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Chapter 7

Local heights on hyperellip-
tic curves and quadratic Chabauty

This chapter has already appeared as a preprint [BDRHS24]. This is joint
work with Alex Betts, Juanita Duque–Rosero and Sachi Hashimoto.

Abstract. Local heights are arithmetic invariants used in the quadratic
Chabauty method for determining the rational points on curves. We present an
algorithm to compute these local heights for hyperelliptic curves at odd primes
` 6= p. This algorithm significantly broadens the applicability of quadratic
Chabauty to curves which were previously inaccessible due to the presence of
non-trivial local heights. We provide numerous examples, including the first
quadratic Chabauty computation for a curve with two non-trivial local heights.

Local heights are arithmetic invariants used in the quadratic Chabauty method
for determining the rational points on curves. We present an algorithm to
compute these local heights for hyperelliptic curves at odd primes ` 6= p. This
algorithm significantly broadens the applicability of quadratic Chabauty to
curves which were previously inaccessible due to the presence of non-trivial
local heights. We provide numerous examples, including the first quadratic
Chabauty computation for a curve having two primes with non-trivial local
heights.
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7.1 Introduction

Smooth projective curves over the rational numbers X/Q provide a rich terrain
for exploring diophantine questions. The quadratic Chabauty method has
emerged as a powerful p-adic technique for computing the set of rational points
X(Q) on curves of genus g > 1 with Jacobian J . This method, introduced
in [BD18, BD21], applies when the Mordell–Weil rank of J(Q) equals g and
the Picard number of J is at least 2. Combined with the Mordell–Weil sieve,
quadratic Chabauty has had much success in determining X(Q) [BDM+19,
BDM+21].

The central object in quadratic Chabauty is a Nekovár̆ p-adic height function
hZ , which depends on a choice of trace zero correspondence Z ⊂ X × X
invariant under the Rosati involution. The global p-adic height function hZ
can be expressed as a sum of local height functions hZ =

∑
` prime hZ,`. When

` 6= p is a prime of potentially good reduction for X, the local height function
hZ,` vanishes. The local height at p is a locally analytic function, and while
there exist established algorithms and implementations for computing hZ,p
[BB12, BDM+19, GM23], the situation for the local height hZ,` at ` 6= p
stands in stark contrast.

Until now, algorithmic calculations of hZ,` have been limited to the case where
X is an elliptic curve or J factors as a product of two elliptic curves, in
which case hZ,` is determined by arithmetic invariants of the regular model
of the elliptic curve(s) [Sil88, CPS06, Bia20]. Beyond the case of elliptic and
bielliptic curves, strategies for computing hZ,` have relied on constructing a
regular model for X over Z`. For example, two recent local heights calculations
hinged on both computing a regular semistable model for X over Z` and the
existence of an abundance of rational points on X [BDM+21].

The value of the local height function hZ,` at a point z ∈ X(Q`) can be
defined in terms of the local Néron–Tate height pairing as the height pairing
of two divisors depending on the correspondence Z, the point z, and a chosen
basepoint b. While algorithms exist for computing the local height pairing
given a regular model for X over Z` [Hol12, Mue14, vBHM20], computing the
height function hZ,` in this way seems to be impractical, given that the defining
equations for Z typically have very large degree, see Remark Remark 7.3.1.
Consequently, beyond the case of (bi)elliptic curves, quadratic Chabauty has
almost exclusively been applied in cases where all local height functions, except
those at p, vanish.

This paper introduces an algorithm that marks the first practical method
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for computing local heights away from p for a class of curves, outside of the
(bi)elliptic case. Our algorithm computes the Nekovár̆ local p-adic heights hZ,`
for odd primes ` 6= p on hyperelliptic curves of genus g > 1. This algorithm
significantly broadens the applicability of quadratic Chabauty to curves previ-
ously deemed inaccessible due to potentially having non-trivial local heights,
offering a promising avenue for advancing our understanding of rational points
on higher genus curves or those with larger conductors (see Theorem I and
Corollary N).

We illustrate our algorithm by computing numerous examples of local heights
on hyperelliptic curves with diverse reduction types. The computations for
these examples use our Magma implementation of the algorithm, available at
https://github.com/sachihashimoto/local-heights. We revisit several
Atkin–Lehner quotients of X0(N) from [ACKP22], where they were not able
to apply quadratic Chabauty due to the presence of potentially non-zero local
heights away from p. We also study an Atkin–Lehner quotient of a Shimura
curve X0(93, 1)/〈w93〉; rational points on this type of Shimura curve quotient
parametrise abelian surfaces with potential quaternionic multiplication. Our
algorithm is practical even in high genus: we compute local heights on a genus
7 modular curve. As an application, we carry out the first quadratic Chabauty
computation on a curve with more than one prime ` 6= p with non-trivial local
heights, showing the following theorem.

Theorem I (cf. Section 7.7.6). There are 10 rational points on the curve
X : y2 = x6 + 18/5x4 + 6/5x3 + 9/5x2 + 6/5x+ 1/5.

Our approach to computing local heights is based on a formula from [BD20]
which describes hZ,` in terms of the action of Z∗ on the homology of the reduc-
tion graph Γ of a semistable model of X and certain integers trv(Z) attached
to the vertices of this graph. The problem, as noted in [BDM+21, §3.1], is that
it is not a priori clear how to compute the action of Z∗ on H1(Γ,Z), especially
if X or Z has large genus, many components, or highly unstable reduction.
Following a strategy suggested to us by Netan Dogra, we solve this problem us-
ing the Coleman–Iovita isomorphism for the curve X (Theorem 7.4.1, [CI10]),
which relates the homology of Γ to the de Rham cohomology of X, where
the action of Z∗ is easier to compute. In order to use the Coleman–Iovita
isomorphism, we verify that it commutes with the action of correspondences.

Theorem J (Push-pull compatibility of Coleman–Iovita, cf. Theorem 7.4.14).
Let f : X → X ′ be a finite morphism of smooth projective curves over C`. Then
the pullback and pushforward maps on de Rham cohomology are compatible
with the Coleman–Iovita isomorphism.

https://github.com/sachihashimoto/local-heights
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Making this strategy viable requires several innovations. The first problem is
to determine the reduction graph Γ of X over a finite extension of Q` where X
acquires semistable reduction. We do this using the theory of cluster pictures,
which allows one to read off the graph Γ for a hyperelliptic curve in odd residue
characteristic directly from the valuations of the differences of the roots of f(x)
[DDMM23].

The second problem is that, in order to explicitly compute the Coleman–Iovita
isomorphism, we need to write down a suitable analytic covering of XC` . We
explain how to read off this semistable covering from the cluster picture.

Theorem K (cf. Theorem 7.5.14). Let X/K be a hyperelliptic curve with split
semistable reduction over a finite extension K of Q`, given by an equation
y2 = f(x). Then there exists a semistable covering U = (Ũ±s )s of Xan indexed

by proper clusters s in the cluster picture of f , where Ũ±s is as defined in
Definition 7.5.11.

It is interesting to note that this same semistable covering has already appeared
in the literature without the explicit link to cluster pictures [Sto19, KK22]. In
Section 7.5 we use our semistable covering to write down explicit formulas
describing Coleman–Iovita isomorphism in this case.

The end result of this calculation is an `-adic approximation to the action of Z∗
on the homology of Γ. However, for applications to quadratic Chabauty, one
needs an exact answer. The third innovation that we need is to prove bounds
on the possible actions of Z∗ and the traces trv(Z) attached to vertices. This
allows us to certify that the approximate values coming from our calculation
are correct.

Theorem L (Boundedness of norms and traces, cf. Theorem 7.3.5). Let Z ⊂
X×X be an effective correspondence, of degrees d1 and d2 over X, respectively.
Then the operator norm of Z∗ on H1(Γ,Z) and | trv(Z)| have explicit bounds
depending only on the degrees d1 and d2.

In summary, our method for determining the action of Z∗ on H1(Γ,Z) pro-
ceeds in four steps. Here, K is a field over which X acquires split semistable
reduction.

1. Use the cluster picture associated to X to write down a semistable cov-
ering of Xan and a basis of H1(Γ,Z), using Theorem K.

2. Compute the matrix MdR representing the action of Z∗ on H1
dR(X/K)

in some basis of differentials of the second kind.

3. Compute a matrix T which is, to suitably high precision, an `-adic ap-
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proximation to the surjection H1
dR(X/K)→ K⊗Z H1(Γ,Z) coming from

the Coleman–Iovita isomorphism.

4. By Theorem J, the matrix MΓ := T ·MdR ·T−1 is then an `-adic approxi-
mation of the action of Z∗ on H1(Γ,Z), where T−1 is a right-inverse of T .
Compute the action of Z∗ on H1(Γ,Z) by rounding MΓ to the unique
integer matrix that satisfies the bounds from Theorem L.

One other consequence of our work is that, by linking together local heights
and the combinatorics of the cluster picture, we obtain combinatorial con-
straints on local heights. This allows us to give various new criteria for when
a hyperelliptic curve has all local heights equal to 0, for example:

Proposition M (cf. Example 7.5.20). Suppose that X/Q` is a genus 2 curve
with the cluster picture shown below and that the leading coefficient of X is a
unit in Z`. Then the local height of any Q`-point on X is 0.

Corollary N (cf. Section 7.7.2). The Shimura curve quotient X0(93, 1)/〈ω93〉
has trivial local height at 31.

In broad strokes, this overall strategy of computing local heights via the
Coleman–Iovita isomorphism is viable for any smooth projective curve X.
Our method relies on X being hyperelliptic in only one part. We specialise to
hyperelliptic curves in order to use the machinery of cluster pictures to read
off the reduction graph Γ and semistable covering of X, i.e. the data of the
Berkovich skeleton of X. From this data, and the action of Z∗ on H1

dR(X/Q),
we produce the local heights on X. Thus, in order to generalise our algorithm
to non-hyperelliptic curves, one would just need a method to determine the
Berkovich skeleton. Moreover, our strategy seems promising for determining
local heights without using explicit equations for X: if one has some a pri-
ori way of determining both the Berkovich skeleton and the action of Z∗ on
H1

dR(X/Q), say for X a modular curve, then we show that this determines the
local heights.

The structure of the paper is as follows. In Section 7.2 we introduce the notions
of semistable covering, semistable vertex set, and split semistable model, as
well their equivalences. The definition of the local height function hZ,` and the
local heights formula appear in Section 7.3. We also prove the boundedness of
the operator norm and the traces trv(Z) for correspondences Z ⊂ X × X in
this section. Section 7.4 explains the Coleman–Iovita isomorphism and proves
the compatibility with pushforward and pullback. We specialise to the case
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of hyperelliptic curves in Section 7.5, and give an explicit description of the
Coleman–Iovita isomorphism for these curves in this section. To do this, we
introduce the machinery of cluster pictures, use this to construct a semistable
covering for hyperelliptic curves, and explicitly describe the Berkovich skeleton
of Xan

C` . We expand on the details of the explicit computation of the Coleman–
Iovita isomorphism in Section 7.6. We show how to represent functions on an
annulus, how to compute the action of Z∗ on H1

dR(X/K), and finally how to
turn an `-adic matrix for the action of Z∗ into an integer matrix, given the
bounds from Theorem 7.3.5. Finally, Section 7.7 contains numerous worked
examples.
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7.2 Semistable models, coverings, and vertex
sets

Before we begin the paper proper, we first discuss some preliminaries regarding
reduction graphs Γ of smooth projective curves X defined over `-adic local
fields. There are three equivalent ways that these graphs can be defined: in
terms of a split semistable model of X; in terms of a semistable covering of
the rigid-analytification of X; or in terms of a semistable vertex set inside the
Berkovich analytification of X. All three perspectives have their advantages:
split semistable models are the simplest conceptually and are the most widely
known; semistable coverings are well-adapted to computations; and semistable
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vertex sets are combinatorial in nature and well-adapted to proving theoretical
results. In this paper, it will be vital to switch freely between these three
different perspectives, and so we will begin by recalling the three definitions
and their interrelationships, with a particular emphasis on how these notions
behave with respect to morphisms of curves.

For the rest of this paper, we fix the following notation. We will fix a prime
number `, and will work over a field K which is (for simplicity) either equal
to C` or a finite extension of Q`. We denote the ring of integers, maximal ideal,
and residue field of K by OK , mK , and k, respectively. We always normalise
the norm and valuation on K so that |`| = `−1 and v(`) = 1. A curve X over K
is always assumed to be smooth, projective, and geometrically integral.

Definition 7.2.1. A 1-dimensional separated scheme X̄ of finite type over k
is called a semistable curve just when it is geometrically reduced and has at
worst ordinary double points as singularities. It is called strongly semistable
just when additionally every irreducible component is smooth; it is called split
semistable just when additionally every component is geometrically irreducible,
every singular point is k-rational, and the two tangent directions at every
singular point are also k-rational.

A model of a smooth projective curve1 X/K is a flat, proper, and finitely
presented OK-scheme X together with an isomorphism XK ∼= X of its generic
fibre with X over K. (Any model X is automatically integral.) A model is
called semistable (resp. strongly semistable, resp. split semistable) just when
its special fibre is. Note that we do not require our semistable models to be
regular, nor do we require them to be minimal.

Remark 7.2.2. The definitions of semistable models used across the literature
vary slightly in exactly which properties they require of X . For example,
[Liu02, Definition 10.3.27] requires (for OK Dedekind) that X be flat, projec-
tive, and normal; [BPR13, Remark 4.2(2)] requires (for OK = C`) that X be
flat, proper, and integral; and [MC10, Definition 2.35] just requires that X
be flat and proper. Our definition agrees with all three, as we will now show.
Since OK is an integral domain, it follows that any flat, finite type OK-scheme
is automatically finitely presented [RG71, Corollaire 3.47], and also any flat
OK-scheme with integral generic fibre is integral. For normality, we note
that normality is étale local, so semistable curves are normal. And finally a
semistable model X/OK is projective, as we can give a relatively very ample
Cartier divisor by taking a sum of smooth points that meet every component

1For us, a curve means a geometrically integral separated reduced K-scheme of dimen-
sion 1.
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of the special fibre with sufficiently high multiplicity.

We will need to say a little about the local structure of a split semistable
model X at a singular point x̄. For this, if a ∈ mK r {0}, let

S(a) := Spec(OK [s, t]/(st− a))

denote the standard algebraic annulus with parameter a. We write 0̄ ∈ S(a)(k)
for the point defined by the OK-algebra homomorphism sending s and t to 0 ∈
k. According to (the proof of) [Sta18a, 0CBY], for any singular point x̄ ∈ X̄ (k)
of the special fibre of a split semistable model X , there exists some a ∈ mK r
{0}, an OK-scheme U with étale maps

X ← U → S(a) ,

and a k-point ū ∈ Ū(k) mapping to both x̄ ∈ X̄ (k) and 0̄ ∈ S̄(a)(k). We call
a diagram as above a chart at x̄.

The maps appearing in a chart, being étale, induce isomorphisms on completed
local rings. Thus, given two charts

(X , x̄)← (U , ū)→ (S(a), 0̄) and (X , x̄)← (U ′, ū′)→ (S(a′), 0̄) ,

we find that the completed local rings of S(a) and S(a′) at 0̄ are isomorphic.
This implies that a and a′ differ by multiplication by a unit in OK [Kat00,
Lemma 2.1]. ([Kat00, Lemma 2.1] is only stated when OK is noetherian, but
the conclusion we need is still valid when K = C`. The final part of the proof of
[Kat00, Lemma 2.1] still works, with the caveat that rather than considering
e.g. the completed local ring ÔX ,x̄, we instead need to consider the I-adic
completion of OX ,x̄, where I is a finitely generated ideal of OX ,x̄ whose radical
is the maximal ideal. For instance, in the localisation of OK [s, t]/(st − a),
one could take I = (s, t,$) where $ ∈ mK r {0}.) In any case, this implies
that v(a) = v(a′), and so the positive rational number v(a) is independent of
the choice of chart at x̄.

Definition 7.2.3. The value v(a) is called the thickness of the singular point x̄.

Remark 7.2.4. When K is a finite extension of Q`, then X is noetherian, and
so a chart X ← U → S(a) induces an isomorphism

ÔX ,x̄ ∼= OK [[s, t]]/(st− a)

on completed local rings [Liu02, Proposition 4.3.26]. Hence our definition of
the thickness of x̄ agrees with the usual definition [Liu02, Definition 10.3.23]
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up to a factor of the ramification degree of K/Q` (coming from the fact that
we normalise our valuation on K differently to [Liu02]). In particular, the
thickness of x̄ as we have defined it need not be an integer.

Much of the geometry of a split semistable model X can be captured by a
combinatorial invariant known as the reduction graph Γ = ΓX . The vertices
of Γ are the irreducible components of the special fibre X̄ , and the unoriented
edges of Γ are the singular points of X̄ . Moreover, one can attach to Γ certain
extra data making it into a combinatorial object known as a metrised complex
of k-curves.

Definition 7.2.5 (Metrised complex of k-curves, [ABBR15, Definition 2.17]).
In this paper, a graph always means a finite graph in the sense of Serre, i.e.
a quadruple Γ = (V (Γ), E(Γ), ∂0, (−)−1) where V (Γ) and E(Γ) are finite sets
and

∂0 : E(Γ)→ V (Γ) and (−)−1 : E(Γ)→ E(Γ)

are functions, where (−)−1 is an involution without fixed points. Elements of
V (Γ) and E(Γ) are known as vertices and oriented edges of Γ, respectively.
If e ∈ E(Γ) is an oriented edge, then e−1, ∂0(e), and ∂1(e) := ∂0(e−1) are
known as the inverse, source, and target of e, respectively. For a vertex v, we
write Tv(Γ) for the set of oriented edges with source v, and call Tv(Γ) the set
of tangent directions at (or out of) v. The set E(Γ)+ of unoriented edges of Γ
is the quotient of E(Γ) by the equivalence relation e ∼ e−1.

A metrised graph is a graph Γ endowed with:

• for each unoriented edge e ∈ E(Γ)+, a positive real number l(e) ∈ R>0

called the length of e.

A metrised complex of k-curves is a connected metrised graph Γ endowed with,
additionally:

• for each vertex v ∈ V (Γ), a smooth projective curve X̄v/k, called the
vertex curve at v; and

• for each tangent direction e ∈ Tv(Γ), a k-point x̄e ∈ X̄v(k).

We require that the points x̄e for different tangent directions e are distinct.

Remark 7.2.6. The elements x̄e appearing as part of the data of a metrised
complex of k-curves are not relevant for our purposes in this paper, so we will
mostly permit ourselves to omit mention of them in definitions and proofs.

To make the reduction graph Γ of a split semistable model into a metrised
complex of k-curves, we adopt the following conventions.
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• V (Γ) is the set of irreducible components of the normalisation X̄∼ of the
special fibre X̄ . For a vertex v ∈ V (Γ), we write X̄v for the component
of X̄∼ to which it corresponds.

• E(Γ) is the set of k-points of X̄∼ lying over singular points in X̄ . For an
oriented edge e ∈ E(Γ), we write x̄e ∈ X̄∼(k) for the point to which it
corresponds.

• For an oriented edge e ∈ E(Γ), ∂0(e) is the vertex such that X̄∂0(e) 3 x̄e,
and e−1 is the oriented edge different from e such that x̄e−1 and x̄e lie
over the same singular point of X̄ .

• The unoriented edges e ∈ E(Γ)+ correspond to singular points x̄e of X̄ .
The length of e is defined to be the thickness of x̄e inside X (Defini-
tion 7.2.3).

• The points x̄e ∈ X̄v(k) attached to tangent directions e at v are the
elements above.

We easily verify that the construction of a metrised complex of k-curves to a
split semistable model of a curve is compatible with base change, as per the
following lemma.

Lemma 7.2.7. Let K ′/K be an extension of fields, each of which is either C`
or a finite extension of Q`, with residue field extension k′/k. Let X/OK be a
split semistable model of a curve X/K, with reduction graph Γ (viewed as a
metrised complex of k-curves). Then XOK′ is a split semistable model of XK′ ,
whose reduction graph Γ′ is the metrised complex of k′-curves obtained from Γ
by base-changing all the curves attached to vertices from k to k′, and leaving
the underlying graph, metric and maps unchanged.

Proof. This is clear. We remark that the fact that Γ and Γ′ have the same
metric is a consequence of our choice of normalisation of the valuations on K
and K ′, which ensures that the thickness of singular points of X̄ is unchanged
upon base-change to OK′ .

7.2.1 Semistable models, coverings and vertex sets

While semistable models of a curve X are well-behaved theoretically, they are
rather difficult to perform explicit computations with – indeed, even writing
down a semistable model of X is difficult computationally. Instead, a central
part of our approach in this paper will be to replace semistable models with
certain analytic data attached to X, equivalent to a choice of semistable model,
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but much more amenable to direct computation. We will work with two kinds
of analytic data. Firstly, in [Col89, MC10, CM88], Coleman defines the notion
of a semistable covering of the rigid analytification Xan, and shows that (with
some small caveats) semistable coverings correspond to semistable models.
Secondly, in the case K = C`, Baker, Payne, and Rabinoff define the notion of
a semistable vertex set inside the Berkovich analytification Xan ofX, and again
show that semistable vertex sets correspond to semistable models [BPR13]. We
will presently recall the definitions of these semistable coverings and semistable
vertex sets, but before we do so, we owe the reader a brief remark regarding
our use of both rigid and Berkovich geometry.

For any complete valued extensionK of Q`, the category of separated Berkovich
strictly K-analytic spaces embeds as a full subcategory of the category of rigid
K-analytic spaces [Ber90, Proposition 3.3.1], and most of the key notions of
Berkovich and rigid geometry (finite maps, étale maps, . . . ) correspond under
this embedding [Ber90, §3.3]. Every analytic space we consider will be a sepa-
rated Berkovich strictly K-analytic space, so we will switch freely between the
Berkovich and rigid perspectives.

Thus, if X/K is a smooth projective curve, we will feel free to use the nota-
tion Xan for both the rigid analytification and the Berkovich analytification
of X. When we write |Xan|, we always mean the underlying topological space
of Xan as a Berkovich space; the underlying set of Xan as a rigid space is the
subset |Xan|rg ⊂ |Xan| of rigid points, i.e. points x ∈ |Xan| whose completed
residue field H(x) is a finite extension of K.

7.2.1.1 Semistable coverings

The first alternative perspective we will use is that split semistable models of
a smooth projective curve X/K are equivalent to analytic coverings of X by
rigid spaces of a certain kind. This perspective goes back to Coleman [Col89].

Definition 7.2.8 ([MC10, §2B]). Let W be a 1-dimensional smooth rigid
space. We say that W is a wide open just when there exist affinoid subdo-
mains W0 ⊂W1 ⊂W such that:

• W rW0 is a disjoint union of finitely many open annuli;

• W0 is relatively compact in W1 (see [BGR84, §9.6.2]); and

• W1 meets each component of W rW0 in a semi-open annulus.

The affinoid subdomains W0 and W1 are not part of the data of a wide open.
We refer to W0 as an underlying affinoid of W ; a pair (W,W0) of a wide
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open W and an underlying affinoid W0 is called a wide open pair.

A basic wide open (resp. strongly basic wide open) is a pair W = (W,W0)
consisting of a connected wide open W and an underlying affinoid W0, such
that:

• the supremum seminorm of any element of O(W0) is the norm of an
element of K;

• the canonical reduction of W0 is an irreducible split2 semistable curve
(resp. a smooth curve); and

• the components of W r W0 are isomorphic over K to open annuli of
inner radius 1.

(The first condition is equivalent to requiring that O(W0)◦/mKO(W0)◦ is a re-
duced ring [BGR84, Theorem 6.4.3/1 & Proposition 6.4.3/4], where O(W0)◦ is
the ring of power-bounded functions on W0. Then Spec(O(W0)◦/mKO(W0)◦)
is the canonical reduction of W0.)

Basic wide opens arise as complements of discs in smooth projective curves.
Let X/K be a smooth projective curve and let X/OK be a split semistable
model whose special fibre is irreducible. Let x̄1, . . . , x̄n be distinct smooth
k-points of the special fibre of X for n ≥ 1, with associated residue discs
Do
i := ]x̄i[ ⊂ Xan. For 1 ≤ i ≤ n, let Dc

i ⊂ Do
i be a closed subdisc. Then

W := Xanr
⋃
iD

c
i andW0 := Xanr

⋃
iD

o
i form a basic wide open (W,W0), and

the canonical reduction of W0 is canonically isomorphic to X̄ r {x̄1, . . . , x̄n}.
In particular, W is strongly basic if the model X was smooth. See [MC10,
Proposition 2.21 & Corollary 2.23].

If W = (W,W0) is a basic wide open, then we refer to the components of W r
W0 as the bounding annuli of W (they are sometimes called the annulus ends
ofW in the literature). Also, for any singular point x̄ of the canonical reduction
of W0, its residue class ]x̄[ is an open annulus [MC10, Proposition 2.10]. We
refer to such annuli as internal annuli of W . We fix some terminology we will
use when working with these annuli.

Definition 7.2.9. Let A be an open annulus over K, i.e. a rigid space iso-
morphic over K to the standard open annulus

A(r1, r2) = {x : r1 < |x| < r2}

for some r1 < r2 ∈
√
|K×|. The quantity log`(r2/r1) ∈ Q is called the

2The definition in [MC10, Definition 2.35] does not explicitly use the word “split”, but
their definition of “ordinary double point” includes the requirement that it should be a split
node [MC10, Definition 2.9].
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width3 of A, and is an isomorphism invariant (follows from [BPR13, Proposi-
tion 2.2(2)]).

If O(A)×1 denotes the group of invertible analytic functions f such that |1 −
f(x)| < 1 for all points x of A, then the group

O(A)×/K×O(A)×1

is infinite cyclic [BPR13, Proposition 2.2(1)]. An orientation of A is a choice
of generator of this group (so there are two possible orientations of A). A
parameter on an oriented annulus A is an element t ∈ O(A)× which maps to
the chosen generator of O(A)×/K×O(A)×1 . The map A → Gan

m induced by
a parameter t is an isomorphism onto a standard annulus A(r1, r2) [BPR13,
Proposition 2.2(2)].

Remark 7.2.10. The bounding annuli Ai of a wide open pair (W,W0) are
oriented in a canonical way. Namely, if t is a parameter on Ai inducing an
isomorphism A

∼−→ A(r1, r2), then t maps W1∩Ai isomorphically onto a semi-
open annulus, either A(r1, r

′] or A[r′, r2) for some r′ ∈ (r1, r2). These two
possibilities correspond to the two possible orientations of Ai; we will always
orient Ai with the orientation whereW1∩Ai is identified with the outer annulus
A[r′, r2). This is the same convention as [Col89, Corollary 3.7a].

Example 7.2.11. Suppose that we are given closed discs Dc, Dc
1, . . . , D

c
n inside

A1,an
K , contained inside open discs Do, Do

1, . . . , D
o
n, respectively. Suppose that

Do
i ⊂ Dc for all i and the Do

i are pairwise disjoint. Then the domain U =
Dor

⋃n
i=1D

c
i is wide open, with underlying affinoid U0 = Dcr

⋃n
i=1D

o
i . The

wide open pair (U,U0) has n+ 1 bounding annuli, namely A = Do rDc and
Ai = Do

i rDc
i for 1 ≤ i ≤ n. The orientation on each Ai is the standard one,

i.e. a parameter is t−αi where t is the standard coordinate on A1,an
K and αi is

a centre of Dc
i . The orientation on A, however, is the opposite of the standard

one, i.e. a parameter on A is (t− α)−1 where α is a centre of Dc.

One can study a curve X/K with split semistable reduction by taking an
analytic cover by wide opens which intersect each other in a well-behaved
manner. Such coverings are known as semistable coverings.

Definition 7.2.12 ([MC10, §2C]). Let X/K be a smooth projective curve.
A (strongly) semistable covering of Xan is a finite admissible covering U =
(Wv)v∈V ofXan by (strongly) basic wide opensWv = (Wv,Wv,0) (as in, theWv

form an admissible covering) such that every pairwise intersection Wv ∩Wv′

is a union of bounding annuli of Wv, and every triplewise intersection Wv ∩
3Also called the modulus of A in [BPR13].
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Figure 7.1: The wide open described in Example 7.2.11. The open discs Do,
Do

1, and Do
1 are represented by the dashed lines; the closed subdiscs Dc, Dc

1,
and Dc

2 are represented by the solid lines. The open annuli A, A1, and A2 are
the lightly shaded regions between these open discs and their closed subdiscs,
the wide open U is the whole shaded region, and its underlying affinoid U0 is
the heavily shaded region.

Wv′ ∩Wv′ is empty.

Figure 7.2: Caricature of a semistable covering and its attached graph (Defi-
nition 7.2.14).

For our purposes, the usefulness of semistable coverings is that they form a
proxy for split semistable models, but are much easier to work with computa-
tionally. To explain the correspondence, if X is a split semistable model, then
one has a reduction map

red: |Xan|rg → |X̄ |cl , (7.2.1.1)

where |Xan|rg is the underlying set ofXan as a rigid space, and |X̄ |cl is the set of
closed points of the special fibre X̄ . The inverse image of any subset Z̄ ⊆ |X̄ |cl

is denoted by ]Z̄[, and is called the residue class (or tube) of Z̄. It has the
structure of a rigid space in a canonical way.

Provided X̄ has at least two irreducible components, the residue class Wv :=
]X̄v[ of any irreducible component X̄v is a basic wide open. If we write X̄v,0 :=



7.2. SEMISTABLE MODELS, COVERINGS, AND VERTEX SETS 199

X̄ r
⋃
v′ 6=v X̄v′ is the complement of the other irreducible components of the

special fibre, then the residue class Wv,0 = ]X̄v,0[ is an underlying affinoid,
making Wv = (Wv,Wv,0) into a basic wide open. The bounding annuli (resp.
internal annuli) of Wv are the residue classes of the points where X̄v intersects
other components of X̄ (resp. intersects itself). The wide opens Wv for X̄v
running over irreducible components of X̄ , form a semistable covering of Xan.

Theorem 7.2.13 ([MC10, Theorem 2.36]). Let K be either C` or a finite ex-
tension of Q`, and let X/K be a smooth projective curve. Then the above con-
struction sets up a bijective correspondence between split (strongly) semistable
models of X whose special fibre has at least two irreducible components and
(strongly) semistable coverings of Xan.

One can read off the reduction graph of a split semistable model X from the
corresponding semistable covering. For this, we attach a metrised complex of
k-curves to any semistable covering as follows.

Definition 7.2.14 ([CI10, §3.5.1]). Suppose that U = (Wv)v∈V is a semistable
covering of Xan indexed by a set V . We define a metrised complex of k-curves
Γ = ΓU by:

• V (Γ) = V is the indexing set V .

• E(Γ) is the set of oriented open annuli A ⊂ Xan which are either a
bounding annulus or an internal annulus of some Wv. For e ∈ E(Γ), we
write Ae for the corresponding oriented open annulus.

• For an oriented edge e ∈ E(Γ), we define ∂0(e) to be the unique vertex
for which Ae is either a bounding annulus of Wv, equipped with the
orientation described in Remark 7.2.10, or an internal annulus of Wv.
We define e−1 to be the edge for which Ae−1 is equal to Ae with the
opposite orientation. (If Ae is a bounding annulus of Wv, then it is a
component of an intersection Wv ∩Wv′ for v′ 6= v, and then Ae−1 is a
bounding annulus of Wv′ .)

• For an unoriented edge e ∈ E(Γ)+, we define l(e) to be the width of the
annulus Ae.

• For a vertex v ∈ V (Γ), the canonical reduction of the underlying affi-
noid Wv,0 is a reduced k-curve. We define X̄v to be the smooth com-
pactification of its normalisation.

This construction recovers the reduction graph of a split semistable model, as
we now prove carefully.



200 CHAPTER 7. LOCAL HEIGHTS

Lemma 7.2.15. Let U be a semistable covering of Xan, corresponding to the
split semistable model X under Theorem 7.2.13. Then we have a canonical
isomorphism

ΓU
∼= ΓX

of metrised complexes of k-curves.

Proof. It is clear from the definition that there are canonical bijections

V (ΓU) ∼= V (ΓX ) and E(ΓU)+ ∼= E(ΓX )+

between sets of vertices and unoriented edges, preserving incidence. There are
three points which require some explanation:

1. How does one obtain a canonical bijection E(ΓU) ∼= E(ΓX ) between
oriented edges?

2. Why do the metrics on ΓU and ΓX agree?

3. Why do the k-curves attached to vertices agree?

For the first point, let x̄ ∈ X̄ (k) be a singular point, with residue class ]x̄[. Let
us write || · || for the sup norm on O(]x̄[), and O◦(]x̄[) ⊂ O(]x̄[) for the subring
of elements of sup norm ≤ 1. It follows from [MC10, Proposition 2.10] (or the
argument below) that ]x̄[ is isomorphic to A(|a|, 1) for some a ∈ mKr{0}, and
so any parameter t on ]x̄[ can be rescaled so that ||t|| = 1. We let s = at−1,
so ||s|| = 1 also. According to [MC10, Lemma 2.8], the reduction of O◦(]x̄[)
is canonically isomorphic to ÔX̄ ,x̄. So, the reductions of s and t determine

elements of ÔX̄ ,x̄ which generate the maximal ideal and whose product is zero

(so ÔX̄ ,x̄ = k[[s̄, t̄]]/(s̄t̄)). The derivations ∂
∂s̄ and ∂

∂t̄ are then two tangent
vectors to X̄ at x̄ which span the two tangent directions. Changing t by an
element of K×O(]x̄[)×1 only changes the tangent vector ∂

∂t̄ by a scalar, and so
we have described a canonical bijection between the two orientations on the
annulus ]x̄[ and the two tangent directions to X̄ at x̄ (t corresponds to ∂

∂t̄ ).

For the second point, choose a chart

X ← U → S(a)

for some a. The choice of chart induces isomorphisms

]x̄[
∼←− ]ū[

∼−→ ]0̄[ = A(|a|, 1)

on the tubes of x̄, ū, and 0̄ inside the formal completions of X , U , and S(a),
respectively. So the width of ]x̄[ is equal to v(a), which is the thickness of x̄,
and so the metrics on ΓU and ΓX agree.



7.2. SEMISTABLE MODELS, COVERINGS, AND VERTEX SETS 201

For the third point, for any vertex v, the canonical reduction of Wv,0 =
red−1(X̄ ◦v ) is X̄ ◦v , cf. the proof of [MC10, Proposition 2.36]. So the smooth
compactification of the normalisation of W v,0 is X̄v.

In the proof, we used the following lemma, which is presumably well-known,
but we could not find a reference in the literature.

Lemma 7.2.16. Let U → U ′ be an étale morphism of reduced, flat, locally
finitely presented OK-schemes, and let ū ∈ Ū(k) be a k-point on the special
fibre of U mapping to a point ū′ ∈ Ū ′(k). Then the induced map

]ū[→ ]ū′[

on residue classes is an isomorphism of rigid analytic spaces.

Proof. Shrinking U ′ and U , we may assume that U ′ = Spec(A) and U =
Spec(B) are affine, and that ū is the unique point in the fibre above ū′ in
Ū → Ū ′. Choose f1, . . . , fn ∈ A whose reductions generate the ideal mū′

defining ū′. The residue class ]ū′[ of ū′ is then the union of the affinoid rigid
spaces Sp(K ⊗OK Â〈`−1/mf1, . . . , `

−1/mfn〉), where Â〈`−1/mf1, . . . , `
−1/mfn〉

is the `-adic completion of the algebra

A[`−1/mf1, . . . , `
−1/mfn] := A[z1, . . . , zn]/(`z1 − fm1 , . . . , `zn − fmn ) .

Since the reductions of f1, . . . , fm also generate the ideal in B defining ū, a
similar description holds for the residue class of ū.

Now, for any positive integers m and r, the map

A[`−1/mf1, . . . , `
−1/mfn]/`r → B[`−1/mf1, . . . , `

−1/mfn]/`r (?)

is étale (it is a base-change of the map A → B), and its reduction mod-
ulo the ideal generated by f1, . . . , fn and mK is an isomorphism (the iden-
tity on k[z1, . . . , zn]). Since this ideal consists of nilpotent elements, this
implies that (?) itself is an isomorphism [Gro67, Théorème 18.1.2]. Tak-
ing the inverse limit over r shows that the map Â〈`−1/mf1, . . . , `

−1/mfn〉 →
B̂〈`−1/mf1, . . . , `

−1/mfn〉 is an isomorphism, and so ]ū[ → ]ū′] is an isomor-
phism as claimed.

7.2.1.2 Semistable vertex sets

For this part, we specialise to the case that K = C`. For a smooth projective
curve X/C`, write Xan for the Berkovich analytification of X, |Xan| for its
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underlying topological space, and |Xan|II ⊂ |Xan| for the set of type II points
(see [Ber90, 1.4.4] for a discussion of types of points, or [Bak08, §2] for a more
accessible discussion in the case X = P1).

A semistable vertex set in Xan is a finite subset V ⊂ |Xan|II such that Xan r
V is a disjoint union of open balls and finitely many open annuli [BPR13,
Definition 3.1]. These correspond to semistable models of X [BPR13, §4].
If X is a semistable model of X, then there is an associated reduction map

red: |Xan| → |X̄ | , (7.2.1.2)

where |X̄ | denotes the underlying topological space of the special fibre. This
extends the reduction map (7.2.1.1) on rigid points. The preimage of any
generic point of X̄ under the reduction map is a single type II point of Xan, and
the set of all these points as we range over generic points of X̄ is a semistable
vertex set [BPR13, Corollary 4.7 & Remark 4.2(2)].

Theorem 7.2.17 ([BPR13, Theorem 4.11]). Let X/C` be a smooth projective
curve. Then the above construction sets up a bijective correspondence between
semistable models of X and semistable vertex sets in Xan.

Again, one can also read off the reduction graph of a semistable model X from
the corresponding semistable vertex set. For this, it is convenient for us to view
graphs as metric spaces in the natural way (cf. [ABBR15, Definition 2.2]). That
is, we can equivalently describe a metrised graph as a compact metric space4 Γ
together with a distinguished finite set V ⊂ Γ of vertices such that Γ r V is
isometric to a finite disjoint union of open intervals. The set Tv(Γ) of oriented
edges with source v is then identified with the set tangent directions at v: of
germs of isometric embeddings [0, ε)→ Γ taking 0 to v.

To produce a graph out of a semistable vertex set, recall that if A(r1, r2) is
the standard annulus of inner and outer radii r1 and r2, then we define a map

σ : (0, log`(r2/r1))→ |A(r1, r2)|

by sending s to the Gauss point of the open ball centred on 0 with radius r2`
−s

[BPR13, §2.3]. The image of σ is called the skeleton sk(A(r1, r2)) of A(r1, r2).
More generally, if A is an open annulus, then we may choose a parameter t
defining an isomorphism t : A

∼−→ A(r1, r2) for some r1 < r2, and then de-
fine the skeleton of A to be sk(A) := t−1sk(A(r1, r2)). The skeleton of A is
independent of the choice of parameter t and is homeomorphic to the open
interval (0, log`(r2/r1)). If A is oriented, then sk(A) is also oriented.

4Our convention is that all metric spaces are length metric spaces, and the induced metric
on a subspace means the induced length metric.
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The skeleton Γ associated to a semistable vertex set V ⊂ |Xan|II is the union
of V and the skeleta of the annuli in |Xan| r V [BPR13, Definition 3.3]. For
any annulus A in |Xan| r V , its skeleton sk(A) is an open interval inside Γ
whose closure is either a closed interval connecting two different elements in V ,
or a circle connecting an element in V to itself [BPR13, Lemma 3.2]. In this
way, the skeleton Γ is a topological graph with vertex-set V .

In fact, the skeleton Γ is a metrised complex of k-curves in a natural way. If
we write H◦(X) ⊂ |Xan| for the set of points of types II and III, then there
is a canonical length metric on H◦(X) constructed by Baker–Payne–Rabinoff
[BPR13, §5.3], and the restriction of this metric to Γ makes it into a metrised
graph. This metric is characterised by the fact that the map σ tracing out
the skeleton of an annulus is an isometry. Additionally, any element v of the
semistable vertex set is a type II point of Xan, which means that the completed
residue field H(v) is a complete valued extension of K whose residue field H̃(v)
is a finitely generated extension of k of transcendence degree 1. We write X̄v for
the unique smooth projective curve over k with function field H̃(v). Attaching
to each point v ∈ V the curve X̄v above makes the skeleton Γ into a metrised
complex of curves [ABBR15, 3.22].

Remark 7.2.18. The perspective of semistable vertex sets makes it eminently
clear that the reduction graph Γ associated to a semistable model of a curve
X/C` is independent of the choice of model Γ, up to certain simple operations.
Indeed, let V ⊂ |Xan|II be a semistable vertex set, and let v ∈ |Xan|II r V be
another type II point. Then:

• if v ∈ sk(A) lies in the skeleton of an open annulus A in Xan r V ,
then Ar {v} is a disjoint union of two open annuli and infinitely many
open balls;

• if v ∈ |B| lies in an open ball B in Xan r V , then B r {v} is a disjoint
union of one open annulus and infinitely many open balls.

In either case, V ′ := V ∪ {v} is another semistable vertex set in Xan. One
can check (e.g. using [BPR13, Lemma 3.2(1)]) that the skeleton Γ′ associated
to V ′ is obtained from the skeleton Γ associated to V by either:

• (edge subdivision) adding a new vertex (namely v) at a point partway
along an edge of Γ, without changing the underlying metric space; or

• (budding off a leaf) adding a new vertex v and a single edge connecting v
to a vertex in V ,

respectively. In either case, the curve X̄v attached to the new vertex v is
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isomorphic to P1
k.

Any two semistable vertex sets can be obtained from one another by doing
and undoing operations of this form, and so the skeleton Γ associated to a
semistable vertex set V is independent of V up to the above operations.

7.2.1.3 Semistable coverings versus semistable vertex sets

In the case K = C`, we know that semistable models of X correspond bi-
jectively to semistable vertex sets in Xan, and semistable models whose spe-
cial fibre has at least two irreducible components correspond bijectively to
semistable coverings of Xan. In particular, semistable vertex sets of size ≥ 2
in Xan correspond bijectively to semistable coverings of Xan. Since this will be
important later, we now describe this correspondence directly, without going
via semistable models.

Proposition 7.2.19. Let X/C` be a smooth projective curve, and let X be a
semistable model whose special fibre has at least two irreducible components.
Let V ⊂ |Xan| be the semistable vertex set corresponding to X , and let U =
(Wv)v∈V be the semistable covering of Xan corresponding to X .

Then for all v ∈ V :

• the wide open Wv is the subspace of Xan given by the union of {v} and
all discs and annuli in |Xan|r V whose closure contains v;

• the bounding annuli of Wv are exactly the oriented annuli in |Xan|r V
corresponding to non-loop edges e in the skeleton with ∂0(e) = v;

• the internal annuli of Wv are exactly the annuli in |Xan|rV correspond-
ing to loop edges e with endpoints v; and

• the function field of the canonical reduction of Wv,0 is H̃(v).

Proof. For the first point, if X̄v is the irreducible component of the special fibre
corresponding to a vertex v, then its inverse image under the reduction map
is v (inverse image of the generic point η̄v) together with the open discs and
annuli which are the inverse images of the closed points of X̄v. Suppose first
that x̄ ∈ X̄v(F`) is a point which is smooth in X̄ , so its residue class ]x̄[ is an
open disc. The topological boundary of ]x̄[ inside |Xan| is {v′} for some v′ ∈ V
[BPR13, Lemma 3.2(1)]. Since the reduction map is anti-continuous [Ber90,
Corollary 2.4.2] and the subset {x̄, η̄v} ⊂ |X̄ | is an intersection of open subsets,
it follows that ]x̄[ ∪ {v} is closed in |Xan|, and so we must have v′ = v, i.e. v
is the unique boundary point of ]x̄[.
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If instead x̄ is singular in X̄ , then its residue class ]x̄[ is an annulus, whose topo-
logical boundary consists of one or two elements of V [BPR13, Lemma 3.2(2)].
So, a similar argument establishes that if x̄ is a self-intersection point of X̄v,
then the topological boundary of ]x̄[ is {v}, while if x̄ is an intersection point
of X̄v and X̄v′ , then the topological boundary of ]x̄[ is5 {v, v′}. Put together,
this tells us that the inverse image of X̄v under the reduction map is exactly
the union of v and all of the open discs and annuli whose closures contain v.
This gives the first three points.

For the final point, we first note that the underlying affinoid Wv,0 of Wv is the
union of {v} and all discs in |Xan|r V whose closure contains v. For any f ∈
O(Wv,0), the maximum value of |f | on Wv,0 is attained at v, e.g. because |f |
is a continuous function |Wv,0| → R, and on each open disc in |Wv,0| r {v},
|f | increases monotonically towards the boundary point v (this follows from
the fact that the maximum value of |f | on any closed disc is attained at its
Gauss point). In other words, the supremum norm on R := O(Wv,0) is just
the multiplicative norm | · |v attached to the Berkovich point v.

It then follows that the canonical reduction of Wv,0 is Spec(R◦/R◦◦), where R◦

(resp. R◦◦) denotes the subring of R (resp. ideal of R◦) consisting of ele-

ments of | · |v-norm ≤ 1 (resp. < 1). The residue field H̃(v), on the other
hand, is Frac(R)◦/Frac(R)◦◦, where the multiplicative norm | · |v is extended
uniquely to Frac(R) [Ber90, Remark 1.2.2(i)]. Thus, we want to show that
Frac(R)◦/Frac(R)◦◦ is the fraction field of R◦/R◦◦. There is certainly an
F`-algebra homomorphism

R◦/R◦◦ → Frac(R)◦/Frac(R)◦◦ . (∗)

An element of the kernel of this homomorphism would be represented by
some f ∈ R◦ for which | f1 |v < 1, which implies that f = 0 in R◦/R◦◦. So (∗)
is injective, and thus induces a map

Frac(R◦/R◦◦)→ Frac(R)◦/Frac(R)◦◦ . (∗∗)
5Actually, there is a small amount of justification missing here, which seems also to

be omitted in [BPR13, §4.9]. Specifically, the argument given shows that the boundary
is contained inside {v, v′}, but does not show that the two sets are equal. To show this,
let X ′ be an admissible blowup of X centred at x̄ (or rather, at a closed, finitely presented
subscheme whose reduced subscheme is {x̄}). The corresponding semistable vertex set V ′

consists of V and one new vertex v′′ lying on the skeleton of ]x̄[. This splits the skeleton
of ]x̄[ into two open intervals, which are the skeleta of two annuli in Xan rV ′ corresponding
to intersections of the new component X̄ ′

v′′ with X̄ ′v and X̄ ′
v′ . Accordingly, the boundaries

of these two annuli are contained in {v, v′′} and {v′, v′′}. This forces the two limit points
of the skeleton of ]x̄[ to be distinct, equal to v and v′.
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Given any element f
g ∈ Frac(R)◦, we can rescale f and g by elements of C` so

that |g|v = 1 and |f |v ≤ 1. So f and g determine an element f̄
ḡ ∈ Frac(R◦/R◦◦)

mapping to the class of f
g in Frac(R)◦/Frac(R)◦◦. Thus (∗∗) is surjective, i.e.

is an isomorphism of fields over F`. This is what we wanted to prove.

As a consequence, the skeleton attached to the semistable vertex set V agrees
with the graph attached to the semistable covering U as a metrised complex
of F`-curves (cf. [BPR13, §4.9] for the statement without metrics or vertex
curves).

7.2.2 Harmonic morphisms of metrised complexes

The reduction graph Γ attached to a curve X/K via a choice of split semistable
model is functorial with respect to finite morphisms f : X → X ′ of curves,
at least after suitable choices of models. This functoriality turns out to be
surprisingly subtle, so we devote some time to explaining this carefully. The
first subtlety lies in the correct notion of morphisms of graphs.

Definition 7.2.20 ([ABBR15, Definitions 2.4 & 2.19]). Let Γ and Γ′ be
metrised graphs. A finite morphism f : Γ→ Γ′ is a pair of functions V (Γ)→
V (Γ′) and E(Γ) → E(Γ′) compatible with edge-inversion and source maps,
such that the quantity

de(f) :=
l(f(e))

l(e)

is a positive integer for all edges e. The quantity de(f) is called the degree of f
along e.

Equivalently, from the metric perspective, a finite morphism f : Γ → Γ′ is a
continuous map f : Γ→ Γ′ such that f−1(V (Γ′)) = V (Γ), and such that every
connected component e of Γ \ V (Γ) (which is isometric to an open interval
and maps homeomorphically onto a connected component f(e) of Γ′ \ V (Γ′))
maps onto its image via a dilation of some scale factor de(f) ∈ Z>0. A finite
morphism f : Γ→ Γ′ of metrised graphs is said to be harmonic of degree dv(f)
at v ∈ V (Γ) if for every e′ ∈ Tf(v)(Γ

′) we have∑
e∈Tv(Γ)
f(e)=e′

de(f) = dv(f).

The map f is said to be harmonic if it is surjective and harmonic at every
v ∈ V (Γ). Then, for any v′ ∈ V (Γ′) the sum deg(f) =

∑
v : f(v)=v′ dv(f) is
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independent of v′ and called the degree of f .

A finite harmonic morphism f : Γ → Γ′ of metrised complexes of k-curves is
a finite morphism between the underlying metrised graphs endowed with a
choice of finite morphism

f̄v : X̄v → X̄ ′f(v)

of k-curves for each v ∈ V (Γ) satisfying the following three conditions.

1. For every vertex v ∈ V (Γ) and every e ∈ Tv(Γ), we have that x̄f(e) =
f̄v(x̄c), and the map f̄v is ramified of degree de(f) at x̄e.

2. Conversely, for every vertex v ∈ V (Γ) and every e′ ∈ Tf(v)(Γ
′), every

point in f̄−1
v (x̄e′) is x̄e for some e ∈ Tv(Γ) with f(e) = e′.

3. For every vertex v ∈ V (Γ) we have dv(f) = deg(f̄v). (This is automatic
from the preceding conditions as soon as Γ has at least one edge.)

A finite morphism f : X → X ′ of smooth projective curves induces, after suit-
able choices, a finite harmonic morphism f : Γ → Γ′ between their reduction
graphs. Describing this in terms of split semistable models is rather subtle –
for example, a finite morphism X → X ′ between models need not induce a
finite map on reduction graphs – so we instead follow [ABBR15] and describe
this in terms of semistable vertex sets. The key result is the following.

Theorem 7.2.21 ([ABBR15, Theorem A, Corollary 4.26 & §4.27]). Take a
finite morphism f : X → X ′ of smooth projective curves over C`. Let V ′0 be a fi-
nite set of type II points in X ′an. Then there exists a semistable vertex set V ′ ⊂
|X ′an|II for X ′an containing V ′0 such that the preimage V := f−1(V ′) ⊂ |Xan|II
is a semistable vertex set for Xan and such that the skeleton Γ associated to V
is the preimage of the skeleton Γ′ associated to V ′.

Moreover, for any such V ′, the induced map f : Γ → Γ′ on skeleta is a fi-
nite harmonic morphism of metrised complexes of k-curves, of degree equal
to deg(f).

In the final part, for each vertex v ∈ Γ, the morphism f̄v : X̄v → X̄ ′f(v), part
of the data of a morphism of metrised complexes of k-curves, is the one whose
induced map on function fields is the pullback map H̃(f(v))→ H̃(v) induced
induced by f : Xan → X ′an, see [ABBR15, §4.20].

7.2.2.1 Morphisms of curves and semistable coverings

We will also need to translate Theorem 7.2.21 into the language of semistable
coverings.
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Let f : X → X ′ be a finite morphism of smooth projective curves over C`,
and choose a semistable vertex set V ′ ⊂ |X ′an|II satisfying the conditions of
Theorem 7.2.21. Enlarging V ′ if necessary, we may assume that #V ′ ≥ 2
and that V ′ is strongly semistable, meaning that the corresponding skeleton is
loopless. This implies the same conditions for the semistable vertex set V :=
f−1V ′ ⊂ |Xan|II. So there are associated semistable coverings U = (Wv)v∈V
and U = (W ′v′)v′∈V ′ of Xan and X ′an.

The relationship between semistable coverings and semistable vertex sets in
Proposition 7.2.19 implies that the semistable coverings U and U′ are compat-
ible in the following sense.

Proposition 7.2.22. In the setup of Theorem 7.2.21, if #V ′ ≥ 2 and V ′ is
strongly semistable, then:

• for any vertex v′ ∈ V ′, we have

f−1W ′v′ =
⋃

v∈f−1(v′)

Wv ,

and for any v ∈ f−1(v′), the restriction of f to a map Wv → W ′v′ is a
finite morphism of degree dv(f);

• for any oriented edge e′ of the skeleton attached to V ′, we have

f−1A′e′ =
⋃

e∈f−1(e′)

Ae ,

and for any e ∈ f−1(e′), the restriction of f to a map Ae → A′e′ is a
finite morphism of degree de(f) which preserves orientations; and

• for any vertex v′ ∈ V ′, we have

f−1W ′v′,0 =
⋃

v∈f−1(v′)

Wv,0 ,

and for any v ∈ f−1(v′), the restriction of f to a map Wv,0 → W ′v′,0
is a finite morphism of degree dv(f) whose canonical reduction is the
restriction of the map f̄v : X̄v → X̄ ′f(v).

Proof. The statements regarding the inverse images follow from the descrip-
tions in Proposition 7.2.19. The fact that the maps on wide opens and bound-
ing annuli are finite is immediate since f is finite. For the assertions regarding
the degree, consider first the induced morphism f |Ae : Ae → A′e′ on bounding
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annuli. We know that the induced map on skeleta is orientation-preserving,
and is dilation by the scale factor de(f) by definition. Using the classifica-
tion of morphisms between annuli in [BPR13, Proposition 2.2(2)], this implies
that f |Ae has degree de(f) as claimed. By harmonicity, this implies that the
map f |Wv

: Wv → W ′v′ has degree dv(f) (compute the total degree over any
point in a bounding annulus).

For the final assertion, for any vertex v ∈ V , the morphism f : Xan → X ′an on
Berkovich analytifications induces an extensionH(f(v)) ↪→ H(v) on completed

residue fields, and so an extension H̃(f(v)) ↪→ H̃(v) on their residue fields. The
corresponding map X̄v → X̄ ′f(v) of smooth projective F`-curves is, by definition,

the morphism f̄v [ABBR15, §4.20]. So it follows from Proposition 7.2.19 that
this f̄v restricts to the canonical reduction of f |Wv,0

: Wv,0 → W ′f(v),0. This
completes the proof.

7.3 The local heights formula

If X is a smooth projective curve over a finite extension K of Q` with a chosen
basepoint b ∈ X(K), then the normalised local height h̃Z,` with respect to a
trace zero correspondence Z ⊂ X ×X is defined as follows. Let z ∈ X(K) be
a K-rational point, and define a divisor DZ(b, z) ⊂ X by

DZ(b, z) := i∗∆Z − i∗1Z − i∗2Z , (7.3.0.1)

where i∆ : X ↪→ X × X is the inclusion of the diagonal, and i1, i2 : X ↪→
X × X are the inclusions of the subvarieties {b} × X and X × {z} [BD18,
Definition 6.2]. Let X/OK be a regular model, and let DZ(b, z) ⊂ X be a Q-
linear divisor whose generic fibre isDZ(b, z) and whose intersection multiplicity
with any vertical divisor is zero. Then the normalised local height is given by
the intersection multiplicity

h̃Z,`(z) := (z − b) · DZ(b, z) ∈ Q ,

where we extend (z− b) to a divisor on X in the obvious way. This height has

the property that χ($K)h̃Z,`(z) is the Coleman–Gross height pairing of z − b
and DZ(b, z), where χ : K× → Qp is the character appearing in the definition
of the Coleman–Gross height [CG89, Proposition 1.2].

Remark 7.3.1. There are algorithms for computing the intersection pairing
on divisors given a regular model for X over Z` [Hol12, Mue14, vBHM20].
These algorithms depend on equations for Z and X. Equations for Z can be
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extremely complicated even for simple genus 2 curves [DRHS23, Appendix],
and so the complexity of the computation skyrockets as the genus and the
conductor of X grows. In principle, these intersection pairing methods have
the potential to work, but from a practical standpoint, working with equations
for the correspondence Z to construct an explicit divisor on a regular model is
difficult. We did attempt to use these intersection theory algorithms to com-
pute local heights on a genus 2 curve with RM, but were unable to surmount
the difficulties that arose in practice with dealing with the complicated equa-
tions for the correspondence. As far as we know, there are no examples in the
literature where these methods have been used to compute local heights in the
setting of quadratic Chabauty for rational points.

Our approach to computing local heights in this paper is based on a formula
due to the first author and Netan Dogra [BD20, Corollary 12.1.3], which avoids
the need to compute a regular model over K, and instead gives a direct combi-
natorial interpretation of h̃Z,`(z) in terms of reduction graphs. In this section,
we will recall the statement of this formula.

7.3.1 Homology of the reduction graph

Let Γ denote the reduction graph of a split semistable model of the curve X/K,
thought of as a metric space in the usual way. The local heights formula will be
expressed primarily in terms of the homology group H1(Γ,Z). By Lemma 7.2.7
and the discussion below Theorem 7.2.17, we could equivalently define this
group to be the homology group of the skeleton associated to a semistable
vertex set in Xan

C` (after embedding K inside C`). This makes it clear how
to interpret the group H1(Γ,Z) even when X does not have split semistable
reduction over K, and also makes it clear that H1(Γ,Z) is independent of
the choice of split semistable model / semistable vertex set up to canonical
isomorphism (by Remark 7.2.18)6.

The homology group H1(Γ,Z) comes with a perfect R-valued pairing, depend-
ing only on the underlying metric space of the graph Γ, and combinatorial in
nature. We recall the construction, following [CK21, §3]. Let Γ be a metrised
graph, let C0(Γ,Z) := Z ·V (Γ) be the free Z-module generated by the vertices
of Γ, and let C1(Γ,Z) := Z · E(Γ)/ ∼ denote the free Z-module generated by
the oriented edges of Γ, modulo the relations e−1 ∼ −e for all e ∈ E(Γ). Then

6Another way to see this is that the inclusion Γ ↪→ |Xan
C`
| is a strong deformation retract

[Ber90, Proposition 4.1.6], so H1(Γ,Z) is canonically isomorphic to the homology group
H1(|Xan

C`
|,Z), which is obviously independent of any choices.
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the homology H1(Γ,Z) is the kernel of the boundary map

∂ : C1(Γ,Z)→ C0(Γ,Z)

sending an oriented edge e to ∂(e) = ∂0(e)− ∂0(e−1).

There is a canonical positive-definite symmetric pairing 〈·, ·〉 : Sym2 C1(Γ,Z)→
R given by

〈e1, e2〉 :=


l(e1) if e2 = e1,

−l(e1) if e2 = e−1
1 ,

0 else.

Since this pairing is positive-definite, its restriction to H1(Γ,Z) ⊂ C1(Γ,Z)
also defines a positive-definite symmetric pairing on H1(Γ,Z), called the inter-
section length pairing (or cycle pairing in [CK21]). We remark that when Γ
is the reduction graph associated to a split semistable model of X/K, the
intersection length pairing on H1(Γ,Z) is also independent of the choice of
model.

7.3.1.1 Functoriality

The assignment of the group H1(Γ,Z) is functorial with respect to finite mor-
phisms of curves, both co- and contravariantly. The covariant functoriality is
clear: given a finite morphism f : X → X ′ of curves, without loss of generality
defined over C`, we have by Theorem 7.2.21 that f induces a finite harmonic
morphism Γ→ Γ′ on suitably chosen skeleta, and hence a homomorphism

f∗ : H1(Γ,Z)→ H1(Γ′,Z)

(which again is independent of the choice of skeleta).

We can also define a map

f∗ : H1(Γ′,Z)→ H1(Γ,Z)

in the other direction, namely the adjoint of f∗ with respect to the intersection
length pairings on the homology groups. One thing which is not apparent from
the definition is that f∗ is defined over Z, rather than over R or Q. This is a
consequence of the following calculation.

Proposition 7.3.2. Let f : Γ→ Γ′ be a finite harmonic morphism of metrised
graphs. Then the pullback map

f∗ : H1(Γ′,R)→ H1(Γ,R)
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(adjoint to the pushforward) is given by

f∗(
∑
e′

λe′ · e′) =
∑
e

λf(e′)de(f) · e .

In the above, summations over e or e′ implicitly mean sums over unoriented
edges of Γ or Γ′ (the summands are independent of the orientation of edges).

In particular, since each de(f) is an integer, f∗ restricts to a map

f∗ : H1(Γ′,Z)→ H1(Γ,Z) .

Proof. For a homology class

γ′ =
∑
e′

λe′ · e′ ∈ H1(Γ′,R) ,

let us write
f ′(γ′) :=

∑
e

λf(e)de(f) · e .

We claim that f ′(γ′) ∈ H1(Γ,R). For this, we compute

∂(f ′(γ′)) =
∑
e

λf(e)de(f)∂(e)

=
∑
v

∑
e∈Tv(Γ)

λf(e)de(f) · v

=
∑
v

∑
e′∈Tf(v)(Γ′)

λe′
∑

e∈Tv(Γ),f(e)=e′

de(f) · v

=
∑
v

∑
e′∈Tf(v)(Γ′)

λe′ · degv(f) · v = 0

using harmonicity and that
∑
e′∈Tv′ (Γ′)

λe′ = 0 for all v′ ∈ V (Γ′) since γ′ is a

homology class. Hence f ′(γ′) ∈ H1(Γ′,R) as claimed.

Now for any γ =
∑
e µe · e ∈ H1(Γ,R) we have

〈f ′(γ′), γ〉 =
∑
e

λf(e)µe · l(f(e)) =
∑
e′

λe′

 ∑
f(e)=e′

µe

 · l(e′) = 〈γ′, f∗(γ)〉

using that de(f) = l(f(e))
l(e) in the first line. Hence f ′ = f∗ as desired.
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All told, we have shown that the assignment X 7→ H1(Γ,Z) is a functor

{curves over K & finite morphisms} →
{lattices with an inner product & adjoint pairs of homomorphisms} .

7.3.1.2 Correspondences and component traces

Combining the pushforward and pullback functoriality, we find that the ho-
mology group H1(Γ,Z) is functorial with respect to correspondences between
curves. For our purposes, by a correspondence from X to Y , we mean a Weil
divisor Z ⊂ X × Y . The pushforward Z∗ along a correspondence is defined as
follows. If Z is a geometrically integral divisor and the projections π1 : Z → X
and π2 : Z → Y are finite, then we define Z∗ := π̃2∗ ◦ π̃∗1 where π̃1 and π̃2

are the two projections from the normalisation Z̃ of Z. If Z is geometrically
integral and one projection is not finite, then we set Z∗ = 0. In general, we
first extend the base field so that all integral components of Z are geometri-
cally integral, and then extend by linearity. We will be especially interested
in correspondences Z from a curve X to itself.

These correspondences also have so-called traces on the components, which we
will need later for the local height formula.

Definition 7.3.3. Let Z ⊂ X ×X be a correspondence defined over C`, and
let Γ be a skeleton in Xan. Let v ∈ V (Γ), and let S ⊂ |Zan|II be the set of
points w that map to (v, v). If we write Z̄w for the F`-curve attached to a
point w ∈ S, then Z̄v,v :=

⊔
w∈S Z̄w is an effective divisor inside X̄v×X̄v, with

projections π1, π2 to X̄v of degree d1 and d2 in total. We define the trace at v
to be trv(Z) = d1 + d2 −∆ · Z̄v,v ∈ Z, where ∆ is the diagonal in X̄v × X̄v.
The above definition makes it clear that the component traces trv(Z) are
integers. They can also be interpreted as traces of the action of Z̄v,v,∗ on
cohomology.

Lemma 7.3.4. In the above notation, trv(Z) is equal to the trace of Z̄v,v,∗
acting on the rigid cohomology group H1

rig(X̄v/C`). For `′ 6= ` it is also the

trace of Z̄v,v,∗ acting on the étale cohomology group H1
ét(X̄v,k,Q`′).
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Proof. The Lefschetz trace formula [Ber74, Théorème VII.3.1.9]7 gives that

∆ · Z̄v,v =
∑

i=0,1,2

(−1)i tr(Z̄v,v,∗|Hi
rig(X̄v/K)) .

The trace of Z̄v,v,∗ acting on Hi
rig(X̄v/C`) is d2 for i = 0 and is d1 for i =

2. Rearranging gives the desired identity for trv(Z). The same argument
applies for étale cohomology, using the corresponding trace formula [Mil80,
Theorem 25.1].

To obtain certifiably correct outputs from our algorithms, it will be necessary
to have some a priori control on the possible actions of a correspondence Z on
H1(Γ,Z) and the traces trv(Z) attached to vertices. This is what we establish
here.

Theorem 7.3.5. Let Z ⊂ X×X be an effective correspondence, of degrees d1

and d2 over X, respectively. Then:

a) Z∗ : H1(Γ,Z)→ H1(Γ,Z) has operator norm ≤
√
d1d2 with respect to the

intersection length pairing on H1(Γ,Z).

b) For all v ∈ V (Γ), we have

| trv(Z)| ≤ 2g(v) ·max{d1, d2} ,

where g(v) is the genus of v.

Now we prove Theorem 7.3.5, dealing with the two parts separately. For
the first part, it suffices to deal separately with pushforward and pullback of
cohomology classes.

Lemma 7.3.6. Suppose that f : Γ→ Γ′ is a harmonic map of metrised graphs
of degree d. Then the pushforward map f∗ : H1(Γ,Z)→ H1(Γ,Z) has operator
norm at most

√
d, i.e. we have

〈f∗(γ), f∗(γ)〉 ≤ d · 〈γ, γ〉

for all γ ∈ H1(Γ,R).

7Strictly speaking, [Ber74, Théorème VII.3.1.9] only applies when Z̄v,v is the graph of an
endomorphism of X̄v , but the argument is easily generalised to the case of correspondences.
Also, [Ber74, Théorème VII.3.1.9] is a statement about crystalline cohomology rather than
rigid cohomology, but these agree for smooth proper varieties [Ber86, Proposition 2].
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Proof. If we write γ =
∑
e λe · e as usual, then we have

〈f∗(γ), f∗(γ)〉 =
∑
e′

 ∑
f(e)=e′

λe

2 · l(e′)
≤
∑
e′

 ∑
f(e)=e′

1

l(e)

 ∑
f(e)=e′

λ2
el(e)

 l(e′)

=
∑
e′

( ∑
f(e)=e′

de(f)
)( ∑

f(e)=e′

λ2
el(e)

)
= d

∑
e

λ2
el(e) = d〈γ, γ〉 ,

using the Cauchy–Schwartz inequality in the second line.

Lemma 7.3.7. Suppose that f : Γ→ Γ′ is a harmonic map of metrised graphs
of degree d. Then we have

〈f∗(γ′1), f∗(γ′2)〉 = d · 〈γ′1, γ′2〉

for all γ′1, γ
′
2 ∈ H1(Γ′,R). In particular, f∗ has operator norm exactly

√
d.

Proof. Let us write

γ′1 =
∑
e′

λ′1,e′ · e′ and γ′2 =
∑
e′

λ2,e′ · e′ .

According to the pullback formula

f∗(γ′i) =
∑
e

λif(e)de(f) · e

for i = 1, 2, and hence

〈f∗(γ′1), f∗(γ′2)〉 =
∑
e

λ1f(e)λ2f(e)de(f)2l(e)

=
∑
e′

( ∑
f(e)=e′

de(f)
)
· λ1e′λ2e′ · l(e′)

= d
∑
e′

λ1e′λ2e′ · l(e′) = d〈γ′1, γ′2〉 .
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Proof of Theorem 7.3.5Item (a). We assume that all irreducible components
of Z are geometrically irreducible, which can always be achieved after a finite
extension of the base field. If Z itself is geometrically irreducible, then Z∗ =
π2∗π

∗
1 is the composite of two maps which have operator norms at most

√
d1

and
√
d2, respectively, by the above lemmas and Theorem 7.2.21. So we are

done in this case.

To prove the general case, we need to show that if we know the result for two
effective correspondences Z1 and Z2, then the result holds for Z = Z1 + Z2.
For this, let (d11, d12) and (d21, d22) be the degrees of Z1 and Z2 over X,
respectively, so that d1 = d11 + d21 and d2 = d12 + d22. For any γ ∈ H1(Γ,Z)
we have

〈Z∗(γ), Z∗(γ)〉 = 〈(Z1∗ + Z2∗)(γ), (Z1∗ + Z2∗)(γ)〉

≤
(
d11d12 + 2

√
d11d12d21d22 + d21d22

)
· 〈γ, γ〉

≤ (d11 + d21)(d12 + d22) · 〈γ, γ〉 ,

using the Cauchy–Schwarz inequality in the second line and the AM–GM in-
equality in the last line. This proves the result we want for Z.

Now we turn to the second part of Theorem 7.3.5. The main calculation is the
following.

Lemma 7.3.8. Let X̄ be a smooth projective curve of genus g over k, and Z̄ ⊂
X̄ × X̄ an effective correspondence, of degrees d1 and d2 over X̄ . Then d1 +
d2 − Z̄ ·∆ has absolute value at most 2gmax{d1, d2}.

Proof. Note that by Lemma 7.3.4 we have tr(Z̄∗|H1
rig(X̄/K)) = d1 +d2−Z̄ ·∆

for a correspondence Z̄ on X̄ . The space H1
rig(X̄/K) is a 2g-dimensional vector

space over K. We may assume that g ≥ 1, else there is nothing to prove. If
we write Z̄ = Z̄0 +m∆ where m ≥ 0 and Z̄0 is an effective divisor on X̄ × X̄
not containing ∆, then we have Z̄0 ·∆ ≥ 0 by [Har77, Proposition V.1.4], and
so Z̄ ·∆ ≥ m∆ ·∆ = 2m(1− g) ≥ (d1 + d2)(1− g). Combined with the above
we obtain

tr(Z̄∗|H1
rig(X/K)) ≤ g(d1 + d2) .

Now applying the same logic to the nth iterate Z̄n of Z̄, we find that Z̄n∗ has in-
teger trace on H1

rig(X̄/K), which implies that all of the eigenvalues λ1, . . . , λ2g

of Z̄∗ on H1
rig(X̄/K) are algebraic integers. Moreover, we have

tr(Z̄n∗ |H1
rig(X̄/K)) ≤ g(dn1 + dn2 )
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for all n ≥ 0. So, if we view the eigenvalues λ1, . . . , λn as elements of C via
some complex embedding Q(λ1, . . . , λ2g) ↪→ C, then we have

<

(∑
i=1

λni

)
≤ g(dn1 + dn2 )

for all n ≥ 0. Since (S1)2g is compact, we can choose n � 0 such that the
argument of each λni is sufficiently close to 0 that <(λni ) ≥ 1

2 |λ
n
i | for all i. So

for these n we have
2g∑
i=1

|λni | ≤ 2g(dn1 + dn2 ) ;

taking n sufficiently large with this property we obtain that |λi| ≤ max{d1, d2}
for all i. Hence

| tr(Z̄∗|H1
rig(X̄/K))| = |

∑
i

λi| ≤ 2gmax{d1, d2} .

Proof of Theorem 7.3.5Item (b). Again, we may and do assume Z is geometri-
cally irreducible. Letting Z̄v,v =

⊔
w∈S Z̄w be as in Definition 7.3.3, we obtain

by Lemma 7.3.8 that

| trv(Z)| ≤ g(v) ·max{
∑
w∈S

dw(π1),
∑
w∈S

dw(π2)} .

But we have ∑
w∈S

dw(πi) ≤ deg(πi) = di

for i = 1, 2 by Proposition 7.2.22, and so we are done.

7.3.2 The local heights formula

We are now finally in a position to state the formula for local heights from
[BD20]. To do so, recall that if Γ is a metrised graph (viewed as a metric
space), then by a piecewise polynomial function we mean a continuous function
f : Γ→ R which is given by a polynomial in the arc-length when restricted to
any edge of Γ. By a piecewise polynomial measure we mean a formal sum

µ =
∑
e

ge · |dse|+
∑
v

λv · δv ,
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where the first sum is taken over unoriented edges of Γ (i.e. connected compo-
nents of Γ \V (Γ)), ge is a function e→ R which is a polynomial in arc length,
and λv ∈ R. We think of |dse| as the unit length measure on edge e and δv as
a delta measure supported at the vertex v. Such a measure has a total mass

∑
e∈E(Γ)

∫ `(e)

0

ge(se)|dse|+
∑

v∈V (Γ)

λv.

If f is a piecewise polynomial function and ~v is a tangent direction at a ver-
tex v ∈ V (Γ), then one can make sense of derivative D~vf(v) of f at v in
direction ~v [BF06, Definition 3]. The Laplacian of f is the piecewise polyno-
mial measure ∇2(f) defined by

∇2(f) := −
∑
e

(f |e)′′ · |dse| −
∑
v

 ∑
~v∈Tv(Γ)

D~vf(v)

 · δv ,
where (f |e)′′ denotes the second derivative of f with respect to arc length
along e [BF06, Definition 5]. The Laplacian defines an R-linear map from the
space of piecewise polynomial functions to the space of piecewise polynomial
measures; its kernel is the one-dimensional space of constant functions, and
its image is the codimension-one space of measures of total mass 0.

Finding an explicit piecewise polynomial function f whose Laplacian is a given
measure µ of total mass 0 is not difficult. By formally double-integrating
ge along each edge of Γ one finds a piecewise polynomial function f0 such
that µ − ∇2(f0) is a sum of delta-measures supported at vertices of Γ. As
in [BF06, §5], by finding a right inverse for the weighted Laplacian matrix
one finds a piecewise affine function f1 such that ∇2(f1) = µ − ∇2(f0), and
then f = f0 + f1 is the desired Laplacian inverse of µ, well defined up to a
constant function.

The local height formula of [BD20] gives a formula for the Laplacian of the nor-
malised local height associated to a correspondence Z as an explicit piecewise
polynomial measure on the reduction graph.

Theorem 7.3.9 ([BD20, Corollary 12.1.3]8). Let K be a finite extension of Q`,
X/K a smooth projective curve with base point b ∈ X(K) and Z ⊂ X ×X a
correspondence representing a trace 0 endomorphism of Jac(X) which is fixed

8There are a couple of errors in the statement of [BD20, Corollary 12.1.3] which we
correct here.
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by the Rosati involution. Let Γ be the reduction graph of a split semistable
model of X. Then the normalised local height function h̃Z,` : X(K) → Q
factors through a piecewise polynomial function h̃Z,` : Γ→ R whose Laplacian
is given by

∇2(h̃Z,`) = 2
∑

e∈E(Γ)+

1

l(e)2
〈e, Z∗(π(e))〉 · |dse|+

∑
v∈V (Γ)

trv(Z) · δv ,

where 〈·, ·〉 denotes the intersection length pairing on C1(Γ,Z) and the map

π : C1(Γ,R) → H1(Γ,R) is the orthogonal projection. Furthermore, h̃Z,` van-

ishes at the reduction of the base point b, and these properties determine h̃Z,`
completely.

Remark 7.3.10. Since all of the edge lengths in Γ are rational, it follows that
all of the quantities appearing in the above expression are rational numbers.
Hence the function h̃Z,` has the property that it takes points lying a rational
distance along edges of Γ to rational numbers.

Remark 7.3.11. We have refined the statement from [BD20] so that our result
is purely combinatorial, rather than a formula in terms of étale cohomology.
Theorem 7.3.9 as stated above does not directly follow from [BD20]. The issue
is the following. If we let H1

ét(XK ,Q`′) denote the étale cohomology group
of XK , then this comes with a natural monodromy filtration, and the theorem
of Picard–Lefschetz gives identifications of its graded pieces as

grM
i H1

ét(XK ,Q`′) ∼=


H1(Γ,Q`′) if i = 2,⊕

v∈V (Γ) H1
ét(X̄v,k,Q`′) if i = 1,

H1(Γ,Q`′) if i = 0,

0 else.

By functoriality of étale cohomology, the correspondence Z induces a push-
forward endomorphism Z∗ of the group H1

ét(XK ,Q`′) preserving the mon-
odromy filtration, and this in turn induces endomorphisms of H1(Γ,Q`′) and
each H1

ét(X̄v,k,Q`′). The statement proved in [BD20] is valid for Z∗ the en-
domorphisms induced this way via Picard–Lefschetz, rather than the endo-
morphisms we have defined graph-theoretically above. So to carefully deduce
Theorem 7.3.9 in the form stated, we need to prove that the Picard–Lefschetz
isomorphism is compatible with pushforwards and pullbacks; we will do this
in a forthcoming appendix to this paper.
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7.4 The Coleman–Iovita isomorphism

In order to apply the local height formula, we need to be able to compute the
action of a correspondence Z ⊂ X ×X on the homology H1(Γ,Z) of the dual
graph Γ, as well as the traces trv(Z) of Z at vertices v. As outlined in the
introduction, our strategy for doing this proceeds by first computing the action
of Z∗ on the de Rham cohomology of X, and then using this to deduce the
action on H1(Γ,Z) via the Coleman–Iovita isomorphism. This isomorphism,
whose statement we recall below, relates the de Rham cohomology of X to the
homology of Γ and the rigid cohomology of the k-curves attached to vertices
of Γ.

Theorem 7.4.1 (Coleman–Iovita isomorphism, [CI10, §3.5], [DR17, §3.1]).
Let K be C` or a finite extension of Q`. Let X/K be a smooth projective curve,
and let X/OK be a split strongly9 semistable model, with reduction graph Γ.
Then the de Rham cohomology H1

dR(X/K) carries a canonical monodromy
filtration

0 = M−1H1
dR(X/K)

≤ M0H1
dR(X/K)

≤ M1H1
dR(X/K)

≤ M2H1
dR(X/K) = H1

dR(X/K)

along with canonical identifications of the graded pieces

grM
n H1

dR(X/K) ∼=


H1(Γ,K) if n = 2,⊕

v H1
rig(X̄v/K) if n = 1,

H1(Γ,K) if n = 0.

Here, H1(Γ,K) and H1(Γ,K) denote the homology and cohomology of the
graph Γ with coefficients in K, H1

rig(X̄v/K) denotes the rigid cohomology of

the irreducible component X̄v of the special fibre X̄ attached to a vertex v of Γ,
and the direct sum is taken over all vertices of Γ.

Since we will be using this isomorphism in computations, we will need to
explicitly recall its construction, and prove some elementary (but fiddly) com-
patibility properties. For this, we first need an explicit description of the de
Rham cohomology of wide opens.

9The same result is true without the word “strongly”, but the explicit description of the
Coleman–Iovita isomorphism is a little more complicated.
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7.4.1 Cohomology of wide opens

Let (Wv,Wv,0) be a wide open pair, with bounding annuli A1, . . . , An, oriented
as per Remark 7.2.10. Choose a parameter ti on each oriented annulus Ai,
giving an isomorphism Ai ∼= A(ri,1, ri,2). Let Xv be the rigid space obtained
by gluing together Wv and the open discs D(ri,2) of radius ri,2 for 1 ≤ i ≤ n,
along the isomorphisms ti : Ai ∼= A(ri,1, ri,2). Then Xv is the rigid analytifica-
tion of a smooth projective curve over K [MC10, Theorem 2.18]. We call Xv

a compactification of Wv. (The space Wv has many non-isomorphic compact-
ifications, arising from different choices of the parameters ti.)

For each bounding annulus Ai of Wv, its de Rham cohomology is isomorphic
to K via the residue map

ResAi : H1
dR(Ai/K)

∼−→ K ,

see [MC10, Lemma 2.13]. This map depends only on the orientation on Ai,
not on the particular parameter ti.

Lemma 7.4.2. Let (Wv,Wv,0) be a wide open pair as above. Then for all
1-forms ω ∈ Ω1(Wv), we have∑

i

ResAi(ω) = 0 .

Proof. The proof of [MC10, Corollary 2.33] gives an exact sequence

0→ H1
dR(Xv/K)→ H1

dR(Wv/K)→
⊕
i

K
Σ−→ K → 0 , (7.4.1.1)

in which the middle arrow is the direct sum of the residue maps ResAi . This
implies the result.

The fact that the left-hand group H1
dR(Xv/K) is non-canonical, i.e. depends

on the parameters ti, will cause us significant headaches when it comes to con-
sidering morphisms between curves in the next section. Thus, it is convenient
for us to reinterpret this de Rham cohomology group as a rigid cohomology
group in a manner which is independent of choices.

Recall that if Ȳ is a smooth variety over k, then the rigid cohomology of Ȳ
can be defined by choosing a smooth proper frame

Ȳ ↪→ X̄ ↪→ P ,
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i.e. an open embedding of Ȳ in a proper k-variety X̄ and a closed embedding
of X̄ in a formal OK-scheme P which is smooth in a neighbourhood of Ȳ
[LS07, Definitions 3.1.5, 3.3.5, 3.3.10]. The rigid cohomology10 H•rig(Ȳ/K)

of Ȳ is then defined by

H•rig(Ȳ/K) := H•dR(PK , j†O]Ȳ[P ) ,

i.e. it is the de Rham cohomology of the Raynaud generic fibre PK with coef-
ficients in the sheaf j†O]Ȳ[P of overconvergent sections of the structure sheaf

of the tube of Ȳ inside P [LS07, Definitions 8.2.5, Proposition 5.1.14]. As the
notation suggests, the rigid cohomology of Ȳ is independent of the choice of
smooth proper frame up to canonical isomorphism [LS07, Propositions 7.4.2,
8.2.1]. We will only be interested in the case that Ȳ is a smooth curve over k,
X̄ is its smooth completion, and P is a deformation of X̄ to a smooth proper
formal curve over OK .

Proposition 7.4.3. Let (Wv,Wv,0) be a strongly basic wide open pair, let Ȳv
be the smooth canonical reduction of Wv,0, with smooth completion X̄v. Choose
parameters on the bounding annuli of (Wv,Wv,0) giving rise to a compactifi-
cation Xv of Wv.

Then there are canonical isomorphisms

H1
rig(X̄v/K) ∼= H1

dR(Xv/K) and H1
rig(Ȳv/K) ∼= H1

dR(Wv/K)

which fit into a commuting square

H1
dR(Xv/K) H1

dR(Wv/K)

H1
rig(X̄v/K) H1

rig(Ȳv/K)

o o

in which the horizontal maps are induced by the evident inclusions.

Proof of Proposition 7.4.3. According to [MC10, Theorem 2.27], the compact-
ification Xv has a proper formal model Xv whose special fibre is X̄v. Such a
model is necessarily smooth (since X̄v is smooth), so

X̄v = X̄v ↪→ Xv and Ȳv ↪→ X̄v ↪→ Xv

are smooth proper frames for X̄v and Ȳv, respectively.

10The notation from [LS07] would be rather H•rig(Ȳ/OK), but we prefer H•rig(Ȳ/K) to
emphasise that it is a K-vector space.
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Calculating the rigid cohomology of X̄v with respect to this frame gives the
desired identification

H1
rig(X̄v/K) ∼= H1

dR(Xv/K) ,

cf. [LS07, Proposition 8.2.6(ii)].

Calculating the rigid cohomology of Ȳv with respect to its frame gives an
identification

H1
rig(Ȳv/K) ∼= lim−→

W ′
H1

dR(W ′/K) ,

where the colimit is taken over strict neighbourhoods W ′ of Wv,0 inside Xv

[LS07, Proposition 5.1.12(ii)]. For λ < 1 in
√
|K×|, let Wλ ⊂ Xv denote the

complement of the closed discs D[λr−1
1,i ] inside the bounding discs D(r−1

1,i ). It

follows from [LS07, Proposition 3.3.2] that the Wλ form a cofinal system of
strict neighbourhoods of Wv,0 inside Xv.

Moreover, for λ sufficiently close to 1, we have Wλ ⊆Wv, and Wv is obtained
from Wλ by gluing the annuli A(r−1

2,i , r
−1
1,i ) along the subannuli A(λr−1

1,i , r
−1
1,i ).

Since each inclusion A(λr−1
1,i , r

−1
1,i ) ↪→ A(r−1

2,i , r
−1
1,i ) induces an isomorphism on

de Rham cohomology, it follows by a Mayer–Vietoris argument that the inclu-
sion Wλ ↪→Wv also induces an isomorphism on de Rham cohomology. Hence
the natural map

H1
dR(Wv/K)→ lim−→

λ

H1
dR(Wλ/K) = lim−→

W ′
H1

dR(W ′/K)

coming from the fact that Wv is a strict neighbourhood of W0 is an isomor-
phism, and so we have

H1
rig(Ȳv/K) ∼= H1

dR(Wv/K) .

Finally, for the compatibility between these identifications, we use that the
map H1

rig(X̄v/K) → H1
rig(Ȳv/K) induced by the inclusion Ȳv ↪→ X̄v is the

same as the base-change map in relative rigid cohomology associated to the
commuting square

Ȳv X̄v

Spec(k) Spec(k) ,
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cf. [LS07, Proposition 8.2.10]. A similar thing is true for the map induced on
de Rham cohomology, so the desired compatibility follows from the fact that
the base-change maps in rigid and de Rham cohomology are compatible [LS07,
Proposition 8.2.11].

Remark 7.4.4. When we say that the isomorphisms in Proposition 7.4.3 are
canonical, we mean that the isomorphism H1

rig(X̄v/K) ∼= H1
dR(Xv/K) depends

only on (Wv,Wv,0) and the chosen parameters ti used to define Xv, while the
isomorphism H1

rig(Ȳv/K) ∼= H1
dR(Wv/K) depends only on (Wv,Wv,0) and not

on the parameters ti. In particular, the inclusion H1
rig(X̄v/K) ↪→ H1

dR(Wv/K)
does not depend on the choice of parameters, so we can rewrite the exact
sequence (7.4.1.1) as

0→ H1
rig(X̄v/K)→ H1

dR(Wv/K)→
⊕
i

K
Σ−→ K → 0 , (7.4.1.2)

which depends only on the strongly basic wide open (Wv,Wv,0).

7.4.2 Description of the Coleman–Iovita isomorphism

Equipped with this description of the cohomology of wide opens, we are now
in a position to explicitly describe the Coleman–Iovita isomorphism, following
[DR17, §3]. This description will be purely rigid analytic. Let U = (Wv)v
be the strongly semistable covering of Xan corresponding to a split strongly
semistable model under Theorem 7.2.13. If [ω] ∈ H1

dR(X/K) is a de Rham
cohomology class, then for any oriented edge e of Γ, we can restrict [ω] to the
annulus Ae to obtain a class in H1

dR(Ae/K), and then take its residue ResAe(ω).
The residue of [ω] along the inverse annulus Ae−1 is ResAe−1 (ω) = −ResAe(ω),
so these residues determine a well-defined 1-chain

ϕ2(ω) :=
∑
e

ResAe(ω) · e ∈ C1(Γ,K) .

By Lemma 7.4.2, this 1-chain is a 1-cycle, hence a homology class. The as-
signment ω 7→

∑
e ResAe(ω) · e thus defines a K-linear map

ϕ2 : H1
dR(X/K)→ H1(Γ,K) .

If [ω] ∈ H1
dR(X/K) lies in the kernel of ϕ2, then the restriction of [ω] to the

wide open Wv has residue 0 over all bounding annuli, so lies in H1
rig(X̄v/K)



7.4. THE COLEMAN–IOVITA ISOMORPHISM 225

using the exact sequence (7.4.1.2). This construction defines a K-linear map

ϕ1 : ker(ϕ2)→
⊕
v

H1
rig(X̄v/K) .

Finally, if [ω] ∈ H1
dR(X/K) lies in the kernel of ϕ2 and ϕ1, then [ω] is repre-

sented by a meromorphic 1-form ω of the second kind on Xan whose restriction
to any wide open Wv is an exact form, so dfv for some meromorphic function fv
on Wv. If e is an oriented edge of Γ, then the difference f∂0(e)|Ae − f∂1(e)|Ae is
a constant function on Ae. The assignment

e 7→ f∂0(e)|Ae − f∂1(e)|Ae ∈ K

is thus a 1-cocycle on Γ, and different choices of the fv yield 1-cochains which
differ by a 1-coboundary. Thus the cohomology class of this cocycle is well-
defined, and we have defined a K-linear map

ϕ0 : ker(ϕ1)→ H1(Γ,K) .

Definition 7.4.5. The monodromy filtration on H1
dR(X/K) is defined by

MnH1
dR(X/K) :=


H1

dR(X/K) if n ≥ 2,

ker(ϕ2) if n = 1,

ker(ϕ1) if n = 0,

0 if n < 0.

It will be convenient in what follows to adopt the shorthand that if Γ is a
metrised complex of k-curves, then

H1
rig(Γ/K)

denotes the graded K-vector space given in degrees 0, 1 and 2 by

H1(Γ,K),
⊕
v

H1
rig(X̄v/K), and H1(Γ,K) ,

respectively, and vanishing in all other degrees. When Γ is the reduction graph
of a curve X/K with semistable reduction, the maps ϕ2, ϕ1 and ϕ0 thus induce
a graded K-linear map

ϕ• : grM
• H1

dR(X/K)→ H1
rig(Γ/K) . (7.4.2.1)
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Lemma 7.4.6. The map (7.4.2.1) is the Coleman–Iovita isomorphism of The-
orem 7.4.1.

Proof. Even though this is essentially contained in [DR17, §3.1], we will recap
the proof, since our statement in Theorem 7.4.1 does not exactly match the
corresponding statement in [DR17], and in any case, we will need to use parts
of the proof again shortly. Let U = (Wv)v be a strongly semistable cover-
ing of Xan, then the de Rham cohomology of Xan can be computed as the
C̆ech hypercohomology of the complex Ω•Xan/K over the covering U, i.e. as the

cohomology groups of the C̆ech complex

Č0(U,Ω•Xan/K)→ Č1(U,Ω•Xan/K)→ Č2(U,Ω•Xan/K) .

Here, for clarity, we are using the alternating C̆ech complex of [Sta18a, 01FG],
i.e.

Č0(U,Ω•Xan/K) =
⊕
v

O(Wv)

Č1(U,Ω•Xan/K) =
⊕
v

Ω1(Wv)⊕
(⊕

e

O(Ae)
)−

Č2(U,Ω•Xan/K) =
(⊕

e

Ω1(Ae)
)−

,

where the direct sums are taken over vertices v or oriented edges e of Γ, and
the superscript (·)− denotes the −1 eigenspace with respect to the involution
given by switching the orientation on each edge. So, for example, elements
of Č1(U,Ω•Xan/K) are represented by tuples

(
(ωv)v, (fe)e

)
where ωv ∈ Ω1(Wv)

for each vertex v and fe ∈ O(Ae) for each oriented edge e, with fe−1 = −fe.
The differentials on the C̆ech complex are given by

d
(
(fv)v

)
=
(
(dfv)v, (f∂1(e)|Ae − f∂0(e)|Ae)

)
,

d
(
(ωv)v, (fe)e

)
=
(
(ω∂1(e)|Ae − ω∂0(e)|Ae − dfe)e

)
.

Now, the subspace M0H1
dR(X/K) is the space of cohomology classes [ω] repre-

sented by C̆ech cocycles ((ωv)v, (fe)e) where each ωv is exact, or equivalently
the space of cohomology classes which can be represented by C̆ech cocycles
with ωv = 0 for all v. For all such cohomology classes, fe is constant for all e,
and the map ϕ0 sends the cohomology class [ω] to the class of the map sending
an edge e to fe. It is clear from this description that ϕ0 is injective.
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Hence the map (7.4.2.1) is injective in all degrees. Since dimK H1
dR(X/K) =

dimK H1
rig(Γ/K) by [MC10, Proposition 2.34], it is an isomorphism.

Remark 7.4.7. It follows from Remark 7.2.18 (over K = C`, but this is suf-
ficient for our purposes) that group H1

rig(Γ/K) is independent of the choice
of strongly semistable covering. Moreover, one can check that the Coleman–
Iovita isomorphism ϕ• as we have defined it is also independent of the choice
of strongly semistable covering.

7.4.3 Compatibility with Poincaré duality

In what follows, it will be important for us to know that the Coleman–Iovita
isomorphism is compatible with all of the usual structures on cohomology:
Poincaré duality and pullbacks and pushforwards along finite morphisms of
curves. We begin by discussing compatibility with Poincaré duality. For this,
if Γ is a metrised complex of k-curves, we equip H1

rig(Γ/K) with an antisym-
metric pairing by defining

〈γ1 +
∑
v

[ω1,v] + γ∗1 , γ2 +
∑
v

[ω2,v] + γ∗2 〉 := γ∗1(γ2) +
∑
v

〈[ω1,v], [ω2,v]〉 − γ∗2 (γ1)

(7.4.3.1)
where γ1 and γ2 are homology classes on Γ, [ω1,v] and [ω2,v] are rigid co-
homology classes on X̄v, and γ∗1 and γ∗2 are cohomology classes on Γ. The
pairing 〈[ω1,v], [ω2,v]〉 on the right-hand side denotes the Poincaré pairing on
rigid cohomology.

Compatibility of the Coleman–Iovita isomorphism with Poincaré duality then
amounts to the following.

Proposition 7.4.8. The subspaces M0H1
dR(X/K) and M1H1

dR(X/K) are ex-
act annihilators for the Poincaré pairing on H1

dR(X/K). Additionally, the
Coleman–Iovita isomorphism

ϕ• : grM
• H1

dR(X/K)
∼−→ H1

rig(Γ/K)

is an isomorphism of K-vector spaces equipped with an antisymmetric pairing
(the pairing on the left being induced by Poincaré duality, and the pairing on
the right being (7.4.3.1)).

We want to give a description of the Poincaré pairing on H1
dR(X/K) in terms

of C̆ech hypercohomology, as in the proof of Lemma 7.4.6. For this, we first
need to describe the trace map H2

dR(X/K)
∼→ K. Any class [ξ] ∈ H2

dR(X/K)
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can be represented by a C̆ech 2-cocycle (ωe)e ∈ Č2(U,Ω•Xan/K), i.e. a tuple

consisting of a 1-form ωe ∈ Ω1(Ae) for each oriented edge e of Γ, subject to
the constraint ωe−1 = −ωe.
Lemma 7.4.9. The trace of the class [ξ] ∈ H2

dR(X/K) is given by

tr([ξ]) =
∑

e∈E(Γ)+

ResAe(ωe) .

Remark 7.4.10. The trace map tr : H2
dR(X/K) → K on algebraic de Rham

cohomology is determined, up to scaling by a global constant independent
of X, by the requirement that for a finite morphism f : X → X ′ of curves, we
have tr(f∗[ξ′]) = deg(f) · tr([ξ′]) for all [ξ′] ∈ H2

dR(X ′/K). However, finding
the correct choice of normalisation (i.e. global constant) in the literature is
surprisingly difficult. (For example, the definition in [Har75] involves compos-
ing several isomorphisms between one-dimensional vector spaces, and it is not
clear, at least to the authors, how to normalise all of these isomorphisms, at
least up to sign.)

The normalisation we will take for the trace map in this paper is as follows.
Let U be the usual affine covering of P1

K by P1
K r {∞} and P1

K r {0}, and

let ξ ∈ Č2(U,Ω1
X/K) be the C̆ech 2-cocycle given by dt

t on Gm. Then we
normalise the trace map so that

tr([ξ]) = 1 .

We remark that this is the choice of normalisation for which, over the complex
numbers, if [ξ] is the class of a smooth 2-form η on X(C), then tr([ξ]) =

1
2πi

∫
X(C)

η.

Proof of Lemma 7.4.9. We first observe that the quantity
∑
e ResAe(ωe) is in-

dependent of how we represent [ξ] as a C̆ech 2-cocycle, and is also independent
of the chosen strongly semistable covering by Remark 7.4.7. So the assignment
[ξ] 7→

∑
e ResAe(ωe) defines a K-linear map ψ : H2

dR(X/K)→ K.

In order to prove that ψ is equal to the trace map, it suffices to consider only
the case that K = C`. Given a finite morphism f : X → X ′, choose strongly
semistable coverings U and U′ of Xan and X ′,an as in Proposition 7.2.22.
If [ξ′] ∈ H2

dR(X ′/K) is represented by a C̆ech 2-cocycle (ωe′)e′ , then f∗[ξ′]

is represented by the C̆ech 2-cocycle (ωe)e with ωe = (f |Ae)∗ω′f(e). So

ResAe(ωe) = de(f) · ResA′
f(e)

(ω′f(e)) ,
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and so ψ(f∗[ξ′]) = deg(f) · ψ([ξ′]). According to Remark 7.4.10, this implies
that ψ is equal to the trace map, up to multiplication by some global constant.

To check that this global constant is 1, let [ξ] ∈ H2
dR(P1

K/K) be the cohomology

class defined in Remark 7.4.10. With respect to the semistable covering of P1,an
K

consisting of the open ball of radius ` and the complement of the closed ball
of radius 1 centred on 0, [ξ] is represented by the C̆ech 2-cocycle whose value
on the intersection A(1, `) is dt

t . Thus ψ([ξ]) = 1 and we are done.

As a consequence, we can give a formula for the Poincaré pairing on H1
dR(X/K).

Lemma 7.4.11. Let [ω1], [ω2] ∈ H1
dR(X/K) be represented by C̆ech 1-cocycles

ω1 = ((ω1,v)v, (f1,e)e) and ω2 = ((ω2,v)v, (f2,e)e). Then the Poincaré pairing
of [ω1] and [ω2] is given by

〈[ω1], [ω2]〉 =
∑

e∈E(Γ)+

ResAe(f1,eω2,∂1(e) − f2,eω1,∂0(e)) .

Remark 7.4.12. Lemma 7.4.11 contains as a special case the following. Suppose
that Wv is a strongly basic wide open, and fix a compactification Xv. A
strongly semistable covering of Xv is then given by Wv and the discs glued
onto its bounding annuli. The corresponding reduction graph is a star, whose
centre is the vertex v corresponding to Wv. If ω1, ω2 ∈ Ω1(Wv) are differentials
with residue 0 on each bounding annulus of Wv, then they determine de Rham
cohomology classes on Xv via the exact sequence (7.4.1.1). These cohomology
classes [ωi] for i = 1, 2 are represented by C̆ech 1-cocycles ((ωi,v′)v′ , (fi,e)e)
where ωi,v′ = ωi for v′ = v and ωi,v′ = 0 otherwise. The edge functions fe, for
edges oriented away from v, satisfy dfi,e = −ωi|Ae , i.e. −fi,e =

∫
ωi|Ae is an

antiderivative of ωi|Ae . Thus Lemma 7.4.11 specialises to the formula

〈[ω1], [ω2]〉 = −
∑
e

ResAe

(
ω1 ·

∫
ω2

)
=
∑
e

ResAe

((∫
ω1

)
· ω2

)
where the sum is taken over the bounding annuli of Wv with their usual ori-
entation, cf. Remark 7.2.10.

Remark 7.4.13. The case of Lemma 7.4.11 when [ω1] and [ω2] lie in the sub-
space M1H1

dR(X/K) is stated as [DR17, (109)], though is not proved. Our
formula differs from that in [DR17] by a sign; we presume that this is due to
differing conventions for how to orient bounding annuli of wide opens, which
is not made explicit in [DR17].
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Proof of Lemma 7.4.11. Fix a choice of orientation on the graph Γ (i.e. make
a choice of one of each pair {e, e−1}). The cup product of the cocycles ω1

and ω2 is the C̆ech 2-cocycle where

(ω1 ∪ ω2)e = f1,eω2,∂1(e)|Ae − f2,eω1,∂0(e)|Ae

for each edge e with the chosen orientation11. Hence we have

〈[ω1], [ω2]〉 = tr(ω1 ∪ ω2) =
∑
e

ResAe(f1,eω2,∂1(e) − f2,eω1,∂0(e))

using Lemma 7.4.9, and we are done.

Now we are ready to prove the compatibility of the Coleman–Iovita isomor-
phism with Poincaré duality.

Proof of Proposition 7.4.8. If [ω1] lies in M0H1
dR(X/K), then we may represent

it by a C̆ech 1-cocycle ((ω1,v)v, (f1,e)e) in which ω1,v = 0 for all v, and hence
each f1,e is constant. It follows from Lemma 7.4.11 that

〈[ω1], [ω2]〉 =
∑
e

ResAe(f1,eω2,∂1(e))

=
∑
e

f1,e ResAe(ω2,∂0(e))

= 〈ϕ0([ω1]), ϕ2([ω2])〉

for all [ω2] ∈ H1
dR(X/K). In particular, if [ω2] ∈ M1H1

dR(X/K), then we have
〈[ω1], [ω2]〉 = 0 and so the Poincaré pairing vanishes on M0 ⊗M1. Since M0

and M1 have complementary dimensions, they are exact annihilators.

The same formula establishes that the associated graded of the Poincaré pair-
ing agrees with the pairing on H1

rig(Γ/K) in degrees 0 and 2. It remains to deal

with the pairing in degree 1. Suppose now that [ω1], [ω2] ∈ M1H1
dR(X/K),

so they are represented by C̆ech 1-cocycles with ResAe(ωi,∂0(e)) = 0 for all
edges e and i = 1, 2. We may also assume for simplicity that ω1,v = 0 for
all vertices v other than a single vertex v1. This implies that f1,e is con-
stant for all edges e without v1 as an endpoint; changing [ω1] by an element

11The need to choose an orientation here comes from the fact that this formula is the
formula for the cup product of non-alternating C̆ech cochains, cf. [Sta18a, 01FP]. This
formula induces the correct cup product on cohomology, independently of the choice of
orientation.
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in M0H1
dR(X/K) (which does not affect the pairing 〈[ω1], [ω2]〉), we are free to

assume that fe = 0 for all such edges. We may assume the same thing for ω2

at a vertex v2, which may or may not be equal to v1.

In the Poincaré pairing formula

〈[ω1], [ω2]〉 =
∑
e

ResAe(f1,eω2,∂1(e) − f2,eω1,∂0(e)) ,

the summands on the right-hand side vanish for edges e which do not have v1

and v2 as their endpoints. If v1 6= v2 are opposite endpoints of e, then the
corresponding summand again vanishes (e.g. by orienting e from v2 to v1), and
hence we see that 〈[ω1], [ω2]〉 = 0 for v1 6= v2. If instead v1 = v2 is the source
of edge e then we have

ResAe(f1,eω2,∂1(e)−f2,eω1,∂0(e)) = −ResAe(f2,eω1,v1
) = ResAe

(
ω1,v1

·
∫
ω2,v1

)
and so we find

〈[ω1], [ω2]〉 =
∑

∂0(e)=v1

ResAe

(
ω1,v1 ·

∫
ω2,v1

)
.

But by Remark 7.4.12, the right-hand side is equal to the Poincaré pairing of
the classes [ω1,v1

], [ω2,v1
] ∈ H1

rig(X̄v/K) determined by ω1,v1
and ω2,v1

. This

shows that 〈[ω1], [ω2]〉 = 〈ϕ1([ω1]), ϕ1([ω2])〉 for any [ω1], [ω2] ∈ M1H1
dR(X/K)

and so we are done.

7.4.4 Compatibility with pullbacks and pushforwards

The second property which we need to check – and the more important one
– is that the Coleman–Iovita isomorphism is compatible with pullbacks and
pushforwards along finite morphisms of curves, and hence that it is compatible
with pushforwards along correspondences. If f : Γ → Γ′ is a finite harmonic
morphism of metrised complexes of k-curves (Definition 7.2.20), then we have
already defined in Section 7.2.2 pullback and pushforward maps

f∗ : H1(Γ′,Z)→ H1(Γ,Z) and f∗ : H1(Γ,Z)→ H1(Γ′,Z)

on homology, and similarly on cohomology. Moreover, since f is a morphism of
metrised complexes of curves, it comes with a finite morphism fv : X̄v → X̄ ′f(v)
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of curves over the residue field k for each vertex v ∈ V . Hence there are also
pullback and pushforward maps

f∗ =
⊕
v

f∗v :
⊕
v′∈V ′

H1
rig(X̄ ′v′/K)→

⊕
v∈V

H1
rig(X̄v/K) ,

f∗ =
⊕
v

fv,∗ :
⊕
v∈V

H1
rig(X̄v/K)→

⊕
v′∈V ′

H1
rig(X̄ ′v′/K) .

All in all, these pullback and pushforward maps define graded K-linear maps

f∗ : H1
rig(Γ′/K)→ H1

rig(Γ/K) and f∗ : H1
rig(Γ/K)→ H1

rig(Γ′/K) ,

making H1
rig(Γ/K) both contra- and covariantly functorial in Γ with respect

to finite harmonic morphisms. The maps f∗ and f∗ are adjoint with respect
to the Poincaré pairing of (7.4.3.1).

We now carefully prove the following.

Theorem 7.4.14 (Push–pull compatibility of Coleman–Iovita). Let f : X →
X ′ be a finite morphism of smooth projective curves over C`, inducing a finite
harmonic morphism f : Γ → Γ′ between their reduction graphs as in Theo-
rem 7.2.21. Then the pullback and pushforward maps

f∗ : H1
dR(X ′/K)→ H1

dR(X/K) and f∗ : H1
dR(X/K)→ H1

dR(X ′/K)

on de Rham cohomology preserve the monodromy filtration (not necessarily
strictly) and are compatible with the Coleman–Iovita isomorphism in the sense
that both of the following squares commute.

grM
• H1

dR(X ′/K) H1
rig(Γ′/K) grM

• H1
dR(X/K) H1

rig(Γ/K)

grM
• H1

dR(X/K) H1
rig(Γ/K) grM

• H1
dR(X ′/K) H1

rig(Γ′/K)

ϕ•
∼

f∗ f∗

ϕ•
∼

f∗ f∗

ϕ•
∼

ϕ•
∼

(7.4.4.1)

For the proof, fix a strongly semistable vertex set V ′ ⊂ |X ′an|II of size ≥
2 satisfying the conditions of Theorem 7.2.21, so that V ′ and V = f−1V ′

determine semistable coverings of X ′an and Xan. Per Proposition 7.2.22, for
any bounding annulus A′e′ in X ′an, the inverse image of A′e′ in Xan is

f−1A′e′ =
⋃

e∈f−1(e′)

Ae ,
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and the restriction of f to Ae is a finite morphism Ae → A′e′ of degree de(f).
According to [BPR13, Proposition 2.2], if t′ and t are parameters on the annuli
A′e′ and Ae, then the restriction f |Ae is given by t′ = αtde(f)(1+g(t)) where g ∈
O(Ae) is an analytic function with norm < 1 at all points of Ae. So

f∗
dt′

t′

∣∣∣
Ae

= dlog
(
αtde(f)(1 + g(t))

)
= de(f)

dt

t
+ dlog(1 + g(t)) .

Since log(1 + g(t)) is convergent on the open annulus Ae, it follows that

ResAe(f
∗ dt′

t′
) = de(f) .

Since the class of dt′

t′ is a basis of H1
dR(A′e′/K), it follows that

ResAe(f
∗ω′) = de(f) ResA′

e′
(ω′)

for all ω′ ∈ Ω1(A′e′). Fixing [ω′] ∈ H1
dR(X ′/K) and summing over edges of Γ

gives

ϕ2(f∗ω′) =
∑
e

ResAe(f
∗ω′) · e

=
∑
e′

∑
e∈f−1(e′)

de(f) ResA′
e′

(ω′) · e = f∗ϕ2(ω′)

using Proposition 7.3.2. This tells us that f∗(M1H1
dR(X ′/K)) ⊆ M1H1

dR(X/K),
and that the left-hand square in (7.4.4.1) commutes in degree 2.

Next, for any 1-form ω′ on A′e′ we have (f |Ae)∗(f |Ae)∗ω′ = de(f)ω′ for all e ∈
f−1(e′) and so

ResA′
e′

((f |Ae)∗(f |Ae)∗ω′) = de(f) ResA′
e′

(ω′) = ResAe((f |Ae)∗ω′) .

This implies that ResA′
e′

((f |Ae)∗ω) = ResAe(ω) for all 1-forms ω on Ae, and
so we have

ϕ2(f∗ω) =
∑
e′

ResA′
e′

(f∗ω) · e′

=
∑
e′

ResA′
e′

 ∑
e∈f−1(e′)

(f |Ae)∗ω

 · e′
=
∑
e′

∑
e∈f−1(e′)

ResAe(ω) · e′ = f∗ϕ2(ω) .
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using Proposition 7.3.2. So f∗(M1H1
dR(X/K)) ⊆ M1H1

dR(X ′/K) and the right-
hand square in (7.4.4.1) commutes in degree 2.

Next, for [ω′] ∈ M1H1
dR(X ′/K) represented by a C̆ech 1-cocycle ((ω′v′)v′ , (f

′
e′)e′)

we know that the inverse image of each basic wide open W ′v′ in X ′an is

f−1W ′v′ =
⋃

v∈f−1(v′)

Wv .

For each v ∈ f−1(v′), the pullback (f |Wv
)∗ω′v′ is a 1-form on Wv with residue

zero on each bounding annulus. According to Proposition 7.2.22 (combined
with [LS07, Proposition 8.2.10]), the class of (f |Wv

)∗ω′v′ in rigid cohomology
is the pullback of the class of ω′v′ along the map fv : X̄v → X̄ ′v′ . Taking this
over all v implies that

ϕ1(f∗[ω′]) = f∗ϕ1([ω′]) ,

which tells us that f∗(M0H1
dR(X ′/K)) ⊆ M0H1

dR(X/K), and that the left-
hand square in (7.4.4.1) commutes in degree 1.

The remaining cases follow by Poincaré duality. For example, since pullback
and pushforward are adjoint under the Poincaré pairing on H1

dR(X/K), it
follows from the fact that f∗ preserves M1 that f∗ preserves its annihilator M0.
And then for any class [ω] ∈ M1H1

dR(X/K) we have

〈ϕ1(f∗[ω]), ϕ1([ω′])〉 = 〈f∗[ω], [ω′]〉 = 〈[ω], f∗[ω′]〉 = 〈ϕ1([ω]), ϕ1(f∗[ω′])〉
= 〈ϕ1([ω]), f∗(ϕ1([ω′]))〉 = 〈f∗(ϕ1([ω])), ϕ1([ω′])〉 .

Since the Poincaré pairing is perfect, this implies that ϕ1(f∗[ω]) = f∗(ϕ1([ω])),
and hence the right-hand square in (7.4.4.1) commutes in degree 1.

A similar argument shows that the squares in (7.4.4.1) commute in degree 0,
completing the proof of Theorem 7.4.14.

7.4.4.1 Compatibility with correspondences

If Z ⊂ X ×X ′ is a correspondence from X to X ′, having reduction graphs Γ
and Γ′, respectively, then we can define a pushforward

Z∗ : H1
rig(Γ/K)→ H1

rig(Γ′/K)

in the usual way, namely take the composite π̃2,∗ ◦ π̃∗1 where π̃1 : Z̃ → X

and π̃2 : Z̃ → X ′ are the projections from the normalisation. It is a formal
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consequence of Theorem 7.4.14 that the Coleman–Iovita isomorphism is also
compatible with pushforward along correspondences.

In our computations, we will use this to compute the action of Z∗ on H1(Γ,Z),
as well as the vertex traces trv(Z). Once we know the action of Z∗ on the
space H1

dR(X/K), we can use the Coleman–Iovita isomorphism to determine
the action on H1

rig(Γ/K). In degree 2, we read off the action of Z∗ on H1(Γ,K),

while in degree 1 we read off the action on
⊕

v H1
rig(X̄v/K). Taking an appro-

priate block in the matrix representing this action and taking the trace, we
obtain the vertex traces trv(Z) by Lemma 7.3.4.

7.5 Explicit Coleman–Iovita for hyperelliptic
curves

We now specialialise to the case of hyperelliptic curves in odd residue char-
acteristic, and begin to explain what the Coleman–Iovita isomorphism means
explicitly. In this section we first explain background on cluster pictures. We
then give a description of how to obtain a strongly semistable cover of a hyper-
elliptic curve over a finite extension K/Q` in odd residue characteristic. We
provide a definition of the bases of H1(Γ,Z), H1

dR(X/K), and H1
rig(Xv/K) that

we will use and give an explicit description of the Coleman–Iovita isomorphism
with respect to these bases. We also explicitly describe the Berkovich skeleton
of Xan

C` using the semistable covering of X. We use this description to give a
sufficient condition for when a component of the associated semistable model
X has no Q`-points reducing to it.

7.5.1 A semistable covering

Let ` > 2 be a prime. Let π : X → P1 be a nice hyperelliptic curve defined
over a finite extension K/Q`. In the standard affine patch, suppose X is
given by an equation y2 = f(x) and deg f ≥ 3, with f separable. Enlarging
K if necessary, we may assume that K contains the biquadratic extension of
the field generated by R, the set of roots of f in K̄. In this section, we use
cluster theory [DDMM23, BBB+22] to write down a semistable covering of
Xan without explicitly finding a semistable model of X/K.

Following [DDMM23] we define the following terms.

Definition 7.5.1 (Cluster vocabulary).

• A cluster s is a non-empty subset of the roots of f cut out by a disc in
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A1,an. That is, s = D ∩R for some open or closed disc D ⊂ A1,an.

• A cluster s is proper if #s > 1. It is odd if #s is odd and even if #s is
even.

• The top cluster is R itself.

• A cluster s′ is a child of s (and s is the parent of s′), denoted by s′ < s,
if s′ is a maximal subcluster of s (not equal to s itself). We write s′′ ≤ s
to denote that s′ is a child or equal to s. For any non-top cluster we
denote by P (s) the parent of s.

• An even cluster s is called übereven if every child of s is also even.

• The depth of a proper cluster s is

ds := min
α1,α2∈s

v(α1 − α2).

If s is not the top cluster, then the relative depth of s is δs := ds− dP (s).

• Let s ∧ s′ be the smallest cluster containing both s and s′.

• Define the invariant
νs := v(c) +

∑
r∈R

d{r}∧s

for each proper cluster s, where c is the leading coefficient of f .

Remark 7.5.2. Our depths differ from those in [DDMM23] by a multiplicative
constant, because they normalise their valuation to have valuation group Z,
while we normalise v(`) = 1.

Definition 7.5.3 (Open discs and annuli associated to clusters). For a cluster
s, we define the following subsets of P1,an

K .

• Let Dc
s be the smallest closed disc in A1,an

K such that s = Dc
s ∩R.

• For s not the top cluster, let Do
s be the largest open disc in A1,an

K such

that s = Do
s ∩R. If s is the top cluster we set Do

s = P1,an
K .

• For s not the top cluster, define the open annulus As := Do
s \Dc

s.

• Define
Us := Do

s \
⋃
s′<s

s′ proper

Dc
s′ ⊆ P1,an

K .

Proposition 7.5.4. The analytic spaces Us constitute a semistable covering
of P1,an

K .
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Figure 7.3: A picture of the analytic space Us.

Proof. Given x ∈ A1,an
K (K), let Dc be the smallest closed disc containing x

and at least two roots of f . Let s := Dc ∩R, which is a proper cluster. Then
x ∈ Do

s . Indeed, since Dc ∩Do
s 6= ∅, we have either Dc ⊂ Do

s and so x ∈ Do
s ,

or Do
s ⊂ Dc. In the latter case, there is a larger open disc Do

s ( Do ⊂ Dc with
Do ∩R = s contradicting the maximality of Do

s . By minimality of Dc, for any
proper child s′ < s, we have x /∈ Dc

s′ . So x ∈ Us and hence the Us cover A1,an
K .

To show the covering is semistable, we first note that for a cluster Us, the pairUs, D
c
s \

⋃
s′<s

s′ proper

Do
s′


forms a basic wide open. Secondly, the intersection Us∩Us′ is by construction
the annulus As′ if s′ < s, and is empty if s 6≤ s′ and s′ 6≤ s. Hence all double
intersections are annuli or empty, and all triple intersections are empty.

This semistable covering also appears in [Sto19], where it is used to give uni-
form bounds for rational points on hyperelliptic curves of small Mordell–Weil
rank and [KK22, Section 4] where it plays a role in defining a p-adic integral
(where p = `) on bad reduction hyperelliptic curves. Here, we tie it to cluster
pictures, as speculated about in [Kay21, Chapter 4].

We will repeatedly make use of the following lemma to describe equations for
X restricted to annuli and wide opens of the semistable covering.

Lemma 7.5.5 ([KK22, Lemma 4.10]). Let Do be an open disc in A1,an
K and let

Dc
1, . . . , D

c
n be pairwise disjoint closed subdiscs. Set U := Do \ ∪iDc

i . Suppose
that h(x) ∈ K[x] is a polynomial such that
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(a) h(x) has no zeros in U , and

(b) h(x) has an even number of zeros in each Dc
i .

Let K ′ be the biquadratic extension of K. Then there is an invertible rigid
analytic function h(x)1/2 ∈ O(UK′)

an whose square is h(x). Moreover h(x)1/2

is explicitly computable.

Proof. Write h(x) = C ·
∏
Dck

(
∏2sk
i=1(x − αi)) ·

∏t
j=1(x − βj) where αi ∈ Dc

k,

βj /∈ Do, and C ∈ K. Then(
2sk∏
i=1

(x− αi)

)1/2

= (x− α1)s
2sk∏
i=1

(
1− αi − α1

x− α1

)1/2

converges outside of Dc
k for all 1 ≤ k ≤ n. Furthermore,C · t∏

j=1

(x− βj)

1/2

= C1/2 ·
t∏
i=1

((x− β1)− (βi − β1))1/2

= C1/2 ·
t∏
i=1

(
(β1 − βi)1/2

(
1− x− β1

β1 − βi

)1/2
)

converges on Do. The product of the square roots is h(x)1/2 and belongs to
O(UK′)

an.

Definition 7.5.6. We fix an ordering on R. For every odd cluster s (including
singletons), choose the smallest element αs ∈ s. For a non-singleton cluster s,
we define

gs(x) :=
∏
s′<s
s′ odd

(x− αs′) and hs(x) := f(x)/gs(x).

For a singleton cluster s we define gs(x) := x− αs and hs(x) := f(x)/gs(x).

Let Xs be the projective hyperelliptic curve defined by the affine equation
u2
s = gs(x).

Remark 7.5.7. If s is übereven then gs = 1 and so Xs ' P1,an
K t P1,an

K is a
disconnected hyperelliptic curve. This will not be a problem.

We can now describe equations for X restricted to subsets of the semistable
covering and annuli.



7.5. EXPLICIT COLEMAN–IOVITA 239

Proposition 7.5.8. For any cluster s, we have that X|Us
and Xs|Us

are
isomorphic over Us.

Proof. By construction, the polynomial hs(x) has no roots in Us and an even
number of roots in Dc

s′ for each proper child s′ < s. So it has a square root
hs(x)1/2 by Lemma 7.5.5. The map

Xs|Us
→ X|Us

(x, us) 7→ (x, us · hs(x)1/2)
(7.5.1.1)

is the desired isomorphism.

Lemma 7.5.9. If s is a proper, non-top cluster, then X|As
is isomorphic to

1. a disjoint union of two open annuli of width δs, each mapping isomor-
phically to As if s is even;

2. an open annulus of width δs/2 mapping to As via the squaring map if s
is odd.

Proof. If s is an even cluster, then gs(x)1/2hs(x)1/2 is a square root of f(x) on
the annulus As, and so gives a splitting

As × {±1} ' X|As

(x, ε) 7→ (x, ε · gs(x)1/2hs(x)1/2)
(7.5.1.2)

of X over As. Otherwise, if s is odd, then
(
gs(x)
x−αs

)1/2

hs(x)1/2 is a square root

of f(x)/(x− αs) on As and so, gives an isomorphism

(curve given by t2s = (x− αs))|As
' X|As

. (7.5.1.3)

The curve (t2s = x − αs)|As
is isomorphic to an annulus of width δs/2 via

projection onto the ts-coordinate.

Since the isomorphisms above depend on a choice of square root of hs and gs
we fix these choices once and for all, as per the following definition.

Definition 7.5.10 (Choice of square roots). We fix the following data:

• for every cluster s, a square root hs(x)1/2 of hs on Us.

• for every even cluster s (not the top cluster), a square root gs(x)1/2 on
the annulus As;
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• for every odd cluster s (not the top cluster), a square root
(

gs(x)
(x−αs)

)1/2

on the annulus As.

Our choices of gs(x)1/2 and hs(x)1/2 give trivialisations

X|Us
' Us × {±1} for s übereven;

X|As
' As × {±1} for s even, not the top cluster.

Definition 7.5.11 (Notation for annuli and semistable covering). We write Ũs

for X|Us
when s is not übereven. Otherwise, write Ũ±s for the two irreducible

components of X|U±s . We let Ãs denote X|As
, and Ã±s the two different annuli

if s is even. If we write Ũ±s or Ã±s for a non-übereven or odd cluster, we mean

Ũs or Ãs.

We described what X looks like over each Us and As. We want to understand
how to glue these together compatibly over pairwise intersections of Us. For
this, we ask the following compatibility condition on the trivialisations.

Definition 7.5.12 (Übereven compatibility criterion). We assume a compat-
ibility condition between the various inverse square roots of gs and hs, which
takes place over the übereven clusters. Namely, we suppose the following.

• If s is übereven and not the top cluster, then gs(x)1/2 = 1. (Since
gs(x) = 1 here, this says we take the obvious choice of square root.)

• If s is übereven and s′ is a child of s, then

hs(x)1/2|As′ = gs′(x)1/2hs′(x)1/2|As′ .

(Both sides are square roots of f so we are again fixing a sign.)

It is always possible to make these conditions hold after possibly changing
some of the hs(x)1/2 by a sign.

When s is übereven, for every s′ < s, we know that U±s ⊃ A±s′ , and U±s ⊃
A±s if s is not the top cluster. The compatibility conditions ensure that the
trivialisations of X|Us

and X|As
are compatible with one another (i.e., that

A±s ⊂ U±s instead of A∓s ⊂ U±s ).

The following lemma will be used in the proof of Theorem 7.5.15.

Lemma 7.5.13. Let R′ be R if deg(f) is even and R ∪ {∞} if deg(f) is
odd. So R′ is the set of ramification points of X → P1

K . Let D ⊂ P1,an
C` be an

open disc (i.e. either an open disc in A1,an
C` or the complement in P1,an

C` of a
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closed disc in A1,an
C` ) containing at most one ramification point. Then XC` |D

is isomorphic to

1. a disjoint union of two open discs, each mapping isomorphically to D if
#D ∩R′ = 0;

2. an open disc, mapping to D by the squaring map if #D ∩R′ = 1.

Proof. The proof is analogous to the proof of Lemma 7.5.9.

The main theorem in this section is the description of a semistable covering of
Xan.

Theorem 7.5.14. Let π : Xan → P1,an
C` be the map induced by π : X → P1.

Then U := {Ũ±s } is a semistable covering of Xan (where Ũ±s = Ũs when s is
not übereven).

Proof. Note that the canonical reduction of Ũs is a non-empty open inside the
curve y2 = gs(x). This automatically implies that Ũs is irreducible if s is not
übereven, and splits as a disjoint union of two irreducibles if s is übereven. We
see that for any s, the inverse image Ũ±s,0 of Dc

s \
⋃

s′<s
s′ proper

Do
s′ ⊂ Us inside Ũ±s

makes (Ũ±s , Ũ
±
s,0) a basic wide open. Double intersections Ũs ∩ Ũ ′s are empty,

or one of the annuli Ãs or Ãs′ , and triple intersections are empty.

7.5.2 The minimal skeleton of a hyperelliptic curve

We can now write down the minimal skeleton of Xan
C` . The results here give

an interpretation of the results in [DDMM23, Section 8] in the language of
Berkovich spaces.

For a proper cluster s, let ηs ∈ |P1,an
C` | denote the Gauss point of the disc Dc

s.

This is a type II point. If s is not the top cluster, let es ⊂ |P1,an
C` | be the skeleton

of the annulus As,C` . This is an open interval of length equal to the width of

As (i.e. the relative depth δs) embedded isometrically into |P1,an
C` |. Moreover,

the skeleton es is canonically oriented where ∂0(es) = ηs and ∂1(es) = ηP (s)

are the “left and right hand limit points”.

Theorem 7.5.15. Let π : X → P1 be the projection, inducing the map π :
|Xan

C` | → |P
1,an
C` | on the underlying topological spaces of Berkovich spaces. Then

(a) for a proper cluster s, the preimage of ηs in |Xan
C` | consists of:

• two type II points η̃+
s and η̃−s of genus 0 if s is übereven;
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Figure 7.4: Cluster, Berkovich skeleton, special fibre, and reduction map

• one type II point η̃s of genus g(s) := d#odd children of s
2 − 1e otherwise.

(b) For a proper non-top cluster s, the preimage of es in |Xan
C` | consists of

• two embedded oriented intervals ẽ+
s and ẽ−s of length δs, each mapping

oriented-isomorphically onto es with ∂0(ẽ±s ) = η̃±s and ∂1(ẽ±s ) = η̃±P (s) if

s is even. (We permit ourselves to write η̃±s = η̃s if s is not übereven.)

• one embedded oriented interval ẽs of length δs/2 mapping onto es by an
oriented dilation of scale factor 2, with ∂0(ẽs) = η̃s and ∂1(ẽs) = η̃P (s)

if s is odd.

(c) The points η̃±s for s a proper cluster form a semistable vertex set V for Xan
C` ,

whose associated skeleton Γ is the union of the {η̃±s } and the ẽ±s . Moreover,
the choices of η̃±s for s übereven and of ẽ±s for s even are canonical given our
choices of inverse square roots (i.e. our choices of inverse square roots allow
us to distinguish between η̃+

s and η̃−s ).

Remark 7.5.16. One can check that Γ is the minimal skeleton of Xan
C` . However,

V is not necessarily a minimal vertex set for Xan
C` . A minimal vertex set is given

by the points η̃±s for proper non-top clusters s except twins (clusters of size 2),
cotwins (non-übereven clusters with a child of size 2 times the genus of X), as
well as the top cluster if it has ≥ 3 children. See [DDMM23, Theorem 8.5].

Example 7.5.17. The left side of Figure 7.4 shows an example cluster picture
where subscripts denote relative depths. We label the four proper clusters
s2, s3, s4, and s6 according to their size. Let us read off the minimal skeleton.
We have five vertices, η̃2, η̃3, η̃4, η̃

+
6 , η̃

−
6 and five oriented edges ẽ+

2 , ẽ
−
2 , ẽ3, ẽ

+
4 , ẽ
−
4 .
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These are connected up as in the graph on the upper left of Figure 7.4. More-
over, η̃3 has genus 1 and all other vertices have genus 0. The edge lengths are
given by l(ẽ±2 ) = 1, l(ẽ3) = 1/2, and l(ẽ±4 ) = 2.

This Berkovich skeleton associated to X covers the Berkovich skeleton of a
semistable model of P1(R). This skeleton is depicted in the lower left. Mov-
ing right, we have an artistic depiction of the Berkovich spaces of X and
P1,an decomposed into wide opens and annuli, corresponding to the semistable
covering. These come equipped with reduction maps to their special fibres,
depicted to its right.

Proof of Theorem 7.5.15. (a) If s is an übereven cluster, we know that X|Us
'

Xs|Us
= Us × {±1} via the isomorphism in (7.5.1.1). Since ηs ∈ |Us,C` |, its

preimage π−1(ηs) ⊆ X|Us
thus consists of the two type II points η̃±s = (ηs,±1),

both of genus 0.

If s is an odd cluster, then the fibres of the map π are described in (∗) in the
proof of [Ber90, Proposition 3.4.6]; this shows that the fibres are size 1 or 2.
Therefore, the cover |Xan

C` | → |P
1,an
C` | is a ramified topological double covering.

In particular, the ramification locus is closed. For any odd non-top cluster s,
Lemma 7.5.9 shows that es lies in the ramification locus (the squaring map on
annuli is ramified along the skeleta). Then ηs lies in the ramification locus,
since it lies in the closure of es. If s is the top cluster and odd, then f has odd
degree, so ∞ ∈ R′. In this case, Lemma 7.5.13 implies that Xan

C` |D∞ consists

of a single disc mapping via the squaring map to D∞ = P1,an
C` \ D

c
s. Hence

the map |Xan
C` | → |P

1,an
C` | is again ramified over the open arc from ηs to ∞ in

|P1,an
C` |, and so ηs lies in its ramification locus. In either case, the point ηs lies

in the ramification locus, so has one preimage in |Xan
C` |, and therefore is of type

II.

To finish part (a), we need to prove the assertion regarding the genus. For this
we use the fact that, if k denotes the residue field of C` (an algebraic closure
of the residue field k of K), and if Xη̃s denotes the smooth projective curve
over k associated to η̃s, then there is a bijection

Xη̃s(k) ' Tη̃sXan
C` = tangent directions at η̃s ∈ |Xan

C` |

[BPR13, Lemma 5.12(3)]. Moreover, this identification is natural with respect
to finite morphisms of curves, so we have the induced map

Xηs(k)→ Pηs(k) ' P1
k
(k),

where Pηs(k) is the component of P1
k

given by red(η), see (7.2.1.2).
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Our strategy now is to describe the tangent directions in |P1,an
C` | at ηs and their

lifts to tangent directions at η̃s in |Xan
C` |. There are three different classes of

tangent directions. First, the “upward tangent direction” goes along es for s
non-top; if s is the top cluster then we mean the tangent direction on the arc
from ηs to ∞. These lift to two tangent directions if s is even, and one if s
is odd. Second, the “downward tangent direction” goes along e−1

s′ for every
s′ < s proper child. These lift to two tangent directions if s′ is an even proper
child, and one if s′ is odd proper child. Third, there is a tangent direction for
every disc component of P1,an

C` \V whose closure contains ηs. In this case there
are two lifts except if D contains a root of f (necessarily unique).

As a consequence, the number of ramification points of Xη̃s → P1
k

is equal to

the number of odd children of s, plus 1 if s itself is odd. Since Xη̃s → P1
k

has

degree 2, this implies that Xη̃s is a hyperelliptic curve over k of genus g(s).

(b) Let s be a proper, non-top cluster. Since es is the skeleton of As, it follows
from Lemma 7.5.9 that for a proper, non-top even (resp. odd) cluster s, the
set π−1(es) is the union of two (resp. 1) embedded open intervals, each of
length δs (resp. δs/2).

It remains to compute the endpoints of π−1(es). We know that ∂0(ẽ±s ) must
be a preimage of ηs = ∂0(es). If s is non-übereven, there is only one preimage.
When s is übereven, we want to show that ∂0(ẽ+

s ) = η̃+
s rather than η̃−s . This

is a consequence of our compatibility assumptions. A similar argument deals
with ∂1.

(c) Recall that a semistable vertex set V is a finite set of type II points such
that Xan

C` \ V is a disjoint union of open discs and finitely many open annuli.
By definition, its skeleton is the union of V and the skeleton of the annuli in
Xan

C` \ V .

Let V0 ⊂ |P1,an
C` | be the set consisting of the points ηs, where s ranges over

all proper clusters. This is a semistable vertex set, since it is a finite set and
P1,an
C` \ V0 is the disjoint union of the annuli As (for s proper, non-top) and

open discs each of which contains at most 1 ramification point of f . Let Γ0

be the skeleton of V0. Since π : X → P1 is finite, it preserves types of points
and so π−1(V0) = V is a finite set of type II points. Moreover, Xan

C` \ V is the
disjoint union of Xan

C` |As
(for s proper, non-top) and Xan

C` |D for D an open disc

component in P1,an
C` \ V0. These are (disjoint unions of) open annuli and discs

by Lemmas Lemma 7.5.9 and Lemma 7.5.13, so V is a semistable vertex set.
Moreover, Lemma 7.5.9 shows that the preimage of the skeleton of As is the
skeleton of Xan

C` |As
, so π−1(Γ0) = Γ is the skeleton associated to V , concluding
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our proof.

Finally, we give a useful theorem to decide if a component of the dual graph
contains the reduction of Q`-points. First we set up some notation.

Definition 7.5.18 (Components of special fibres associated to clusters). Let
X/Q` be a hyperelliptic curve. Let s be a cluster of X. Let X be the semistable
model of XC`corresponding to the semistable covering from Theorem 7.5.14.
We write X̄±s for the the component(s) of the special fibre of X corresponding
to s and g(s) for the genus of these components.

Theorem 7.5.19. Let X/Q` be a hyperelliptic curve. Let s be a proper cluster
of X. Write X̄±,◦s = X̄ \ ∪s′ 6=sX̄±s′ . If X̄±,◦s contains the reduction of a Q`-
point, then at least one of the following is true:

1. s has a singleton child which is Q`-rational;

2. s is the top cluster and X has a Q`-rational point at infinity;

3. νs ∈ 2Z.

Furthermore, if X̄±s ∩ X̄±s′ contains the reduction of a Q`-point and s = P (s′)
then (νs, ν

′
s) contains an even integer.

Proof. Let V0 ⊂ |P1,an
C` | be the set of Gauss points ηs attached to proper

clusters s. Let Γ0 be the skeleton of P1,an
C` corresponding to V0, and let Γ1

be the skeleton of the open curve A1,an
C` rR where R is the set of roots of f .

Though we have not explained the full definition of the skeleton of an open
curve [BPR13, Definition 3.3], in this case, we can say explicitly that Γ1 is
the union of Γ0 and a number of open rays isometric to (0,∞). We have
one such ray for each root r of f , connecting r ∈ |P1,an

C` | to ηs where s is
the smallest proper cluster containing r, and one additional ray connecting
the Gauss point attached to the top cluster to the point at ∞. According to
[BPR13, Definition 3.7], there is a canonical retraction τ1 : |A1,an

C` | rR → Γ1

[BPR13, Definition 3.7].

Now suppose that (x, y) ∈ X(Q`) is Q`-rational. We assume without loss of
generality that (x, y) is not a point at infinity or a Weierstrass point. Note
that (x, y) reduces onto X̄±s if and only if x ∈ Us, and (x, y) reduces onto X̄±s ∩
X̄±P (s) if and only if x ∈ As. There are four cases to consider:

Firstly, suppose that τ1(x) lies on the ray connecting a root r of f to ηs,
where s is the parent of {r}. This ray is the skeleton of a punctured open
disc D r {r} where D 3 x. Since D contains a Q`-rational point, it must be
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setwise invariant under the action of the Galois group of Q`, and so too must
be {r} = D ∩R. So r is a Q`-rational root of f which is a singleton child of s
and x reduces onto X̄±,◦s .

Secondly, suppose that τ1(x) lies on the ray connecting ηs to ∞ for s the top
cluster. This ray is the skeleton of a punctured disc Dr{∞} where D ⊂ P1,an

C`
is an open disc around ∞ (complement of a closed disc in A1,an

C` ). There are
two possibilities, depending on the degree of f . Either the preimage of D
inside Xan

C` is an open disc mapping to D via a finite degree 2 map ramified
over ∞, or it is a disjoint union of two open discs mapping isomorphically
to D. In either case, X has a Q`-rational point at ∞ (e.g. in the second case,
one of the two discs must contain (x, y), and so be fixed by the natural Galois
action). In this case, (x, y) reduces onto X̄±,◦s for s the top cluster.

Thirdly, if τ1(x) = ηs is the Gauss point of some cluster s, then we have

v(f(ηs)) = v(f(x)) = 2v(f(y)) ∈ 2Z

by the slope formula [BPR13, Theorem 5.15]. But it is easy to check, e.g. by
factorising f , that νs = v(f(ηs)), so νs ∈ 2Z. In this case, x lies in Us but not
any of the annuli As′ , so (x, y) reduces onto X̄±,◦s .

Finally, if τ1(x) lies in the skeleton of an annulus As, then arguing as above,
we have that v(f(τ1(x))) = v(f(x)) ∈ 2Z. But the skeleton of As is an open
interval in |P1,an

C` | connecting the two Gauss points ηs and ηP (s). Since the
valuation of f is a linear function along this interval [BPR13, Theorem 5.15(2)],
it follows that v(f(τ1(x))) ∈ (νP (s), νs) and we are done.

Example 7.5.20. Suppose that X has the cluster picture shown in Figure 7.5
at ` and that the leading coefficient of X is a unit in Z`. Then the local height
of any Q`-point on X is 0.

Figure 7.5: Cluster picture

7.5.3 Computing the Coleman–Iovita maps

In this section, we use the semistable covering U to describe the maps from
Section 7.4.2 for hyperelliptic curves. Recall that ϕ2 is needed to translate the
action of the endomorphism Z∗ on H1

dR(X/K) to the action of Z∗ on H1(Γ,K).
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In addition, we need ϕ1 to compute the trace of Z∗ on H1
rig(X̄s/K) for higher

genus clusters s.

The following lemma gives an explicit way of describing the map

ϕ2 : H1
dR(X/K)→ H1(Γ,K)

for hyperelliptic curves by reducing the calculation to computing residues on
P1.

Lemma 7.5.21. Let X be a hyperelliptic curve, and s be a non-top cluster

with associated annulus As ⊆ A1,an
K . Let ω = P (x)dx

2y ∈ H1
dR(X/K), where

P (x) is a polynomial. If s is odd, then Resπ−1(As)(ω) = 0. If s is even, recall

that π−1(As) = Ã+
s t Ã−s . In this case,

−ResÃ−s (ω) = ResÃ+
s

(ω) = ResAs

(
P (x)dx

2gs(x)1/2hs(x)1/2

)
,

where t is any parameter on the annulus.

Proof. For any proper cluster s′ contained in s, applying Lemma 7.4.2 to Ũs′

(or both components of Ũs′ if s′ is übereven) shows that∑
s′′<s′

ResÃ±
s′′

(ω)− ResÃs′
(ω) = 0

or ∑
s′′<s′

ResÃ±
s′′

(ω)− ResÃ+

s′
(ω)− ResÃ−

s′
(ω) = 0 ,

according to whether s′ is odd or even. We use our conventions for the ori-
entations of annuli as in Example 7.2.11. Summing this identity over all
proper clusters s′ contained in s shows that ResÃs

(ω) = 0 if s is odd, and
ResÃ+

s
(ω) + ResÃ−s (ω) = 0 if s is even.

Finally, when s is even, the isomorphism As ' Ã+
s is given by

x 7→ (x, gs(x)1/2hs(x)1/2)

by (7.5.1.2). So ω = P (x)dx
2y pulls back to the differential form P (x)dx

2gs(x)1/2hs(x)1/2

on As and we are done.

In order to explicitly compute ϕ1, we use the semistable covering U. Let
ω ∈ ker(ϕ2). Recall that ω|Ũs

has residue 0 over all bounding annuli of Ũs.
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Therefore, ω ∈ H1
dR(X̄s/K). Our goal is to compute this restriction in terms

of a basis η1, . . . , η2g(s) of H1
dR(X̄s/K). There exist ai ∈ K such that

ω|Ũs
=

2g(s)∑
i=1

aiηi|Ũs
+ exact form. (7.5.3.1)

To compute the coefficients ai, we use global and local symbols.

Definition 7.5.22. LetX be a smooth projective curve overK, letDc
1, . . . , D

c
k

be some pairwise disjoint closed discs in the analytification Xan, and let U :=
Xan r

⋃
iD

c
i be the complement of these discs. Choose some open discs Do

i ⊃
Dc
i , still pairwise disjoint, and let Ai := Do

i r Dc
i ⊂ U be the corresponding

annulus bounding the disc Dc
i . If ω, η are two differential forms on U , each

with residue 0 on each annulus Ai, then the global symbol 〈ω, η〉 is defined to
be a sum of local symbols 〈ω, η〉Ai

〈ω, η〉 :=
∑
Ai

〈ω, η〉Ai ,

where

〈ω, η〉Ai := −ResAi

(
ω ·
∫
η

)
∈ K.

Since η has residue 0 on each Ai, it has a formal antiderivative
∫
η on Ai, which

is unique up to an additive constant of integration. Because ω also has residue
0, the residue of ω ·

∫
η on Ai is independent of this constant of integration.

We now describe how to practically compute these local symbols in our use
case, where ω ∈ kerϕ2, and η is a differential on Xs for some cluster s. First,
we remark that in any and all calculation, both ω and the ηi are chosen to be
in the −1 eigenspace of the hyperelliptic involution ι of X.

Recall that the choice of a square root h
1/2
s determines an isomorphismX|Us

→
Xs|Us

. We let ω̃ denote the differential on Xs that ω maps to under this
isomorphism. The formula for local symbols on Xs becomes

〈ω̃, η〉 = −
∑
s′≤s

ResÃ±
s′

(
ω̃ ·
∫
η

)
∈ K. (7.5.3.2)

Here we are taking the orientation on Ã±s′ induced by their inclusion in the wide

open Us. To compute ResÃ±s

(
ω̃ ·
∫
η
)
, pick a parameter of Ã±s . If s is even,

this parameter will be a parameter of A±s , and if s is odd it will be a square
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root of a parameter on As. We can then express everything in this parameter
by using our choice of a local square root of gs, the defining polynomial for
Xs. Note that the resulting local symbol does not depend on the sign choice

we made for g
1/2
s , since by assumption ι(ω) = −ω and ι(η) = −η. A different

sign choice would multiply the global symbol by (−1)2. In particular, we find
ResÃ+

s

(
ω̃ ·
∫
η
)

= ResÃ−s

(
ω̃ ·
∫
η
)
. Write ω = a(x)dx/(2y) on the curve X.

Write ω̃ = a(x)dx/(2h
1/2
s us) and η = b(x)dx/(2us) on the curve u2

s = gs(x).
We compute the formula.

〈ω̃, η〉 =
∑
s′≤s

σs,s′


1
2 Resx=αs′

(
a(x)h

− 1
2

s g
− 1

2
s dx ·

∫
b(x)g

− 1
2

s dx
)

if s′ is even

Rests′=0

(
a(x)h

− 1
2

s (x)g
− 1

2

s,s′(x)dts′ ·
∫
b(x)g

− 1
2

s,s′(x)dts′
)

if s′ is odd
∈ K

(7.5.3.3)

where σs,s′ = −1 if s = s′ and +1 otherwise, and in the odd case we recall
ts′ is the coordinate on X|As′ from (7.5.1.3), and x = t2s′ + αs′ , and in the
odd case gs,s′ is shorthand for gs/(x− αs′). The choice of square root of gs,s′

does not matter,since a different choice multiplies the global symbol by (−1)2.
(However, we have already made a choice of square root of gs,s′ ; this choice

can be determined by asking that h
1
2
s g

1
2

s,s′ and h
1
2

s′g
1
2

s′,s′ are the same square
root of f/(x− αs′).)

Proposition 7.5.23. [Bes00, Proposition 4.10] cf. [BB12, Proposition 2.5]
Suppose ω and η are restrictions of algebraic 1-forms of the second kind on X.
Let [ω], [η] ∈ H1

dR(X/K) be the associated de Rham cohomology classes.

〈ω, η〉 = [ω] ∪ [η] ∈ H2
dR(X/K) = K .

In particular, 〈ω, η〉 depends only on the de Rham cohomology classes repre-
sented by ω and η.

Now we are ready to solve for the coefficients ai from (7.5.3.1). For each
j = 1, . . . , 2g(s), we compute

〈ω, ηj〉 =

2g(s)∑
i=1

ai〈ηi, ηj〉. (7.5.3.4)

This gives a system of 2g(s) linear equations in the 2g(s) variables a1, . . . , a2g(s),
and this system of equations has a unique solution since the cup product pair-
ing on H1

dR(X̄s/K`) is perfect.
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7.6 Computations

We give more details in the computation of the Coleman–Iovita morphisms,
as well as how this results in the provably correct rational matrix of the action
of Z∗ on H1(Γ,Z), and integer traces trv(Z).

We first focus on the computations of the Coleman–Iovita morphisms from Sec-
tion 7.5. As explained in Lemma 7.5.21, determining ϕ2 reduces to computing
residues over annuli As on P1 for all even clusters s. To do this explicitly, we
use Lemma 7.5.5 to construct an inverse square root of f(t), where t is a choice
of parameter in As. In order to have a provably correct result, it is important
for our calculations to keep track of the p-adic precision of the approximations
we make; this is why we do the following p-adic analysis.

In this section, we assume (K, v : K → R≥0 ∪ {∞}) is a field with a non-
archimedean valuation. In applications, we will always take K to be a finite
extension of Q` together with its normalised valuation v.

Analytic functions on an annulus have a concrete characterisation. In order
to carry out explicit computations, we need to work on the ring of analytic
functions on closed annuli. That is, if A[`−v1 , `−v2 ] is the standard closed
annulus centered at 0 with inner and outer radii `−v1 and `−v2 , we work in
the ring of power series

∑
i∈Z ait

i ∈ O(A) where the ai satisfy

lim
i→−∞

v(ai) + v1 · i =∞ and lim
i→∞

v(ai) + v2 · i =∞.

Definition 7.6.1. Let A ⊆ P1,an
K be a closed annulus centered at 0 with inner

and outer radii `−v1 and `−v2 .

For each w in the closed interval [v2, v1] define the valuation vw : O(A)→ Q,
given by vw(h) = min v(ai) + w · i : i ∈ Z, where h =

∑
i∈Z ait

i ∈ O(A). We
let m ⊂ O(A) denote the ideal of elements h with vv1(h) > 0 and vv2(h) > 0.

Most of the time, we are interested in the units of the ring O(A), because
many of the operations, like taking the inverse and taking a square root, are
only applicable to units. To both recognise units, and easily work with them,
we provide the following notion of decomposition for units.

By considering the Newton polygon, we find the following proposition charac-
terising the units of O(A).

Proposition 7.6.2. Let A ⊆ P1,an
K be a closed annulus centered at 0 with

inner and outer radii `−v1 and `−v2 . Let t be a parameter on A and let h =
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∑
i ait

i ∈ O(A). For k = 1, 2, we define the quantities

ik := argmin(v(ai) + ivk),

where argmin(v(ai) + ivk) is the minimal index that minimises the quantity
v(ai) + ivk. Then, the following are equivalent.

(i) There is a factorisation

h(t) = ctd(1 + g(t)),

where d ∈ Z, c ∈ K×, and the valuation of g(t) at the Gauss points of
the closed balls B(0, `−v1) and B(0, `−v2) is positive;

(ii) the minimum for each i1 and i2 is achieved once, and i1 = i2;

(iii) h has no zeros on A;

(iv) h is an unit in O(A).

Moreover, if these hold, then in the factorisation d = i1, c = ad, and g(t) =
h(t)t−d/c, and we call (c, d, g) a decomposition of h.

Proof. For the equivalence of (i), (iii), and (iv) see [BPR13, Proposition 2.2].
We will show the equivalence of (i) and (ii). This follows from the following
observations. If we write

h = ctd(1 + g(t))

for some c ∈ K×, d ∈ Z, g ∈ O(A), then d minimises (v(ai)+ ivk) if and only if
the valuation at the Gauss point of the closed ball B(0, `−vk) is non-negative,
and d is the unique index where this is minimised if and only if the valuation
is positive.

To do practical computations on an annulus A, we have to represent elements
h ∈ O(A) up to finite precision in some specified way. For rings like Qp and
R, this is typically done using ball arithmetic: one gives the center x (often
taken to be in some countable subring, for example Q), some bound on the
error b, and this then represents any number y with |y − x| ≤ b. These balls
can be added and multiplied, and one can easily propagate the error bounds.
The equivalent notion for O(A) has two error bounds, corresponding to the
two different valuations vv1 , vv2 on O(A).

Definition 7.6.3. A representation of an element h ∈ O(A) is a triple of

elements (h̃, B1, B2) where h̃ ∈ K[t, t−1], Bi ∈ R ∪ {∞} and vvi(h − h̃) ≥ Bi
for i ∈ {1, 2}. We say h̃ represents h.
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Remark 7.6.4. A representation (h̃, B1, B2) represents infinitely many different
f .

Remark 7.6.5. Let h ∈ O(A) be represented by (h̃, B1, B2), where h has co-

efficients (ai)i∈Z and h̃ has coefficients (ãi)i∈Z. Then we see v(ai − ãi) ≥
max(−iv1 +B1,−iv2 +B2).

Lemma 7.6.6. Let (h̃, B1, B2) be a representation for h ∈ O(A). If h̃ has a

decomposition (c, d, g̃) and vvi(h̃) < Bi for i = 1, 2, then h has a decomposition
(c, d, g) where (g̃, B1− v(c)− v1 ·d,B2− v(c)− v2 ·d) represents g. If not, then

h̃ represents an element which achieves the value 0 on A.

Proof. If h̃ is not a unit (which happens if and only if it does not have a
decomposition), then the lemma is clear. Otherwise, let (c, d, g̃) be the decom-

position of h̃, and define g = h/(ctd) − 1. Then (g̃, B1 − v(c) − v1 · d,B2 −
v(c) − v2 · d) represents g. If vvi(h̃) < B1, B2, then we see g must lie in m,
and (c, d, g) represents h. Otherwise, there is a choice of g′ represented by
(g̃, B1 − v(c)− v1 · d,B2 − v(c)− v2 · d) that achieves the value −1, and then

h′ = ctd(1 + g′) is represented by (h̃, B1, B2) and achieves the value 0.

Lemma 7.6.7. Assume v(2) = 0. Let h ∈ O(A) by represented by (h̃, B1, B2).

Assume h̃ has a decomposition (c, d, g̃) as in Lemma 7.6.6. If d is odd or c
is not a square, then h has no (inverse) square root. If d is even and c is a

square, then h−
1
2 is represented by

((c−1/2xd/2
k∑
i=0

(
− 1

2

i

)
g̃i,min(v(c−1/2) + dv1 + (k + 1)vv1(g̃),

1

2
B1),

min(v(c−1/2) + dv2 + (k + 1)vv2(g̃),
1

2
B2))

for any k ∈ Z≥1.

Proof. This follows immediately from the power series expansion of (1+x)−
1
2 ,

and the fact that
(− 1

2
i

)
has valuation at least 0.

Let s be an even non-top cluster. We use Proposition 7.6.2 and Lemma 7.6.7
to construct an inverse square root of f(t) on the annulus As.

To compute the map ϕ1, we need to compute the local symbol explicitly. Let
ω ∈ H1

dR(X/K) be in the kernel of ϕ2. Fix s a cluster such that g(s) > 0.
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Recall that we have chosen a basis η1, . . . , η2g(s) for H1
dR(Xk,s/K). We want

to compute 〈ω, ηi〉 and 〈ηi, ηj〉 for 1 ≤ i, j ≤ g(s). The global symbol is a sum
of local symbols as in (7.5.3.2). This motivates the following lemma on the
precision analysis for integration of functions on an annulus.

Lemma 7.6.8. Let h ∈ O(A) be a function with representation (h̃, B1, B2),

with the coefficient of a−1 being 0 for h and h̃. Let A′ be an annulus with
inner and outer radii `−v1+ε and `−v2−ε. Let δ(ε) denote the minimal value
of ε · i − v(i) for i ∈ Z>0. Then the integral of h on A′ is well-defined and

represented on A′ by (
∫
h̃, B′1, B

′
2), where

B′1 = min(B1 + v1 − δ(ε), B2 + v2 − δ(v1 − ε− v2))

and

B′2 = min(B2 + v2 − δ(ε), B1 + v1 − δ(v1 − ε− v2)).

Proof. We present a sample computation, showing that B′1 ≥ B1 + v1 − δ(ε).
Assume for simplicity that h = ati with i < −1 and h̃ = bti, with v(a−b)+ivi ≥
Bi. Then

v

(
1

i+ 1
(a− b)

)
+ (i+ 1)(v1 − ε) ≥ B1 + v1 − vp(i+ 1)− ε(i+ 1)

≥ B1 + v1 − δ(ε).

The cases where i ≥ 0, or we bound B2 instead of B1 proceed similarly.

In order to compute Z∗ on H1(Γ,Z) and trv(Z), we also need a matrix for the
action of Z∗ on H1

dR(X/K). We now describe a method to compute such a
matrix with rational coefficients. This method is entirely new, and solves the
problem of how to determine the matrix of an endomorphism on H1

dR(X/K)
precisely. Previously methods for quadratic Chabauty use the Hecke operator
Z = Tp as the endomorphism and employ Eichler–Shimura to determine the
action of Tp on de Rham cohomology to arbitrary p-adic precision [BDM+21,
§3.5.2]. These methods are restricted to modular curves, and other proposed
methods only compute the action of Z∗ to some p-adic precision. In order to
determine the local heights at ` 6= p as a rational multiple rχ($K) for r ∈ Q
(as in Section 7.3), we need to know the action of Z∗ exactly. (Otherwise we
can only determine r to some `-adic precision.) To solve this problem, we
produce a method to rigorously compute the integer matrix for the action of
Z∗.
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Proposition 7.6.9. Let π1 and π2 be the projections from X ×X → X. Let
ω be a 1-form on X. Let Z ⊂ X ×X be a correspondence. Let ω0 be a fixed
non-zero 1-form. Define g := (π∗1ω/π

∗
2ω0); this is a rational function on Z.

Then

Z∗ω = π2,∗(π
∗
1ω) = (π2,∗g)ω0.

Here, the pushforward π2,∗g denotes the trace of g in the extension K(Z)/K(X)
of function fields.

Proof. By the projection formula [Har75, Theorem 7.5]

π2,∗(π
∗
1ω) = π2,∗(g · π∗2ω0) = π2,∗(g) · ω0.

Choose ωi for i = {0, . . . , 2g−1} be a basis for H1
dR(X/K) constructed by tak-

ing linear combinations of xidx/2y for i = 0, . . . , 2g. We use Proposition 7.6.9
to compute Z∗(ωi) for all i = 1, . . . , 2g − 1. The last step is to rewrite these
elements in terms of the basis we chose.

Note that the class of any differential form g(x, y)dx ∈ H1
dR(X/K), where

g(x, y) ∈ K(X), is equivalent in cohomology to the class of 2y(g(x, y) −
g(x,−y))dx

2y , where 2y(g(x, y) − g(x,−y)) is a rational function only in x. So

now we reduce to the case of forms g(x)dx
2y , where g(x) ∈ K(x). Then, a linear

algebra argument allows us to write g(x)dx
2y in terms of the basis {ωi}2g−1

i=0 .

Proposition 7.6.10. Let s1, . . . , sN be clusters of f such that the set of edges
corresponding to {Asi}Ni=1 in the dual graph are the complement of a spanning
tree.

Let T be the matrix with

Tij = ResAsi
ωj .

This has a right inverse T−1. Let M be the matrix of Z∗ acting on H1
dR(X/K).

Then the matrix of Z∗ on H1(Γ,K) is TMT−1.

Proof. We can identify H1(Γ,K) with K{s1,...,sN}; the contraction of the com-
plementary spanning tree in the dual graph is a bouquet of N circles. Note that
T is the matrix of the K-linear morphism ϕ2 sending ωj 7→

∑
i Ressj Asiωj

under this identification. By Theorem 7.4.14, the pushforward Z∗ is preserved
under ϕ2. The matrix for Z∗ acting on H1(Γ,K) is then given by conjugating
M by T .
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Using Theorem 7.3.5, we can bound the operator norm of the matrix with
entries in K obtained from Proposition 7.6.10. By computing the matrix T
with enough `-adic precision, this allows us to obtain a matrix with entries
in Q. In the rest of this section we determine precise bounds. We start by
bounding the size of the integers appearing in the matrix.

Proposition 7.6.11. Let Z ⊂ X×X be an effective correspondence of degrees
d1 and d2 over X, respectively. Let M be the integer matrix representing Z∗
on H1(Γ,K). Let C denote the matrix of the intersection length pairing on
homology. Write C = PPT for some invertible matrix P . Let ‖ · ‖max be the
norm given by the maximum of the absolute values of the entries. Then we
have the bound

‖M‖max ≤
2g2

‖P‖max‖P−1‖max

√
d1d2.

Proof. By Theorem 7.3.5, the operator norm of Z∗ with respect to this in-
tersection pairing ‖Z‖L is bounded by

√
d1d2 where di is the degree of the

projection πi : Z → X. Since C is a positive definite symmetric matrix, we
can write C = PPT for some invertible matrix P . This allows us to give a
bound on the entries of M . It can be checked by evaluating on standard basis
vectors that ‖M‖2I ≥ ‖M‖2max where I is the identity matrix (and ‖M‖max is
maximum over the absolute value of the entries). Therefore

‖Z‖2L = ‖PZP−1‖I ≥ ‖PZP−1‖2max.

We obtain the bound ‖M‖max ≤ 2g2

‖P‖max‖P−1‖max

√
d1d2.

Corollary 7.6.12. Let M,C,P be as above. Let c := 2g2

‖P‖max‖P−1‖max

√
d1d2.

Let k ≥ 0 be an integer such that v`(M
′
ij −Mij) ≥ k. Suppose that M ′ is an

integer matrix such that ‖M ′‖max ≤ c and c+ ‖M ′‖max < `k. Then M = M ′.

Using the techniques for working with O(A) developed in this section, one can
compute M up to arbitrary p-adic precision, and Corollary 7.6.12 allows us
to determine when we have computed enough to uniquely determine M . An
example of this is worked out in Section 7.7.2.

We end by discussing how to compute the trace of the endomorphism Z acting
on the de Rham cohomology of a single vertex once we have determined M .

Proposition 7.6.13. Let s be a cluster. Let ω′0, . . . , ω
′
d be a basis for ker(ϕ2).

Recall that we chose a basis η1, . . . , ηg(s) of H1
dR(X̄s,K). For each ω′i, define

sij ∈ K such that ω′i =
∑2g(s)
j=0 sijηj found using (7.5.3.4). Let Ss be the matrix
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Figure 7.6: Cluster picture for example in Section 7.7.1

with entries Sij = sij. Let S be the block matrix consisting of all Ss, repre-
senting the map ϕ1 : H1

dR(X/K) →
⊕

v H1
rig(X̄v/K). This has a right inverse

S−1. Let M be the matrix of Z∗ acting on H1
dR(X/K). Then SMS−1 is the

matrix representing the induced action of Z∗ on
⊕

v H1
rig(X̄v/K), and tr(Zs)

is the trace of the diagonal block of SMS−1 corresponding to H1
dR(X̄s,K) ∼=

H1
rig(X̄s/K).

Proof. Note that S is the matrix of the K-linear morphism ϕ1. By Theo-
rem 7.4.14, the pushforward Z∗ is preserved under ϕ1. The matrix for Z∗
acting on H1(Γ,K) is then given by conjugating M by S.

7.7 Examples

In this section we work through some illustrative examples of our method.

7.7.1 Bielliptic curve

As a warm-up, let q be an odd prime number. We consider the genus 2 bielliptic
curve with affine equation

X : y2 = (x2 − qα)((x− 1)2 − qβ)((x+ 1)2 − qβ).

This curve has bad reduction at q. We will compute the local height contri-
bution at q using the formula from Theorem 7.3.9 and via intersection theory.
The bielliptic involution ϕ : x 7→ −x gives rise to a trace 0 endomorphism of
the Jacobian of X; we use the correspondence Z arising from this endomor-
phism.

First, we use the method described in Section 7.3.2. The cluster picture for
this curve is presented in Figure 7.6. The reduction graph associated to the
semistable cover is given in Figure 7.7 where l(e0) = α and l(e1) = l(e−1) = β.
The bielliptic involution defines the action Z∗(e0) = −e0, Z∗(e1) = −e−1, and
Z∗(e−1) = −e1.

We fix the midpoint of the edge e0 as our base point. To apply the formula
from Theorem 7.3.9, we first compute the orthogonal projections of the edges
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Figure 7.7: Reduction graph for bielliptic example

in the first homology of the dual graph. For that, we note that the pairing on
the span of the edges is given by

〈ei, ej〉 =

{
l(ei) if i = j;

0 otherwise.

Thus, the orthogonal projections are

π(e0) =
α

2α+ β
(2e0 − e1 − e−1); π(e1) =

1

2α+ β
((α+ β)e1 − βe0 − αe−1);

π(e−1) =
1

2α+ β
((α+ β)e−1 − βe0 − αe1).

Then, we compute

〈e0, Z∗π(e0)〉 = − 2α2

2α+ β
; 〈e1, Z∗π(e1)〉 = 〈e−1, Z∗π(e−1)〉 =

αβ

2α+ β

to obtain the measure

µZ = − 4

2α+ β
|ds0 |+

2α

β(2α+ β)
|ds1|+

2α

β(2α+ β)
|ds−1|,

where |dsi| is the arc-length measure along the edge ei for i = −1, 0, 1. We

conclude that h̃Z,q is given by
− 2

2α+β s
2
e0 + a0se0 + b0 on e0, with 0 ≤ se1 ≤ α;

α
β(2α+β)s

2
e1 + a1se1 + b1 on e1, with 0 ≤ se1 ≤ β;

α
β(2α+β)s

2
e−1

+ a−1se−1
+ b−1 on e−1, with 0 ≤ se−1

≤ β.

with constants ai and bi for i = −1, 0, 1. To find the exact values of the
constants, we use that the polynomials must agree at endpoints, must vanish
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at the chosen base point, and that ∆2(h̃Z,q)− µZ = 0 imposes a condition on
the derivatives. This yields the local height function

− 2
2α+β

(
α
2 − se0

)2
on e0, with 0 ≤ se0 ≤ α;

α
β(2α+β)

(
β
2 − se1

)2

− α
4 on e1, with 0 ≤ se1 ≤ β;

α
β(2α+β)

(
β
2 − se−1

)2

− α
4 on e−1, with 0 ≤ se−1

≤ β.

(7.7.1.1)

Now we compute local heights via intersection theory: the local height at q
for a prime of bad reduction is defined in terms of intersection theory on the
special fibre of a regular model XZq as in the beginning of Section 7.3. Let
X /Zq be the minimal regular model of Y . Then the following are true.

• The special fibre XFq consists of two copies of P1
Fq connected by three

chains of projective lines P1
Fq of lengths α−1, β−1, and β−1, respectively.

• The action of ϕ on XFq interchanges the two distinguished copies of P1
Fq ,

reverses the chain of length α−1, and reverses and interchanges the two
chains of length β − 1.

Let Z = Γϕ be the graph of ϕ. Let P ∈ X (Zq) be any point. Following
(7.3.0.1), let

DZ(b, P ) = Xϕ − ϕ(P )− ϕ(b)

be the divisor on the generic fibre, where Xϕ is the set of fixed points under
ϕ. We denote its closure in X also by

DZ(b, P ) = X ϕ − ϕ(P )− ϕ(b).

Our aim is then to find the vertical divisor V such that DZ(b, P ) := DZ(b, P )+
V has intersection number 0 with every vertical divisor. By normalising V so
that the coefficient of the component containing b̄ is zero, then the local height
h̃Z,q(P ) is the coefficient of the component of V containing P̄ .

Write the component of XFq containing the point P̄ as [P̄ ]. Equivalently,
without normalising, the height is given by

(coefficient of [P̄ ]− coefficient of [b̄]).

Write L for the matrix of the intersection pairing on components of the special
fibre. We want a Q-linear combination V of components such that

L · V = D(P̄ , b̄) = [ϕ(P̄ )]− [b̄]
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Figure 7.8: Special fibre for bielliptic example when α = 2, β = 1

(using that X ϕ and ϕ(b) both reduce onto the same component as b). There-
fore

h̃Z,q(P ) = ([P̄ ]− [b̄]) · L−1([ϕ(P̄ )]− [b̄]). (7.7.1.2)

(One should be careful since L is not an invertible matrix. However [ϕ(P̄ )]−[b̄]
is in its image, and the local height is independent of the choice of preimage.)

Now L is also (by definition) the Laplacian matrix of the dual graph of XFq ,
and we recognise (7.7.1.2) as the formula for the height pairing on degree 0
divisors on a graph. So

h̃Z,q(P ) = 〈[P̄ ]− [b̄], [ϕ(P̄ )]− [b̄]〉. (7.7.1.3)

Via the theory of electrical circuits on graphs, we can compute (7.7.1.3) ex-
plicitly, breaking it into cases depending on the component of the reduction of
P . We obtain local heights agreeing with (7.7.1.1).

We work though one explicit example when α = 2 and β = 1. By blowing
up at the singular point x = y = q = 0, we compute a regular model X /Zq,
given by the equations

y2 = (x2 − q2)((x− 1)2 − q)((x+ 1)2 − q),
Y 2 = (X2 −Q2)((x− 1)2 − q)((x+ 1)2 − q),
xY = Xy, yQ = Y q, qX = Qx

in A2
Zq × P2

Zq , which maps to the original curve by (x, y;X,Y,Q) 7→ (x, y).
The special fibre XFq is depicted in Figure 7.8. By counting intersections of
components, we see that

L =

−3 2 1
2 −3 1
1 1 −2


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where the basis of L is the components in the order blue (left), pink (right),
purple (top).

The graph Γϕ ⊂ (A2 × P2)2 is given by the explicit equations {y = y′, x =
−x′, X = −X ′, Y = Y ′, Q = Q′}. Then X ϕ = {(0, iq(1 − q); 0, i(1 −
q), ), (0,−iq(1 − q); 0,−i(1 − q), 1)} are the fixed points under ϕ. This di-
visor reduces to two points, lying on the the purple (top) component. We
choose a base point b = (0, q; 0, 1, 1) reducing to the midpoint of the purple
(top) component Y = X2 −Q2.

For any point P , we can now calculate the local height using intersection the-
ory. For example, let P be a point reducing to the blue (left) component. Then
DZ(b, P ) = X ϕ−ϕ(P )−ϕ(b) has multidegree (0,−1,+1) on the components.
We now want to add to DZ(b, P ) a vertical divisor V with no components con-
taining b in order to make DZ(b, P ) multidegree 0. Using linear algebra with
L, we see V is −3/5 times the pink (right) component plus −2/5 times the
blue (left) component, so the local height is −2/5, agreeing with (7.7.1.1).

Remark 7.7.1. This calculation of heights as an intersection multiplicity can be
extended to work for any value of α and β and again gives the same values as in
(7.7.1.1). As such, this gives an explicit check that the heights defined in terms
of intersection multiplicities agree with those coming from Theorem 7.3.9.

7.7.2 A Shimura curve quotient

In [GY17] they determine equations for all geometrically hyperelliptic Shimura
curves X0(D,N) and Atkin–Lehner operators on these curves. Since we know
X0(D,N)(R) = ∅, for the study of rational points, it makes sense to consider
Atkin–Lehner quotients of these curves. By applying Jaquet–Langlands and
considering the sign of the L-function of the corresponding modular forms
space, we see there are only two quotient curves whose Mordell–Weil rank are
equal to their genus.

One is bielliptic, so its local heights at primes of bad reduction can be com-
puted from the elliptic curve factors of its Jacobian. The other is the curve
X0(93, 1)/〈ω93〉. The rational points on this curve correspond to abelian sur-
faces defined over Q with potential quaternionic multiplication by a quater-
nion algebra of discriminant 93. It turns out that this curve has an excep-
tional isomorphism to the modular curve quotient X0(93)∗ whose rational
points were previously determined in [BGX21] using elliptic Chabauty. We
now show how to compute the local heights at primes of bad reduction for
X := X0(93, 1)/〈ω93〉.
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Figure 7.9: Reduction graph for Shimura curve quotient

The conductor of X is 32 ·312. At ` = 31, the curve X : y2 = x6 + 2x4 + 6x3 +
5x2 − 6x + 1 has the cluster picture in Figure 7.5 and so by Theorem 7.5.19
the local heights at 31 are trivial.

At ` = 3 the cluster picture is the cluster in Figure 7.10 so more analysis is
needed; the reduction graph Γ associated to the semistable covering contains
three vertices and Q`-points reduce to all three curves associated to the ver-
tices. See Figure 7.9. Let t1 be the twin cluster given by the two roots of f
defined over Q3, and t2 be the other twin cluster. These correspond to vertices
v1 and v2 respectively. We label the edges v1 to v3 by e±1 and the edges v2 to
v3 by e±2 . We have l(e±i ) = 1 for all i.

Figure 7.10: Cluster picture

Let Z be the endomorphism acting by
√

5 on the Jacobian. This acts by
pushforward on the holomorphic differentials 〈dx/(2y), xdx/(2y)〉 by

M =

[
−1 2
2 1

]
.

By [BBB+22, Theorem 5.1], since νs = 0 when s is the top cluster and inertia
fixes the twins setwise, X has a semistable model over Q3 and a split semistable
model over Q9, the unramified quadratic extension of Q3.

For each ti, we compute the map A+
ti
→ X|Ati

given by x 7→ (x, g
1/2
ti
h

1/2
ti

) from

(7.5.1.2). We compute the matrix of ϕ2 : xjdx/(2y) 7→ ResA+
ti

xjdx/(2y) for

i = 1, 2 and j = 0, 1 to be[
20a+ 20 +O(34) 2a+ 2 +O(34)
2a+ 2 +O(34) 22a+ 22 +O(34)

]
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where a has minimal polynomial x2+2x+2 over Q3. Using this change of basis,
we conjugate M to obtain the action of Z∗ on H1(Γ,Q9) by Proposition 7.6.10
using the complement e−1 , e

−
2 of a spanning tree[
−1 +O(34) 2 +O(34)
2 +O(34) 1 +O(34)

]
.

We now show this is an integer matrix using Proposition 7.6.11 and Corol-
lary 7.6.12. Using [CMSV19] we explicitly construct a correspondence Z ⊂
X ×X for M . We compute that Z has degrees d1 = 2 and d2 = 10 over X.
We fix the (orthogonal) homology basis 〈e−1 − e

+
1 , e
−
2 − e

+
2 〉. The intersection

pairing on homology has the matrix C = [ 2 0
0 2 ] in this basis. Writing C = PPT ,

we see ‖P‖max =
√

2 and ‖P−1‖max = 1/
√

2. Therefore the action of Z∗ on
homology is represented by an integer matrix whose entries have absolute value
at most 16

√
5. We have calculated that the entries are all integers inside this

range, plus a multiple of 34. Since 2 < 16
√

5 and 34 > 16
√

5 + 2, we conclude
that the action of Z∗ on the homology of the graph is given by the integer
matrix

[−1 2
2 1

]
.

The projection of e±1 onto the basis of homology has coefficients [∓1/2, 0], and
the projection of e±2 onto the basis of homology has coefficients [0,∓1/2]. This

computation yields the Laplacian ∇2(h̃Z,`) of the piecewise polynomial height
function as in Theorem 7.3.9

µZ = 1 · dse−1 + 1 · dse+1 − 1 · dse−2 − 1 · dse+2 .

Let f0 be the piecewise polynomial function (−1)i 1
2se±i

(se±i
− 1), obtained

from double integrating each part of µZ . Then f0 is 0 at each vertex and
µZ −∇2(f0) = 1 · δv1

−1 · δv2
+ 0 · δv3

. The weighted Laplacian matrix L of the
Γ is as follows. Using L we solve for the coefficient vector of a function whose
Laplacian is the vector of the weights of the δvi .

L :=

−2 0 2
0 −2 2
2 2 −4

 , L

 −1
0
−1/2

 =

 1
−1
0

 .
Therefore the piecewise function f1 = 1

2se±1
− 1 and f1 = − 1

2se±2
has the

property that µZ = ∇2(f0 + f ′1). Finally, we adjust f ′1 by constants to make
the height function zero at a chosen base point. We fix a base point reducing
to the component v3. This is equivalent to requiring that f1(0) = 0 on each
piecewise part, so f1 = (−1)i−1 1

2 (se±i
− 1). Our height functions is therefore
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the piecewise quadratic function h̃Z,` given by (−1)i1/2(s2
e±i
−2se±i

+ 1) on e±i
and 0 ≤ se±i ≤ 1.

Using h̃Z,`, we compute the heights at the known rational points of X. For
each point, we first find what component of Γ it lies on. The points at infinity
reduce to the unique vertex v3 corresponding to the top cluster. For each
finite point P , we compute the smallest cluster s such that P belongs to Us.
For example, if P = (1 : −3 : 1), picking a root (−5 + O(33)) ∈ t1, then
since v3(1 − (−5 + O(33))) > 0 (where 0 is the absolute depth of the top
cluster) we see that P lies in Ut1 . To distinguish if P reduces to the vertex
v1 or somewhere along an edge from t1 to P (t1), we decide if P belongs to
the bounding annulus At1 . In this case, since v3(1− (−5 +O(33))) = 1 is not
strictly less than δt1 = 1, the point P does not belong to the At1 .

Using the formula for h̃Z,` with se−1
= 1 we see the height at P is 1/2. Similar

reasoning shows any finite Q3-point P = (x : y : z) where x/z is congruent to
1 modulo 3 reduces to v1 and has height 1/2. If x/z is congruent to 2 modulo
3, then P reduces to v2 and has height −1/2, and if x/z is 0 modulo 3 then P
reduces to v3 and has height 0.

Remark 7.7.2. As the above example demonstrates, we are able to use very
low `-adic precision when determining the values of the local heights at primes
of bad reduction, and the answers we obtain are rigorous.

7.7.3 Atkin–Lehner quotients of modular curves

In this subsection, we study the Atkin–Lehner quotients X0(N)∗ of X0(N) by
the full Atkin–Lehner group for N = 147, 225, 330. In [ACKP22] the ratio-
nal points were computed using elliptic curve Chabauty instead of quadratic
Chabauty, because they were unable to determine the local heights at primes
of bad reduction. Here, we show all local heights are trivial.

7.7.3.1 X0(330)∗

For N = 330, the primes of bad reduction are 3, 5 and 11. Note that X =
X0(N)∗ has endomorphism ring Z[

√
2], and hence we can take our trace 0

endomorphism Z of the Jacobian to be
√

2. Write X : y2 = x6 + 8x4 + 10x3 +
20x2 + 12x+ 9.

At ` = 5 and ` = 11 the cluster pictures are the cluster picture in Figure 7.10.
By Theorem 7.5.19, since the leading coefficient of f is 1, the local heights at
these primes are trivial on Q` points.
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Figure 7.11: Reduction graph for Atkin–Lehner quotient

For ` = 3 however, the graph Γ associated to the semistable covering has
two vertices v1, v2 corresponding to genus zero components, with a loop e0

of length 1 at v1 and two edges e1, e2 of length 1 connecting v1 with v2, see
Figure 7.11.

The curves attached to v1 and v2 both contain F3-points. Since there are
no higher genus vertices, we only need to compute the action of Z∗ on the
homology of the Γ. Like in Section 7.7.2, we can compute it 3-adically and
then use Corollary 7.6.12 to obtain the following matrix of Z∗ acting on the
homology H1(Γ). [

0 −2
−1 0

]
(7.7.3.1)

Here the basis of the homology of Γ is e0, e2−e1. By the local heights formula
Theorem 7.3.9 we then have that the Laplacian ∇2(h̃Z,`) is 0, and hence h̃Z,` =
0. We see that the local heights vanish.

7.7.3.2 X0(255)∗

For N = 255, the primes of bad reduction are 5 and 17. Again, X = X0(N)∗

has endomorphism ring Z[
√

2], and we can take our trace 0 endomorphism Z of
the Jacobian to be

√
2. Write X : y2 = x6−4x5−12x4 +2x3 +8x2−4x+1. At

` = 17, the cluster picture is in Figure 7.10 and the leading coefficient of f is 1,
so the heights vanish by Theorem 7.5.19. For ` = 5, the semistable covering of
the curve X0(N)∗ has the same associated graph Γ as in the previous example,
and the matrix of the action on H1(Γ) is also (7.7.3.1).

7.7.3.3 X0(147)∗

For N = 147, the primes of bad reduction are 3 and 7. At q = 7, the curve
X0(N)∗ has potential good reduction, so the local height functions are trivial.
At q = 3, following the same procedures as above we compute the action of
Z∗ on the associated homology graph to the semistable covering of X0(N)∗
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and find it is negative the matrix in (7.7.3.1) and therefore the heights are also
trivial.

7.7.4 Higher genus example

We now provide an example of local height computations for the genus 7 mod-
ular curve with affine model X : y2 = x16−4x8 +16. This curve has Cummins
and Pauli label 48N7. This example shows that our method is practical even
when the genus of X is large. We choose the endomorphism Z of the Jacobian
to be associated to the diagonal matrix with entries [4, 4, 4,−24, 4, 4, 4]. The
primes of bad reduction of X are 2 and 3; we compute local heights at q = 3.
In this case, the cluster picture is as in Figure 7.12 and the reduction graph
is as in Figure 7.13. By Theorem 7.5.19, after choosing the basepoint w−1,

Figure 7.12: Cluster picture for genus 7 curve

Figure 7.13: Reduction graph for genus 7 curve

the heights at all rational points will be trivial, but we can still determine the
(non-trivial) height functions. We find that the action of Z∗ on the homology
of the dual graph is given by the matrix

4 0 7 7 0 7 7
0 4 7 7 0 7 7
0 0 −3 −7 0 −7 −7
0 0 −7 −3 0 −7 −7
0 0 7 7 4 7 7
0 0 −7 −7 0 −3 −7
0 0 −7 −7 0 −7 −3


.
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This yields 8 distinct piecewise polynomial functions (since the two edges from
each vertex vi to w±1 have the same height function). For example, the edges
from v1 to w±1 have the height function

248873/44800s2 − 248873/44800s+ 248873/179200 where 0 ≤ s ≤ 1/2.

7.7.5 A family of curves with genus 1 vertices

Let S0 be a set of 4 roots in Qq such that 1+qZq is the smallest disc containing
them. Let n ∈ Z with n | (q − 1), let ζ = ζn be a primitive nth root,
and consider Sk = ζkS0 for 0 ≤ k < n. Let S(n) =

⋃
n>k≥0 Sk, and let

f (n) =
∏
r∈S(n)(x− r).

Let Xn be the curve given by y2 = f (n)(x). By construction, this has cluster
picture Figure 7.14.

Figure 7.14: Cluster picture for higher genus family

Hence the semistable covering has the associated reduction graph Γ in Fig-
ure 7.15, where vertices w0 and w1 correspond to components of genus 0, and
v0, . . . , vn−1 correspond to components of genus 1. Denote the edges from vi
to w0 as e+

i , and those from vi to w1 as e−i .

Also by construction, the family of curves has an automorphism ζ : Xn → Xn,
cyclically permuting the n clusters. On the level of graphs, this cyclically
permutes the n genus 1 vertices, while keeping the genus 0 vertices invariant.
We will also use ζ to denote the corresponding endomorphism of the Jacobian.

Although the local height only makes sense for a trace 0 endomorphism, the

Figure 7.15: Reduction graph for higher genus family
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formula for the measure in Theorem 7.3.9 makes sense for any endomorphism.
This measure will be of mass 0 if the endomorphism is of trace 0. We let µk
denote the measure corresponding to ζk.

We need to compute 〈e+
i , ζ

k(π(e+
i ))〉 where π : C1(Γ) → H1(Γ) is the orthog-

onal projection. A straightforward calculation shows that

π(e+
i ) =

n− 1

2n
(e+
i − e

−
i )− 1

2n

∑
j 6=i

(e+
j − e

−
j ).

and hence 〈e+
i , ζ

k(π(e+
i ))〉 is n−1

2n if k = 0 and − 1
2n otherwise. By symmetry,

the same holds for edges e−i .

Since ζ acts by cyclic permutation on the associated graph, we see that trvi(ζ
k)

is 2 if k = 0 and 0 otherwise. In total, we find

µ0 =
n− 1

n

∑
i

(|dse+i |+ |dse−i |) +
∑
i

2δv

µk =
−1

n

∑
i

(|dse+i |+ |dse−i |) when k 6= 0.

These have total mass 2(n−1)+2n = 4n−2 and−2 respectively. Hence we see a
linear combination

∑
k akζk has trace 0 if and only if (2n−1)a0−

∑
k 6=0 ak = 0.

For example, Z = ζ0 − (2n− 1)ζ1 has trace 0, and measure

µZ = −
∑
i

(|dse+i |+ |dse−i |) +
∑
i

2δvi .

We find an inverse Laplacian using the method explained in Section 7.3.2. First
we find a quadratic piecewise polynomial function f0 such that µz − ∇2f0 is
a sum of δ measures. We see that the function that is −1

2 s(1 − s) on every
edge works. Then µz −∇2f0 = −n2 (δw0

+ δw1
) +
∑
i δvi , and we need to find a

piecewise linear function f1 with this Laplacian. We see any function f1 which
has slopes − 1

2 along e±i suffices.

Taking the basepoint to lie in w0 uniquely determines f1 by f1(w0) = 0, and
we find that the normalised height is the piecewise polynomial given by

1

2
(s− 1)2 on e±i with 0 ≤ s ≤ 1.

7.7.6 Applications to quadratic Chabauty computations

Consider the quadratic twist by 5 of the genus 2 curve with LMFDB label
18225.c.164025.1, given by the affine model X : y2 = x6 + 18/5x4 + 6/5x3 +

https://www.lmfdb.org/Genus2Curve/Q/18225/c/164025/1
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Figure 7.16: Reduction graph for quadratic Chabauty example at ` = 3

9/5x2 + 6/5x+ 1/5. The conductor is 36 · 54. The endomorphism ring of X/Q
is Q(

√
13). We choose the endomorphism

√
13 on the Jacobian. We compute

the local height functions at 3 and 5 and determine the set of rational points
X(Q) using quadratic Chabauty.

Remark 7.7.3. The rational points X(Q) can also be determined using elliptic
Chabauty.

Remark 7.7.4. The implementation [BDM+] chooses the endomorphism Z to
be −4

√
13 when p = 53. For this reason, in our implementation we have to

scale the heights accordingly.

Applying Proposition 7.6.9, after computing a correspondence Z ⊂ X ×X for√
13, we compute the action of Z∗ on H1

dR(X) to be
1 2 4/5 −3/10
6 −1 9/5 7/10
0 0 −1 1
0 0 12 1

 .
where the basis for H1

dR(X) is

{dx/(2y), xdx/(2y), x3dx/(2y), (9/10)x2dx/(2y)− (−1/2)x4dx/(2y)}.

Let b = (−1/3 : 1/27 : 1) be the basepoint.

At ` = 3, the cluster picture is Figure 7.17 and the curve has unstable re-
duction; in fact, the curve has unstable reduction over every tame extension.
The associated reduction graph Γ has two genus 1 vertices v1 and v2, linked
by a genus 0 vertex, by edges e1 and e2 respectively, as in Figure 7.16. We
must compute the traces trvi(Z) for each genus 1 vertex vi. Applying Propo-
sition 7.6.13, we compute the block matrices[

−1 +O(33) 0 +O(33)
0 +O(33) −1 +O(33)

]
,

[
1 +O(33) 0 +O(33)
0 +O(33) 1 +O(33)

]
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Figure 7.17: Cluster picture for quadratic Chabauty example at ` = 3

to be the action of Z∗ on H1
dR(Xvi), for i = 1, 2 respectively. By Theorem 7.3.5,

the traces of these matrices are bounded by 2 ·1 ·max{2, 7}, so they are exactly
−2 and 2. Using the formula from Theorem 7.3.9, the Laplacian of the local
height function is given by the measure

µZ = −2δv1 + 2δv2 .

We solve for the height function, and find it is the piecewise polynomial func-
tion {

−2s+ 1/2 on e1 with 0 ≤ s ≤ 1/4

2s− 5/6 on e2 with 0 ≤ s ≤ 5/12

Using similar calculations to Section 7.7.2, we see that if P = (x : y : z) is a
point with z 6≡ 0 mod 3, then if x/z ≡ 1 mod 3, then P lies at distance 1/12
along edge e2. If z ≡ 0 mod 3 then P reduces to the genus 0 vertex. (By
Theorem 7.5.19, we cannot have Q`-points reducing to Xv1 .) Therefore the
normalised local height of P = (x : y : z) is{

0 if z ≡ 0 mod 3,

−2/3 if x/z ≡ 1 mod 3.

Now consider ` = 5 the other prime of bad reduction. Here the curve has
unstable reduction. The cluster picture is Figure 7.18.

Figure 7.18: Cluster picture for quadratic Chabauty example at ` = 5

Let e±1 , e
±
2 be the edges as labeled in Figure 7.19, with l(e±i ) = 1/2. We

compute the following piecewise polynomial height function.{
3s2 on e±1 with 0 ≤ s ≤ 1/2

−3s2 + 3s− 3/4 on e±2 with 0 ≤ s ≤ 1/2
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Figure 7.19: Reduction graph for quadratic Chabauty example at ` = 5

If P = (x : y : z) is a rational point with z 6≡ 0 mod 5 and x/z ≡ 2 mod 5,
then P reduces to v3. If z ≡ 0 mod 5 then P reduces to v1. Otherwise P
reduces to v2. Therefore the normalised local height of P = (x : y : z) is

3/4 if z ≡ 0 mod 5,

−3/4 if x/z ≡ 2 mod 5,

0 otherwise.

The curveX has Mordell–Weil rank 2, and therefore we can apply the quadratic
Chabauty method at p = 53 (as implemented in [BDM+]) to find a finite set
of p-adic points containing the rational points X(Q). Combining this with a
Mordell–Weil sieve we obtain the following theorem.

Theorem 7.7.5. The rational points of X : y2 = x6 + 18/5x4 + 6/5x3 +
9/5x2 + 6/5x+ 1/5 are the 10 points

{(−1/3 : −1/27 : 1), (−1/3 : 1/27 : 1), (−1/5 : −21/125 : 1), (−1/5 : 21/125 : 1),

(1 : 3 : 1), (1 : −3 : 1), (1 : 1 : 0), (1 : −1 : 0), (−1/2 : −3/8 : 1), (−1/2 : 3/8 : 1)}.


