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Chapter 7

Local heights on hyperellip-
tic curves and quadratic Chabauty

This chapter has already appeared as a preprint [BDRHS24]|. This is joint
work with Alex Betts, Juanita Duque—Rosero and Sachi Hashimoto.

Abstract. Local heights are arithmetic invariants used in the quadratic
Chabauty method for determining the rational points on curves. We present an
algorithm to compute these local heights for hyperelliptic curves at odd primes
£ # p. This algorithm significantly broadens the applicability of quadratic
Chabauty to curves which were previously inaccessible due to the presence of
non-trivial local heights. We provide numerous examples, including the first
quadratic Chabauty computation for a curve with two non-trivial local heights.

Local heights are arithmetic invariants used in the quadratic Chabauty method
for determining the rational points on curves. We present an algorithm to
compute these local heights for hyperelliptic curves at odd primes £ # p. This
algorithm significantly broadens the applicability of quadratic Chabauty to
curves which were previously inaccessible due to the presence of non-trivial
local heights. We provide numerous examples, including the first quadratic
Chabauty computation for a curve having two primes with non-trivial local
heights.
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7.1 Introduction

Smooth projective curves over the rational numbers X/Q provide a rich terrain
for exploring diophantine questions. The quadratic Chabauty method has
emerged as a powerful p-adic technique for computing the set of rational points
X(Q) on curves of genus g > 1 with Jacobian J. This method, introduced
in [BD18, BD21], applies when the Mordell-Weil rank of J(Q) equals g and
the Picard number of J is at least 2. Combined with the Mordell-Weil sieve,
quadratic Chabauty has had much success in determining X (Q) [BDM*19,
BDM*21].

The central object in quadratic Chabauty is a Nekovar p-adic height function
hz, which depends on a choice of trace zero correspondence Z C X x X
invariant under the Rosati involution. The global p-adic height function hy
can be expressed as a sum of local height functions hy = > ¢ prime hz.e. When
¢ # p is a prime of potentially good reduction for X, the local height function
hz,e vanishes. The local height at p is a locally analytic function, and while
there exist established algorithms and implementations for computing hz,
[BB12, BDM 19, GM23], the situation for the local height hz, at £ # p
stands in stark contrast.

Until now, algorithmic calculations of hz ¢ have been limited to the case where
X is an elliptic curve or J factors as a product of two elliptic curves, in
which case hz, is determined by arithmetic invariants of the regular model
of the elliptic curve(s) [Sil88, CPS06, Bia20]. Beyond the case of elliptic and
bielliptic curves, strategies for computing hz, have relied on constructing a
regular model for X over Z,. For example, two recent local heights calculations
hinged on both computing a regular semistable model for X over Z, and the
existence of an abundance of rational points on X [BDM*21].

The value of the local height function hz, at a point z € X(Qg) can be
defined in terms of the local Néron—Tate height pairing as the height pairing
of two divisors depending on the correspondence Z, the point z, and a chosen
basepoint b. While algorithms exist for computing the local height pairing
given a regular model for X over Z, [Holl12, Muel4, vBHM20], computing the
height function hz ¢ in this way seems to be impractical, given that the defining
equations for Z typically have very large degree, see Remark Remark 7.3.1.
Consequently, beyond the case of (bi)elliptic curves, quadratic Chabauty has
almost exclusively been applied in cases where all local height functions, except
those at p, vanish.

This paper introduces an algorithm that marks the first practical method



7.1. INTRODUCTION 187

for computing local heights away from p for a class of curves, outside of the
(bi)elliptic case. Our algorithm computes the Nekovarf local p-adic heights hz
for odd primes ¢ # p on hyperelliptic curves of genus g > 1. This algorithm
significantly broadens the applicability of quadratic Chabauty to curves previ-
ously deemed inaccessible due to potentially having non-trivial local heights,
offering a promising avenue for advancing our understanding of rational points
on higher genus curves or those with larger conductors (see Theorem I and
Corollary N).

We illustrate our algorithm by computing numerous examples of local heights
on hyperelliptic curves with diverse reduction types. The computations for
these examples use our Magma implementation of the algorithm, available at
https://github.com/sachihashimoto/local-heights. We revisit several
Atkin-Lehner quotients of Xo(N) from [ACKP22], where they were not able
to apply quadratic Chabauty due to the presence of potentially non-zero local
heights away from p. We also study an Atkin—Lehner quotient of a Shimura
curve X4(93,1)/(wg3); rational points on this type of Shimura curve quotient
parametrise abelian surfaces with potential quaternionic multiplication. Our
algorithm is practical even in high genus: we compute local heights on a genus
7 modular curve. As an application, we carry out the first quadratic Chabauty
computation on a curve with more than one prime ¢ # p with non-trivial local
heights, showing the following theorem.

Theorem I (cf. Section 7.7.6). There are 10 rational points on the curve
X :y? =25+ 18/52* + 6/52% + 9/522 + 6 /5 + 1/5.

Our approach to computing local heights is based on a formula from [BD20]
which describes hz ¢ in terms of the action of Z, on the homology of the reduc-
tion graph I' of a semistable model of X and certain integers tr,(Z) attached
to the vertices of this graph. The problem, as noted in [BDM ™21, §3.1], is that
it is not a priori clear how to compute the action of Z, on H; (T, Z), especially
if X or Z has large genus, many components, or highly unstable reduction.
Following a strategy suggested to us by Netan Dogra, we solve this problem us-
ing the Coleman-Iovita isomorphism for the curve X (Theorem 7.4.1, [CI10]),
which relates the homology of I' to the de Rham cohomology of X, where
the action of Z, is easier to compute. In order to use the Coleman—Iovita
isomorphism, we verify that it commutes with the action of correspondences.

Theorem J (Push-pull compatibility of Coleman-Tovita, cf. Theorem 7.4.14).
Let f: X — X' be a finite morphism of smooth projective curves over Cy. Then
the pullback and pushforward maps on de Rham cohomology are compatible
with the Coleman—Iovita isomorphism.
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Making this strategy viable requires several innovations. The first problem is
to determine the reduction graph I' of X over a finite extension of Q; where X
acquires semistable reduction. We do this using the theory of cluster pictures,
which allows one to read off the graph I' for a hyperelliptic curve in odd residue
characteristic directly from the valuations of the differences of the roots of f(x)
[DDMM23].

The second problem is that, in order to explicitly compute the Coleman—Iovita
isomorphism, we need to write down a suitable analytic covering of X¢,. We
explain how to read off this semistable covering from the cluster picture.

Theorem K (cf. Theorem 7.5.14). Let X/K be a hyperelliptic curve with split
semistable reduction over a finite extension K of Qq, given by an equation
y?> = f(z). Then there exists a semistable covering 4 = (UF)s of X™ indeved
by proper clusters s in the cluster picture of f, where ﬁsi is as defined in

Definition 7.5.11.

It is interesting to note that this same semistable covering has already appeared
in the literature without the explicit link to cluster pictures [Sto19, KK22]. In
Section 7.5 we use our semistable covering to write down explicit formulas
describing Coleman—Iovita isomorphism in this case.

The end result of this calculation is an ¢-adic approrimation to the action of Z,
on the homology of I'. However, for applications to quadratic Chabauty, one
needs an exact answer. The third innovation that we need is to prove bounds
on the possible actions of Z, and the traces tr,(Z) attached to vertices. This
allows us to certify that the approximate values coming from our calculation
are correct.

Theorem L (Boundedness of norms and traces, cf. Theorem 7.3.5). Let Z C
X x X be an effective correspondence, of degrees dy and ds over X, respectively.
Then the operator norm of Z, on Hy(T',Z) and |tr,(Z)| have explicit bounds
depending only on the degrees dy and ds.

In summary, our method for determining the action of Z, on H;(I',Z) pro-
ceeds in four steps. Here, K is a field over which X acquires split semistable
reduction.

1. Use the cluster picture associated to X to write down a semistable cov-
ering of X" and a basis of Hy(T', Z), using Theorem K.

2. Compute the matrix Mgr representing the action of Z, on H}y (X/K)
in some basis of differentials of the second kind.

3. Compute a matrix T which is, to suitably high precision, an ¢-adic ap-
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proximation to the surjection Hiy (X/K) — K ®7 H; (T, Z) coming from
the Coleman—Iovita isomorphism.

4. By Theorem J, the matrix Mp = T-Mgr -T~! is then an ¢-adic approxi-
mation of the action of Z, on Hy (T, Z), where T~ is a right-inverse of T
Compute the action of Z, on H;(I',Z) by rounding My to the unique
integer matrix that satisfies the bounds from Theorem L.

One other consequence of our work is that, by linking together local heights
and the combinatorics of the cluster picture, we obtain combinatorial con-
straints on local heights. This allows us to give various new criteria for when
a hyperelliptic curve has all local heights equal to 0, for example:

Proposition M (cf. Example 7.5.20). Suppose that X/Qy is a genus 2 curve
with the cluster picture shown below and that the leading coefficient of X is a
unit in Zg. Then the local height of any Qg-point on X is 0.

@@1/2 @@0

Corollary N (cf. Section 7.7.2). The Shimura curve quotient X(93,1)/(wos)
has trivial local height at 31.

In broad strokes, this overall strategy of computing local heights via the
Coleman—Iovita isomorphism is viable for any smooth projective curve X.
Our method relies on X being hyperelliptic in only one part. We specialise to
hyperelliptic curves in order to use the machinery of cluster pictures to read
off the reduction graph I' and semistable covering of X, i.e. the data of the
Berkovich skeleton of X. From this data, and the action of Z, on Hly (X/Q),
we produce the local heights on X. Thus, in order to generalise our algorithm
to non-hyperelliptic curves, one would just need a method to determine the
Berkovich skeleton. Moreover, our strategy seems promising for determining
local heights without using explicit equations for X: if one has some a pri-
ort way of determining both the Berkovich skeleton and the action of Z, on
Hlr (X/Q), say for X a modular curve, then we show that this determines the
local heights.

The structure of the paper is as follows. In Section 7.2 we introduce the notions
of semistable covering, semistable vertex set, and split semistable model, as
well their equivalences. The definition of the local height function hz ¢ and the
local heights formula appear in Section 7.3. We also prove the boundedness of
the operator norm and the traces tr,(Z) for correspondences Z C X x X in
this section. Section 7.4 explains the Coleman—Iovita isomorphism and proves
the compatibility with pushforward and pullback. We specialise to the case
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of hyperelliptic curves in Section 7.5, and give an explicit description of the
Coleman—Iovita isomorphism for these curves in this section. To do this, we
introduce the machinery of cluster pictures, use this to construct a semistable
covering for hyperelliptic curves, and explicitly describe the Berkovich skeleton
of Xg7. We expand on the details of the explicit computation of the Coleman—
Tovita isomorphism in Section 7.6. We show how to represent functions on an
annulus, how to compute the action of Z, on H} (X/K), and finally how to
turn an f-adic matrix for the action of Z, into an integer matrix, given the
bounds from Theorem 7.3.5. Finally, Section 7.7 contains numerous worked
examples.
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7.2 Semistable models, coverings, and vertex
sets

Before we begin the paper proper, we first discuss some preliminaries regarding
reduction graphs I' of smooth projective curves X defined over f-adic local
fields. There are three equivalent ways that these graphs can be defined: in
terms of a split semistable model of X; in terms of a semistable covering of
the rigid-analytification of X; or in terms of a semistable vertexr set inside the
Berkovich analytification of X. All three perspectives have their advantages:
split semistable models are the simplest conceptually and are the most widely
known; semistable coverings are well-adapted to computations; and semistable
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vertex sets are combinatorial in nature and well-adapted to proving theoretical
results. In this paper, it will be vital to switch freely between these three
different perspectives, and so we will begin by recalling the three definitions
and their interrelationships, with a particular emphasis on how these notions
behave with respect to morphisms of curves.

For the rest of this paper, we fix the following notation. We will fix a prime
number ¢, and will work over a field K which is (for simplicity) either equal
to Cy or a finite extension of Q. We denote the ring of integers, maximal ideal,
and residue field of K by Ok, mg, and k, respectively. We always normalise
the norm and valuation on K so that |[¢| = ¢~ and v(¢) = 1. A curve X over K
is always assumed to be smooth, projective, and geometrically integral.

Definition 7.2.1. A 1-dimensional separated scheme X of finite type over k
is called a semistable curve just when it is geometrically reduced and has at
worst ordinary double points as singularities. It is called strongly semistable
just when additionally every irreducible component is smooth; it is called split
semistable just when additionally every component is geometrically irreducible,
every singular point is k-rational, and the two tangent directions at every
singular point are also k-rational.

A model of a smooth projective curvel! X/K is a flat, proper, and finitely
presented Og-scheme X together with an isomorphism Xx = X of its generic
fibre with X over K. (Any model X is automatically integral.) A model is
called semistable (resp. strongly semistable, resp. split semistable) just when
its special fibre is. Note that we do not require our semistable models to be
regular, nor do we require them to be minimal.

Remark 7.2.2. The definitions of semistable models used across the literature
vary slightly in exactly which properties they require of X. For example,
[Liu02, Definition 10.3.27] requires (for Ok Dedekind) that X be flat, projec-
tive, and normal; [BPR13, Remark 4.2(2)] requires (for O = C;) that X’ be
flat, proper, and integral; and [MC10, Definition 2.35] just requires that X
be flat and proper. Our definition agrees with all three, as we will now show.
Since Ok is an integral domain, it follows that any flat, finite type O-scheme
is automatically finitely presented [RG71, Corollaire 3.47], and also any flat
Og-scheme with integral generic fibre is integral. For normality, we note
that normality is étale local, so semistable curves are normal. And finally a
semistable model X' /O is projective, as we can give a relatively very ample
Cartier divisor by taking a sum of smooth points that meet every component

1For us, a curve means a geometrically integral separated reduced K-scheme of dimen-
sion 1.
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of the special fibre with sufficiently high multiplicity.

We will need to say a little about the local structure of a split semistable
model X at a singular point z. For this, if a € mg ~ {0}, let

S(a) = Spec(Ok|s, t]/(st — a))

denote the standard algebraic annulus with parameter a. We write 0 € &(a)(k)
for the point defined by the O -algebra homomorphism sending s and ¢ to 0 €
k. According to (the proof of) [Stal8a, 0CBY], for any singular point 7 € X (k)
of the special fibre of a split semistable model X, there exists some a € mg
{0}, an Ok-scheme U with étale maps

X+~ U— 6S(a),

and a k-point @ € U (k) mapping to both z € X (k) and 0 € &(a)(k). We call
a diagram as above a chart at T.

The maps appearing in a chart, being étale, induce isomorphisms on completed
local rings. Thus, given two charts

(X,z) + (U,u) = (6(a),0) and (X,z)+ U, u')— (&(d),0),

we find that the completed local rings of &(a) and &(a’) at 0 are isomorphic.
This implies that @ and &’ differ by multiplication by a unit in O [Kat00,
Lemma 2.1]. ([Kat00, Lemma 2.1] is only stated when O is noetherian, but
the conclusion we need is still valid when K = C,. The final part of the proof of
[Kat00, Lemma 2.1] still works, with the caveat that rather than considering
e.g. the completed local ring (’A)X@, we instead need to consider the [-adic
completion of Oy z, where I is a finitely generated ideal of Oy z whose radical
is the maximal ideal. For instance, in the localisation of Ogl[s,t]/(st — a),
one could take I = (s,t,w) where w € mg ~ {0}.) In any case, this implies
that v(a) = v(a’), and so the positive rational number v(a) is independent of
the choice of chart at .

Definition 7.2.3. The value v(a) is called the thickness of the singular point Z.
Remark 7.2.4. When K is a finite extension of Qy, then X is noetherian, and
so a chart X « U — &(a) induces an isomorphism

Ox;: = Okls,t]/(st — a)

on completed local rings [Liu02, Proposition 4.3.26]. Hence our definition of
the thickness of Z agrees with the usual definition [Liu02, Definition 10.3.23]
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up to a factor of the ramification degree of K/Qy (coming from the fact that
we normalise our valuation on K differently to [Liu02]). In particular, the
thickness of Z as we have defined it need not be an integer.

Much of the geometry of a split semistable model X can be captured by a
combinatorial invariant known as the reduction graph I' = I'x. The vertices
of T are the irreducible components of the special fibre X, and the unoriented
edges of I are the singular points of X. Moreover, one can attach to I' certain
extra data making it into a combinatorial object known as a metrised complex
of k-curves.

Definition 7.2.5 (Metrised complex of k-curves, [ABBR15, Definition 2.17]).
In this paper, a graph always means a finite graph in the sense of Serre, i.e.
a quadruple I' = (V(T), E(T), 0o, (—) ') where V(I') and E(T') are finite sets
and

d: E(T) = V(') and (—)~': E(I') — E(I)

are functions, where (—)~! is an involution without fixed points. Elements of

V(T) and E(T) are known as wvertices and oriented edges of T', respectively.
If e € E(T) is an oriented edge, then e~!, Jy(e), and d;(e) = Jp(e~!) are
known as the inverse, source, and target of e, respectively. For a vertex v, we
write T, (") for the set of oriented edges with source v, and call T, (T") the set
of tangent directions at (or out of) v. The set F(I')" of unoriented edges of T

is the quotient of E(T') by the equivalence relation e ~ e~1.

A metrised graph is a graph I" endowed with:

e for each unoriented edge e € E(I')*, a positive real number [(e) € R+
called the length of e.

A metrised complex of k-curves is a connected metrised graph I' endowed with,
additionally:

e for each vertex v € V(I'), a smooth projective curve X, /k, called the
verter curve at v; and

e for each tangent direction e € T,(T'), a k-point Z, € X, (k).
We require that the points Z. for different tangent directions e are distinct.

Remark 7.2.6. The elements Z. appearing as part of the data of a metrised
complex of k-curves are not relevant for our purposes in this paper, so we will
mostly permit ourselves to omit mention of them in definitions and proofs.

To make the reduction graph I' of a split semistable model into a metrised
complex of k-curves, we adopt the following conventions.
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e V(I') is the set of irreducible components of the normalisation X~ of the
special fibre X'. For a vertex v € V(I'), we write X, for the component
of X~ to which it corresponds.

e E(I) is the set of k-points of X'~ lying over singular points in X. For an
oriented edge e € E(I'), we write T, € A~ (k) for the point to which it
corresponds.

e For an oriented edge e € E(I), dy(e) is the vertex such that X, () > Z,
and e~ ! is the oriented edge different from e such that Z.-1 and Z. lie
over the same singular point of X

e The unoriented edges e € E(I')* correspond to singular points z, of X
The length of e is defined to be the thickness of Z. inside X (Defini-
tion 7.2.3).

e The points 7, € X, (k) attached to tangent directions e at v are the
elements above.

We easily verify that the construction of a metrised complex of k-curves to a
split semistable model of a curve is compatible with base change, as per the
following lemma.

Lemma 7.2.7. Let K'/K be an extension of fields, each of which is either C;
or a finite extension of Qq, with residue field extension k' /k. Let X /O be a
split semistable model of a curve X/K, with reduction graph T' (viewed as a
metrised complex of k-curves). Then Xo,, is a split semistable model of X,
whose reduction graph T' is the metrised complex of k'-curves obtained from T
by base-changing all the curves attached to vertices from k to k', and leaving
the underlying graph, metric and maps unchanged.

Proof. This is clear. We remark that the fact that T" and I” have the same
metric is a consequence of our choice of normalisation of the valuations on K
and K’, which ensures that the thickness of singular points of X is unchanged
upon base-change to O . O

7.2.1 Semistable models, coverings and vertex sets

While semistable models of a curve X are well-behaved theoretically, they are
rather difficult to perform explicit computations with — indeed, even writing
down a semistable model of X is difficult computationally. Instead, a central
part of our approach in this paper will be to replace semistable models with
certain analytic data attached to X, equivalent to a choice of semistable model,
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but much more amenable to direct computation. We will work with two kinds
of analytic data. Firstly, in [Col89, MC10, CM88], Coleman defines the notion
of a semistable covering of the rigid analytification X?", and shows that (with
some small caveats) semistable coverings correspond to semistable models.
Secondly, in the case K = C,, Baker, Payne, and Rabinoff define the notion of
a semistable vertex set inside the Berkovich analytification X" of X, and again
show that semistable vertex sets correspond to semistable models [BPR13]. We
will presently recall the definitions of these semistable coverings and semistable
vertex sets, but before we do so, we owe the reader a brief remark regarding
our use of both rigid and Berkovich geometry.

For any complete valued extension K of Qy, the category of separated Berkovich
strictly K-analytic spaces embeds as a full subcategory of the category of rigid
K-analytic spaces [Ber90, Proposition 3.3.1], and most of the key notions of
Berkovich and rigid geometry (finite maps, étale maps, ...) correspond under
this embedding [Ber90, §3.3]. Every analytic space we consider will be a sepa-
rated Berkovich strictly K-analytic space, so we will switch freely between the
Berkovich and rigid perspectives.

Thus, if X/K is a smooth projective curve, we will feel free to use the nota-
tion X2 for both the rigid analytification and the Berkovich analytification
of X. When we write | X?"|, we always mean the underlying topological space
of X" as a Berkovich space; the underlying set of X" as a rigid space is the
subset |X?"|,z C | X?"| of rigid points, i.e. points x € | X*"| whose completed
residue field H(z) is a finite extension of K.

7.2.1.1 Semistable coverings

The first alternative perspective we will use is that split semistable models of
a smooth projective curve X/K are equivalent to analytic coverings of X by
rigid spaces of a certain kind. This perspective goes back to Coleman [Col89].

Definition 7.2.8 ([MC10, §2B]). Let W be a 1l-dimensional smooth rigid
space. We say that W is a wide open just when there exist affinoid subdo-
mains Wy C W7 C W such that:

o W ~ W, is a disjoint union of finitely many open annuli;
o W is relatively compact in W, (see [BGR84, §9.6.2]); and
o W meets each component of W \ Wy in a semi-open annulus.

The affinoid subdomains W, and W; are not part of the data of a wide open.
We refer to Wy as an underlying affinoid of W; a pair (W, Wp) of a wide
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open W and an underlying affinoid W} is called a wide open pair.

A basic wide open (resp. strongly basic wide open) is a pair W = (W, W)
consisting of a connected wide open W and an underlying affinoid Wy, such
that:

e the supremum seminorm of any element of O(Wj) is the norm of an
element of K;

e the canonical reduction of Wy is an irreducible split? semistable curve
(resp. a smooth curve); and

e the components of W ~ Wy are isomorphic over K to open annuli of
inner radius 1.

(The first condition is equivalent to requiring that O(Wy)° /mxgO(W,)° is a re-
duced ring [BGR84, Theorem 6.4.3/1 & Proposition 6.4.3/4], where O(Wy)° is
the ring of power-bounded functions on Wy. Then Spec(O(Wy)°/mixO(Wy)°)
is the canonical reduction of Wj.)

Basic wide opens arise as complements of discs in smooth projective curves.
Let X/K be a smooth projective curve and let X'/Ok be a split semistable
model whose special fibre is irreducible. Let Zi,...,Z, be distinct smooth
k-points of the special fibre of X for n > 1, with associated residue discs
D¢ = 1z;] € X?. For 1 <i < n,let Df C D? be a closed subdisc. Then
W= X**\J, Df and Wy == X**\|J; Dy form a basic wide open (W, Wy), and
the canonical reduction of Wy is canonically isomorphic to X \ {Z1,...,Z,}.
In particular, W is strongly basic if the model X was smooth. See [MC10,
Proposition 2.21 & Corollary 2.23].

If W = (W, W,) is a basic wide open, then we refer to the components of W ~
Wy as the bounding annuli of W (they are sometimes called the annulus ends
of W in the literature). Also, for any singular point Z of the canonical reduction
of Wy, its residue class |Z[ is an open annulus [MC10, Proposition 2.10]. We
refer to such annuli as internal annuli of W. We fix some terminology we will
use when working with these annuli.

Definition 7.2.9. Let A be an open annulus over K, i.e. a rigid space iso-
morphic over K to the standard open annulus

A(ry,re) ={z + m1 < |z| <ro}
for some r1 < ro € y/|K*|. The quantity log,(r2/r1) € Q is called the

2The definition in [MC10, Definition 2.35] does not explicitly use the word “split”, but
their definition of “ordinary double point” includes the requirement that it should be a split
node [MC10, Definition 2.9].
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width3 of A, and is an isomorphism invariant (follows from [BPR13, Proposi-
tion 2.2(2)]).

If O(A)y denotes the group of invertible analytic functions f such that |1 —
f(@)] < 1 for all points x of A, then the group

O(A)" /KX O(A)f

is infinite cyclic [BPR13, Proposition 2.2(1)]. An orientation of A is a choice
of generator of this group (so there are two possible orientations of A). A
parameter on an oriented annulus A is an element ¢ € O(A)* which maps to
the chosen generator of O(A)*/K*O(A){. The map A — G2» induced by
a parameter ¢ is an isomorphism onto a standard annulus A(ry,72) [BPR13,
Proposition 2.2(2)].

Remark 7.2.10. The bounding annuli A; of a wide open pair (W,W;) are
oriented in a canonical way. Namely, if ¢ is a parameter on A; inducing an
isomorphism A =5 A(ry,r9), then t maps Wi N A; isomorphically onto a semi-
open annulus, either A(rq,r’] or Alr/,ry) for some ' € (ri,r2). These two
possibilities correspond to the two possible orientations of A;; we will always
orient A; with the orientation where W1NA; is identified with the outer annulus
Alr',r9). This is the same convention as [Col89, Corollary 3.7a].

Ezample 7.2.11. Suppose that we are given closed discs D¢, DS, ..., D¢ inside
A}{’an, contained inside open discs D, DY, ..., D¢, respectively. Suppose that
D¢ c D¢ for all ¢ and the DY are pairwise disjoint. Then the domain U =
D~ Ui, D¢ is wide open, with underlying affinoid Uy = D*\ |J;_, D¢. The
wide open pair (U,Up) has n + 1 bounding annuli, namely A = D° \. D¢ and
A; = DY\ D§ for 1 <1i <n. The orientation on each A; is the standard one,
i.e. a parameter is t — «; where t is the standard coordinate on A}éan and o is
a centre of Df. The orientation on A, however, is the opposite of the standard
one, i.e. a parameter on A is (t — a)~! where « is a centre of D°.

One can study a curve X/K with split semistable reduction by taking an
analytic cover by wide opens which intersect each other in a well-behaved
manner. Such coverings are known as semistable coverings.

Definition 7.2.12 ([MC10, §2C]). Let X/K be a smooth projective curve.
A (strongly) semistable covering of X?" is a finite admissible covering $ =
(Wy)vev of X2 by (strongly) basic wide opens W, = (W,,, W,, o) (as in, the W,
form an admissible covering) such that every pairwise intersection W, N W,
is a union of bounding annuli of W,,, and every triplewise intersection W, N

3Also called the modulus of A in [BPR13].
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Figure 7.1: The wide open described in Example 7.2.11. The open discs D°?,
D?, and DY are represented by the dashed lines; the closed subdiscs D¢, Df,
and DS are represented by the solid lines. The open annuli A, A, and As are
the lightly shaded regions between these open discs and their closed subdiscs,
the wide open U is the whole shaded region, and its underlying affinoid Uy is
the heavily shaded region.

Wy 0O Wy is empty.

=B

Figure 7.2: Caricature of a semistable covering and its attached graph (Defi-
nition 7.2.14).

For our purposes, the usefulness of semistable coverings is that they form a
proxy for split semistable models, but are much easier to work with computa-
tionally. To explain the correspondence, if X is a split semistable model, then
one has a reduction map

red: | X" |, — |X]a, (7.2.1.1)

where | X" |,, is the underlying set of X" as a rigid space, and | X | is the set of
closed points of the special fibre X'. The inverse image of any subset Z C |X|q
is denoted by ]Z[, and is called the residue class (or tube) of Z. It has the
structure of a rigid space in a canonical way.

Provided X has at least two irreducible components, the residue class W,
X[ of any irreducible component X, is a basic wide open. If we write Xv 0°:
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X~ Uy £v X, is the complement of the other irreducible components of the
special fibre, then the residue class W, o = &, o[ is an underlying affinoid,
making W, = (W,, W, o) into a basic wide open. The bounding annuli (resp.
internal annuli) of W, are the residue classes of the points where X, intersects
other components of X (resp. intersects itself). The wide opens W, for X,

running over irreducible components of X', form a semistable covering of X?".

Theorem 7.2.13 ([MC10, Theorem 2.36]). Let K be either Cy or a finite ex-
tension of Qq, and let X/K be a smooth projective curve. Then the above con-
struction sets up a bijective correspondence between split (strongly) semistable
models of X whose special fibre has at least two irreducible components and
(strongly) semistable coverings of X?™.

One can read off the reduction graph of a split semistable model X’ from the
corresponding semistable covering. For this, we attach a metrised complex of
k-curves to any semistable covering as follows.

Definition 7.2.14 ([CI10, §3.5.1]). Suppose that 4 = (W,,),cv is a semistable
covering of X?" indexed by a set V. We define a metrised complex of k-curves
I' =Ty by:

e V(I') =V is the indexing set V.

e FE(T) is the set of oriented open annuli A C X" which are either a
bounding annulus or an internal annulus of some W,. For e € E(T'), we
write A, for the corresponding oriented open annulus.

e For an oriented edge e € E(T'), we define dyg(e) to be the unique vertex
for which A, is either a bounding annulus of W,, equipped with the
orientation described in Remark 7.2.10, or an internal annulus of W,,.
We define e~ ! to be the edge for which A,-: is equal to A, with the
opposite orientation. (If A, is a bounding annulus of W, then it is a
component of an intersection W, N W, for v' # v, and then A, is a
bounding annulus of W,,.)

e For an unoriented edge e € E(I")", we define I(e) to be the width of the
annulus A..

e For a vertex v € V(I'), the canonical reduction of the underlying affi-
noid W, o is a reduced k-curve. We define X, to be the smooth com-
pactification of its normalisation.

This construction recovers the reduction graph of a split semistable model, as
we now prove carefully.
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Lemma 7.2.15. Let i be a semistable covering of X", corresponding to the
split semistable model X under Theorem 7.2.13. Then we have a canonical
isomorphism

INTR=R P

of metrised complexes of k-curves.

Proof. Tt is clear from the definition that there are canonical bijections
V(Pu) = V(Fx) and E(Fu)+ = E(F){)+

between sets of vertices and unoriented edges, preserving incidence. There are
three points which require some explanation:

~

1. How does one obtain a canonical bijection E(T'y) = E(T'y) between
oriented edges?

2. Why do the metrics on I'y and 'y agree?
3. Why do the k-curves attached to vertices agree?

For the first point, let Z € X' (k) be a singular point, with residue class |Z[. Let
us write || - || for the sup norm on O(]Z[), and O°(]z]) C O(]Z[) for the subring
of elements of sup norm < 1. Tt follows from [MC10, Proposition 2.10] (or the
argument below) that |Z[ is isomorphic to A(]al, 1) for some a € mg ~ {0}, and
so any parameter t on |Z| can be rescaled so that [[t|| = 1. We let s = at™!,
so ||s]| = 1 also. According to [MC10, Lemma 2.8], the reduction of O°(]Z[)
is canonically isomorphic to O ¥.z- 90, the reductions of s and t determine
elements of O &,z Which generate the maximal ideal and whose product is zero
(so @;gj = k[5,t]/(st)). The derivations % and a% are then two tangent
vectors to A at & which span the two tangent directions. Changing ¢ by an

element of K*O(]z[); only changes the tangent vector 8% by a scalar, and so
we have described a canonical bijection between the two orientations on the
annulus |Z[ and the two tangent directions to X at Z (¢ corresponds to 2).

For the second point, choose a chart
X U — S(a)
for some a. The choice of chart induces isomorphisms
Jz[ = Ju[ = 10[ = A(|al,1)

on the tubes of Z, 4, and 0 inside the formal completions of X', U, and &(a),
respectively. So the width of |Z[ is equal to v(a), which is the thickness of Z,
and so the metrics on I'g; and I' v agree.
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For the third point, for any vertex v, the canonical reduction of W, o =
red H(X°) is X2, cf. the proof of [MC10, Proposition 2.36]. So the smooth
compactification of the normalisation of W, ¢ is &,,. O

In the proof, we used the following lemma, which is presumably well-known,
but we could not find a reference in the literature.

Lemma 7.2.16. Let U — U’ be an étale morphism of reduced, flat, locally
finitely presented O -schemes, and let uw € U(k) be a k-point on the special
fibre of U mapping to a point @' € U'(k). Then the induced map

Ju[ = Ju'[
on residue classes is an isomorphism of rigid analytic spaces.

Proof. Shrinking Y’ and U, we may assume that U’ = Spec(A) and U =
Spec(B) are affine, and that @ is the unique point in the fibre above @’ in
U — U'. Choose fi,...,f, € A whose reductions generate the ideal mgy
defining @’. The residue class |@'[ of @ is then the union of the affinoid rigid
spaces Sp(K ®o, AW mfy .. 07Ymf ) where A(0=V/mpy 0=t mg)
is the f-adic completion of the algebra

AlYmp Y = Al 2] (B — Lz — fTY).

Since the reductions of fi,..., f;, also generate the ideal in B defining u, a
similar description holds for the residue class of 4.

Now, for any positive integers m and r, the map
A7V fy Y e — Bl e e (%)

is étale (it is a base-change of the map A — B), and its reduction mod-
ulo the ideal generated by fi,..., f, and mg is an isomorphism (the iden-
tity on k[z1,...,2,]). Since this ideal consists of nilpotent elements, this
implies that (%) itself is an isomorphism [Gro67, Théoreme 18.1.2]. Tak-
ing the inverse limit over r shows that the map A(¢=1V/m™f ... ¢=Y/mf) —
B{=Y/myp . 0=Ym ) s an isomorphism, and so |a[ — ]@/] is an isomor-
phism as claimed. O

7.2.1.2 Semistable vertex sets

For this part, we specialise to the case that K = C,. For a smooth projective
curve X/Cy, write X" for the Berkovich analytification of X, |X?"| for its
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underlying topological space, and | X*"[;; C |X*"| for the set of type II points
(see [Ber90, 1.4.4] for a discussion of types of points, or [Bak08, §2] for a more
accessible discussion in the case X = P!).

A semistable vertex set in X®" is a finite subset V' C |X?" |11 such that X"
V is a disjoint union of open balls and finitely many open annuli [BPR13,
Definition 3.1]. These correspond to semistable models of X [BPR13, §4].
If X is a semistable model of X, then there is an associated reduction map

red: |X*| — |X], (7.2.1.2)

where |X| denotes the underlying topological space of the special fibre. This
extends the reduction map (7.2.1.1) on rigid points. The preimage of any
generic point of X under the reduction map is a single type II point of X?", and
the set of all these points as we range over generic points of X is a semistable
vertex set [BPR13, Corollary 4.7 & Remark 4.2(2)].

Theorem 7.2.17 ([BPR13, Theorem 4.11]). Let X/C, be a smooth projective
curve. Then the above construction sets up a bijective correspondence between
semistable models of X and semistable vertex sets in X"

Again, one can also read off the reduction graph of a semistable model X from
the corresponding semistable vertex set. For this, it is convenient for us to view
graphs as metric spaces in the natural way (cf. [ABBR15, Definition 2.2]). That
is, we can equivalently describe a metrised graph as a compact metric space* T
together with a distinguished finite set V' C I' of wvertices such that I' \ V' is
isometric to a finite disjoint union of open intervals. The set T, (T') of oriented
edges with source v is then identified with the set tangent directions at v: of
germs of isometric embeddings [0,¢) — T' taking 0 to v.

To produce a graph out of a semistable vertex set, recall that if A(ry,72) is
the standard annulus of inner and outer radii r; and ro, then we define a map

o: (0,log,(ra/11)) = |A(ry,m2)]

by sending s to the Gauss point of the open ball centred on 0 with radius rof™*°
[BPR13, §2.3]. The image of o is called the skeleton sk(A(ry,r2)) of A(r1,72).
More generally, if A is an open annulus, then we may choose a parameter ¢
defining an isomorphism t: A = A(ry,72) for some r; < ro, and then de-
fine the skeleton of A to be sk(A) = t~!sk(A(r1,7r2)). The skeleton of A is
independent of the choice of parameter ¢ and is homeomorphic to the open
interval (0, log,(r2/r1)). If A is oriented, then sk(A) is also oriented.

40ur convention is that all metric spaces are length metric spaces, and the induced metric
on a subspace means the induced length metric.
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The skeleton T' associated to a semistable vertex set V' C | X |11 is the union
of V and the skeleta of the annuli in | X*?| \ V' [BPR13, Definition 3.3]. For
any annulus A in |X?"| NV, its skeleton sk(A) is an open interval inside T
whose closure is either a closed interval connecting two different elements in V/,
or a circle connecting an element in V' to itself [BPR13, Lemma 3.2]. In this
way, the skeleton I is a topological graph with vertex-set V.

In fact, the skeleton I' is a metrised complex of k-curves in a natural way. If
we write Ho (X) C |X?"| for the set of points of types II and III, then there
is a canonical length metric on H,(X) constructed by Baker—Payne—Rabinoff
[BPR13, §5.3], and the restriction of this metric to I" makes it into a metrised
graph. This metric is characterised by the fact that the map o tracing out
the skeleton of an annulus is an isometry. Additionally, any element v of the
semistable vertex set is a type II point of X*", which means that the completed
residue field H(v) is a complete valued extension of K whose residue field H(v)
is a finitely generated extension of k of transcendence degree 1. We write X, for
the unique smooth projective curve over k with function field #(v). Attaching
to each point v € V the curve X, above makes the skeleton I' into a metrised
complex of curves [ABBR15, 3.22].

Remark 7.2.18. The perspective of semistable vertex sets makes it eminently
clear that the reduction graph I' associated to a semistable model of a curve
X/C, is independent of the choice of model T', up to certain simple operations.
Indeed, let V' C | X®2|;; be a semistable vertex set, and let v € | X??|;; N\ V be
another type II point. Then:

o if v € sk(A) lies in the skeleton of an open annulus A in X*" \V,
then A\ {v} is a disjoint union of two open annuli and infinitely many
open balls;

e if v € |B| lies in an open ball B in X** \ V, then B \ {v} is a disjoint
union of one open annulus and infinitely many open balls.

In either case, V' := V U {v} is another semistable vertex set in X**. One
can check (e.g. using [BPR13, Lemma 3.2(1)]) that the skeleton I associated
to V' is obtained from the skeleton I' associated to V by either:

e (edge subdivision) adding a new vertex (namely v) at a point partway
along an edge of I', without changing the underlying metric space; or

e (budding off a leaf) adding a new vertex v and a single edge connecting v
to a vertex in V,

respectively. In either case, the curve X, attached to the new vertex v is
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isomorphic to ]P’,lg.

Any two semistable vertex sets can be obtained from one another by doing
and undoing operations of this form, and so the skeleton I' associated to a
semistable vertex set V' is independent of V' up to the above operations.

7.2.1.3 Semistable coverings versus semistable vertex sets

In the case K = Cy4, we know that semistable models of X correspond bi-
jectively to semistable vertex sets in X", and semistable models whose spe-
cial fibre has at least two irreducible components correspond bijectively to
semistable coverings of X?®". In particular, semistable vertex sets of size > 2
in X" correspond bijectively to semistable coverings of X". Since this will be
important later, we now describe this correspondence directly, without going
via semistable models.

Proposition 7.2.19. Let X/Cy be a smooth projective curve, and let X be a
semistable model whose special fibre has at least two irreducible components.
Let V' C | X2 be the semistable vertex set corresponding to X, and let 4 =
(Wy)wev be the semistable covering of X*® corresponding to X .

Then for allv e V:

e the wide open W, is the subspace of X?" given by the union of {v} and
all discs and annuli in | X?*| NV whose closure contains v;

e the bounding annuli of W, are exactly the oriented annuli in |X**| NV
corresponding to non-loop edges e in the skeleton with dy(e) = v;

e the internal annuli of W, are exactly the annuli in | X**|\'V correspond-

ing to loop edges e with endpoints v; and

o the function field of the canonical reduction of Wy, o is ﬁ(v)

Proof. For the first point, if X, is the irreducible component of the special fibre
corresponding to a vertex v, then its inverse image under the reduction map
is v (inverse image of the generic point 7,) together with the open discs and
annuli which are the inverse images of the closed points of X,. Suppose first
that z € X, (F,) is a point which is smooth in X, so its residue class ]Z[ is an
open disc. The topological boundary of |Z[ inside | X" is {v'} for some v' € V
[BPR13, Lemma 3.2(1)]. Since the reduction map is anti-continuous [Ber90,
Corollary 2.4.2] and the subset {Z, 7, } C |X| is an intersection of open subsets,
it follows that |Z[ U {v} is closed in | X?"|, and so we must have v/ = v, i.e. v
is the unique boundary point of Z[.
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If instead 7 is singular in X, then its residue class |Z is an annulus, whose topo-
logical boundary consists of one or two elements of V' [BPR13, Lemma 3.2(2)].
So, a similar argument establishes that if Z is a self-intersection point of X,
then the topological boundary of |z[ is {v}, while if Z is an intersection point
of X, and X,/, then the topological boundary of |z[ is® {v,v’}. Put together,
this tells us that the inverse image of X, under the reduction map is exactly
the union of v and all of the open discs and annuli whose closures contain v.

This gives the first three points.

For the final point, we first note that the underlying affinoid W, ¢ of W, is the
union of {v} and all discs in |X®"| \ V whose closure contains v. For any f €
O(Wy ), the maximum value of |f| on W, ¢ is attained at v, e.g. because |f|
is a continuous function |[W, o| — R, and on each open disc in |[W,o| \ {v},
|f| increases monotonically towards the boundary point v (this follows from
the fact that the maximum value of |f| on any closed disc is attained at its
Gauss point). In other words, the supremum norm on R = O(W, ) is just
the multiplicative norm |- |, attached to the Berkovich point v.

It then follows that the canonical reduction of W, o is Spec(R°/R°°), where R°
(resp. R°°) denotes the subring of R (resp. ideal of R°) consisting of ele-
ments of | - |,-norm < 1 (resp. < 1). The residue field #(v), on the other
hand, is Frac(R)°/ Frac(R)°°, where the multiplicative norm | - |, is extended
uniquely to Frac(R) [Ber90, Remark 1.2.2(i)]. Thus, we want to show that
Frac(R)°/ Frac(R)°° is the fraction field of R°/R°°. There is certainly an
F¢-algebra homomorphism

R°/R°® — Frac(R)°/ Frac(R)°° . (%)

An element of the kernel of this homomorphism would be represented by
some f € R° for which |%|v < 1, which implies that f = 0 in R°/R°°. So (%)
is injective, and thus induces a map

Frac(R°/R°°) — Frac(R)°/Frac(R)°°. (%)

5Actually, there is a small amount of justification missing here, which seems also to
be omitted in [BPR13, §4.9]. Specifically, the argument given shows that the boundary
is contained inside {v,v'}, but does not show that the two sets are equal. To show this,
let X’ be an admissible blowup of X centred at z (or rather, at a closed, finitely presented
subscheme whose reduced subscheme is {Z}). The corresponding semistable vertex set V'
comnsists of V' and one new vertex v” lying on the skeleton of ]Z[. This splits the skeleton
of |Z[ into two open intervals, which are the skeleta of two annuli in X" \ V'’ corresponding
to intersections of the new component X’,, with X/ and &’,. Accordingly, the boundaries
of these two annuli are contained in {v,v”} and {v’,v”}. This forces the two limit points
of the skeleton of |z[ to be distinct, equal to v and v’.
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Given any element 5 € Frac(R)°, we can rescale f and g by elements of C; so
that |g|, = 1 and |f|, < 1. So f and g determine an element % € Frac(R°/R°°)
mapping to the class of 5 in Frac(R)°/ Frac(R)°°. Thus (xx) is surjective, i.e.

is an isomorphism of fields over F,. This is what we wanted to prove. O

As a consequence, the skeleton attached to the semistable vertex set V' agrees
with the graph attached to the semistable covering i as a metrised complex
of Fy-curves (cf. [BPR13, §4.9] for the statement without metrics or vertex
curves).

7.2.2 Harmonic morphisms of metrised complexes

The reduction graph I" attached to a curve X/K via a choice of split semistable
model is functorial with respect to finite morphisms f: X — X’ of curves,
at least after suitable choices of models. This functoriality turns out to be
surprisingly subtle, so we devote some time to explaining this carefully. The
first subtlety lies in the correct notion of morphisms of graphs.

Definition 7.2.20 ([ABBR15, Definitions 2.4 & 2.19]). Let I' and I be
metrised graphs. A finite morphism f: ' — I" is a pair of functions V(T') —
V(') and E(T') — E(I”) compatible with edge-inversion and source maps,
such that the quantity

1(f(e))

de(f) = l(e)

is a positive integer for all edges e. The quantity d.(f) is called the degree of f
along e.

Equivalently, from the metric perspective, a finite morphism f: I' — I is a
continuous map f: I' — I such that f=1(V(I")) = V(T'), and such that every
connected component e of I'\ V(TI') (which is isometric to an open interval
and maps homeomorphically onto a connected component f(e) of IV \ V(I"))
maps onto its image via a dilation of some scale factor d.(f) € Z~¢. A finite
morphism f: I' = TV of metrised graphs is said to be harmonic of degree d,(f)
at v € V(I') if for every e’ € Ty, (I'") we have

ST d(f) = duf).

e€T,(T)
f(e)=¢

The map f is said to be harmonic if it is surjective and harmonic at every
v € V(I'). Then, for any v' € V(I") the sum deg(f) = >_,. j(,)=u do(f) is
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independent of v' and called the degree of f.

A finite harmonic morphism f: T — I of metrised complexes of k-curves is
a finite morphism between the underlying metrised graphs endowed with a
choice of finite morphism

fTU: /,?’U — /’g‘]{*(v)
of k-curves for each v € V(I") satisfying the following three conditions.

1. For every vertex v € V(I') and every e € T,(I'), we have that Z;) =
fo(Ze), and the map f, is ramified of degree d.(f) at Z.

2. Conversely, for every vertex v € V(I') and every e’ € Ty, ("), every
point in f,1(Z. ) is &, for some e € T,(T') with f(e) = ¢’

3. For every vertex v € V(I') we have d,(f) = deg(f,). (This is automatic
from the preceding conditions as soon as I" has at least one edge.)

A finite morphism f: X — X’ of smooth projective curves induces, after suit-
able choices, a finite harmonic morphism f: I' — I between their reduction
graphs. Describing this in terms of split semistable models is rather subtle —
for example, a finite morphism X — X’ between models need not induce a
finite map on reduction graphs — so we instead follow [ABBR15] and describe
this in terms of semistable vertex sets. The key result is the following.

Theorem 7.2.21 ([ABBR15, Theorem A, Corollary 4.26 & §4.27]). Take a
finite morphism f: X — X' of smooth projective curves over Cy. Let Vy be a fi-
nite set of type II points in X'®™. Then there exists a semistable vertex set V' C
| X210 |1p for X'a containing V| such that the preimage V = f~1(V') C | X*|
is a semistable vertex set for X®" and such that the skeleton T' associated to V
is the preimage of the skeleton I associated to V.

Moreover, for any such V', the induced map f: T' — TI” on skeleta is a fi-
nite harmonic morphism of metrised complexes of k-curves, of degree equal

to deg(f).

In the final part, for each vertex v € I', the morphism f,: X, — é\?}(v), part
of the data of a morphism of metrised complexes of k-curves, is the one whose
induced map on function fields is the pullback map H(f(v)) — H(v) induced
induced by f: X" — X' see [ABBR15, §4.20].

7.2.2.1 Morphisms of curves and semistable coverings

We will also need to translate Theorem 7.2.21 into the language of semistable
coverings.
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Let f: X — X’ be a finite morphism of smooth projective curves over Cg,
and choose a semistable vertex set V' C |X'#"|;; satisfying the conditions of
Theorem 7.2.21. Enlarging V' if necessary, we may assume that #V’/ > 2
and that V' is strongly semistable, meaning that the corresponding skeleton is
loopless. This implies the same conditions for the semistable vertex set V =
f71V' C |X®|1. So there are associated semistable coverings {4 = (W,)yev
and Y = (W/,)y ey of X2 and X'2".

The relationship between semistable coverings and semistable vertex sets in
Proposition 7.2.19 implies that the semistable coverings 4 and 4’ are compat-
ible in the following sense.

Proposition 7.2.22. In the setup of Theorem 7.2.21, if #V' > 2 and V' is
strongly semistable, then:

e for any vertex v' € V', we have

Fwn= o owe,
vef=1(v’)
and for any v € f~1(v'), the restriction of f to a map W, — W/, is a
finite morphism of degree d,(f);

e for any oriented edge €' of the skeleton attached to V', we have

an= Y A
ecf=1(e’)

and for any e € f71(€'), the restriction of f to a map A. — Al is a
finite morphism of degree d.(f) which preserves orientations; and

e for any vertex v' € V', we have

f71 12/70 = U VVU,O )
vef=1(v’)

and for any v € f~1(v'), the restriction of f to a map W, o — Wi o
is a finite morphism of degree dg(f) whose canonical reduction is the
restriction of the map f,: X, — X}(v).

Proof. The statements regarding the inverse images follow from the descrip-
tions in Proposition 7.2.19. The fact that the maps on wide opens and bound-
ing annuli are finite is immediate since f is finite. For the assertions regarding
the degree, consider first the induced morphism f|4,: Ac — A., on bounding
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annuli. We know that the induced map on skeleta is orientation-preserving,
and is dilation by the scale factor d.(f) by definition. Using the classifica-
tion of morphisms between annuli in [BPR13, Proposition 2.2(2)], this implies
that f|a, has degree d.(f) as claimed. By harmonicity, this implies that the
map flw,: W, — W/, has degree d,(f) (compute the total degree over any
point in a bounding annulus).

For the final assertion, for any vertex v € V, the morphism f: X" — X'a% on
Berkovich analytifications induces an extension H(f(v)) < H(v) on completed
residue fields, and so an extension H(f(v)) < H(v) on their residue fields. The
corresponding map X, — X }( ») of smooth projective Fy-curves is, by definition,
the morphism f, [ABBR15, §4.20]. So it follows from Proposition 7.2.19 that
this f, restricts to the canonical reduction of flw,o: Woo — W}(U),O. This
completes the proof.

7.3 The local heights formula

If X is a smooth projective curve over a finite extension K of @, with a chosen
basepoint b € X (K), then the normalised local height hz, with respect to a
trace zero correspondence Z C X x X is defined as follows. Let z € X (K) be
a K-rational point, and define a divisor Dz(b,z) C X by

Dy(b,z) =i\Z — 7 — i3 2, (7.3.0.1)

where ia: X — X x X is the inclusion of the diagonal, and i1,i5: X —
X x X are the inclusions of the subvarieties {b} x X and X x {z} [BD18,
Definition 6.2]. Let X'/Ok be a regular model, and let Dz (b,z) C X be a Q-
linear divisor whose generic fibre is Dz (b, z) and whose intersection multiplicity
with any vertical divisor is zero. Then the normalised local height is given by
the intersection multiplicity

hzo(z) = (z=b)-Dz(bz) € Q,

where we extend (z —b) to a divisor on X" in the obvious way. This height has
the property that X(wK)lthyg(z) is the Coleman—Gross height pairing of z — b
and Dyz(b, z), where x: K* — Q, is the character appearing in the definition
of the Coleman—Gross height [CG89, Proposition 1.2].

Remark 7.3.1. There are algorithms for computing the intersection pairing
on divisors given a regular model for X over Z, [Holl2, Muel4, vBHM20].
These algorithms depend on equations for Z and X. Equations for Z can be
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extremely complicated even for simple genus 2 curves [DRHS23, Appendix],
and so the complexity of the computation skyrockets as the genus and the
conductor of X grows. In principle, these intersection pairing methods have
the potential to work, but from a practical standpoint, working with equations
for the correspondence Z to construct an explicit divisor on a regular model is
difficult. We did attempt to use these intersection theory algorithms to com-
pute local heights on a genus 2 curve with RM, but were unable to surmount
the difficulties that arose in practice with dealing with the complicated equa-
tions for the correspondence. As far as we know, there are no examples in the
literature where these methods have been used to compute local heights in the
setting of quadratic Chabauty for rational points.

Our approach to computing local heights in this paper is based on a formula
due to the first author and Netan Dogra [BD20, Corollary 12.1.3], which avoids
the need to compute a regular model over K, and instead gives a direct combi-
natorial interpretation of hz ¢(z) in terms of reduction graphs. In this section,
we will recall the statement of this formula.

7.3.1 Homology of the reduction graph

Let T denote the reduction graph of a split semistable model of the curve X/K,
thought of as a metric space in the usual way. The local heights formula will be
expressed primarily in terms of the homology group H; (', Z). By Lemma 7.2.7
and the discussion below Theorem 7.2.17, we could equivalently define this
group to be the homology group of the skeleton associated to a semistable
vertex set in X@&? (after embedding K inside C,). This makes it clear how
to interpret the group H;(T',Z) even when X does not have split semistable
reduction over K, and also makes it clear that H;([',Z) is independent of
the choice of split semistable model / semistable vertex set up to canonical
isomorphism (by Remark 7.2.18)5.

The homology group H; (T, Z) comes with a perfect R-valued pairing, depend-
ing only on the underlying metric space of the graph I', and combinatorial in
nature. We recall the construction, following [CK21, §3]. Let I" be a metrised
graph, let Co(T",Z) .= Z - V(T') be the free Z-module generated by the vertices
of T, and let Cy(T',Z) :=Z - E(T")/ ~ denote the free Z-module generated by
the oriented edges of I', modulo the relations et ~ —¢ for all e € E(T"). Then

6 Another way to see this is that the inclusion T" — |X§?\ is a strong deformation retract

[Ber90, Proposition 4.1.6], so H;(T',Z) is canonically isomorphic to the homology group
Hy (|XEZ‘|7 Z), which is obviously independent of any choices.
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the homology H;(T', Z) is the kernel of the boundary map
0: C1(I,Z) — Co(T, Z)

sending an oriented edge e to d(e) = dy(e) — do(e™1).
There is a canonical positive-definite symmetric pairing (-, -): Sym? Cy(T',Z) —
R given by
1(61) if €y = €1,
(e1,€2) = ¢ —l(e1) ifex=e7",

0 else.

Since this pairing is positive-definite, its restriction to Hy(I',Z) C Cy(T,Z)
also defines a positive-definite symmetric pairing on Hy (T', Z), called the inter-
section length pairing (or cycle pairing in [CK21]). We remark that when T’
is the reduction graph associated to a split semistable model of X/K, the
intersection length pairing on H;(I',Z) is also independent of the choice of
model.

7.3.1.1 Functoriality

The assignment of the group H; (T, Z) is functorial with respect to finite mor-
phisms of curves, both co- and contravariantly. The covariant functoriality is
clear: given a finite morphism f: X — X’ of curves, without loss of generality
defined over C;, we have by Theorem 7.2.21 that f induces a finite harmonic
morphism I' — IV on suitably chosen skeleta, and hence a homomorphism

fo: Hi(T,Z) — H (I, Z)

(which again is independent of the choice of skeleta).

We can also define a map
f* : Hl(F’, Z) — H1 (F, Z)

in the other direction, namely the adjoint of f, with respect to the intersection
length pairings on the homology groups. One thing which is not apparent from
the definition is that f* is defined over Z, rather than over R or Q. This is a
consequence of the following calculation.

Proposition 7.3.2. Let f: I' — IV be a finite harmonic morphism of metrised
graphs. Then the pullback map

f* Hy(I",R) — Hy (T, R)
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(adjoint to the pushforward) is given by
f*(z >\e’ . 6/) = Z Af(e/)de(f) &
e’ e

In the above, summations over e or €' implicitly mean sums over unoriented
edges of T' or T (the summands are independent of the orientation of edges).

In particular, since each do(f) is an integer, f* restricts to a map
fH(I,Z) - Hy (T, Z).
Proof. For a homology class

Y=Y A€ € Hy(I',R),

e’

= Z)\f(e)de(f) €

We claim that f'(y’) € Hi (I, R). For this, we compute

= 3" Ao de(£O(e)

let us write

Y OY v Y e

v e/ €Ti)(IY)  e€Ty(T),fe)=¢’

:Z Z )\ewdegv(f)-v:()

v E/ETf(v)(l—V)

using harmonicity and that }>. . /) Aer = 0 for all o' € V(I) since 7' is a
homology class. Hence f'(y’) € Hi(I",R) as claimed.

Now for any v = )", pte - € € Hi(I', R) we have

V=D Aette - Uf(€) =D Aer Z fe | - = ()

e’ fle)=

using that d.(f) = l(lf(s)) in the first line. Hence f’ = f* as desired. O
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All told, we have shown that the assignment X — H;(I',Z) is a functor

{curves over K & finite morphisms} —

{lattices with an inner product & adjoint pairs of homomorphisms} .

7.3.1.2 Correspondences and component traces

Combining the pushforward and pullback functoriality, we find that the ho-
mology group H; (T, Z) is functorial with respect to correspondences between
curves. For our purposes, by a correspondence from X to Y, we mean a Weil
divisor Z C X x Y. The pushforward Z, along a correspondence is defined as
follows. If Z is a geometrically integral divisor and the projections my: Z — X
and mo: Z — Y are finite, then we define Z, := 7o, o T where 7 and 7o
are the two projections from the normalisation Zof Z. 1f Z is geometrically
integral and one projection is not finite, then we set Z, = 0. In general, we
first extend the base field so that all integral components of Z are geometri-
cally integral, and then extend by linearity. We will be especially interested
in correspondences Z from a curve X to itself.

These correspondences also have so-called traces on the components, which we
will need later for the local height formula.

Definition 7.3.3. Let Z C X x X be a correspondence defined over C,, and
let T' be a skeleton in X**. Let v € V(T'), and let S C |Z*"|11 be the set of
points w that map to (v,v). If we write Z,, for the F,-curve attached to a
point w € S, then ZWL = |_|w€S Z, is an effective divisor inside X, x X, with
projections 71, Ty to X, of degree dy and ds in total. We define the trace at v
to be tr,(Z) =dy +dy — A - 2, , € Z, where A is the diagonal in X, x X,,.

The above definition makes it clear that the component traces tr,(Z) are
integers. They can also be interpreted as traces of the action of Z, , . on
cohomology.

Lemma 7.3.4. In the above notation, tr,(Z) is equal to the trace of Zy o
acting on the rigid cohomology group H%ig(.)(v/((:g). For 0 # (it is also the
trace of ijy* acting on the étale cohomology group Helt()Ev Q).
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Proof. The Lefschetz trace formula [Ber74, Théoreme VI1.3.1.9]7 gives that

A-Zy, = Z (-1)’ tr(zv,v,*|Hiig(A?v/K)) .
i=0,1,2

The trace of Z,,. acting on Hiig(é\?v/(Cg) is dy for ¢ = 0 and is d; for i =
2. Rearranging gives the desired identity for tr,(Z). The same argument
applies for étale cohomology, using the corresponding trace formula [Mil80,

Theorem 25.1]. O

To obtain certifiably correct outputs from our algorithms, it will be necessary
to have some a priori control on the possible actions of a correspondence Z on
H;(T',Z) and the traces tr,(Z) attached to vertices. This is what we establish
here.

Theorem 7.3.5. Let Z C X x X be an effective correspondence, of degrees dy
and ds over X, respectively. Then:

a) Z.: H1(T',Z) — Hy(T', Z) has operator norm < \/dids with respect to the
intersection length pairing on Hy(T',Z).

b) For allv € V(I'), we have
| trU(Z)‘ S 29(’0) : ma'X{dla d2} )

where g(v) is the genus of v.

Now we prove Theorem 7.3.5, dealing with the two parts separately. For
the first part, it suffices to deal separately with pushforward and pullback of
cohomology classes.

Lemma 7.3.6. Suppose that f: T' — I is a harmonic map of metrised graphs
of degree d. Then the pushforward map f.: Hi(I',Z) — H1(I', Z) has operator
norm at most \/&, i.e. we have

(fe(0) £ () < d- {7, 7)

for ally € H1(T',R).

"Strictly speaking, [Ber74, Théoréme VII.3.1.9] only applies when Z, , is the graph of an
endomorphism of X, but the argument is easily generalised to the case of correspondences.
Also, [Ber74, Théoréme VIL.3.1.9] is a statement about crystalline cohomology rather than
rigid cohomology, but these agree for smooth proper varieties [Ber86, Proposition 2].
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Proof. If we write v = >__ A¢ - e as usual, then we have

<f*(’7)af*(’7)> = Z Z Ae) 'l(el)

> (X de(f))< > Ail(e))}

| fle)=e f(e)=e’
—dzv .
using the Cauchy—Schwartz inequality in the second line. O

Lemma 7.3.7. Suppose that f: T' — I is a harmonic map of metrised graphs
of degree d. Then we have

(f (1) £ (v2)) = d - (71,72)
for all o}, ~5 € Hi(I",R). In particular, f* has operator norm exactly \/d.

Proof. Let us write
= Z M€ and 7= Z Ay er - €.
e’ e’
According to the pullback formula

(V) =D Nig(e)de(f) €

for i = 1,2, and hence

(f (), [ () = Z/\lf(e Aafeyde(f)?1(e)

—Z( > d )-Ale/Azewl(e@

e f(e)=
- dz)\le’AZS . - d<’71772>
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Proof of Theorem 7.3.5Item (a). We assume that all irreducible components
of Z are geometrically irreducible, which can always be achieved after a finite
extension of the base field. If Z itself is geometrically irreducible, then Z, =
7o} is the composite of two maps which have operator norms at most v/dy
and 1/dy, respectively, by the above lemmas and Theorem 7.2.21. So we are
done in this case.

To prove the general case, we need to show that if we know the result for two
effective correspondences Z; and Zs, then the result holds for Z = Z; + Zs.
For this, let (di1,d12) and (da1,d2s) be the degrees of Z; and Zs over X,
respectively, so that di = di1 + do1 and do = dy2 + dag. For any v € Hy(T',Z)
we have

(Z+(7), Z+(7))

(Z1x + Z2:) (), (Z14 + Z2:) (7))
< (d11d12 + 2/ di1d12d21d22 + d21d22) {v,7)
< (di1 + do1)(dia +da2) - (7,7)

using the Cauchy—Schwarz inequality in the second line and the AM-GM in-
equality in the last line. This proves the result we want for Z. O

Now we turn to the second part of Theorem 7.3.5. The main calculation is the
following.

Lemma 7.3.8. Let X be a smooth projective curve of genus g over k, and ZC
X x X an effective correspondence, of degrees di and dy over X. Then dy +
do — Z - A has absolute value at most 2g max{dy,ds}.

Proof. Note that by Lemma 7.3.4 we have tr(Z, \H}ig(zl_’/K)) =di+dy—Z-A
for a correspondence Z on X. The space Hgig(/'\_,’ /K) is a 2g-dimensional vector
space over K. We may assume that g > 1, else there is nothing to prove. If
we write Z = Z5 + mA where m > 0 and Z, is an effective divisor on X x X
not containing A, then we have Zy-A > 0 by [Har77, Proposition V.1.4], and
so Z-A>mA-A=2m(1—-g) > (d +d2)(1—g). Combined with the above
we obtain
(2., (X/K)) < g(ds + da).

Now applying the same logic to the nth iterate Z” of Z, we find that Z? has in-
teger trace on H}ig(f /K), which implies that all of the eigenvalues A1, ..., Az
of Z. on H};,(¥/K) are algebraic integers. Moreover, we have

(2] [Hyy (X/K)) < g(df + d3)

rig
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for all n > 0. So, if we view the eigenvalues Ay, ..., A\, as elements of C via
some complex embedding Q(A1,...,Ayg) — C, then we have

R (Z A?) < g(d} +d3)

i=1

for all n > 0. Since (S')29 is compact, we can choose n > 0 such that the
argument of each A\? is sufficiently close to 0 that R(A?) > $|A7| for all i. So

for these n we have
29

DN < 2g(d} + d) ;

i=1
taking n sufficiently large with this property we obtain that |A;| < max{d;,ds}
for all . Hence

rig

|tr(Z,|HL, (X/K))| = |in| < 2gmax{dy,ds} .

O

Proof of Theorem 7.3.5Item (b). Again, we may and do assume Z is geometri-
cally irreducible. Letting Z,, = | | Z.,, be as in Definition 7.3.3, we obtain
by Lemma 7.3.8 that

|tro(2)] < g(v) - max{)_ du(m), Y du(m)}.

weS wes

wes

But we have

> dy(m) < deg(m) = d;
weS

for ¢ = 1,2 by Proposition 7.2.22, and so we are done. O

7.3.2 The local heights formula

We are now finally in a position to state the formula for local heights from
[BD20]. To do so, recall that if T is a metrised graph (viewed as a metric
space), then by a piecewise polynomial function we mean a continuous function
f: T — R which is given by a polynomial in the arc-length when restricted to
any edge of I'. By a piecewise polynomial measure we mean a formal sum

/J/:de'|d56|+z)\v'6v7
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where the first sum is taken over unoriented edges of I" (i.e. connected compo-
nents of '\ V(T")), ¢. is a function e — R which is a polynomial in arc length,
and A\, € R. We think of |ds.| as the unit length measure on edge e and d, as
a delta measure supported at the vertex v. Such a measure has a total mass

£(e)
> /0 ge(se)ldse| + > Ao

ecE(T) veV(I)

If f is a piecewise polynomial function and ¢ is a tangent direction at a ver-
tex v € V(T'), then one can make sense of derivative Dgzf(v) of f at v in
direction ¥ [BF06, Definition 3]. The Laplacian of f is the piecewise polyno-
mial measure V2(f) defined by

VA(f) ==Y (1) dse =D | D Daf(v) | -6u,

e v TeT,(T)

where (f|.)” denotes the second derivative of f with respect to arc length
along e [BF06, Definition 5|. The Laplacian defines an R-linear map from the
space of piecewise polynomial functions to the space of piecewise polynomial
measures; its kernel is the one-dimensional space of constant functions, and
its image is the codimension-one space of measures of total mass 0.

Finding an explicit piecewise polynomial function f whose Laplacian is a given
measure p of total mass 0 is not difficult. By formally double-integrating
ge along each edge of I' one finds a piecewise polynomial function fy such
that u — V2(fo) is a sum of delta-measures supported at vertices of I'. As
in [BF06, §5], by finding a right inverse for the weighted Laplacian matrix
one finds a piecewise affine function f; such that V2(f;) = u — V2(fy), and
then f = fo + f1 is the desired Laplacian inverse of u, well defined up to a
constant function.

The local height formula of [BD20] gives a formula for the Laplacian of the nor-
malised local height associated to a correspondence Z as an explicit piecewise
polynomial measure on the reduction graph.

Theorem 7.3.9 ([BD20, Corollary 12.1.3]%). Let K be a finite extension of Qy,
X/K a smooth projective curve with base point b € X(K) and Z C X x X a
correspondence representing a trace 0 endomorphism of Jac(X) which is fized

8There are a couple of errors in the statement of [BD20, Corollary 12.1.3] which we
correct here.
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by the Rosati involution. Let I' be the reduction graph of a split semistable
model of X. Then the normalised local height function hz,: X(K) — Q
factors through a piecewise polynomial function ?Lz’gi I' — R whose Laplacian
is given by

Vhz)=2 3 %(e,Z*(W(e))>~|dse|+ S tr(2) b,

2
eeE(I)*t (6) veV (T)

where (-,-) denotes the intersection length pairing on C1(I',Z) and the map
m: C1(I,R) — Hy (T, R) is the orthogonal projection. Furthermore, Ez’g van-
ishes at the reduction of the base point b, and these properties determine Ez,g
completely.

Remark 7.3.10. Since all of the edge lengths in I' are rational, it follows that
all of the quantities appearing in the above expression are rational numbers.
Hence the function hz, has the property that it takes points lying a rational
distance along edges of I' to rational numbers.

Remark 7.3.11. We have refined the statement from [BD20] so that our result
is purely combinatorial, rather than a formula in terms of étale cohomology.
Theorem 7.3.9 as stated above does not directly follow from [BD20]. The issue
is the following. If we let H} (X7, Q) denote the étale cohomology group
of X7, then this comes with a natural monodromy filtration, and the theorem
of Picard—Lefschetz gives identifications of its graded pieces as

Hi(T', Q) ifi=2,

grMH}, (X, Qp) = GBUGV(F) Hét(XvFQ@') ifi=1,

Lo HY(T, Q) if i =0,
0 else.

By functoriality of étale cohomology, the correspondence Z induces a push-
forward endomorphism Z, of the group H} (X7, Q) preserving the mon-
odromy filtration, and this in turn induces endomorphisms of H; (T, Q) and
each H}, (XU,E’QZ’)~ The statement proved in [BD20] is valid for Z, the en-
domorphisms induced this way via Picard-Lefschetz, rather than the endo-
morphisms we have defined graph-theoretically above. So to carefully deduce
Theorem 7.3.9 in the form stated, we need to prove that the Picard—Lefschetz
isomorphism is compatible with pushforwards and pullbacks; we will do this
in a forthcoming appendix to this paper.
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7.4 The Coleman—lovita isomorphism

In order to apply the local height formula, we need to be able to compute the
action of a correspondence Z C X x X on the homology H;(T', Z) of the dual
graph I', as well as the traces tr,(Z) of Z at vertices v. As outlined in the
introduction, our strategy for doing this proceeds by first computing the action
of Z, on the de Rham cohomology of X, and then using this to deduce the
action on Hy(T,Z) via the Coleman—Tovita isomorphism. This isomorphism,
whose statement we recall below, relates the de Rham cohomology of X to the
homology of I and the rigid cohomology of the k-curves attached to vertices
of I'.

Theorem 7.4.1 (Coleman—Iovita isomorphism, [CI10, §3.5], [DR17, §3.1]).
Let K be Cy or a finite extension of Q. Let X/ K be a smooth projective curve,
and let X /O be a split strongly’ semistable model, with reduction graph T.
Then the de Rham cohomology Hip (X/K) carries a canonical monodromy
filtration
0=M_;1Hj(X/K)

< MoHgg (X/K)

< MiHgg (X/K)

< MaHgg (X/K) = Hop (X/K)

along with canonical identifications of the graded pieces

H,(T', K) ifn =2,
grn Hip (X/K) = ¢ @, HL, (X,/K) ifn=1,
HY(T, K) ifn=0.

Here, H;(I',K) and H*(T', K) denote the homology and cohomology of the
graph T with coefficients in K, H}ig(zﬁ,/K) denotes the rigid cohomology of
the irreducible component X, of the special fibre X attached to a vertex v of T,
and the direct sum is taken over all vertices of I.

Since we will be using this isomorphism in computations, we will need to
explicitly recall its construction, and prove some elementary (but fiddly) com-
patibility properties. For this, we first need an explicit description of the de
Rham cohomology of wide opens.

9The same result is true without the word “strongly”, but the explicit description of the
Coleman—Iovita isomorphism is a little more complicated.
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7.4.1 Cohomology of wide opens

Let (W,, W,.0) be a wide open pair, with bounding annuli A4, ..., A,,, oriented
as per Remark 7.2.10. Choose a parameter ¢; on each oriented annulus A;,
giving an isomorphism A; = A(r; 1,r;2). Let X, be the rigid space obtained
by gluing together W, and the open discs D(r;2) of radius r; 5 for 1 <4 <wn,
along the isomorphisms t;: A; = A(r; 1,7;2). Then X, is the rigid analytifica-
tion of a smooth projective curve over K [MC10, Theorem 2.18]. We call X,
a compactification of W,. (The space W, has many non-isomorphic compact-
ifications, arising from different choices of the parameters t;.)

For each bounding annulus A; of W, its de Rham cohomology is isomorphic
to K via the residue map

Resy,: Hig(4;/K) = K,
see [MC10, Lemma 2.13]. This map depends only on the orientation on A;,
not on the particular parameter ¢;.

Lemma 7.4.2. Let (W,,W, ) be a wide open pair as above. Then for all
1-forms w € QY(W,,), we have

ZResAi(w) =0.

Proof. The proof of [MC10, Corollary 2.33] gives an exact sequence

0 — Hip(Xo/K) = Hig (W, /K) - P K = K — 0, (7.4.1.1)
i

in which the middle arrow is the direct sum of the residue maps Res4,. This
implies the result. O

The fact that the left-hand group H}y (X, /K) is non-canonical, i.e. depends
on the parameters t;, will cause us significant headaches when it comes to con-
sidering morphisms between curves in the next section. Thus, it is convenient
for us to reinterpret this de Rham cohomology group as a rigid cohomology
group in a manner which is independent of choices.

Recall that if ) is a smooth variety over k, then the rigid cohomology of Y
can be defined by choosing a smooth proper frame

Vs X =P,
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i.e. an open embedding of ) in a proper k-variety X and a closed embedding
of X in a formal Ok-scheme P which is smooth in a neighbourhood of y
[LS07, Definitions 3.1.5, 3.3.5, 3.3.10]. The rigid cohomology'® Hg,, (V/K)
of Y is then defined by

H:ig(j)/K) = H:iR(PK’jTO]J_;[P) ’

i.e. it is the de Rham cohomology of the Raynaud generic fibre Px with coef-
ficients in the sheaf j TO]J_/[p of overconvergent sections of the structure sheaf
of the tube of ) inside P [LS07, Definitions 8.2.5, Proposition 5.1.14]. As the
notation suggests, the rigid cohomology of ) is independent of the choice of
smooth proper frame up to canonical isomorphism [LS07, Propositions 7.4.2,
8.2.1]. We will only be interested in the case that ) is a smooth curve over k,
X is its smooth completion, and P is a deformation of X to a smooth proper
formal curve over Og.

Proposition 7.4.3. Let (W,, W, o) be a strongly basic wide open pair, let YV,
be the smooth canonical reduction of W, o, with smooth completion X,. Choose
parameters on the bounding annuli of (W, W, ) giving rise to a compactifi-
cation X, of W,,.

Then there are canonical isomorphisms
Hpp (X /K) = Hip (X, /K)  and  Hyy,(Vo/K) = Hig(W,/K)
which fit into a commuting square
Hip (Xo/K) —— Hyp (W, /K)
| |
1y 1 (v
Hrig(XU/K) - Hrig(yU/K)
in which the horizontal maps are induced by the evident inclusions.

Proof of Proposition 7.4.3. According to [MC10, Theorem 2.27], the compact-
ification X, has a proper formal model X, whose special fibre is &,. Such a
model is necessarily smooth (since &, is smooth), so

X=X, = X, and Y, = X, = X,

are smooth proper frames for X, and ), respectively.

10The notation from [LS07] would be rather H:ig(ji/OK), but we prefer H:ig(j/K) to
emphasise that it is a K-vector space.
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Calculating the rigid cohomology of X, with respect to this frame gives the
desired identification

Hyig(Xo/K) = Hip (Xo/K) |

cf. [LS07, Proposition 8.2.6(ii)].

Calculating the rigid cohomology of ), with respect to its frame gives an
identification

Hly (9,/K) 2 lim Hy (W'/K)
W/

where the colimit is taken over strict neighbourhoods W' of W, ¢ inside X,
[LS07, Proposition 5.1.12(ii)]. For A < 1 in y/|K*|, let W* C X,, denote the
complement of the closed discs D[Ar ! inside the bounding discs D(ry, HoTt
follows from [LS07, Proposition 3.3.2] that the W* form a cofinal system of
strict neighbourhoods of W, ¢ inside X,,.

Moreover, for A sufficiently close to 1, we have WA C W, and W, is obtained
from W by gluing the annuli A(r;il, 7"1_11) along the subannuli A()\rl_’il, rl_ll)
Since each inclusion A(Ary}, rle) — A(riil, 7, ;) induces an isomorphism on
de Rham cohomology, it follows by a Mayer—Vietoris argument that the inclu-
sion W* < W, also induces an isomorphism on de Rham cohomology. Hence
the natural map

i (Wi K) = lim Hl (W /K) = lim Hl (W K)
A w’

coming from the fact that W, is a strict neighbourhood of Wy is an isomor-
phism, and so we have

Hyip(Vo/K) = Hag (W, /K) .

Finally, for the compatibility between these identifications, we use that the
map H}, (X,/K) — H},(Vy/K) induced by the inclusion Y, < X, is the
same as the base-change map in relative rigid cohomology associated to the
commuting square

jvc—>"?’u

l l

Spec(k) == Spec(k),
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cf. [LS07, Proposition 8.2.10]. A similar thing is true for the map induced on
de Rham cohomology, so the desired compatibility follows from the fact that
the base-change maps in rigid and de Rham cohomology are compatible [LS07,
Proposition 8.2.11]. O

Remark 7.4.4. When we say that the isomorphisms in Proposition 7.4.3 are
canonical, we mean that the isomorphism H}ig(X_v /K) = H}y (X,/K) depends
only on (W, W, o) and the chosen parameters ¢; used to define X,, while the
isomorphism H}, (V,/K) = Hig (W, /K) depends only on (W,, W, o) and not
on the parameters ¢;. In particular, the inclusion H}, (X, /K) < Hlg (W, /K)
does not depend on the choice of parameters, so we can rewrite the exact
sequence (7.4.1.1) as
rig

0 — HYy (X,/K) = Hig (W, /K) - @K = K —0, (7.4.1.2)
which depends only on the strongly basic wide open (W,,, W, o).

7.4.2 Description of the Coleman—lovita isomorphism

Equipped with this description of the cohomology of wide opens, we are now
in a position to explicitly describe the Coleman—Iovita isomorphism, following
[DR17, §3]. This description will be purely rigid analytic. Let & = (W),
be the strongly semistable covering of X" corresponding to a split strongly
semistable model under Theorem 7.2.13. If [w] € Hjz(X/K) is a de Rham
cohomology class, then for any oriented edge e of ', we can restrict [w] to the
annulus A, to obtain a class in Hjg (4./K), and then take its residue Res 4, (w).
The residue of [w] along the inverse annulus A,-1 is Res4__, (w) = — Resa, (w),
so these residues determine a well-defined 1-chain

pao(w) = ZResAe(w) ee C(T,K).
By Lemma 7.4.2, this 1-chain is a 1-cycle, hence a homology class. The as-

signment w +— >~ Resy, (w) - e thus defines a K-linear map

o Hig(X/K) — Hy (T, K) .

If [w] € Hiz(X/K) lies in the kernel of @9, then the restriction of [w] to the

wide open W, has residue 0 over all bounding annuli, so lies in H,}ig(é\?v /K)
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using the exact sequence (7.4.1.2). This construction defines a K-linear map

10 ker(py) = @D HYy (X,/K) .

Finally, if [w] € Hig (X/K) lies in the kernel of @2 and 1, then [w] is repre-
sented by a meromorphic 1-form w of the second kind on X?" whose restriction
to any wide open W, is an exact form, so d f, for some meromorphic function f,
on W,. If e is an oriented edge of T, then the difference fj;(c)la. — fo,(e)la. is
a constant function on A.. The assignment

e foo(e)la. — for(e)la. € K

is thus a 1-cocycle on I'; and different choices of the f, yield 1-cochains which
differ by a 1-coboundary. Thus the cohomology class of this cocycle is well-
defined, and we have defined a K-linear map

wo: ker(p)) — HY(T, K).
Definition 7.4.5. The monodromy filtration on Hiy (X/K) is defined by

HY, (X/K) ifn>2,

ManllR(X/K) — ker(p2) ifn=1,
ker(¢1) if n =0,
0 if n <0.

It will be convenient in what follows to adopt the shorthand that if I" is a
metrised complex of k-curves, then

rlg (F/K)

denotes the graded K-vector space given in degrees 0, 1 and 2 by

@H“g (X,/K), and Hy(I,K),

respectively, and vanishing in all other degrees. When I is the reduction graph
of a curve X/K with semistable reduction, the maps 2, ¢1 and ¢g thus induce
a graded K-linear map

Po: gri'Hig (X/K) — H}j, (T/K) . (7.4.2.1)
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Lemma 7.4.6. The map (7.4.2.1) is the Coleman—Iovita isomorphism of The-
orem 7.4.1.

Proof. Even though this is essentially contained in [DR17, §3.1], we will recap
the proof, since our statement in Theorem 7.4.1 does not exactly match the
corresponding statement in [DR17], and in any case, we will need to use parts
of the proof again shortly. Let i = (W), be a strongly semistable cover-
ing of X" then the de Rham cohomology of X®" can be computed as the
Cech hypercohomology of the complex 2% .. /K over the covering &I, i.e. as the

cohomology groups of the Cech complex
oy, Q%) = CHy, Q% /) = C2(4, Q%K) -

Here, for clarity, we are using the alternating Cech complex of [Stal8a, 01FG],
ie.

CO(L, Q%an /1) @ oW,
C' (8 25) = DR W) @ (P O4)
C2 (8L, D ) (@ QLA )7,

where the direct sums are taken over vertices v or oriented edges e of I', and
the superscript (-)~ denotes the —1 eigenspace with respect to the involution
given by switching the orientation on each edge. So, for example, elements
of C1(4, Q}an/K) are represented by tuples ((wv)v, (fe)e) where w, € QY(W,)
for each vertex v and f. € O(A,) for each oriented edge e, with fo-1 = —fe.
The differentials on the Cech complex are given by

d((fv)v) = ((dfv)va (f81(€)|Ae - Ae)) )
d((wv)ln (fe)e) = ((w81(6)|Ae - wao(e)|Ae - dfe)e) .

Now, the subspace MoH} (X/K) is the space of cohomology classes [w] repre-
sented by Cech cocycles ((wy)y, (fe)e) where each w, is exact, or equivalently
the space of cohomology classes which can be represented by Cech cocycles
with w, = 0 for all v. For all such cohomology classes, f. is constant for all e,
and the map ¢( sends the cohomology class [w] to the class of the map sending
an edge e to f.. It is clear from this description that g is injective.
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Hence the map (7.4.2.1) is injective in all degrees. Since dimy Hlig(X/K) =
dimg H}, (T/K) by [MC10, Proposition 2.34], it is an isomorphism. O
Remark 7.4.7. Tt follows from Remark 7.2.18 (over K = Cy, but this is suf-
ficient for our purposes) that group H%ig(F/K ) is independent of the choice
of strongly semistable covering. Moreover, one can check that the Coleman—
Tovita isomorphism ¢, as we have defined it is also independent of the choice

of strongly semistable covering.

7.4.3 Compatibility with Poincaré duality

In what follows, it will be important for us to know that the Coleman—Iovita
isomorphism is compatible with all of the usual structures on cohomology:
Poincaré duality and pullbacks and pushforwards along finite morphisms of
curves. We begin by discussing compatibility with Poincaré duality. For this,
if I' is a metrised complex of k-curves, we equip H}ig(I‘/ K) with an antisym-
metric pairing by defining

M+ D W] 172+ D w2l +93) =1(02) + D _([wi], [wa]) =75 (1)

(7.4.3.1)
where y; and 7, are homology classes on I', [wy,] and [wa,] are rigid co-
homology classes on X,, and v; and 7§ are cohomology classes on I'. The
pairing ([w1,4], [wa,,]) on the right-hand side denotes the Poincaré pairing on
rigid cohomology.

Compatibility of the Coleman—Iovita isomorphism with Poincaré duality then
amounts to the following.

Proposition 7.4.8. The subspaces MoHAR (X/K) and M H), (X/K) are ex-
act annihilators for the Poincaré pairing on Hig(X/K). Additionally, the
Coleman—Iovita isomorphism
cerMHLR(X/K) & HL (T/K)
Po: Bl dR Tig
is an isomorphism of K -vector spaces equipped with an antisymmetric pairing

(the pairing on the left being induced by Poincaré duality, and the pairing on
the right being (7.4.3.1)).

We want to give a description of the Poincaré pairing on H) (X/K) in terms

of Cech hypercohomology, as in the proof of Lemma 7.4.6. For this, we first
need to describe the trace map H3, (X/K) = K. Any class [¢] € H3z (X/K)
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can be represented by a Cech 2-cocycle (we)e € C2(Y, Q;(an/K), i.e. a tuple
consisting of a 1-form w, € Q'(A,) for each oriented edge e of T, subject to
the constraint w,-1 = —we.

Lemma 7.4.9. The trace of the class [£] € H3z(X/K) is given by

w(e) = S Resa, (w.).

c€E(I)+

Remark 7.4.10. The trace map tr: H3z(X/K) — K on algebraic de Rham
cohomology is determined, up to scaling by a global constant independent
of X, by the requirement that for a finite morphism f: X — X’ of curves, we
have tr(f*[¢']) = deg(f) - tr([¢']) for all [¢'] € H3z(X'/K). However, finding
the correct choice of normalisation (i.e. global constant) in the literature is
surprisingly difficult. (For example, the definition in [Har75] involves compos-
ing several isomorphisms between one-dimensional vector spaces, and it is not
clear, at least to the authors, how to normalise all of these isomorphisms, at
least up to sign.)

The normalisation we will take for the trace map in this paper is as follows.
Let 4 be the usual affine covering of P by PL ~ {co} and PL ~ {0}, and
let £ € C?(4, Qﬁ(/K) be the Cech 2-cocycle given by % on G,,. Then we
normalise the trace map so that

tr([¢]) = 1.

We remark that this is the choice of normalisation for which, over the complex

numbers, if [£] is the class of a smooth 2-form n on X(C), then tr([¢]) =
1
pre fX((C) -

Proof of Lemma 7.4.9. We first observe that the quantity > Resa,(w.) is in-

dependent of how we represent [¢] as a Cech 2-cocycle, and is also independent
of the chosen strongly semistable covering by Remark 7.4.7. So the assignment
(€] = Y. Resa, (we) defines a K-linear map ¢: H3z (X/K) — K.

In order to prove that v is equal to the trace map, it suffices to consider only
the case that K = C,. Given a finite morphism f: X — X', choose strongly
semistable coverings $ and ' of X3" and X’"®" as in Proposition 7.2.22.
If [¢'] € H2;(X'/K) is represented by a Cech 2-cocycle (wer)er, then f*[¢']
is represented by the Cech 2-cocycle (we)e with we = (fla.)"w}(ey- So

Resa, (we) = de(f) - ResA}(e) (w}(e)) ,
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and so Y(f*[¢']) = deg(f) - ¥([¢']). According to Remark 7.4.10, this implies
that v is equal to the trace map, up to multiplication by some global constant.

To check that this global constant is 1, let [¢] € H3g (P} /K) be the cohomology
class defined in Remark 7.4.10. With respect to the semistable covering of ]P’}(’an
consisting of the open ball of radius ¢ and the complement of the closed ball

of radius 1 centred on 0, [¢] is represented by the Cech 2-cocycle whose value
on the intersection A(1,¥¢) is %. Thus ¥([¢]) = 1 and we are done. O

As a consequence, we can give a formula for the Poincaré pairing on H(liR(X /K).

Lemma 7.4.11. Let [wy], [wo] € Hig (X/K) be represented by Cech 1-cocycles
w1 = (W1,0), (f1,e)e) and wo = ((w2,0)v;s (f2,e)e). Then the Poincaré pairing
of [w1] and [wa] is given by

<[w1], [w2]> = Z ResAe(fl,ew2761(e) - f2,ew1,ao(e))~
e€E(I)+

Remark 7.4.12. Lemma 7.4.11 contains as a special case the following. Suppose
that W, is a strongly basic wide open, and fix a compactification X,. A
strongly semistable covering of X, is then given by W, and the discs glued
onto its bounding annuli. The corresponding reduction graph is a star, whose
centre is the vertex v corresponding to W,,. If wy,ws € QY (W,,) are differentials
with residue 0 on each bounding annulus of W, then they determine de Rham
cohomology classes on X, via the exact sequence (7.4.1.1). These cohomology
classes [w;] for i = 1,2 are represented by Cech 1-cocycles ((wiv v (fie)e)
where w; v = w; for v = v and w; ,» = 0 otherwise. The edge functions f., for
edges oriented away from v, satisfy df; . = —wi|a., l.e. —fie = [w;|a, is an
antiderivative of w;|4,. Thus Lemma 7.4.11 specialises to the formula

(el o = = T Resa, (11 [ 2) = SR, ([ o) )

where the sum is taken over the bounding annuli of W, with their usual ori-
entation, cf. Remark 7.2.10.

Remark 7.4.13. The case of Lemma 7.4.11 when [w;] and [ws] lie in the sub-
space M1H} g (X/K) is stated as [DR17, (109)], though is not proved. Our
formula differs from that in [DR17] by a sign; we presume that this is due to
differing conventions for how to orient bounding annuli of wide opens, which
is not made explicit in [DR17].
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Proof of Lemma 7.4.11. Fix a choice of orientation on the graph I' (i.e. make
a choice of one of each pair {e,e71}). The cup product of the cocycles w;
and wy is the Cech 2-cocycle where

(Wl U w2>e = fl,ew2,81(6)|Ae - f2,ewl,80(e)|Ae

for each edge e with the chosen orientation'!. Hence we have

([wi], [we]) = tr(w1 Uws) = Z Resa, (f1,ew2,0,(e) = f2,ew1,80(e))

using Lemma 7.4.9, and we are done. O

Now we are ready to prove the compatibility of the Coleman—lovita isomor-
phism with Poincaré duality.

Proof of Proposition 7.4.8. 1f [w1] lies in MoHJg (X/K), then we may represent
it by a Cech 1-cocycle ((w1,0)vs (f1,e)e) in which wq, = 0 for all v, and hence
each fi . is constant. It follows from Lemma 7.4.11 that

([wn], [wa]) = > Resa, (f1.ew2,0,(e)
= Z J1.eResa, (w2,0(c))

= (po([wr]), pa([wa]))

for all [wo] € Hix (X/K). In particular, if [wo] € MyH}z (X/K), then we have
([w1], [w2]) = 0 and so the Poincaré pairing vanishes on My ® M;. Since M
and M; have complementary dimensions, they are exact annihilators.

The same formula establishes that the associated graded of the Poincaré pair-
ing agrees with the pairing on Hy;, (I'/K) in degrees 0 and 2. It remains to deal
with the pairing in degree 1. Suppose now that [wq], [we] € MiH}R (X/K),
so they are represented by Cech 1-cocycles with Resa, (w; g,(c)) = 0 for all
edges e and ¢ = 1,2. We may also assume for simplicity that w;, = 0 for
all vertices v other than a single vertex v;. This implies that f;. is con-
stant for all edges e without v; as an endpoint; changing [w;] by an element

HThe need to choose an orientation here comes from the fact that this formula is the
formula for the cup product of non-alternating Cech cochains, cf. [Stal8a, 01FP]. This
formula induces the correct cup product on cohomology, independently of the choice of
orientation.
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in MoH!» (X/K) (which does not affect the pairing ([w;], [wa])), we are free to
assume that f. = 0 for all such edges. We may assume the same thing for wy
at a vertex v, which may or may not be equal to v;.

In the Poincaré pairing formula

([wi], [wa]) = ZReSAe(fl,ew2,51(e) — f2,e91,80(e)) »

the summands on the right-hand side vanish for edges e which do not have v,
and v as their endpoints. If v; # vy are opposite endpoints of e, then the
corresponding summand again vanishes (e.g. by orienting e from vy to v1), and
hence we see that (Jwq], [wa]) = 0 for vy # ve. If instead v; = vy is the source
of edge e then we have

Resa, (f1,ew2,0, (e) = f2,ew1,80(e)) = — Resa, (f2,ew10,) = Resy, (wml : /w2,u1>

and so we find

(ol = 3 Rosa (w10 [ )

9o (e)=v1

But by Remark 7.4.12, the right-hand side is equal to the Poincaré pairing of
the classes (w1, ], [wa,0,] € Hyj,(&X,/K) determined by wi ,, and ws,,. This
shows that ([w1], [wa]) = (p1([wi1]), ¢1([we])) for any [wi], [we] € MiHip (X/K)
and so we are done. O

7.4.4 Compatibility with pullbacks and pushforwards

The second property which we need to check — and the more important one
— is that the Coleman-Iovita isomorphism is compatible with pullbacks and
pushforwards along finite morphisms of curves, and hence that it is compatible
with pushforwards along correspondences. If f: I' — I" is a finite harmonic
morphism of metrised complexes of k-curves (Definition 7.2.20), then we have
already defined in Section 7.2.2 pullback and pushforward maps

fH(T,Z) - H(T,Z) and f.: Hy(T,Z) — H (I, Z)

on homology, and similarly on cohomology. Moreover, since f is a morphism of
metrised complexes of curves, it comes with a finite morphism f,: X, — X Ji (v)
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of curves over the residue field k for each vertex v € V. Hence there are also
pullback and pushforward maps

f*:@f @Hrlg X//K %@Hrlg U/K)’

v'eV’ veV
f*:®f’ll* @Hrlg U/K @Hrlg X//K
v veV v eV’

All in all, these pullback and pushforward maps define graded K-linear maps

P Hy,(I'/K) = H, (T/K) and  f.:

rig I/K) — Hy, (I'/K),

rlg( Tig

making H};, (I/K) both contra- and covariantly functorial in T' with respect
to finite harmonic morphisms. The maps f* and f. are adjoint with respect
to the Poincaré pairing of (7.4.3.1).

We now carefully prove the following.

Theorem 7.4.14 (Push—pull compatibility of Coleman—Iovita). Let f: X —
X' be a finite morphism of smooth projective curves over Cy, inducing a finite
harmonic morphism f: T — T' between their reduction graphs as in Theo-
rem 7.2.21. Then the pullback and pushforward maps

[ Hap(X'/K) = Hap(X/K) and  f.: Hyp(X/K) — Hap(X'/K)

on de Rham cohomology preserve the monodromy filtration (not mecessarily
strictly) and are compatible with the Coleman—Iovita isomorphism in the sense
that both of the following squares commute.

e, (X'/K) —2 HL(U/K)  grdHlg (X/K) —£ HL (D/K)
Jf* J{f* Jf* J{f*
eMH (X/K) —2o HL(D/K)  grdlHY (X'/K) —2 HL(I'/K)

(7.4.4.1)

For the proof, fix a strongly semistable vertex set V' C |X’"|;; of size >
2 satisfying the conditions of Theorem 7.2.21, so that V' and V = f~1V’
determine semistable coverings of X’*" and X?®". Per Proposition 7.2. 22, for
any bounding annulus A/, in X’*"  the inverse image of A, in X" i

A= U A
ecf~1(e)
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and the restriction of f to A is a finite morphism A, — A/, of degree d.(f).
According to [BPR13, Proposition 2.2], if ¢’ and ¢ are parameters on the annuli
A’, and A, then the restriction f|4, is given by ¢’ = at? () (14-g(t)) where g €
O(A,) is an analytic function with norm < 1 at all points of 4.. So

dt’

7S] = diog (001 + (1)) = (1) + dlog(1 + (1))

Since Iog(l + g(t)) is convergent on the open annulus A., it follows that

Resa, (1 90) = d,(1).

Since the class of d, is a basis of Hiz (AL, /K), it follows that
Resg, (f*w’) = de(f) Resar, (w')

for all w’ € Q'(A’,). Fixing [w'] € Hiz(X’/K) and summing over edges of I'

gives
W) = ZResAﬁ(f*w/
s D )R )€ = )
e’ ecf-1(e)

using Proposition 7.3.2. This tells us that f*(M;Hig (X'/K)) C M;H}g (X/K),
and that the left-hand square in (7.4.4.1) commutes in degree 2.

Next, for any 1-form w’ on A., we have (f|a,)«(fla. ) w’ = de(f)w’ for all e €
f~Y(e’) and so

Resar, ((fla.)«(fla.)"w’) = de(f) Resar, (w') = Resa, ((f[a.)"w').

This implies that Resa/, ((f|a,)«w) = Resa, (w) for all 1-forms w on A, and

so we have
w) = ZResA/,(f*w) e
e/

:ZResAé/ Z (fla)sw | - €

ecf~1(e)

= Z Z Resa, (w) - € = fupa(w).

e eef-1(e)
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using Proposition 7.3.2. So f.(M;Hig (X/K)) C M;HlR (X'/K) and the right-
hand square in (7.4.4.1) commutes in degree 2.

Next, for [w'] € MyHLg (X'/K) represented by a Cech 1-cocycle ((w, )ur, (f1))er)
we know that the inverse image of each basic wide open W}, in X'*" is

Fwln= o owe
vefH(v)

For each v € f~1(v’), the pullback (f|w,)*w!, is a 1-form on W, with residue
zero on each bounding annulus. According to Proposition 7.2.22 (combined
with [LS07, Proposition 8.2.10]), the class of (f|w,)*w,, in rigid cohomology

is the pullback of the class of w!, along the map f,: X, — X!,. Taking this
over all v implies that

e1(f*W]) = froi([w'),

which tells us that f*(MoH}r(X'/K)) C MoH}R(X/K), and that the left-
hand square in (7.4.4.1) commutes in degree 1.

The remaining cases follow by Poincaré duality. For example, since pullback
and pushforward are adjoint under the Poincaré pairing on H}g (X/K), it
follows from the fact that f* preserves M; that f, preserves its annihilator Mg.
And then for any class [w] € MjH}g (X/K) we have

(r(falw]), o1 (WD) = (fulw], W) = (W], f7w]) = {pr([w]), 1 (f*[w]))
= (pr([w]), f* (1 (WD) = (Fe(pr([w])), 1 (W) -

Since the Poincaré pairing is perfect, this implies that ¢1(f«[w]) = f«(01([w])),
and hence the right-hand square in (7.4.4.1) commutes in degree 1.

A similar argument shows that the squares in (7.4.4.1) commute in degree 0,
completing the proof of Theorem 7.4.14. O]
7.4.4.1 Compatibility with correspondences

If Z C X x X' is a correspondence from X to X', having reduction graphs I’
and I, respectively, then we can define a pushforward

Z,:HL (I'/K) — HL (I'/K)

rig rig

in the usual way, namely take the composite 3. o T} where 7 : Z — X
and 7y: Z — X' are the projections from the normalisation. It is a formal
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consequence of Theorem 7.4.14 that the Coleman—Iovita isomorphism is also
compatible with pushforward along correspondences.

In our computations, we will use this to compute the action of Z, on Hy (T, Z),
as well as the vertex traces tr,(Z). Once we know the action of Z, on the
space Hip (X/K), we can use the Coleman-Iovita isomorphism to determine
the action on H}; (T/K). In degree 2, we read off the action of Z, on Hy (T, K),
while in degree 1 we read off the action on @, H%ig(/'\_,’v /K). Taking an appro-
priate block in the matrix representing this action and taking the trace, we
obtain the vertex traces tr,(Z) by Lemma 7.3.4.

7.5 Explicit Coleman—Iovita for hyperelliptic
curves

We now specialialise to the case of hyperelliptic curves in odd residue char-
acteristic, and begin to explain what the Coleman-Iovita isomorphism means
explicitly. In this section we first explain background on cluster pictures. We
then give a description of how to obtain a strongly semistable cover of a hyper-
elliptic curve over a finite extension K/Qy in odd residue characteristic. We
provide a definition of the bases of Hy (T, Z), Hjr (X/K), and H}, (X, /K) that
we will use and give an explicit description of the Coleman—Iovita isomorphism
with respect to these bases. We also explicitly describe the Berkovich skeleton
of X&' using the semistable covering of X. We use this description to give a
sufficient condition for when a component of the associated semistable model
X has no Qg-points reducing to it.

7.5.1 A semistable covering

Let ¢ > 2 be a prime. Let 7 : X — P! be a nice hyperelliptic curve defined
over a finite extension K/Q,. In the standard affine patch, suppose X is
given by an equation y?> = f(x) and deg f > 3, with f separable. Enlarging
K if necessary, we may assume that K contains the biquadratic extension of
the field generated by R, the set of roots of f in K. In this section, we use
cluster theory [DDMM23, BBB122] to write down a semistable covering of
X2 without explicitly finding a semistable model of X/K.

Following [DDMM23] we define the following terms.
Definition 7.5.1 (Cluster vocabulary).

e A cluster s is a non-empty subset of the roots of f cut out by a disc in
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Ab21 That is, s = D N'R for some open or closed disc D C Al2",

o A cluster s is proper if #s > 1. It is odd if #s is odd and even if #s is
even.

e The top cluster is R itself.

e A cluster ' is a child of s (and s is the parent of s'), denoted by s" < s,
if 5" is a maximal subcluster of s (not equal to s itself). We write s” < s
to denote that s’ is a child or equal to s. For any non-top cluster we
denote by P(s) the parent of s.

e An even cluster s is called dbereven if every child of s is also even.

e The depth of a proper cluster s is

ds := min v(a; —ag).
a1,02€85

If 5 is not the top cluster, then the relative depth of 5 is 05 := ds — dp(s)-
e Let s A s’ be the smallest cluster containing both s and s’.

e Define the invariant

Vg 1= U(C) + Z d{r}/\s
reR

for each proper cluster s, where c is the leading coefficient of f.

Remark 7.5.2. Our depths differ from those in [DDMM23] by a multiplicative
constant, because they normalise their valuation to have valuation group Z,
while we normalise v(¢) = 1.

Definition 7.5.3 (Open discs and annuli associated to clusters). For a cluster
s, we define the following subsets of ]P’};an.

e Let Df be the smallest closed disc in A};an such that s = D{ N'R.

e For s not the top cluster, let D¢ be the largest open disc in AR™ such
that 5 = D2 N'R. If 5 is the top cluster we set D? = PR™".

e For s not the top cluster, define the open annulus A, := D? \ D¢.

e Define
Us:=D2\ |J D& CP™
5'<s

s’ proper

Proposition 7.5.4. The analytic spaces Us constitute a semistable covering
1,an
of P
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Figure 7.3: A picture of the analytic space Us.

Proof. Given z € A}g‘m(K ), let D¢ be the smallest closed disc containing x
and at least two roots of f. Let s := D° N R, which is a proper cluster. Then
x € DZ. Indeed, since DN Dg # 0, we have either D¢ C D¢ and so « € Dg,
or D? C D¢. In the latter case, there is a larger open disc D¢ C D° C D¢ with

D°N'R = s contradicting the maximality of D?. By minimality of D¢, for any
proper child ' < s, we have = ¢ DS,. So & € U, and hence the U, cover Ap™".

To show the covering is semistable, we first note that for a cluster U, the pair

U, D¢\ |J Dg
, 5'<s
s proper
forms a basic wide open. Secondly, the intersection Us N U, is by construction
the annulus Ay if s’ < 5, and is empty if 5 £ s’ and s’ £ 5. Hence all double
intersections are annuli or empty, and all triple intersections are empty. O

This semistable covering also appears in [Stol9], where it is used to give uni-
form bounds for rational points on hyperelliptic curves of small Mordell-Weil
rank and [KK22, Section 4] where it plays a role in defining a p-adic integral
(where p = £) on bad reduction hyperelliptic curves. Here, we tie it to cluster
pictures, as speculated about in [Kay21, Chapter 4].

We will repeatedly make use of the following lemma to describe equations for
X restricted to annuli and wide opens of the semistable covering.

Lemma 7.5.5 ([KK22, Lemma 4.10]). Let D be an open disc in A™ and let
DS, ..., D¢ be pairwise disjoint closed subdiscs. Set U := D°\ U;D$. Suppose
that h(z) € K|x] is a polynomial such that
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(a) h(z) has no zeros in U, and
(b) h(x) has an even number of zeros in each Df.

Let K' be the biquadratic extension of K. Then there is an invertible rigid
analytic function h(x)'/? € O(Uk:)™ whose square is h(x). Moreover h(z)'/?
1s explicitly computable.

Proof. Write h(z) = C - []pe T2 (z — ) - Hﬁ:l(w _ ;) where o; € DS,
Bj ¢ D°, and C € K. Then

(fie—en) = e-arfi (- 222)"

i=1 i=1

converges outside of Dj for all 1 <k < n. Furthermore,

t 1/2 t
c-I[-8)) =c-J[(—B1)—(Bi—B)"?
j=1 i=1
t 1/2
_ 2 a2 _5051>
c E((ﬂl Bi) <1 P )

converges on D°. The product of the square roots is h(x)l/ 2 and belongs to
O(Uk ). O

Definition 7.5.6. We fix an ordering on R. For every odd cluster s (including
singletons), choose the smallest element o, € s. For a non-singleton cluster s,
we define

gs() == H (z—ay) and hs(z) = f(z)/gs(2).

s'<s

s’ odd
For a singleton cluster s we define g,(z) := « — as and hq(x) := f(z)/gs(x).
Let X be the projective hyperelliptic curve defined by the affine equation
u? = gs(z).
Remark 7.5.7. If s is iibereven then g, = 1 and so X, ~ P}%an L P}%an is a
disconnected hyperelliptic curve. This will not be a problem.

We can now describe equations for X restricted to subsets of the semistable
covering and annuli.



7.5. EXPLICIT COLEMAN-IOVITA 239

Proposition 7.5.8. For any cluster s, we have that X|y, and Xs|y, are
isomorphic over Us.

Proof. By construction, the polynomial hs(z) has no roots in Us and an even
number of roots in D¢, for each proper child ' < s. So it has a square root
he(2)'/? by Lemma 7.5.5. The map

Holo, = Xlo, (7.5.1.1)
(1’7’&3) — (zaus 'h5(1')1/2) o
is the desired isomorphism. O

Lemma 7.5.9. If s is a proper, non-top cluster, then X|a, is isomorphic to

1. a disjoint union of two open annuli of width 05, each mapping isomor-
phically to As if s is even;

2. an open annulus of width ds/2 mapping to As via the squaring map if s
is odd.

Proof. Tf 5 is an even cluster, then g4 (x)'/?hs(x)"/? is a square root of f(x) on
the annulus A,, and so gives a splitting

Ag X {:I:l} ~ X4,
(z,8) = (2,6 go(x)"*hs(2)'/?)

(7.5.1.2)

1/2
of X over A;. Otherwise, if 5 is odd, then (ziﬂ) he(x)/? is a square root

Qs
of f(z)/(x — as) on As and so, gives an isomorphism

(curve given by t2 = (z — as))|a, =~ X|a,. (7.5.1.3)

The curve (t2 = x — as)|a, is isomorphic to an annulus of width /2 via
projection onto the ¢;-coordinate. O

Since the isomorphisms above depend on a choice of square root of hs and gs
we fix these choices once and for all, as per the following definition.
Definition 7.5.10 (Choice of square roots). We fix the following data:

e for every cluster s, a square root hg(z)'/? of hs on U,.

e for every even cluster s (not the top cluster), a square root gs(x)/? on
the annulus As;
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(z—asg)

1/2
e for every odd cluster s (not the top cluster), a square root (957(56))

on the annulus A;,.

Our choices of gs(2)'/? and hs(x)'/? give trivialisations

X|y, = Us x {1} for s iibereven;
X|a, @ As x {£1} for s even, not the top cluster.

Definition 7.5.11 (Notation for annuli and semistable covering). We write U,
for X|y, when s is not iibereven. Otherwise, write ﬁsi for the two irreducible
components of X|;;+. We let A, denote X la,,and jsi the two different annuli
if 5 is even. If we write ﬁﬁi or /T;—L for a non-iibereven or odd cluster, we mean
U, or A,.

We described what X looks like over each U, and A;. We want to understand

how to glue these together compatibly over pairwise intersections of Us. For
this, we ask the following compatibility condition on the trivialisations.

Definition 7.5.12 (Ubereven compatibility criterion). We assume a compat-
ibility condition between the various inverse square roots of gs and hg, which
takes place over the tibereven clusters. Namely, we suppose the following.

e If 5 is iibereven and not the top cluster, then gs(z)'/? = 1. (Since
gs(x) = 1 here, this says we take the obvious choice of square root.)

e If 5 is iibereven and s’ is a child of s, then
he(@)' 2[4, = gor () e ()24,

(Both sides are square roots of f so we are again fixing a sign.)

It is always possible to make these conditions hold after possibly changing
some of the hg(x)/? by a sign.

When s is iibereven, for every s’ < s, we know that UF D A;t/, and UF D
AT if 5 is not the top cluster. The compatibility conditions ensure that the
trivialisations of X |y, and X|4, are compatible with one another (i.e., that
AF C UF instead of AT C UF).

The following lemma will be used in the proof of Theorem 7.5.15.

Lemma 7.5.13. Let R’ be R if deg(f) is even and R U {oo} if deg(f) is
odd. So R’ is the set of ramification points of X — P}.. Let D C ]P’é:’fn be an

open disc (i.e. either an open disc in A@an or the complement in Pé’fn of a
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closed disc in Aé’jn) containing at most one ramification point. Then Xc,|p
is isomorphic to

1. a disjoint union of two open discs, each mapping isomorphically to D if

#DNR =0;
2. an open disc, mapping to D by the squaring map if #D NR' = 1.

Proof. The proof is analogous to the proof of Lemma 7.5.9. O

The main theorem in this section is the description of a semistable covering of
D G
Theorem 7.5.14. Let m : X" — Pé’ean be the map induced by 7 : X — PL.

Then = {f]ﬁi} is a semistable covering of X?" (where 1732 = U, when s is
not ibereven).

Proof. Note that the canonical reduction of U, is a non-empty open inside the
curve y? = gs(z). This automatically implies that U, is irreducible if s is not
iibereven, and splits as a disjoint union of two irreducibles if s is iibereven. We
see that for any s, the inverse image Ufo of DA\U s« D2 C U, inside UF

s’ proper

makes ((7}, 175%0) a basic wide open. Double intersections Us N [75’ are empty,

or one of the annuli gﬁ or ﬁgz, and triple intersections are empty. O

7.5.2 The minimal skeleton of a hyperelliptic curve

We can now write down the minimal skeleton of X&»'. The results here give
an interpretation of the results in [DDMM23, Section 8] in the language of
Berkovich spaces.

For a proper cluster s, let n, € |]P’<1c’;n| denote the Gauss point of the disc DE.
This is a type II point. If s is not the top cluster, let es C |]P’(1C’fn\ be the skeleton
of the annulus A; c,. This is an open interval of length equal to the width of
A (i.e. the relative depth J5) embedded isometrically into |IP’(1C’fn|. Moreover,
the skeleton e, is canonically oriented where Jy(es) = 15 and J1(es) = np(s)
are the “left and right hand limit points”.

Theorem 7.5.15. Let 7 : X — P! be the projection, inducing the map 7 :
| Xe&r — |P(1C’;n| on the underlying topological spaces of Berkovich spaces. Then
(a) for a proper cluster s, the preimage of ns in | Xg}| consists of:

o two type 11 points 17 and 7j; of genus 0 if 5 is ubereven;
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™ X
/‘ /

Figure 7.4: Cluster, Berkovich skeleton, special fibre, and reduction map

o I‘#odd children of s
T 2

e one type II point 1js of genus g(s) — 17 otherwise.

(b) For a proper non-top cluster s, the preimage of es in | Xg?| consists of

e two embedded oriented intervals ef and €, of length &s, each mapping
oriented-isomorphically onto es with 9y(éX) = 1L and 01(ef) = ﬁf(s) if

s is even. (We permit ourselves to write ¥ = 75 if 5 is not tibereven.)

e one embedded oriented interval €5 of length ds/2 mapping onto e by an
oriented dilation of scale factor 2, with 0y(€s) = 1js and 01(€s) = Np(s)
if s is odd.

(¢) The points ¥ for s a proper cluster form a semistable vertex set V. for XE7,
whose associated skeleton T is the union of the {nf} and the ¢X. Moreover,
the choices of i for s dibereven and of € for s even are canonical given our
choices of inverse square roots (i.e. our choices of inverse square roots allow

us to distinguish between 1} and 7, ).

Remark 7.5.16. One can check that I is the minimal skeleton of X¢}. However,
V' is not necessarily a minimal vertex set for X&7. A minimal vertex set is given
by the points ﬁ;t for proper non-top clusters s except twins (clusters of size 2),
cotwins (non-iibereven clusters with a child of size 2 times the genus of X), as
well as the top cluster if it has > 3 children. See [DDMM23, Theorem 8.5].

Ezample 7.5.17. The left side of Figure 7.4 shows an example cluster picture
where subscripts denote relative depths. We label the four proper clusters
89, 83, S4, and sg according to their size. Let us read off the minimal skeleton.
We have five vertices, 72, 73, 4, 7ja , 7jg_and five oriented edges €5 , ¢, , €3, €54 , €y -
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These are connected up as in the graph on the upper left of Figure 7.4. More-
over, 73 has genus 1 and all other vertices have genus 0. The edge lengths are
given by 1(&5) = 1, [(€3) = 1/2, and I(eF) = 2.

This Berkovich skeleton associated to X covers the Berkovich skeleton of a
semistable model of P*(R). This skeleton is depicted in the lower left. Mov-
ing right, we have an artistic depiction of the Berkovich spaces of X and
P12 decomposed into wide opens and annuli, corresponding to the semistable
covering. These come equipped with reduction maps to their special fibres,
depicted to its right.

Proof of Theorem 7.5.15. (a) If s is an iibereven cluster, we know that X |y, ~
Xs|lu, = Us x {£1} via the isomorphism in (7.5.1.1). Since 75 € |Usc,|, its
preimage 771 (ns) € X|p, thus consists of the two type II points 77 = (15, £1),
both of genus 0.

If s is an odd cluster, then the fibres of the map 7 are described in (*) in the
proof of [Ber90, Proposition 3.4.6]; this shows that the fibres are size 1 or 2.
Therefore, the cover | X&}| — |]P’ééan\ is a ramified topological double covering.
In particular, the ramification locus is closed. For any odd non-top cluster s,
Lemma 7.5.9 shows that e, lies in the ramification locus (the squaring map on
annuli is ramified along the skeleta). Then 7, lies in the ramification locus,
since it lies in the closure of e;. If s is the top cluster and odd, then f has odd
degree, so oo € R'. In this case, Lemma 7.5.13 implies that X€?|Dm consists

of a single disc mapping via the squaring map to Do, = ]P’éfn \ D¢. Hence
the map | X2 — [Pg™"| is again ramified over the open arc from 7, to 0o in

|P(1c’jn|, and so 7, lies in its ramification locus. In either case, the point 7, lies
in the ramification locus, so has one preimage in |XE‘;|, and therefore is of type
II.

To finish part (a), we need to prove the assertion regarding the genus. For this
we use the fact that, if k& denotes the residue field of C, (an algebraic closure
of the residue field k of K), and if A5, denotes the smooth projective curve
over k associated to 7, then there is a bijection

A, (k) ~ T, X&) = tangent directions at 7; € |X¢)

[BPR13, Lemma 5.12(3)]. Moreover, this identification is natural with respect

to finite morphisms of curves, so we have the induced map
XT]S (E) — Pns (E) = ]P)%(E)’

where P, (k) is the component of IP% given by red(n), see (7.2.1.2).
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Our strategy now is to describe the tangent directions in |R1C’;n| at s and their
lifts to tangent directions at 7, in |X&?|. There are three different classes of
tangent directions. First, the “upward tangent direction” goes along e for s
non-top; if s is the top cluster then we mean the tangent direction on the arc
from ns to co. These lift to two tangent directions if s is even, and one if s
is odd. Second, the “downward tangent direction” goes along e;l for every
s’ < s proper child. These lift to two tangent directions if s’ is an even proper
child, and one if s’ is odd proper child. Third, there is a tangent direction for
every disc component of ]P’(lc’fn \ V whose closure contains 7. In this case there
are two lifts except if D contains a root of f (necessarily unique).

As a consequence, the number of ramification points of A%, — IP% is equal to
the number of odd children of s, plus 1 if s itself is odd. Since A%, — IP% has
degree 2, this implies that &%, is a hyperelliptic curve over k of genus g(s).

(b) Let s be a proper, non-top cluster. Since es is the skeleton of A, it follows
from Lemma 7.5.9 that for a proper, non-top even (resp. odd) cluster s, the
set m71(es) is the union of two (resp. 1) embedded open intervals, each of
length d, (resp. d5/2).

It remains to compute the endpoints of 7~ !(es). We know that dp(eZ) must
be a preimage of s = dy(es). If 5 is non-iibereven, there is only one preimage.
When s is {ibereven, we want to show that dy(el) = 7] rather than 7, . This
is a consequence of our compatibility assumptions. A similar argument deals

(c) Recall that a semistable vertex set V' is a finite set of type II points such
that X2\ V' is a disjoint union of open discs and finitely many open annuli.
By definition, its skeleton is the union of V' and the skeleton of the annuli in
XE\ V.

Let Vh C |PE‘H| be the set consisting of the points 75, where s ranges over
all proper clusters. This is a semistable vertex set, since it is a finite set and
IP’(lc’;n \ Vp is the disjoint union of the annuli A, (for s proper, non-top) and
open discs each of which contains at most 1 ramification point of f. Let I'g
be the skeleton of Vj. Since 7 : X — P! is finite, it preserves types of points
and so 7~ (V) = V is a finite set of type II points. Moreover, X2 \ V is the
disjoint union of X&}|a, (for s proper, non-top) and X&!|p for D an open disc
component in ]Péfn \ Vo. These are (disjoint unions of) open annuli and discs
by Lemmas Lemma 7.5.9 and Lemma 7.5.13, so V' is a semistable vertex set.
Moreover, Lemma 7.5.9 shows that the preimage of the skeleton of A, is the
skeleton of X&7|4,, so 7 1(Ty) = T is the skeleton associated to V, concluding
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our proof. O

Finally, we give a useful theorem to decide if a component of the dual graph
contains the reduction of Qg-points. First we set up some notation.

Definition 7.5.18 (Components of special fibres associated to clusters). Let
X/Qq be a hyperelliptic curve. Let s be a cluster of X. Let X be the semistable
model of X¢,corresponding to the semistable covering from Theorem 7.5.14.
We write Xﬁi for the the component(s) of the special fibre of X' corresponding
to s and g(s) for the genus of these components.

Theorem 7.5.19. Let}(/@e be a hyperelliptic curve. Let s be a proper cluster
of X. Write Xgi’o =X\ U5/¢5X§:. If Xgi’o contains the reduction of a Qg-
point, then at least one of the following is true:

1. s has a singleton child which is Qg-rational;
2. s is the top cluster and X has a Qg-rational point at infinity;
3. vy € 27.

Furthermore, if XX N é?si, contains the reduction of a Qq-point and s = P(s’)

then (ve,V.) contains an even integer.

Proof. Let Vy C |}P’éfn| be the set of Gauss points 7, attached to proper
clusters 5. Let I'g be the skeleton of IP’(lc’fn corresponding to Vj, and let I'y

be the skeleton of the open curve A(lc‘fn ~ R where R is the set of roots of f.
Though we have not explained the full definition of the skeleton of an open
curve [BPR13, Definition 3.3], in this case, we can say explicitly that T’y is
the union of I’y and a number of open rays isometric to (0,00). We have
one such ray for each root r of f, connecting r € \IP’}C’;IW to ms where s is
the smallest proper cluster containing r, and one additional ray connecting
the Gauss point attached to the top cluster to the point at co. According to
[BPR13, Definition 3.7], there is a canonical retraction 7 : \A(lc’[an| R —-TIy

[BPR13, Definition 3.7].

Now suppose that (z,y) € X(Qg) is Q-rational. We assume without loss of
generality that (z,y) is not a point at infinity or a Weierstrass point. Note
that (z,y) reduces onto X if and only if x € Us, and (7, y) reduces onto XF N

X I:f(s) if and only if x € A5. There are four cases to consider:

Firstly, suppose that 71(z) lies on the ray connecting a root r of f to s,

where s is the parent of {r}. This ray is the skeleton of a punctured open
disc D ~\ {r} where D > z. Since D contains a Q-rational point, it must be
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setwise invariant under the action of the Galois group of Qp, and so too must
be {r} = DNR. So r is a Qe-rational root of f which is a singleton child of 5
and  reduces onto X=°.

Secondly, suppose that 71 (x) lies on the ray connecting 7, to oo for s the top
1,an

cluster. This ray is the skeleton of a punctured disc D\ {oco} where D C Pc,

is an open disc around oo (complement of a closed disc in A(lc’fn). There are
two possibilities, depending on the degree of f. Either the preimage of D
inside X&7 is an open disc mapping to D via a finite degree 2 map ramified
over oo, or it is a disjoint union of two open discs mapping isomorphically
to D. In either case, X has a Q-rational point at co (e.g. in the second case,
one of the two discs must contain (z,y), and so be fixed by the natural Galois
action). In this case, (z,y) reduces onto X-° for s the top cluster.

Thirdly, if 7 (x) = 7 is the Gauss point of some cluster s, then we have

v(f(ns)) = v(f (@) = 20(f(y)) € 2Z

by the slope formula [BPR13, Theorem 5.15]. But it is easy to check, e.g. by

factorising f, that vs = v(f(ns)), so vs € 2Z. In this case, x lies in U but not
. pE,0

any of the annuli A/, so (x,y) reduces onto X5 *°.

Finally, if 7 (z) lies in the skeleton of an annulus Ag, then arguing as above,
we have that v(f(71(x))) = v(f(z)) € 2Z. But the skeleton of A, is an open
interval in |IP’C’:n| connecting the two Gauss points 7; and np(). Since the
valuation of f is a linear function along this interval [BPR13, Theorem 5.15(2)],
it follows that v(f(7i(z))) € (Vp(s),Vs) and we are done. O

Ezxample 7.5.20. Suppose that X has the cluster picture shown in Figure 7.5
at £ and that the leading coefficient of X is a unit in Z,. Then the local height
of any Qg-point on X is 0.

@@1/2 @1@0

Figure 7.5: Cluster picture

7.5.3 Computing the Coleman—Iovita maps

In this section, we use the semistable covering i to describe the maps from
Section 7.4.2 for hyperelliptic curves. Recall that o5 is needed to translate the
action of the endomorphism Z, on H} (X/K) to the action of Z, on H; (T, K).
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In addition, we need ¢; to compute the trace of Z, on HL_(X;/K) for higher

genus clusters s.

rlg(

The following lemma gives an explicit way of describing the map

©2 : Hig(X/K) — Hy(I, K)
for hyperelliptic curves by reducing the calculation to computing residues on
P!.
Lemma 7.5.21. Let X be a hyperelliptic curve, and s be a non-top cluster
with associated annulus Ay C AZ™. Let w = %;dm € Hir(X/K), where
P(x) is a polynomial. If 5 is odd, then Res;—1(4,)(w) = 0. If 5 is even, recall
that m=1(As) = AT U A7 . In this case,

B - B P(z)dx
Res 7 (w) = Reszy (w) = Resy, (2g5(x)1/2h5(1‘)1/2> »

where t is any parameter on the annulus.

Proof. For any proper cluster s’ contained in s, applying Lemma 7.4.2 to (75/
(or both components of Us if s’ is {ibereven) shows that

ZResAi” —Resg (w)y=0
5//<5/
or
Z RGSAi ResA+ (W) = Resz- (w) =0,

51 <s’
according to whether s’ is odd or even. We use our conventions for the ori-
entations of annuli as in Example 7.2.11. Summing this identity over all
proper clusters s" contained in s shows that Resz (w) = 0 if s is odd, and
Res 7+ (w) + Resz- (w) = 0 if 5 is even.

Finally, when s is even, the isomorphism A, =~ /Tj is given by
x = (x,gs(m)l/th(l‘)l/Q)

by (7.5.1.2). Sow = P(I)dx pulls back to the differential form %
O

on A, and we are done

In order to explicitly compute 1, we use the semistable covering . Let
w € ker(pz). Recall that w| has residue 0 over all bounding annuli of Us.
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Therefore, w € Hig (X;/K). Our goal is to compute this restriction in terms
of a basis 11, ..., 7ag(s) of Hig (X /K). There exist a; € K such that

29(s)
wlg, = > anilg, + exact form. (7.5.3.1)
1=1

To compute the coefficients a;, we use global and local symbols.

Definition 7.5.22. Let X be a smooth projective curve over K, let Df, ..., D
be some pairwise disjoint closed discs in the analytification X" and let U =
X2 U; D§ be the complement of these discs. Choose some open discs D D
D¢, still pairwise disjoint, and let A; == D¢ ~ D§ C U be the corresponding
annulus bounding the disc Df. If w,n are two differential forms on U, each
with residue 0 on each annulus A4;, then the global symbol (w,n) is defined to
be a sum of local symbols (w,n) 4,

(w,m) =Y (w,n)a.,

A

{w,ma; = —Resy, (w : /77) € K.

Since 7 has residue 0 on each A;, it has a formal antiderivative [ non A;, which
is unique up to an additive constant of integration. Because w also has residue
0, the residue of w - [n on A; is independent of this constant of integration.

where

We now describe how to practically compute these local symbols in our use
case, where w € ker o, and 7 is a differential on X for some cluster s. First,
we remark that in any and all calculation, both w and the 7; are chosen to be
in the —1 eigenspace of the hyperelliptic involution ¢ of X.

Recall that the choice of a square root h;/ ? determines an isomorphism X |y, —
Xslu,- We let @ denote the differential on X, that w maps to under this
isomorphism. The formula for local symbols on X becomes

@,n) = 752 Res s <a; . /n) € K. (7.5.3.2)

Here we are taking the orientation on ﬁf, induced by their inclusion in the wide

open Us. To compute Res 7+ ((TJ . fn), pick a parameter of g;t If s is even,
+

=, and if s is odd it will be a square

this parameter will be a parameter of A
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root of a parameter on A;. We can then express everything in this parameter
by using our choice of a local square root of g5, the defining polynomial for
X,. Note that the resulting local symbol does not depend on the sign choice
we made for g/, since by assumption t(w) = —w and ¢(n) = —n. A different
sign choice would multiply the global symbol by (—1)2. In particular, we find
Res;+ (@-[n) = Res ;- (@- [n). Write w = a(z)dz/(2y) on the curve X.

Write w = a(x)dx/(Qh;/Qus) and 7 = b(x)dz/(2us) on the curve u? = gs(z).
We compute the formula.

1 Reszeq, (a(z hiégfédx- b(x gfédx if s’ is even
<Z:J,7]> = ZUS,E’ ? ; ( ( z; 5,1 l‘ ( ) : ,>1 e K
e Res; ,—o (a(ac)h5 *(2)g, & (x)dts - [b(x)g, 2 (x)dtsz) if ¢’ is odd
(7.5.3.3)
where 04 = —1 if s = ¢’ and +1 otherwise, and in the odd case we recall

ts is the coordinate on X|4 , from (7.5.1.3), and z = t2, + a, and in the
odd case gq,¢ is shorthand for gs;/(x — asr). The choice of square root of gs e
does not matter,since a different choice multiplies the global symbol by (—1)2.
(However, we have already made a choice of square root of gs ¢ ; this choice

11 11
can be determined by asking that h¢g; ., and hZgg ., are the same square
root of f/(zx — as).)

Proposition 7.5.23. [Bes00, Proposition 4.10] c¢f. [BB12, Proposition 2.5]
Suppose w and n are restrictions of algebraic 1-forms of the second kind on X.
Let [w], [n] € Hig(X/K) be the associated de Rham cohomology classes.

(w,m) = w]U ) € Hig(X/K) = K .

In particular, (w,n) depends only on the de Rham cohomology classes repre-
sented by w and 7.

Now we are ready to solve for the coefficients a; from (7.5.3.1). For each
j=1,...,2g9(s), we compute

2g(s)
(w,m;) = Z ai(ni;nj)- (7.5.3.4)
i=1
This gives a system of 2¢(s) linear equations in the 2g(s) variables a1, . .., aq(s),

and this system of equations has a unique solution since the cup product pair-
ing on H, (X;/K,) is perfect.
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7.6 Computations

We give more details in the computation of the Coleman—Iovita morphisms,
as well as how this results in the provably correct rational matrix of the action
of Z, on H,(T',Z), and integer traces tr,(Z).

We first focus on the computations of the Coleman—Iovita morphisms from Sec-
tion 7.5. As explained in Lemma 7.5.21, determining @9 reduces to computing
residues over annuli A, on P! for all even clusters s. To do this explicitly, we
use Lemma 7.5.5 to construct an inverse square root of f(t), where ¢ is a choice
of parameter in A5. In order to have a provably correct result, it is important
for our calculations to keep track of the p-adic precision of the approximations
we make; this is why we do the following p-adic analysis.

In this section, we assume (K,v : K — R>q U {oo}) is a field with a non-
archimedean valuation. In applications, we will always take K to be a finite
extension of QQy together with its normalised valuation v.

Analytic functions on an annulus have a concrete characterisation. In order
to carry out explicit computations, we need to work on the ring of analytic
functions on closed annuli. That is, if A[¢7%1,£7"2] is the standard closed
annulus centered at 0 with inner and outer radii /=% and ¢~"2, we work in
the ring of power series Y., a;t' € O(A) where the a; satisfy

lim v(a;) +v1-i=00 and  lim v(a;) + v i = 0.
i——00 100

Definition 7.6.1. Let A C ]P’}gan be a closed annulus centered at 0 with inner
and outer radii £~ and /~"2.

For each w in the closed interval [vg,v1] define the valuation v* : O(4) — Q,
given by v*(h) = minv(a;) + w-i:i € Z, where h = Y, ., a;t" € O(A). We
let m C O(A) denote the ideal of elements h with v”*(h) > 0 and v*2(h) > 0.

Most of the time, we are interested in the units of the ring O(A), because
many of the operations, like taking the inverse and taking a square root, are
only applicable to units. To both recognise units, and easily work with them,
we provide the following notion of decomposition for units.

By considering the Newton polygon, we find the following proposition charac-
terising the units of O(A).

Proposition 7.6.2. Let A C ]P’}fm be a closed annulus centered at 0 with
inner and outer radii £~V and £7V2. Let t be a parameter on A and let h =
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S aitt € O(A). For k =1,2, we define the quantities
i := argmin(v(a;) + ivg),

where argmin(v(a;) + ivg) is the minimal index that minimises the quantity
v(a;) + ivg. Then, the following are equivalent.

(i) There is a factorisation
h(t) = ct*(1+ g(1)),

where d € Z, ¢ € K*, and the valuation of g(t) at the Gauss points of
the closed balls B(0,¢~"1) and B(0,{"2) is positive;

(ii) the minimum for each i1 and i is achieved once, and i1 = io;
(iii) h has no zeros on A;
(i) h is an unit in O(A).

Moreover, if these hold, then in the factorisation d = i1, ¢ = aq, and g(t) =
h(t)t=%/c, and we call (¢,d,g) a decomposition of h.

Proof. For the equivalence of (i), (iii), and (iv) see [BPR13, Proposition 2.2].
We will show the equivalence of (i) and (ii). This follows from the following
observations. If we write

h=ctl(1+ g(t))

for some c € K*,d € Z,g € O(A), then d minimises (v(a;) +ivy) if and only if
the valuation at the Gauss point of the closed ball B(0,¢~#) is non-negative,
and d is the unique index where this is minimised if and only if the valuation
is positive. O

To do practical computations on an annulus A, we have to represent elements
h € O(A) up to finite precision in some specified way. For rings like Q, and
R, this is typically done using ball arithmetic: one gives the center x (often
taken to be in some countable subring, for example Q), some bound on the
error b, and this then represents any number y with |y — 2| < b. These balls
can be added and multiplied, and one can easily propagate the error bounds.
The equivalent notion for O(A) has two error bounds, corresponding to the
two different valuations v¥*,v"> on O(A).

Definition 7.6.3. A representation of an element h € O(A) is a triple of
elements (h, By, By) where h € K[t,t71], B; € RU {oo} and vV (h — h) > B;
for i € {1,2}. We say h represents h.
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Remark 7.6.4. A representation (E Bi, By) represents infinitely many different
f.

Remark 7.6.5. Let h € O(A) be represented by (E,Bl,Bg), where h has co-
efficients (a;);cz and h has coefficients (d;);cz. Then we see v(a; — ;) >
max(—ivy + By, —ive + B2).

Lemma 7.6.6. Let (h, By, By) be a representation for h € O(A). If h has a
decomposition (c,d,q) and v¥i(h) < B; fori = 1,2, then h has a decomposition
(¢,d,g) where (g, By —v(c) —v1-d, B —v(c) —vg - d) represents g. If not, then

h represents an element which achieves the value 0 on A.

Proof. If h is not a unit (which happens if and only if it does not have a
decomposition), then the lemma is clear. Otherwise, let (¢, d, g) be the decom-
position of h, and define g = h/(ct?) — 1. Then (§, B; — v(c) — vy - d, By —
v(c) — vy - d) represents g. If v¥i(h) < By, By, then we see g must lie in m,
and (c,d, g) represents h. Otherwise, there is a choice of g’ represented by
(g,B1 —v(c) — vy - d, B — v(c) — vg - d) that achieves the value —1, and then
W = ctl(1 + ¢') is represented by (h, By, By) and achieves the value 0. O

Lemma 7.6.7. Assume v(2) = 0. Let h € O(A) by represented by (h, By, B).

Assume h has a decomposition (c¢,d,q) as in Lemma 7.6.6. If d is odd or c
is not a square, then h has no (inverse) square root. If d is even and ¢ is a

square, then h=% is represented by

k

1

Y o~ . p— —~ 1

((c™1/22%/2 g ( Z_z)g‘,mln(v(c V2) 4 dvoy 4 (k + 1o (), §Bl),
i=0

1
min(v(c¢™Y?) + dvy + (k + 1)v"2(3), §B2))
forany k € Z>;.

Proof. This follows immediately from the power series expansion of (1+ :10)_%7
and the fact that (2.%) has valuation at least 0. O

Let s be an even non-top cluster. We use Proposition 7.6.2 and Lemma 7.6.7
to construct an inverse square root of f(t) on the annulus As.

To compute the map ¢;, we need to compute the local symbol explicitly. Let
w € Hiz(X/K) be in the kernel of 5. Fix s a cluster such that g(s) > 0.
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Recall that we have chosen a basis 71, ..., 724 for Hlg (Xk,s/K). We want
to compute (w,n;) and (n;,n;) for 1 <4, < g(s). The global symbol is a sum
of local symbols as in (7.5.3.2). This motivates the following lemma on the
precision analysis for integration of functions on an annulus.

Lemma 7.6.8. Let h € O(A) be a function with representation (h, By, B),
with the coefficient of a_y being 0 for h and h. Let A’ be an annulus with
inner and outer radii £~"**¢ and £~V27¢. Let §(¢) denote the minimal value
of € -i—w(i) for i € Zsg. Then the integral of h on A’ is well-defined and
represented on A’ by ([ E,B{, Bl), where

B} = min(B; +v; — §(e), By + va — §(v; — & — v2))

and
Bé = min(32 + vo — (S(E),Bl + v — (5(1}1 —€— Ug)).

Proof. We present a sample computation, showing that B > By 4+ v1 — d(e).
Assume for simplicity that h = at® with i < —1 and h = bt!, with v(a—b)+iv; >
B;. Then

v(@.il(a—b))+(i+1)(v1—5)>Bl+v1—vp(i+1)—5(i+1)

> By +v; —0(e).
The cases where i > 0, or we bound B; instead of By proceed similarly. O

In order to compute Z, on Hy(I', Z) and tr,(Z), we also need a matrix for the
action of Z, on Hlz(X/K). We now describe a method to compute such a
matrix with rational coefficients. This method is entirely new, and solves the
problem of how to determine the matrix of an endomorphism on H}, (X/K)
precisely. Previously methods for quadratic Chabauty use the Hecke operator
Z =T, as the endomorphism and employ Eichler-Shimura to determine the
action of T}, on de Rham cohomology to arbitrary p-adic precision [BDM*21,
§3.5.2]. These methods are restricted to modular curves, and other proposed
methods only compute the action of Z, to some p-adic precision. In order to
determine the local heights at ¢ # p as a rational multiple ry(wg) for r € Q
(as in Section 7.3), we need to know the action of Z, exactly. (Otherwise we
can only determine r to some f-adic precision.) To solve this problem, we
produce a method to rigorously compute the integer matrix for the action of
Zs.
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Proposition 7.6.9. Let m; and o be the projections from X x X — X. Let
w be a I-form on X. Let Z C X x X be a correspondence. Let wy be a fixed
non-zero 1-form. Define g := (nfw/mhwo); this is a rational function on Z.
Then

Zyw = g 4 (Tiw) = (T2,+9)wo.

Here, the pushforward ms g denotes the trace of g in the extension K (Z)/K(X)
of function fields.

Proof. By the projection formula [Har75, Theorem 7.5]

T« (Tiw) = T2.4(g - T3wo) = T2,4(g) - wo.

O

Choose w; for i = {0,...,2g— 1} be a basis for Hiy (X/K) constructed by tak-
ing linear combinations of z‘dx /2y for i = 0,...,2g. We use Proposition 7.6.9
to compute Z,(w;) for all i = 1,...,2g — 1. The last step is to rewrite these
elements in terms of the basis we chose.

Note that the class of any differential form g(z,y)dz € Hlg(X/K), where
g(z,y) € K(X), is equivalent in cohomology to the class of 2y(g(x,y) —
g(z, —y))%’, where 2y(g(z,y) — g(x, —y)) is a rational function only in z. So

now we reduce to the case of forms g(ac)%, where g(z) € K(z). Then, a linear

algebra argument allows us to write g(m)% in terms of the basis {wi}fial.

Proposition 7.6.10. Let s1,...,8xn be clusters of f such that the set of edges
corresponding to {As, }.; in the dual graph are the complement of a spanning
tree.

Let T be the matriz with
Tij = Resa,, wj.

This has a right inverse T~*. Let M be the matriz of Z, acting on Hip (X/K).
Then the matriz of Z, on Hy(T, K) is TMT~*.

Proof. We can identify Hy (T, K) with K {515~ }: the contraction of the com-
plementary spanning tree in the dual graph is a bouquet of N circles. Note that
T is the matrix of the K-linear morphism ¢y sending w; +— ), Ress; Ag,w;
under this identification. By Theorem 7.4.14, the pushforward Z, is preserved
under ¢o. The matrix for Z, acting on H;(I", K') is then given by conjugating
M by T. O
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Using Theorem 7.3.5, we can bound the operator norm of the matrix with
entries in K obtained from Proposition 7.6.10. By computing the matrix T
with enough f-adic precision, this allows us to obtain a matrix with entries
in Q. In the rest of this section we determine precise bounds. We start by
bounding the size of the integers appearing in the matrix.

Proposition 7.6.11. Let Z C X x X be an effective correspondence of degrees
d1 and dy over X, respectively. Let M be the integer matrix representing Z,
on HY(T',K). Let C denote the matriz of the intersection length pairing on
homology. Write C = PPT for some invertible matriz P. Let || - ||max be the
norm given by the mazimum of the absolute values of the entries. Then we

have the bound )
29
[ M || max < - Vdids.
[P [l maxc [ P~ || max

Proof. By Theorem 7.3.5, the operator norm of Z, with respect to this in-
tersection pairing ||Z]|;, is bounded by v/dids where d; is the degree of the
projection m; : Z — X. Since C is a positive definite symmetric matrix, we
can write C = PPT for some invertible matrix P. This allows us to give a
bound on the entries of M. It can be checked by evaluating on standard basis
vectors that | M||% > |M |2, where I is the identity matrix (and || M ||max is
maximum over the absolute value of the entries). Therefore

12|z = |1 PZP~ 1 > | PZP7Y|;

max*

We obtain the bound M |max < 12— Vd1da. O

Corollary 7.6.12. Let M,C, P be as above. Let ¢ := m\/dldg.

Let k > 0 be an integer such that ve(M]; — M;;) > k. Suppose that M’ is an
integer matriz such that | M'||max < ¢ and ¢+ | M'||max < ¢¥. Then M = M.

Using the techniques for working with O(A) developed in this section, one can
compute M up to arbitrary p-adic precision, and Corollary 7.6.12 allows us
to determine when we have computed enough to uniquely determine M. An
example of this is worked out in Section 7.7.2.

We end by discussing how to compute the trace of the endomorphism Z acting
on the de Rham cohomology of a single vertex once we have determined M.

Proposition 7.6.13. Let s be a cluster. Let wy,...,wy be a basis for ker(pz).
Recall that we chose a basis 01, ..., 1) of Hig(Xs, K). For each w, define

si; € K such that w, = Z?i(g) sijn; found using (7.5.3.4). Let Ss be the matriz
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(C9CEDCy)

Figure 7.6: Cluster picture for example in Section 7.7.1

with entries S;; = s;;. Let S be the block matrixz consisting of all Ss, repre-
senting the map o1 : Hip (X/K) — @, H};, (X,/K). This has a right inverse
S—1. Let M be the matriz of Z, acting on Hiz(X/K). Then SMS™! is the
matriz representing the induced action of Z, on @, H},(X,/K), and tr(Z,)
is the trace of the diagonal block of SMS™! corresponding to HéR(/ﬁ,K) =
H%lg(‘k_’ﬁ/K)

Proof. Note that S is the matrix of the K-linear morphism ¢;. By Theo-
rem 7.4.14, the pushforward Z, is preserved under ;. The matrix for Z,
acting on Hy (T, K) is then given by conjugating M by S. O

7.7 Examples

In this section we work through some illustrative examples of our method.

7.7.1 Bielliptic curve

As a warm-up, let ¢ be an odd prime number. We consider the genus 2 bielliptic
curve with affine equation

X:y2= (22— ¢")((x -1 =) ((x+ 12— ¢°).

This curve has bad reduction at ¢q. We will compute the local height contri-
bution at ¢ using the formula from Theorem 7.3.9 and via intersection theory.
The bielliptic involution ¢ : x — —z gives rise to a trace 0 endomorphism of
the Jacobian of X; we use the correspondence Z arising from this endomor-
phism.

First, we use the method described in Section 7.3.2. The cluster picture for
this curve is presented in Figure 7.6. The reduction graph associated to the
semistable cover is given in Figure 7.7 where l(eg) = a and I(e1) = l(e_1) = .
The bielliptic involution defines the action Z.(eg) = —eg, Z.(e1) = —e_1, and
Z*(€_1) = —e€1.

We fix the midpoint of the edge e¢ as our base point. To apply the formula
from Theorem 7.3.9, we first compute the orthogonal projections of the edges
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Figure 7.7: Reduction graph for bielliptic example

in the first homology of the dual graph. For that, we note that the pairing on
the span of the edges is given by

(ei ej) = {l(ei) if i = j;

0 otherwise.

Thus, the orthogonal projections are

1
m(e0) = 5o (20— — e w(er) = 5o (@t Ber — feo —aco);
1
m(e-1) = S & 5((04 + Be—1 — Beg — aey).
Then, we compute
2 2
(e, Zomleo)) = 5= {en Zem(ea)) = (e, Zemlen)) = M“f 5
to obtain the measure
4 2ce 2a
———dso| + z5—5|ds1| + 5 |ds 1],

#2= 20+t 5oar H T BRar )

where |ds;| is the arc-length measure along the edge e; for i = —1,0,1. We

conclude that hz 4 is given by

_ﬁszo + apSe, + bo on eg, with 0 < s., < a
mszl + a1Se, + 01 on ey, with 0 <s., <

msg_l +a-1Se_, +b_1 one_3, with0<s. , <p.

with constants a; and b; for ¢ = —1,0,1. To find the exact values of the
constants, we use that the polynomials must agree at endpoints, must vanish
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at the chosen base point, and that AQ(Ezwq) — pz = 0 imposes a condition on
the derivatives. This yields the local height function

2 .
fﬁ (%fseo) , on ep, with 0 < s, < o
FGath) (g - 561) -3 on ey, with 0 < s, < f3; (7.7.1.1)

2
m (g — 3671) — % one_j, with0<s, , <p.

Now we compute local heights via intersection theory: the local height at ¢
for a prime of bad reduction is defined in terms of intersection theory on the
special fibre of a regular model Xz, as in the beginning of Section 7.3. Let
X |Z4 be the minimal regular model of Y. Then the following are true.

e The special fibre 2, consists of two copies of IP’]qu connected by three
chains of projective lines ]P’Ilgq of lengths a—1, §—1, and §—1, respectively.
e The action of ¢ on ZF, interchanges the two distinguished copies of ]P’D%q,

reverses the chain of length o — 1, and reverses and interchanges the two
chains of length 5 — 1.

Let Z = T, be the graph of . Let P € 2 (Z,) be any point. Following
(7.3.0.1), let
Dz(b, P) = X% — o(P) — ¢(b)

be the divisor on the generic fibre, where X% is the set of fixed points under
. We denote its closure in 2" also by

Dyz(b, P) = 2% — o(P) = ¢(b).

Our aim is then to find the vertical divisor V such that Dz (b, P) := Dz(b, P)+
V has intersection number 0 with every vertical divisor. By normalising V' so
that the coefficient of the component containing b is zero, then the local height
hz4(P) is the coefficient of the component of V containing P.

Write the component of ZF, containing the point P as [P]. Equivalently,

without normalising, the height is given by

(coefficient of [P] — coefficient of [b]).

Write L for the matrix of the intersection pairing on components of the special
fibre. We want a Q-linear combination V' of components such that

L.V =D(P,b) = [p(P)] - [
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[ Jou

3:><(><>D(x+!)
pd

Figure 7.8: Special fibre for bielliptic example when a =2, =1

(using that 2% and ¢(b) both reduce onto the same component as b). There-
fore

hz.q(P) = ([P] = [b]) - L ([p(P)] — [b])- (7.7.1.2)
(One should be careful since L is not an invertible matrix. However [p(P)]—[b]
is in its image, and the local height is independent of the choice of preimage.)

Now L is also (by definition) the Laplacian matrix of the dual graph of ZF,,
and we recognise (7.7.1.2) as the formula for the height pairing on degree 0
divisors on a graph. So

hz,q(P) = ([P] = [b], [p(P)] — [B])- (7.7.1.3)

Via the theory of electrical circuits on graphs, we can compute (7.7.1.3) ex-
plicitly, breaking it into cases depending on the component of the reduction of
P. We obtain local heights agreeing with (7.7.1.1).

We work though one explicit example when @ = 2 and § = 1. By blowing
up at the singular point = y = ¢ = 0, we compute a regular model 2 /Z,,
given by the equations

v = (@ —¢*)((x —1)* = g)((z +1)* — q),
Y2 = (X2 = Q)((x— 1)* - ) (= + 1? — q),
Y =Xy, yQ=Yq, ¢X=Qu
in A% X IF’% , which maps to the original curve by (z,y; X,Y,Q) — (z,y).

The spec1a1 fibre 2, is depicted in Figure 7.8. By counting intersections of
components, we see that
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where the basis of L is the components in the order blue (left), pink (right),
purple (top).

The graph ', C (A? x P?)? is given by the explicit equations {y = y/,z =
-2/, X = -XY =Y,Q = @} Then 2% = {(0,ig(1 — ¢);0,i(1 —
q),), (0,—ig(1 — ¢q);0,—i(1 — q),1)} are the fixed points under . This di-
visor reduces to two points, lying on the the purple (top) component. We
choose a base point b = (0,¢;0,1,1) reducing to the midpoint of the purple
(top) component Y = X2 — Q2.

For any point P, we can now calculate the local height using intersection the-
ory. For example, let P be a point reducing to the blue (left) component. Then
Dz(b,P) = 2% —p(P)—p(b) has multidegree (0, —1,+1) on the components.
We now want to add to Dz (b, P) a vertical divisor V' with no components con-
taining b in order to make Dyz(b, P) multidegree 0. Using linear algebra with
L, we see V is —3/5 times the pink (right) component plus —2/5 times the
blue (left) component, so the local height is —2/5, agreeing with (7.7.1.1).

Remark 7.7.1. This calculation of heights as an intersection multiplicity can be
extended to work for any value of o and 8 and again gives the same values as in
(7.7.1.1). As such, this gives an explicit check that the heights defined in terms
of intersection multiplicities agree with those coming from Theorem 7.3.9.

7.7.2 A Shimura curve quotient

In [GY17] they determine equations for all geometrically hyperelliptic Shimura
curves Xo(D, N) and Atkin—-Lehner operators on these curves. Since we know
Xo(D, N)(R) = @, for the study of rational points, it makes sense to consider
Atkin—Lehner quotients of these curves. By applying Jaquet—Langlands and
considering the sign of the L-function of the corresponding modular forms
space, we see there are only two quotient curves whose Mordell-Weil rank are
equal to their genus.

One is bielliptic, so its local heights at primes of bad reduction can be com-
puted from the elliptic curve factors of its Jacobian. The other is the curve
X0(93,1)/{wys3). The rational points on this curve correspond to abelian sur-
faces defined over Q with potential quaternionic multiplication by a quater-
nion algebra of discriminant 93. It turns out that this curve has an excep-
tional isomorphism to the modular curve quotient X((93)* whose rational
points were previously determined in [BGX21] using elliptic Chabauty. We
now show how to compute the local heights at primes of bad reduction for
X = X0(93, 1)/<WQ3>.
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Vg Vs,

Figure 7.9: Reduction graph for Shimura curve quotient

The conductor of X is 32-312. At ¢ = 31, the curve X : 3% = 264+ 22% + 623 +
522 — 6z + 1 has the cluster picture in Figure 7.5 and so by Theorem 7.5.19
the local heights at 31 are trivial.

At ¢ = 3 the cluster picture is the cluster in Figure 7.10 so more analysis is
needed; the reduction graph I' associated to the semistable covering contains
three vertices and Q-points reduce to all three curves associated to the ver-
tices. See Figure 7.9. Let t; be the twin cluster given by the two roots of f
defined over Q3, and ty be the other twin cluster. These correspond to vertices
v1 and vo respectively. We label the edges vy to vs by eli and the edges vy to
vz by €. We have I(ef) = 1 for all 4.

Q‘ G @Do

Figure 7.10: Cluster picture

Let Z be the endomorphism acting by /5 on the Jacobian. This acts by
pushforward on the holomorphic differentials (dx/(2y), zdx/(2y)) by

-1 2
w9
By [BBB"22, Theorem 5.1], since vs = 0 when s is the top cluster and inertia

fixes the twins setwise, X has a semistable model over Q3 and a split semistable
model over QQg, the unramified quadratic extension of Qs.

For each t;, we compute the map Ay — X|a,, given by x — (z, gfi/2ht/2) from

(7.5.1.2). We compute the matrix of oy : z7dz/(2y) Res ,+ ridz/(2y) for
i=1,2and 5 =0,1 to be

20a +20+O0(3%)  2a+2+0(3%)
2a+2+0(3Y)  22a+22+ O(3%)
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where a has minimal polynomial 22422 +2 over Q3. Using this change of basis,
we conjugate M to obtain the action of Z, on Hy(T',Qg) by Proposition 7.6.10
using the complement e] , e, of a spanning tree

—14+0(3Y) 2+ 0(3%)
2+0(3Y) 14+0(3Y|"

We now show this is an integer matrix using Proposition 7.6.11 and Corol-
lary 7.6.12. Using [CMSV19] we explicitly construct a correspondence Z C
X x X for M. We compute that Z has degrees d; = 2 and ds = 10 over X.
We fix the (orthogonal) homology basis (e] — ej,e; — eg). The intersection
pairing on homology has the matrix C' = [2 §] in this basis. Writing C' = PPT,
we see | Pllmax = V2 and |[|[P™||lmax = 1/v/2. Therefore the action of Z, on
homology is represented by an integer matrix whose entries have absolute value
at most 161/5. We have calculated that the entries are all integers inside this
range, plus a multiple of 3%. Since 2 < 16v/5 and 3* > 16v/5 4 2, we conclude
that the action of Z, on the homology of the graph is given by the integer

matrix [_21 ﬂ .

The projection of eF onto the basis of homology has coefficients [F1/2,0], and
the projection of eQi onto the basis of homology has coefficients [0, F1/2]. This

computation yields the Laplacian VQ(E z,0) of the piecewise polynomial height
function as in Theorem 7.3.9

Mzzl'd86;+1'd861+—1'd8€;—1'dSe;-

Let fo be the piecewise polynomial function (—1)"3s +(s,+ — 1), obtained
from double integrating each part of pz. Then fy is 0 at each vertex and
pz —V2(fo) =1-0,, —1-0,, +0-0,,. The weighted Laplacian matrix L of the
I' is as follows. Using L we solve for the coefficient vector of a function whose
Laplacian is the vector of the weights of the §,,.

-2 0 2 -1 1
L=]0 -2 2], L| O = (-1
2 2 -4 —1/2 0
Therefore the piecewise function f; = %Seli —1and f; = —%seéc has the

property that uz = V2(fy + f1). Finally, we adjust f{ by constants to make
the height function zero at a chosen base point. We fix a base point reducing

to the component vs. This is equivalent to requiring that f;(0) = 0 on each

piecewise part, so f; = (—1)i’1%(seii —1). Our height functions is therefore
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the piecewise quadratic function Ez,g given by (—1)i1/2(sii =25+ + 1) on e
and 0 < s+ < 1.

Using 71274, we compute the heights at the known rational points of X. For
each point, we first find what component of I' it lies on. The points at infinity
reduce to the unique vertex vz corresponding to the top cluster. For each
finite point P, we compute the smallest cluster s such that P belongs to Us.
For example, if P = (1 : =3 : 1), picking a root (=5 + O(3%)) € t;, then
since v3(1 — (=5 + O(3%))) > 0 (where 0 is the absolute depth of the top
cluster) we see that P lies in Uy,. To distinguish if P reduces to the vertex
v or somewhere along an edge from t; to P(t;), we decide if P belongs to
the bounding annulus Ay,. In this case, since v3(1 — (=5 + O(3%))) =1 is not
strictly less than d¢, = 1, the point P does not belong to the Ay, .

Using the formula for FfVLZ’[ with Ser = 1 we see the height at P is 1/2. Similar
reasoning shows any finite Q3-point P = (x : y : z) where z/z is congruent to
1 modulo 3 reduces to v; and has height 1/2. If z/z is congruent to 2 modulo
3, then P reduces to vy and has height —1/2, and if /% is 0 modulo 3 then P
reduces to vs and has height 0.

Remark 7.7.2. As the above example demonstrates, we are able to use very
low /-adic precision when determining the values of the local heights at primes
of bad reduction, and the answers we obtain are rigorous.

7.7.3 Atkin—Lehner quotients of modular curves

In this subsection, we study the Atkin-Lehner quotients Xo(N)* of Xo(N) by
the full Atkin—Lehner group for N = 147, 225, 330. In [ACKP22| the ratio-
nal points were computed using elliptic curve Chabauty instead of quadratic
Chabauty, because they were unable to determine the local heights at primes
of bad reduction. Here, we show all local heights are trivial.

7.7.3.1  X,(330)*

For N = 330, the primes of bad reduction are 3, 5 and 11. Note that X =
Xo(N)* has endomorphism ring Z[/2], and hence we can take our trace 0
endomorphism Z of the Jacobian to be v/2. Write X : y? = 2% 4+ 82* + 1023 +
2022 + 122 + 9.

At £ =5 and ¢ = 11 the cluster pictures are the cluster picture in Figure 7.10.
By Theorem 7.5.19, since the leading coefficient of f is 1, the local heights at
these primes are trivial on QQy points.
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€y

Vo,

Figure 7.11: Reduction graph for Atkin—Lehner quotient

For ¢ = 3 however, the graph I' associated to the semistable covering has
two vertices v, vs corresponding to genus zero components, with a loop eg
of length 1 at vy and two edges ey, e of length 1 connecting v, with vs, see
Figure 7.11.

The curves attached to v; and vy both contain Fz-points. Since there are
no higher genus vertices, we only need to compute the action of Z, on the
homology of the I'. Like in Section 7.7.2, we can compute it 3-adically and
then use Corollary 7.6.12 to obtain the following matrix of Z, acting on the
homology H;(T").

[_01 _ﬂ (7.7.3.1)

Here the basis of the homology of I' is eg, e2 — e1. By the local heights formula
Theorem 7.3.9 we then have that the Laplacian V2(hz ) is 0, and hence hz , =
0. We see that the local heights vanish.

7.7.3.2  Xo(255)*

For N = 255, the primes of bad reduction are 5 and 17. Again, X = Xy(N)*
has endomorphism ring Z[v/2], and we can take our trace 0 endomorphism Z of
the Jacobian to be v/2. Write X : y? = 26 —42° — 1224 + 223+ 822 — 4z + 1. At
¢ =17, the cluster picture is in Figure 7.10 and the leading coefficient of f is 1,
so the heights vanish by Theorem 7.5.19. For ¢ = 5, the semistable covering of
the curve Xo(N)* has the same associated graph I as in the previous example,
and the matrix of the action on Hy(T') is also (7.7.3.1).

7.7.3.3  X,(147)*

For N = 147, the primes of bad reduction are 3 and 7. At ¢ = 7, the curve
Xo(N)* has potential good reduction, so the local height functions are trivial.
At g = 3, following the same procedures as above we compute the action of
Z, on the associated homology graph to the semistable covering of Xo(N)*
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and find it is negative the matrix in (7.7.3.1) and therefore the heights are also
trivial.

7.7.4 Higher genus example

We now provide an example of local height computations for the genus 7 mod-
ular curve with affine model X : y? = £'6 — 4284 16. This curve has Cummins
and Pauli label 48N7. This example shows that our method is practical even
when the genus of X is large. We choose the endomorphism Z of the Jacobian
to be associated to the diagonal matrix with entries [4,4,4,—24,4,4,4]. The
primes of bad reduction of X are 2 and 3; we compute local heights at ¢ = 3.
In this case, the cluster picture is as in Figure 7.12 and the reduction graph
is as in Figure 7.13. By Theorem 7.5.19, after choosing the basepoint w_,

(B1n @1 @1y Cy @ Cg iy Grp)yg

Figure 7.12: Cluster picture for genus 7 curve

W L1

ViooVao Vo Vg Vo Vo Vi Vg
Figure 7.13: Reduction graph for genus 7 curve

the heights at all rational points will be trivial, but we can still determine the
(non-trivial) height functions. We find that the action of Z, on the homology
of the dual graph is given by the matrix

SO0 OO
cCooc oo w

\

J

\

w
cokocoooO
[

J
\

J
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This yields 8 distinct piecewise polynomial functions (since the two edges from
each vertex v; to wy; have the same height function). For example, the edges
from vy to w4y have the height function

248873 /448005 — 248873/44800s + 248873/179200 where 0 < s < 1/2.

7.7.5 A family of curves with genus 1 vertices

Let Sy be a set of 4 roots in @q such that 1+4¢Z, is the smallest disc containing
them. Let n € Z with n | (¢ — 1), let ( = (, be a primitive nth root,
and consider S = ¢¥Sy for 0 < k < n. Let S = Un>k20 Sk, and let

FO =Tlese (@ =)

Let X,, be the curve given by y? = (") (z). By construction, this has cluster
picture Figure 7.14.

Figure 7.14: Cluster picture for higher genus family

Hence the semistable covering has the associated reduction graph I' in Fig-
ure 7.15, where vertices wy and w; correspond to components of genus 0, and
Vg, - - -, Up—1 correspond to components of genus 1. Denote the edges from wv;
to wo as e;, and those from v; to w; as e .

Also by construction, the family of curves has an automorphism ¢ : X,, — X,
cyclically permuting the n clusters. On the level of graphs, this cyclically
permutes the n genus 1 vertices, while keeping the genus 0 vertices invariant.
We will also use ( to denote the corresponding endomorphism of the Jacobian.

Although the local height only makes sense for a trace 0 endomorphism, the

Wo Wy

VD Vﬂ_ sz_ Vn—j_

Figure 7.15: Reduction graph for higher genus family
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formula for the measure in Theorem 7.3.9 makes sense for any endomorphism.
This measure will be of mass 0 if the endomorphism is of trace 0. We let puy
denote the measure corresponding to (.

We need to compute (e;, (*(m(e;))) where 7 : C1(I') — Hy(T') is the orthog-
onal projection. A straightforward calculation shows that

ner) =" et )~ - (e —ep).

J#i

and hence (e;", (*(w(e]))) is %L if k = 0 and —5- otherwise. By symmetry,
the same holds for edges e; .

Since ¢ acts by cyclic permutation on the associated graph, we see that tr,, (¢¥)
is 2 if k = 0 and 0 otherwise. In total, we find

n—1
= —_ 2
po = = DM+ s )+ 3228,

3

-1
= — d ds - hen k& # 0.
= — S (s | +[ds,-|) when k #

K2

These have total mass 2(n—1)42n = 4n—2 and —2 respectively. Hence we see a
linear combination ), ax(x has trace 0 if and only if (2n—1)ag —ZI#O ar, = 0.
For example, Z = (o — (2n — 1)(; has trace 0, and measure

Hz = — Z(|d36j| + |dse; )+ 2251’1"

7

We find an inverse Laplacian using the method explained in Section 7.3.2. First
we find a quadratic piecewise polynomial function fy such that u, — V2f is
a sum of § measures. We see that the function that is Zts(1 — s) on every
edge works. Then ji. — V2 fo = =2 (6w, + 0w, ) + >, 6u,, and we need to find a
piecewise linear function f; with this Laplacian. We see any function f; which

has slopes —3 along e suffices.
Taking the basepoint to lie in wg uniquely determines f; by f1(wp) = 0, and
we find that the normalised height is the piecewise polynomial given by

1

5(571)2 on e with 0 <5 < 1.

7.7.6 Applications to quadratic Chabauty computations

Consider the quadratic twist by 5 of the genus 2 curve with LMFDB label
18225.¢.164025. 1, given by the affine model X : y? = 2% +18/52% + 6/52° +


https://www.lmfdb.org/Genus2Curve/Q/18225/c/164025/1
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i Va

Figure 7.16: Reduction graph for quadratic Chabauty example at £ = 3

9/522 +6/5x +1/5. The conductor is 35 -5%. The endomorphism ring of X/Q
is Q(v/13). We choose the endomorphism /13 on the Jacobian. We compute
the local height functions at 3 and 5 and determine the set of rational points
X (Q) using quadratic Chabauty.

Remark 7.7.3. The rational points X (Q) can also be determined using elliptic
Chabauty.

Remark 7.7.4. The implementation [BDM™] chooses the endomorphism Z to
be —44/13 when p = 53. For this reason, in our implementation we have to
scale the heights accordingly.

Applying Proposition 7.6.9, after computing a correspondence Z C X x X for
V13, we compute the action of Z, on H(liR(X) to be

1 2 4/5 —3/10
6 -1 9/5 7/10
0 0 -1 1
0 0 12 1

where the basis for H} (X) is

{dz/(2y), zdx/(2y), 2*dz/(2y), (9/10)2*dz/ (2y) — (-1/2)a*dz/(2y)}.
Let b= (—1/3:1/27: 1) be the basepoint.

At ¢ = 3, the cluster picture is Figure 7.17 and the curve has unstable re-
duction; in fact, the curve has unstable reduction over every tame extension.
The associated reduction graph I' has two genus 1 vertices v; and vs, linked
by a genus 0 vertex, by edges e; and ey respectively, as in Figure 7.16. We
must compute the traces tr,,(Z) for each genus 1 vertex v;. Applying Propo-
sition 7.6.13, we compute the block matrices

—1+0(33) 0+0(3% 1+0(3%) 0+40(3°%)
0+ 0O(3%) —1+O(33)]’ [0+O(33) 1+ 0(3%)
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(COum Cose ),

Figure 7.17: Cluster picture for quadratic Chabauty example at £ = 3

to be the action of Z, on H}g (X,,), for i = 1,2 respectively. By Theorem 7.3.5,
the traces of these matrices are bounded by 2-1-max{2, 7}, so they are exactly
—2 and 2. Using the formula from Theorem 7.3.9, the Laplacian of the local

height function is given by the measure
Hz = —251)1 + 251,2.

We solve for the height function, and find it is the piecewise polynomial func-
tion

—2s+1/20one with0<s<1/4

25 —5/6 on es with 0 < s <5/12

Using similar calculations to Section 7.7.2, we see that if P = (z:y: 2) is a
point with z #0 mod 3, then if z/z =1 mod 3, then P lies at distance 1/12
along edge es. If 2z = 0 mod 3 then P reduces to the genus 0 vertex. (By
Theorem 7.5.19, we cannot have Qg-points reducing to X,,.) Therefore the
normalised local height of P = (z:y: 2) is

0 if z=0 mod 3,

—-2/3 ifz/z=1 mod 3.

Now consider ¢ = 5 the other prime of bad reduction. Here the curve has
unstable reduction. The cluster picture is Figure 7.18.

( °° 1/2 )

Figure 7.18: Cluster picture for quadratic Chabauty example at £ =5

Let eli,e2i be the edges as labeled in Figure 7.19, with l(e;t) = 1/2. We
compute the following piecewise polynomial height function.

3s2 on eljE with 0 < s <1/2
352 +35—3/4 onef with0<s<1/2
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Vg Vs

Figure 7.19: Reduction graph for quadratic Chabauty example at £ =5

If P=(x:y:z)is a rational point with z 20 mod 5 and /2 =2 mod 5,
then P reduces to v3. If z = 0 mod 5 then P reduces to v;. Otherwise P
reduces to ve. Therefore the normalised local height of P = (z : y : 2) is

3/4 if z=0 mod 5,
-3/4 ifxz/z=2 mod5,
0 otherwise.

The curve X has Mordell-Weil rank 2, and therefore we can apply the quadratic
Chabauty method at p = 53 (as implemented in [BDM™]) to find a finite set
of p-adic points containing the rational points X (Q). Combining this with a
Mordell-Weil sieve we obtain the following theorem.

Theorem 7.7.5. The rational points of X : y* = 2% + 18/5z* + 6/52° +
9/52% + 6/5x + 1/5 are the 10 points

{(~1/3:-1/27:1),(~1/3:1/27: 1),(~1/5: —21/125: 1), (~1/5 : 21/125 : 1),
(1:3:1),(1:-3:1),(1:1:0),(1:-1:0),(-1/2:-3/8:1),(-1/2:3/8:1)}.



