
(0.3,0.4] (0.4,0.5] (0.5,0.6] (0.6,0.7] (0.7,0.8] (0.8,0.9] (0.9,1.0]

F1

0.69 0.67 0.81 0.78 0.75 0.60 0.88
0.69 0.91

0.75 0.91
0.82 0.91

0.87 0.89
0.89 0.87

0.91 0.88
0.91

N 1 4 4 3 2 2 8

In Table III, by leaving out 10 channels the classifier is still

performing as good as including all channels. One could even

opt to leave out the 30 least informative channels and only

lose 0.01 on the f1 score. In principle, the values on the right

side should be higher than the ones on the left side, as these

include the most relevant channels, but this is not guaranteed

since the proposed channel relevance is based on correlation

instead of causality and the inter-channel information shall be

taken into account. From Table IV one can observe that leaving

out the 8 most relevant channels leads to the same f1 score

as leaving out the 9 least relevant channels. Looking at the

channel relevance scores of the NATOPS benchmark, we can

observe that actually all channels show some relevance and

therefore this does make sense.
Lastly, Table V shows the number of times the relevance of

a channel is determined by a certain type of kernel. Looking

at the bold numbers, it is not hard to see that the squaring

function expansion is the most confident kernel on three out

of four problems (Heartbeat (HB), RacketSports (RS), and

NATOPS), which suggests the original signals could possess

strong polynomial inner-correlations. On the contrary, it can be

assumed that there exist more sine-cosine correlations within

the data of HandMovementDirection (HMD).

TABLE V
NUMBER OF TIMES THAT A KERNEL OBTAINS THE HIGHEST RELEVANCE

Standard Cos Sqr Cov FPCA Total
HMD 1 7 0 0 2 10
HB 0 0 61 0 0 61
RS 0 0 4 2 0 6

NATOPS 1 1 19 3 0 24

V. CONCLUSIONS AND OUTLOOK

A novel functional kernel-based two-sample test approach

is proposed to determine the channel relevance in multivariate

time series classification tasks. The effectiveness of the ap-

proach is validated on a wide set of benchmark TSC problems.

We show that the two-sample test methodology, combining

different static kernels, works very well in order to reduce the

number of channels and even increase classification accuracy

(f1 score) in some cases. Although the experimental results

show that one kernel is promising most of the time, choosing

the best static functional kernel as well as selecting hyper-

parameters can however still pose a challenge for real-world

applications, and the inter-channel relevance is not taken into

account using the proposed approach. For future research

directions, a learned kernel could be interesting to solve the

kernel selection problem.
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