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Summary

A major focus of mathematics throughout the millennia has been studying
the solutions of equations. For example, in roughly 1800BC the Babylonians
[BPS11] studied integer solutions of

x2 + y2 = z2,

now known as Pythagorean triplets. There are of course many, many examples
of equations: one can consider the equation

y = x2

whose solutions form a parabola, or xy = z, whose solutions give a surface in
a 3-dimensional space. Or

y2 = x3 + x,

which gives a so-called elliptic curve, a concept originally from the 19th century
that forms the basis of a large part of modern cryptography [Mil86, Kob87],
and has many ties to number theory [Sil94, Sil09].

In this thesis we consider curves, algebraic curves to be precise. These are
one-dimensional geometric objects given by polynomial equations. The study
of spaces given by polynomial equations is called algebraic geometry, precisely
because it combines the languages of algebra and geometry. Algebraically we
have equations, whose set of solutions we interpret as geometric objects called
varieties; algebraically we have solutions, which geometrically we see as points
on the variety. For example, the equation y = x2 corresponds to the parabola,
a special case of a variety, and the solution 9 = 32 corresponds to the point
(3, 9) on the parabola. For an introductory reference to algebraic curves, see
for example [Sil09, Chapters 1-2].
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288 SUMMARY

We study two problems about curves. First of them, is counting curves, part
of a field called enumerative geometry. The aim of this field is to count curves
satisfying certain properties, such as curves passing through a fixed set of
points. For example, there is a unique line through two points in the plane,
and there is a unique conic (a curve given by a degree 2 polynomial equation in
x and y) passing through five points in the plane. And there are exactly twelve
cubics (a curve given by a degree 3 polynomial equation in x and y) that have
one point of self-intersection and pass through eight points in the plane. This
subject turns out to have deep connections to physics and to systems of partial
differential equations [DZ01, BR21]. A general introduction to the subject can
be read in [KV07] or [Vak08].

The second problem is actually solving the equations, that is, finding all points
on the curve. We are interested in finding the rational points, i.e. the points
with coordinates in Q. This problem is a special instance of the very broad
class of diophantine equations. Under some conditions on the curve, there are
only finitely many rational points, but provably finding them all is a difficult
task. Some introductory references to the subject can be found in [MP12,
BM20, BDM+21].

The following two sections of the summary deal with these two subjects. They
are intended to be self-contained.

Counting curves

We first delve into a specific case, namely the case of a conic passing through 5
points in the plane. For any 5 points, there is a unique conic passing through
them. Consider for example that we pick our five points to be

St = {(1, t), (t, 1), (−1,−t), (−t,−1), (
√
t,
√
t)},

for some real number t > 0. Then the hyperbola

Ct : xy = t

passes through these five points, see Figure 1. An interesting phenomenon
occurs if t gets closer and closer to 0: the hyperbola becomes sharper and
sharper around (0, 0), and eventually becomes the curve

C0 : xy = 0.

This degeneration is shown in Figure 2. This curve C0 is not smooth, meaning
that it does not locally look like a line, while Ct is smooth for t 6= 0. As it
locally looks like the crossing of two lines, we say C0 is a nodal curve.
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Figure 1: The hyperbola xy = 1
2 , passing through the five points (1, 1

2 ), (1
2 , 1),

(−1,− 1
2 ), (− 1

2 ,−1), (
√

1
2 ,
√

1
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Figure 2: The curve xy = t for various values of t. It is smooth for t 6= 0.
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Figure 3: The set of rays starting in the origin can naturally be identified with
a circle (red). Each ray corresponds to its intersection with the circle.

Many nice properties that smooth curves satisfy do not carry over to nodal
curves. However, people do often study nodal curves, even if they want to
count smooth curves. Why? The explanation lies in the notion of the moduli
space of curves. This is a set containing all curves, and miraculously it itself
is a geometric object.

For an example of this phenomenon, consider the set of rays starting at the
origin, pictured in Figure 3. This is a set of geometric objects, but it itself is
also a geometric object, namely a circle! For another example, we take a look
at Figure 2 again. Here the set of curves naturally forms a line with coordinate
t, and the set of smooth curves forms a line with a hole, as the point t = 0 is
missing.

Studying moduli spaces is an incredibly powerful perspective for answering
questions about curves. However, if these moduli spaces have holes in them,
i.e., are not compact, then many of the geometric techniques cannot be applied.
The moduli space of smooth curvesM has many holes, and its compactification
M of nodal curves has none. Today, moduli spaces feature front and center in
many areas in algebraic geometry. For a beautiful introduction to the subject
via the moduli space of triangles, we recommend [Beh14]. For a more classical,
algebraic version, see for example [Vak08] or [Sch20].

In Chapter 2 we use this moduli space perspective to study the double rami-
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Figure 4: A degeneration of a variety. The curves inside the variety degenerate
into curves tangent to the intersection.

fication cycle DR(A), which depends on a sequence A ∈ Zn with sum 0 and
counts curves with infinite symmetries and some extra conditions given by A.
This object, defined in [GV03, MW20, Hol21] has many ties with other areas
in mathematics [BR21, RK23]. In [JPPZ17] they conjectured that DR(A) is
polynomial in A, and announced a proof of this fact. Recently Pixton gave a
proof of this statement [Pix23]. We give an alternative proof, in Theorem A.

Degenerating smooth curves to nodal curves can be useful in order to study
smooth curves. But a curve is just a special case of a variety, as a variety is any
geometric space defined by polynomial equations. In fact, we can degenerate
any variety, and this can at times be a strong tool. One can degenerate a
smooth variety into simpler building blocks, similarly to how we degenerated
xy = 1 to xy = 0, the union of the two lines x = 0 and y = 0. The curves in the
variety then deform to curves on the pieces. For an example, see Section 7.7.6.
Often questions about the original variety can be translated into questions
about the building blocks. For example, the degeneration formula tells us
how to compute curve counts in a smooth variety X from curve counts of the
building blocks of its degeneration [KLR18, ACGS20b, RK23].

The key to making the geometry and the combinatorics of the degenerations
work together is the language of logarithmic geometry, an extension of algebraic
geometry. A log variety is a variety with some more structure, a log structure.
We mainly care about log smooth log varieties X, where the log structure is
a representation of X as a degeneration from a smooth variety. For example,
Figure 2 naturally induces a log smooth log structure on C0, by representing
it as the degeneration of xy = t as t goes to 0.

It turns out that every nodal curve admits a canonical log smooth log struc-
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Figure 5: The gluing of two lines.

ture, and hence we can also interpret M as the moduli space of log smooth
curves. This also induces a log structure on M. All log curves being log
smooth causes everything to behave similarly to the case of smooth curves,
with the added advantage of still having a compact moduli space. Many re-
sults in algebraic geometry have been proven by considering a log analogue and
proving statements about the log analogue and then deducing algebraic results
[HPS19, HMOP23, RK23]. For some examples where tropical geometry, the
combinatorial part of log geometry, is used to prove algebraic statements, see
e.g. [KRZB16, FJP23]. However, finding the correct log analogue and proving
the corresponding log statements is not an easy feat.

In Chapter 3 we show one example of this, where using logarithmic methods
we simplify results from [BH19] and use that to answer some open questions
from [BH19].

In Chapter 4, joint work with David Holmes, we study a different example,
that of gluing curves. Classically, this works as follows. Let M1 denote the
moduli space of pairs (C, p) where C is a curve and p is a point on C. Then
given two curves (C1, p1), (C2, p2) ∈ M1, we can glue the points p1 and p2

together to get a different curve Cgl. Formally, we have

Cgl = (C1 t C2)/ ∼

where p1 ∼ p2. As an example of this, see Figure 5 where we construct C0 as
the gluing of two lines.

This defines a gluing map

gl :M1 ×M1 →M.

The image lies in the boundary M\M of nodal curves, and it is this gluing
map that lets us recursively understand the boundary. These gluing maps
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have laid the ground for many theories, theorems and formulas in classical
algebraic geometry. For example, the curve counts mentioned above satisfy
some recursive relations with respect to gluing maps.

However, one can prove that log curves cannot be glued. That means that
many classical construction involving the gluing map could not be generalised
to the logarithmic case. Joint with David Holmes we have solved this issue,
by defining log pointed curves. This defines a log moduli space M1, again with
some log structure. We proved the following theorem.

Theorem (Theorem F). The underlying variety of M1 is M1. There is a
natural logarithmic gluing map

gl : M1 ×M1 →M.

This enabled us to produce log analogues of several classical constructions,
most notably logarithmic cohomological field theories, which are collections of
functions satisfying some compatibility with respect to the logarithmic gluing
maps. We generalised an important theorem [BR21] in the classical world to
the log setting, obtaining Theorem G. This paper also opens up a new research
line, on what constructions and theorems concerning the classical gluing map
can be generalised to the log setting.

Rational points

One of the first abstract mathematical problems was that of diophantine equa-
tions, polynomial equations where the goal is to find all rational solutions. For
example, the equation x2 +y2 = 1, describing a circle, has the rational solution
(x, y) = (3

5 ,
4
5 ).

Throughout the millenia, there have been many tricks and theorems used to
solve all kinds of diophantine equations, but we focus on the specific case of
curves. Given a polynomial in x, y, for example x2 + y2 = 1, or

y2 + (x3 + x+ 1)y = x5 − x

the set of all complex solutions forms a geometric curve that is easy to describe.
The rational solutions then correspond to rational points on the curve, and
they form a subset that is often difficult to find. For a curve C we denote this
set of rational points by C(Q). Perhaps most famous is the Fermat curve Fn,
given by xn + yn = 1 for a fixed n ≥ 3, which has been shown by Andrew
Wiles to only have rational points (x, y) of the form (0,±1) and (±1, 0), thereby



294 SUMMARY

proving Fermat’s Last Theorem on the integer solutions of an+bn = cn [Wil95,
TW95].

A curve C has an important invariant called the genus g ∈ Z≥0, and the
behaviour of the curve C and of the rational points C(Q) is strongly dependent
on the genus. There is only one curve of genus g = 0, namely the line, and it
has infinitely many rational points12.

Curves of genus 1 are called elliptic curves. This is a very special kind of curve
that naturally has the structure of an abelian group, meaning that you can add
two points on it to get a third point. The rational points form a subgroup, and
this is even a finitely generated group. For any specific elliptic curve, finding
generators and relations for this group is usually doable.

For curves of genus g ≥ 2, the topic of the second half of this thesis, Mordell
conjectured in 1922 that there are always only finitely many rational points.
Though there was partial progress, this conjecture was only proven in 1983
by Faltings, and is now known as Faltings’ theorem. This was a breakthrough
result, but unfortunately this result is not effective, i.e., it does not help in
actually computing the set of rational points.

One way to make it effective in certain cases, is by a theorem of Chabauty
proven in 1941 [Cha41], that was partial progress towards Faltings’ theorem.
To every curve C of genus g there is an associated space of dimension g called
its Jacobian, which we denote by J = J(C). Like an elliptic curve, this
geometric space is an abelian group. It comes with a natural map C → J , the
Abel–Jacobi map, that is an embedding if g ≥ 1, and one can think of J as the
abelian groupification of C. As one incarnation of this, the fundamental group
of J is the abelianisation of the fundamental group of C. For an example of
what the embedding might look like for g = 2, see Figure 6.

For an elliptic curve C, the Jacobian J is equal to C, and the map to the
Jacobian is simply the identity. In general, J has similar properties to an
elliptic curve. For example, its set of rational points J(Q) forms an abelian
group that is finitely generated, of some rank r. See Figure 7 for an example
where r = 1 and where we have plotted the line containing J(Q).

Now we can see Chabauty’s trick appearing, if we overlay these two embeddings
C → J and J(Q) → J , as in Figure 8. We know the rational points in C(Q)
both lie in C and map to J(Q) under the Abel–Jacobi map, and hence lie in
the intersection J(Q) ∩ C ⊂ J . And under the crucial assumption r < g, we

12Throughout this section, we make the technical assumption that C has at least one
rational point to simplify the exposition.
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C

Figure 6: An embedding of the genus 2 curve C (red) into its Jacobian (black),
a surface.

L

Figure 7: A line L (blue) containing all rational points of the Jacobian (black).

expect this intersection to be finite for dimension reasons. Indeed, this is what
Chabauty proved: if r < g, then C(Q) is finite.

A small technical note: the picture suggests that we are taking this intersection
inside the R-points of J . In fact, this won’t work, and we instead take the
intersection C(Qp) ∩ J(Q) inside J(Qp), where Qp are the p-adic numbers for
some prime p. This is a different, non-archimedic completion of Q that does
not have many of the convergence issues that R has.

It took another 44 years for an effective version of Chabauty’s method to come
out. In 1985 Coleman [Col85a] gave a method to compute (a slightly larger
set than) J(Q) ∩ C ⊂ J where J(Q) is the closure of J(Q) inside J . He did
this by studying some vector spaces associated to C and J , called cohomology
groups.
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L

C

Figure 8: Chabauty’s method: the intersection of L (blue) and C (red) contains
all rational points of C and is finite.

Currently, there are many variations of this method, and the name of the game
is to find methods that work on ever more curves and produce ever smaller
sets of points (still containing all the rational points).

In 2009 Kim vastly generated the Chabauty–Coleman method [Kim09]. In-
stead of working with the abelianisation of the fundamental group G = π1(C),
Kim worked with non-abelian quotients of the fundamental group G. Kim
defined a sequence of successive quotients

G→ · · · → Gn → Gn−1 → · · · → G2 → G1 = Gab = π1(J)

and for each Gn they defined a subset Cn of C (not necessarily finite) contain-
ing the rational points, such that we get a sequence

C(Q) ⊂ · · · ⊂ Cn ⊂ Cn−1 ⊂ · · · ⊂ C2 ⊂ C1.

Like Coleman, they defined these sets using cohomology groups. And indeed,
for the abelianisation G1 they recover the same set Coleman finds. This gen-
eralisation could have massive implications: it is conjectured that for any
curve C of genus at least 2, no matter what r is, the sequence C1, C2, · · ·
is eventually finite and even that there is always some n with Cn = C(Q).
However, actually computing any of these sets Cn beyond n = 1 has proven
difficult. The best method so far is (cohomological) quadratic Chabauty. This
uses a group GCoh with G2 → GCoh → G1, and produces a set of points
CCoh with C2 ⊂ CCoh ⊂ C1. If we let ρ be the Néron–Severi rank of J
(some integer in Z≥1 associated to J), then CCoh is finite if r < g+ρ−1. This
method was first developed by Balakrishnan, Dogra and Müller for r = g, ρ > 1
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[BBM16, BD18, BD21, BDM+21]. One of its crowning achievements has been
computing the rational points on the “cursed curve” Xs(13) [BDM+19].

Recently, Edixhoven and Lido have introduced a more geometric approach to
effective Chabauty computations; their method is known as geometric quadratic
Chabauty [EL21]. They replace the Abel–Jacobi map C → J with a different
embedding C → T , and they prove the intersection C ∩ T (Q) ⊂ T is finite if
r < g + ρ − 1. A visualisation for r = g = ρ = 2 is shown in Figure 9. The
geometric quadratic Chabauty method was conjectured to be comparable to
the cohomological quadratic Chabauty method, but this was an open problem.

L

C

Figure 9: A visualisation of the geometric quadratic Chabauty method for
r = g = ρ = 2: the rational points T (Q) lie on a surface (blue) in T (black),
and the curve C (red) intersects it in a finite set. This intersection C ∩ T (Q)
contains the rational points of C, and hence the set of rational points C(Q) is
finite.

In my master’s thesis [Spe20] I used the geometric methods from [EL21] to
study the map C → J , in a method called geometric linear Chabauty. This
was conjectured to be comparable to the Chabauty–Coleman method.

Joint with Sachi Hashimoto in Chapter 5 we proved the following comparison
theorem.

Theorem (Theorem 5.5.1). The geometric linear Chabauty method outper-
forms the Chabauty–Coleman method, in the following sense. Let CCC be the
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set of points found by the Chabauty–Coleman method, and CGLC the set of
points found by the geometric linear Chabauty method. Then we have inclu-
sions

C(Q) ⊂ CCC ⊂ CGLC,

and there is an explicit characterisation of CGLC \ CCC.

And joint with Juanita Duque-Rosero and Sachi Hashimoto in Chapter 6 we
proved the following comparison theorem on quadratic Chabauty.

Theorem (Theorem H). The geometric quadratic Chabauty method outper-
forms the cohomological quadratic Chabauty method, in the following sense.
Let CCoh be the set of points found by the Chabauty–Coleman method, and
CGeo the set of points found by the geometric linear Chabauty method. Then
we have inclusions

C(Q) ⊂ CCoh ⊂ CGeo,

and there is an explicit characterisation of CGeo \ CCoh.

In Chapter 7 we focus on a specific ingredient needed for quadratic Chabauty,
both cohomological and geometric, namely local heights (to be precise, the
local heights away from p if we are considering the p-adic numbers Qp). These
form a finite set of numbers associated to the curve. In literature, many
examples are chosen such that the local heights are 0, in order to avoid having
to compute non-vanishing local heights. In joint work with Alex Betts, Juanita
Duque-Rosero and Sachi Hashimoto we give an algorithm for computing these
local heights. We use this to prove the curve given by the equation

y2 = x6 + 18/5x4 + 6/5x3 + 9/5x2 + 6/5x+ 1/5

has exactly 10 rational points (Theorem I). This is the first example of the
quadratic Chabauty method applied to a curve with two non-vanishing local
heights.


