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Chapter 6

Geometric quadratic Chabauty
and p-adic heights

This chapter has already been published in Expositiones Mathematicae, in a
special edition in memory of Bas Edixhoven [DRHS23]. This is joint work
with Juanita Duque–Rosero and Sachi Hashimoto. We do not reproduce the
appendix of equations [DRHS23, Appendix A].

Abstract. Let X be a curve of genus g > 1 over Q whose Jacobian J has
Mordell–Weil rank r and Néron–Severi rank ρ. When r < g+ρ−1, the geomet-
ric quadratic Chabauty method determines a finite set of p-adic points contain-
ing the rational points of X. We describe algorithms for geometric quadratic
Chabauty that translate the geometric quadratic Chabauty method into the
language of p-adic heights and p-adic (Coleman) integrals. This translation
also allows us to give a comparison to the (original) cohomological method
for quadratic Chabauty. We show that the finite set of p-adic points pro-
duced by the geometric method is contained in the finite set produced by the
cohomological method, and give a description of their difference.

6.1 Introduction

Let XQ be a smooth, projective, geometrically irreducible curve of genus g > 1
over Q. The problem of describing XQ(Q), the set of rational points of XQ,
has fascinated mathematicians for centuries. A famous conjecture of Mordell
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[Mor22a] is that, for g > 1, the set XQ(Q) is finite. Faltings’s theorem states
that Mordell’s conjecture is true [Fal83b]. However, Faltings’s theorem is not
effective, meaning that it does not give a method to determine the set of
rational points. There is still an ongoing effort to find explicit methods to
compute the set XQ(Q). Chabauty’s theorem [Cha41] gives a finiteness result
for XQ(Q) on certain curves by using p-adic analysis. This was made effec-
tive by Coleman [Col85a] through the development of Coleman integration;
he gave a method to find p-adic power series that vanish on a superset of
XQ(Q) for the curves Chabauty considered. This breakthrough is the starting
point for the Chabauty–Kim program [Kim09] of p-adic methods for proving
the finiteness of XQ(Q) generalizing Chabauty and Coleman’s method. The
quadratic Chabauty method [BBM16, BD18, BD21, EL21, BMS21] is an effec-
tive instance of the Chabauty–Kim method, developed by Balakrishnan and
Dogra first for finding integral points on affine curves, and later for studying
the rational points of XQ.

Let JQ be the Jacobian of XQ, with Mordell–Weil rank r and Néron–Severi
rank ρ := rk NS(JQ) > 1. Let p > 2 be a prime, not necessarily of good
reduction for XQ. Quadratic Chabauty is an effective p-adic method for pro-
ducing a finite set of p-adic points containing the rational points of XQ, when
r < g+ρ−1. There are several approaches to the quadratic Chabauty method.
The (original) cohomological quadratic Chabauty method [BD18, BD21] stud-
ies XQ(Q) using p-adic height functions and works in certain Selmer vari-
eties (for p of good reduction). This method has been applied to determine
the rational points on many modular curves [BBB+21, BDM+21], includ-
ing the cursed curve [BDM+19], a famously difficult problem. The geomet-
ric quadratic Chabauty method [EL21] is an algebro-geometric method for
quadratic Chabauty, and the computations take place in Gm-torsors over JQ.

In this paper, we give a comparison of the geometric and cohomological meth-
ods for quadratic Chabauty in the cases where both methods can be applied.
We prove the following theorem.

Theorem H (Comparison Theorem (Theorem 6.8.5)). Assume that p is a
prime of good reduction for XQ. Assume that r = g, ρ > 1, and the p-

adic closure JQ(Q) is of finite index in JQ(Qp). Assume XQ(Q) 6= ∅, and let
b ∈ XQ(Q) be a choice of a rational base point. Let X(Qp)Coh be the finite
set of p-adic points obtained under these assumptions with the cohomological
quadratic Chabauty method (see Definition 6.8.1 and Remark 6.8.2). Let X/Z
be a proper regular model of XQ. Let X(Zp)Geo be the finite set of p-adic points
obtained with the geometric quadratic Chabauty method (see Definition 6.2.3).
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Then we have the inclusions

XQ(Q) ⊆ X(Zp)Geo ⊆ X(Qp)Coh ⊆ XQ(Qp),

and we can explicitly characterize X(Qp)Coh \X(Zp)Geo.

In [HS22a], it is shown that the classical Chabauty–Coleman method [Col85b]
and the geometric linear Chabauty method [Spe20] are related by a similar
comparison theorem.

The geometric quadratic Chabauty method studies the Poincaré torsor, the
universal Gm-biextension over JQ × JQ. By pulling back the Poincaré torsor
by a nontrivial trace zero morphism f : JQ → JQ, we can construct a nontrivial
torsor T over the Néron model of JQ whose restriction to XQ is trivial. This
allows us to embed XQ into T through a section. The idea of the geometric
quadratic Chabauty method is to intersect the image of the integer points on
a regular model of XQ with the p-adic closure of the integer points T (Z). This
intersection contains XQ(Q).

Suppose further that p is a prime of good reduction for XQ. We give new
algorithms for geometric quadratic Chabauty that work mainly in the trivial
biextension Qgp × Qgp × Qp. Working on the trivial biextension translates the
geometric quadratic Chabauty method into the language of Coleman–Gross
heights [CG89] and Coleman integrals [Col85a]. The main contribution of
this paper is to explicitly give this translation into the language of heights and
Coleman integrals. This translation allows us to prove the comparison theorem
between the cohomological quadratic Chabauty method and the geometric
quadratic Chabauty method. We also give an algorithm to compute the local
heights away from p associated to the curve XQ. These heights are also studied
in [BD20].

We further leverage the language of p-adic heights to compute the embedding of
XQ into T and the integer points T (Z) as solutions to convergent power series.
Then determining up to finite p-adic precision a finite set containing XQ(Q)
reduces to solving simple polynomial equations. Theoretically, by working
modulo pk for large enough k ∈ N, the geometric quadratic Chabauty method
will always produce a finite set of p-adic points with precision k containing
XQ(Q). We describe algorithms for finding this finite set of p-adic points that
are practical when XQ is a hyperelliptic curve. Our Magma code implementing
these algorithms can be found in [DRHS].

Finally, we present an example of our new method applied to the modular curve
X0(67)+ and a trace zero endomorphism f arising from the Hecke operator T2.
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Even though the rational points on this curve have already been determined
[BBB+21], this provides a new way of analyzing the set of rational points.

6.2 Overview and Set-up

We first set up some notation and give a broad overview of the geometric
quadratic Chabauty method, then outline the contents of our paper.

Let XQ be any smooth, projective, geometrically irreducible curve over Q
with a proper regular model X of XQ over the integers and a fixed base point
b ∈ XQ(Q) = X(Z). Let Xsm denote the open subscheme of X consisting of
points at which X is smooth over Z; then Xsm(Z) = X(Z). Let JQ denote
the Jacobian of XQ and J denote the Néron model of JQ over the integers.
Suppose JQ has Mordell–Weil rank r and Néron–Severi rank ρ = ρ(JQ). Let p
be a prime greater than 2 not necessarily of good reduction for XQ.

The goal in geometric quadratic Chabauty is to lift X into a non-trivial Gρ−1
m -

torsor T over J through a section j̃b lying over the Abel–Jacobi embedding
jb : Xsm → J . Over Q we find this section j̃b by giving a trivializing section of
the Gρ−1

m -torsor j∗bTQ over XQ. If we want to spread this out over Z, there is
an obstruction coming from the multidegree.

Definition 6.2.1. The multidegree of a line bundle L on a curve C with
geometrically irreducible components (Ci)i∈I over Q is (degL|Ci)i∈I .
The map Pic(X) → Pic(XQ) is not in general an isomorphism, and j∗bT is
not in general trivial over X since its multidegree over the fibers XF` of X
might be non-zero. This is the only obstruction: the torsor can be trivialized
over an open U ⊂ Xsm constructed by picking one geometrically irreducible
component in each fiber XF` and removing the other irreducible components.
We call these fiberwise geometrically irreducible open U ⊂ Xsm simple open
sets. By [Sta18a, Tag 04KV] every irreducible component of XF` admitting a
smooth F`-point is geometrically irreducible. Hence every point P ∈ Xsm(Z)
is contained in U(Z) for a unique simple open U . There is a finite number
(Ui)i∈I of simple open sets that cover Xsm(Z). For every such open, the map
Pic(U) → Pic(XQ) is an isomorphism. We fix a simple open U , and obtain a

trivialization j̃b : U → T lying over jb.

Because Gm(Z) = {±1} is finite, we can expect the closure of T (Z) inside
the (g+ ρ− 1)-dimensional p-adic manifold T (Zp) to be of dimension at most

r. The image of the p-adic points of U , namely j̃b(U(Zp)), is of dimension 1.
Given this T , we see the analogue of the classical Chabauty’s theorem, that

https://stacks.math.columbia.edu/tag/04KV
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applies for curves satisfying the inequality r < g [Cha41].

Theorem 6.2.2 ([EL21, Section 9.2]). When r < g + ρ− 1, the intersection

j̃b(U(Zp)) ∩ T (Z) ⊂ T (Zp)

is finite.

Definition 6.2.3. The geometric quadratic Chabauty set X(Zp)Geo is defined

to be the union over the simple open sets i ∈ I of j̃b
∗
(j̃b(Ui(Zp)) ∩ T (Z)) ⊂

Ui(Zp) ⊂ X(Zp).
The geometric quadratic Chabauty method computes this finite set X(Zp)Geo,
working in one simple open U ⊂ X and one residue disk of U(Zp) at a time. In

Algorithm 6.7.1 we give an algorithm to determine j̃b(U(Zp)) ∩ T (Z) to finite
precision.

To construct the Gρ−1
m -torsor T over J we start with the universal Gm-torsor.

In our calculations this takes the form of the Poincaré torsorM× over J × J0

(this is actually a pullback of the Poincaré torsor over J × J∨0; for more
details see Section 6.3). Here J∨0 is the fiberwise connected component of J∨

containing 0.

Remark 6.2.4. When p is a prime of good reduction forX, we have J0
Z(p)

= JZ(p)

and J∨0
Z(p)

= J∨Z(p)
.

By the universality ofM×, we want to construct T by pulling backM× along
morphisms (id, αi) : J → J × J0 for i = 1, . . . , ρ− 1. Define

m := lcm{exp
(
(J/J0)(Fq)

)
| q prime}, (6.2.0.1)

where exp(G) ∈ N≥1 is the exponent of a finite groupG. Note thatm· : J → J0

is then a well-defined morphism. Any morphism of schemes J → J can be
written as a translation composed with an endomorphism, and hence we choose
our morphisms αi : J → J0 to be of the form m · ◦ trci ◦fi with ci ∈ J(Z) and
fi : J → J a morphism of group schemes.

The torsor T is the product T =
∏ρ−1
i=1 (id, αi)

∗M× as a fiber product over
J . We also let M×,ρ−1 be the product taken as a fiber product over J via
the first projection map M× → J × J0 → J . In order to embed U through
a section j̃b : U → T , the torsor T pulled back to U must be trivial: that is
j∗b (id, αi)

∗M× must be trivial over U . The torsor (id, αi)
∗M× over J can be

thought of as the total space of a line bundle without its zero section, and
the condition that its pullback Lαi := j∗b (id, αi)

∗M× to U is trivial forces the
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corresponding line bundle to be degree 0. Equivalently, the trace of fi must
be 0. The condition that Lαi is trivial uniquely determines ci.

T M×,ρ−1

U J J × (J0)ρ−1jb

j̃b

(id,m·◦ trci ◦fi)i

(6.2.0.2)

Because the Néron–Severi rank of JQ is ρ, the Jacobian J has ρ−1 independent
non-trivial endomorphisms of trace zero.

Definition 6.2.5. For Y a scheme, S a ring with residue field SpecFp →
SpecS and Q ∈ Y (Fp), we define the residue disk over Q, denoted by Y (S)Q :=
{y ∈ Y (S) | y = Q}, to be the set of all S-points specializing to Q.

Let P ∈ U(Fp). The residue disk U(Zp)P embeds in the residue disk T (Zp)j̃b(P )

of T through the section j̃b. Since p > 2, we have that 1 and −1 reduce to
different points modulo p and hence the map T (Z)j̃b(P ) → J(Z)jb(P ) is a

bijection. By [Par00, Proposition 2.3] and the fact that p > 2 the residue disk
J(Z)jb(P ) is up to a translation isomorphic to Zrp. In [EL21, Theorem 4.10]

this bijection T (Z)j̃b(P ) → J(Z)jb(P ) is upgraded to a morphism κ : Zrp →
T (Zp)j̃b(P ) with image exactly T (Z)j̃b(P ).

In this paper we make the geometric quadratic Chabauty method explicit in
the case where p is of good reduction by giving algorithms to compute j̃b
and κ in a residue disk as polynomials in parameters up to finite precision.
This translates the geometric Chabauty method into solving simple polynomial
equations. We also give algorithms to work in residue disks of T explicitly using
p-adic heights and Coleman integrals. Moreover, by writing the geometric
quadratic Chabauty method in terms of p-adic heights and Coleman integrals,
we are able to prove Theorem H.

6.2.1 Structure of the paper

In Section 6.3 we provide background on the Poincaré torsor and its real-
izations. We solve the problem of how to efficiently represent elements of a
residue disk of T . We show how to represent elements of the Poincaré torsor
M× using the following statement that appears in [EL21, Section 9.3].

Proposition 6.2.6. Let p > 2 be a prime of good reduction for X. There is
a morphism of biextensions over J(Zp)× J(Zp)

Ψ: M×(Zp)→ J(Zp)× J(Zp)×Qp, (6.2.1.1)
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with the trivial Qp-biextension structure on the latter product.

By Remark 6.2.4, we have that J0(Zp) = J(Zp). This proposition allows us to
record elements ofM×(Zp) up to finite p-adic precision. In Proposition 6.3.11
we describe the image of integer points of T in this trivial biextension N :=
J(Zp)× J(Zp)×Qp.
Since we can construct a bijection from residue disks of J(Zp) to Zgp using
Coleman integrals, we can explicitly write down a homeomorphism from the
residue disk T (Zp)j̃b(P ) to Zgp × Qρ−1

p factoring through Ψ; this is done in
Corollary 6.3.22. Crucially, we prove that this homeomorphism is given by
convergent power series on Zg+ρ−1

p , i.e. power series that modulo every power
of p are given by polynomials.

Then in Section 6.4 we give an algorithm to construct the unique line bundle
associated to the endomorphism f from a divisor in U ×X satisfying certain
properties described in Lemma 6.4.4. Using this line bundle we write down a
theoretical formula for the trivializing section j̃b : U → T . We give an algo-
rithm for computing the convergent power series describing the embedding of
a residue disk of the curve into the biextension N in Section 6.5. In Section 6.6
we give formulas for computing points in the biextension N that are the image
of generating sections of certain residue disks of M.

In Section 6.7 we tie everything together with the algorithm for geometric
quadratic Chabauty in a residue disk U(Z)P . In this section, we also describe
how to compute a finite set of p-adic points to finite precision containing
the integer points in a single residue disk U(Z)P . We do this by reducing
our computations to T (Z/pkZ)j̃b(P ) and using a Hensel-like lemma [EL21,

Theorem 4.12]. By iterating over residue disks we find X(Zp)Geo up to finite
precision.

The comparison theorem appears in Section 6.8. Theorem 6.8.5 states that the
finite set of points found by the cohomological quadratic Chabauty method is
a superset of the points found by the geometric method, and gives an explicit
description of the points in their difference.

Section 6.9 shows a worked example of the algorithms applied to the case
of X0(67)+. The rational points on this curve have been determined previ-
ously [BBB+21], but the computations here demonstrate the practicality of
the geometric quadratic Chabauty algorithms presented here for hyperelliptic
modular curves.
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6.3 Understanding the biextension and T

A crucial object of study in our paper is the Poincaré torsor. This has four in-
carnations, which we introduce in the following four subsections. Section 6.3.1
and Section 6.3.2 are expository sections and introduce important background
from [EL21]. Section 6.3.3 introduces the trivial biextension, and contains
new propositions relating the biextension to p-adic heights. Section 6.3.4 in-
troduces the pseudoparametrization of the torsor that we work with for the
rest of the paper, and proves that the pseudoparametrization is given by con-
vergent power series modulo powers of p, with explicit bounds on the degree
modulo powers of p.

6.3.1 The Poincaré torsor P

First we introduce the Poincaré torsor P×Q over JQ×J∨Q , its biextension struc-

ture, and the torsor P× over the integers. For more details on the Poincaré
torsor and biextensions, see [MB85, §I.2.5] or Grothendieck’s Exposés VII and
VIII [GRR72]. The abelian variety J∨Q is a moduli space for line bundles alge-
braically equivalent to zero on JQ; every [c] ∈ J∨Q corresponds to a line bundle
Lc on JQ. The universal line bundle over JQ × J∨Q is the Poincaré bundle
PQ. It satisfies the property that PQ|JQ×[c] ' Lc and it is rigidified at 0, i.e.
PQ|0×J∨ is trivial. Furthermore, under the natural identification (J∨Q )∨ = JQ,
this line bundle is also the universal line bundle over JQ × J∨Q parametrizing
line bundles on J∨Q .

Given a line bundle L over a scheme S, there is an associated Gm-torsor L×
defined by taking the sheaf of non-vanishing sections, and similarly given a
Gm-torsor Y there is an associated line bundle Y ⊗O×S OS . Applying these

associations to the Poincaré bundle, we obtain the universal Gm-torsor P×Q
over JQ × J∨Q , called the Poincaré torsor. Alternatively,

P×Q = IsomJQ×J∨Q (OJQ×J∨Q ,PQ),

i.e. for a scheme S/(JQ×J∨Q ) we have that P×Q (S) consists of isomorphisms of

line bundles OS → (PQ)S . This set P×Q (S) is an OS(S)×-pseudotorsor: either

empty or an OS(S)×-torsor.

The Poincaré torsor P×Q has the structure of a biextension over JQ × J∨Q , as
we will now explain. Addition in J∨Q corresponds to tensoring line bundles on
JQ. This, along with the theorem of the square, induces a partial group law
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on P×Q . Let S be a scheme over Q. For x ∈ JQ(S) and y1, y2 ∈ J∨Q (S) we have
a tensor product which is an isomorphism of Gm-torsors

(x, y1)∗P×Q ⊗ (x, y2)∗P×Q → (x, y1 + y2)∗P×Q

that we denote by ⊗2, because we are adding on the second coordinate (while
the first coordinate stays fixed). Similarly since (J∨Q )∨ is canonically identified
with JQ, we also have the tensor product

(x1, y)∗P×Q ⊗ (x2, y)∗P×Q → (x1 + x2, y)∗P×Q

called ⊗1. These two partial group laws are compatible. Let x1, x2 ∈ JQ(S),
y1, y2 ∈ J∨Q (S), and zij ∈ (xi, yj)

∗P×Q (S), for i, j ∈ {1, 2}. Then

(z11 ⊗2 z12)⊗1 (z21 ⊗2 z22) = (z11 ⊗1 z21)⊗2 (z12 ⊗1 z22).

In other words, tensoring points in the biextension is not order-dependent. The
structure of these two partial group laws over the product JQ × J∨Q , together

with this compatibility, makes P×Q a Gm-biextension over JQ × J∨Q .

For our applications, we need to work over the integers. Let J0 be the fiberwise
connected component of J containing 0. This represents line bundles on C
that are fiberwise of multidegree 0. Let J∨ be the Néron model of J∨Q and

similarly let J∨0 be the fiberwise connected component of J∨ containing 0.
The Poincaré torsor extends to a biextension P× over J × J∨0. In particular,
the integer points of P× lying over (x, y) ∈ (J×J∨0)(Z) form a Gm(Z)-torsor,
i.e. a {±1}-torsor. So there is exactly one integer point lying over (x, y), up
to sign.

6.3.2 The biextension M
To work with explicit computations of points in the Poincaré torsor in practice,
we need a few modifications of P×. We introduce two torsors over J × J0,
M× and N the trivial biextension.

We first discuss the construction of M× and the generating sections of its
residue disks. The Abel–Jacobi embedding induces an isomorphism j∗b : J∨ →
J and hence an isomorphism j∗b : J∨0 → J0. We define

M× := (id, j∗,−1
b )∗P×. (6.3.2.1)

For the torsor M×, we have an explicit description of the fibers. Let S be a
scheme, x ∈ J(S) be a point corresponding to a line bundle L, and y ∈ J0(S)
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be a point with representing divisor E = E+ −E− such that E+ and E− are
effective and of the same multidegree. We denote the fiber (x, y)∗M× of M×
over (x, y) ∈ (J × J0)(S) by M×(x, y). This fiber M×(x, y) is the Gm-torsor

E∗L× := NormE+/S

(
L× |E+

)
⊗NormE−/S

(
L× |E−

)−1
, (6.3.2.2)

which we also denote by NormE/S L×. When S = SpecZ we also write simply
NormE L×. This fiber can be thought of as the aggregate of how L looks
around E.

This description of the fiber is proven in [EL21, Proposition 6.8.7] and more
general facts about these norms can be found in [EL21, Section 6]. Because
equation (6.3.2.2) may seem a bit opaque, we provide some examples of how
to apply the formula in practice.

Definition 6.3.1. Let S be a scheme. Let D and E be two relative Cartier
divisors on XS/S. We say D and E are disjoint over S if their support is
disjoint as closed subschemes of XS . In particular, it is not enough to have
disjoint S-points if D or E does not split completely over S.

Example 6.3.2. Let S be a scheme, [D] ∈ J(S), and [E] ∈ J0(S) be points
of J and J0 with representing divisors D and E where E has multidegree 0.
Assume D and E are disjoint over S, and write E = E+ − E− with E+, E−

effective. Then the Gm-torsor E∗OX(D)× is generated by NormE+/S(1) ⊗
NormE−/S(1)−1 where 1 is here seen as a section of OX(D)×|E±1 . We also
denote this generator by E∗1.

Example 6.3.3. Suppose the fiber of Xsm/Z over 2 is geometrically irreducible.
Let [D] ∈ J(Z) and [E] ∈ J0(Z) be points of J and J0 with representing
divisors D and E. Assume D and E are disjoint over Z[ 1

2 ] and meet with
multiplicity 1 over 2. Then E∗OX(D)× is generated by 2−1E∗1.

Remark 6.3.4. Let S be a scheme. If D = Div g ∈ Div0(XS/S) is the principal
divisor of a rational function g and is disjoint from E ∈ Div0(XS/S), then the
isomorphism OX(D) → OX given by multiplication by g induces an isomor-
phism E∗OX(D)× → E∗O×X sending E∗1 to E∗g(E) where g(E) ∈ Gm(S).

Remark 6.3.5. In general, if [D] ∈ J(Z), [E] ∈ J0(Z), and we have a choice
of representing divisors D and E that are disjoint over Q, using intersection
theory we can determine n ∈ Q× unique up to sign, such that NormE OX(D)×

is generated by n ·E∗1. If E is not of multidegree 0, there is a unique vertical
divisor V ⊂ C with V + E of multidegree 0. In this case, one can com-
pute the unique rational number a up to sign such that (E + V )∗OX(D)× =
aNormE OX(D)×. This is treated in detail in [EL21, Section 6.9].
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The partial group laws onM× are also very explicit: let [E], [E1], [E2] ∈ J0(S)
and L,L1,L2 ∈ J(S). They are given by the morphisms

E∗1L× ⊗ E∗2L× → (E1 + E2)∗L× (6.3.2.3)

corresponding to ⊗2 and

E∗L×1 ⊗ E∗L
×
2 → E∗(L1 ⊗ L2)× (6.3.2.4)

corresponding to ⊗1.

Example 6.3.6. Let x1, x2 ∈ J(Z) and y1, y2 ∈ J0(Z). Let zij ∈ M×(Z)
be points above (xi, yj) for i ∈ {1, 2}. Then for n1, n2,m1,m2 ∈ Z we can
construct points above (n1x1 + n2x2,m1y1 +m2y2) by the formula(

z⊗2m1
11 ⊗2 z

⊗2m2
12

)⊗1n1 ⊗1

(
z⊗2m1

21 ⊗2 z
⊗2m2
22

)⊗1n2
.

This allows us to construct many integer points ofM× by starting with a few
points that lie over generators of the Jacobian and then applying the partial
group laws. In Section 6.6 we will use this idea to determine the integer points
of the torsor T landing in a specific residue disk of T .

6.3.3 The trivial biextension N
In practice, we will often translate between M and the trivial biextension
N where we do our computations. We explain how to make this translation
following [EL21, Section 9.3]. From now on, we assume p > 2 is a prime of
good reduction for XQ.

Let [D] ∈ J(Qp) and [E] ∈ J0(Qp) be divisor classes with a choice of rep-
resenting divisors D and E that are disjoint over Qp. Then E∗OX(D)× is a
Q×p -torsor, trivial with generator E∗1 by Example 6.3.2. Let hp be the cyclo-
tomic Coleman–Gross local height at p with respect to an isotropic splitting
H1

dR(X) = H0(X,Ω1
X)⊕W of the Hodge filtration [CG89, Section 5]. Choose

a branch of the logarithm with logp = 0 so that it is compatible with hp. The
local height hp is a biadditive, symmetric pairing on disjoint divisors of de-
gree 0, taking values in Qp. For f a rational function and Divf its associated
divisor, it also satisfies the equality hp(D,Divf) = logf(D).

Remark 6.3.7. The assumption that p is a prime of good reduction for X
is used to define the logarithm of JZp , and to compute the Coleman–Gross
height and iterated Coleman integrals. There is a more general construction
using Vologodsky integrals to construct the Coleman–Gross height [Bes22],
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but currently there is no known way to compute this more general height for
a prime of bad reduction.

We define a map

ψ : M×(Zp)→ Qp (6.3.3.1)

E∗λ ∈ E∗OX(D)× 7→ logλ+ hp(D,E).

We define N to be the trivial Qp-biextension J(Qp)×J(Qp)×Qp over J(Qp)×
J(Qp). By definition, the partial group laws in N are just addition keeping
one coordinate fixed. Let [D], [D1], [D2] ∈ J(Qp) and [E], [E1], [E2] ∈ J0(Qp)
and v1, v2 ∈ Qp. The first group law is

([D1], [E], v1) +1 ([D2], [E], v2) = ([D1] + [D2], [E], v1 + v2).

The second group law is

([D], [E1], v1) +2 ([D], [E2], v2) = ([D], [E1] + [E2], v1 + v2).

Definition 6.3.8. We define the morphism of biextensions

Ψ: M×(Zp)→ N

to be the projectionM×(Zp)→ J(Qp)× J(Qp) on the first two factors and ψ
on the last factor.

Remark 6.3.9. Since log(−1) = 0, the morphism Ψ sends the two integer points
of M×(Z) above a fixed integer point of J × J0 to the same point.

The following proposition appears in [EL21, Section 9.3] but is not proven.

Proposition 6.3.10. The map Ψ: M×(Zp) → N is a morphism of biexten-
sions.

Proof. First we show that Ψ is well defined. For divisor classes [D] ∈ J(Qp)
and [E] ∈ J0(Qp) we can always choose representing divisors D and E with
disjoint support over Qp; we show that the choice of representing divisors D
and E does not matter. Suppose D = D′ + Divg for some rational function
g with Div g disjoint from E. Multiplication by g induces an isomorphism
OX(D) → OX(D′) sending E∗1 7→ E∗g(E) by Remark 6.3.4. Under ψ, the
section E∗λ in E∗OX(D) maps to logλ+hp(D,E) while E∗g(E)λ in E∗OX(D′)
maps to logλ+ logg(E) +hp(D

′, E). But since hp(Divg,E) = logg(E) we have
the equality hp(D

′, E) + logg(E) = hp(D,E), so the choice of representing
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divisor for [D] does not change the value of Ψ. By symmetry of the norm
[EL21, Section 6.5], we can also conclude that Ψ does not depend on the
choice of representing divisor for [E].

Finally we show that Ψ preserves the two group laws (6.3.2.3) and (6.3.2.4).
Let [D1], [D2] ∈ J(Qp), and [E] ∈ J0(Qp) with E disjoint from D1 and D2. Let
E∗λ1 ∈ E∗OX(D1) and E∗λ2 ∈ E∗OX(D2). Under ψ, the section E∗λi maps
to logλi + hp(Di, E) for i = 1, 2. The group law ⊗1 in M× sends the sections
to E∗(λ1λ2) in E∗OX(D1 + D2). Under the map ψ, the section E∗(λ1λ2) is
sent to

log(λ1λ2) + hp(D1 +D2, E) = logλ1 + logλ2 + hp(D1, E) + hp(D2, E).

Therefore Ψ preserves ⊗1. By symmetry of the norm it also preserves ⊗2.

The following proposition relates this to the global p-adic height.

Proposition 6.3.11. Let [D] ∈ J(Z) and [E] ∈ J0(Z) with representing di-
visors D and E that have disjoint support over Z(p). Let F be the unique
vertical divisor such that F + E has multidegree 0 on all fibers XFq . Let
z ∈ M×([D], [E + F ])(Z). Then ψ(z) = h([D], [E]) where h(·, ·) denotes the
global p-adic height.

Proof. Let L = OX(D). Write F =
∑
q FFq where q ranges over the primes

of bad reduction for X and FFq has support in XFq . Then by [EL21, Proposi-
tion 6.9.3] we have the equation

M×([D], [E]) =
∏
q

q−FFq ·D NormE(L×)

where q ranges over the bad primes.

Recall that NormE(L×) is by definition NormE/ SpecZ(L×|E); this torsor is
canonically identified with

OSpecZ(
∏
q

q−(E·D)q )×

and hence has generator
∏
q q
−(E·D)q , where (E ·D)q denotes the intersection

number of E and D over Z(q) taking values in Z.

In total, we see that under these identificationsM×([D], [E+F ]) is generated
by the element E∗

∏
q q
−((E+F )·D)q . By definition, for q 6= p, we have that
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hq(D,E) is −((E + F ) ·D)q logq, and hence we get

ψ(z) = log
∏
q

q−((E+F )·D)q + hp(D,E)

=
∑
q 6=p

hq(D,E) + hp(D,E)

= h([D], [E])

as we wanted.

6.3.4 The torsor Tf

We set up some notation. Recall from Section 6.2 that we have fixed a simple
open set U ⊂ Xsm that contains the smooth points of one geometrically irre-
ducible component of each fiber. Let f be a trace zero endomorphism of J .
Recall the integer m from (6.2.0.1). The map m · ◦f is a morphism J → J0.
Let c ∈ J(Z) denote the unique element such that j∗b (id,m · ◦ trc ◦f)∗M× is
trivial over U . Let αf := m · ◦ trc ◦f . Let ξf : Tf → J denote the Gm-torsor
(id, αf )∗M× over J . The trivialization of j∗b (id,m · ◦ trc ◦f)∗M× then gives

us a morphism j̃b,f : U → Tf of schemes over J .

Remark 6.3.12. If f is identically zero, then Tf is isomorphic to the trivial
Gm-torsor over J . If r < g this reduces to the geometric linear Chabauty case,
see [Spe20, HS22a] for more details, but when r = g this trivial torsor contains
no information.

As discussed in the overview, we work on the curve residue disk by residue disk,
and hence we will describe the residue disks of Tf , culminating in Lemma 6.3.20.
Throughout the rest of this section, fix a t ∈ Tf (Fp). We work inside the
residue disk Tf (Zp)t. Since Tf is trivial on fibers, the residue disk Tf (Zp)t is
isomorphic to J(Zp)ξf (t) × Gm(Zp)u for some unit u ∈ Fp. We would like to
parametrize this residue disk.

Definition 6.3.13. Let Y be a smooth scheme over Zp of relative dimension
d, and let y ∈ Y (Fp). We say t1, . . . , td are parameters of Y at y if they
are elements of the local ring OY,y such that the maximal ideal is given by
(p, t1, . . . , td).

Define t′i := ti/p. Then evaluation of t′, the vector (t′1, . . . , t
′
d), gives a bijection

t′ : Y (Zp)y → Zdp. We call t′ a parametrization given by parameters ti.

Example 6.3.14. Take Y = Gm = SpecZp[x, x−1] over Zp; this is of relative
dimension 1. Let y = 1 ∈ Gm(Fp). Then x− 1 is a parameter at y; it induces
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a parametrization θ : Gm(Zp)y → Zp given by u 7→ (u − 1)/p. Note that the

map log, defined by its power series log(1 + x) = x − x2

2 + · · · also induces a
bijection ϕ = log/p : Gm(Zp)y → Zp, but this is not a parametrization; it is
not given by evaluating elements of the maximal ideal, and is not even fully
algebraic in nature. However, there is a relation between ϕ and θ, in that

θ ◦ ϕ−1 is given by the power series 1
p

(
xp− (xp)2

2 + · · ·
)
∈ Zp[[x]].

In [EL21, Lemma 6.6.8] the residue disk Tf (Zp)t is parametrized using pa-
rameters at t. However, this parametrization can be difficult to work with
because it uses parameters in J . The group law of J expressed in these pa-
rameters is given by complicated converging power series. It is possible to use
this parametrization in practice: see for example [Mas20], where the Khuri-
Makdisi representation [KM04] is generalized in order to work with points of
the Jacobian up to the required p-adic precision and compute parameters of
them; however, with this representation other steps of the algorithm, like com-
puting the image under an endomorphism, would be more difficult. Here, we
opt to use the logarithm of J instead to give a bijection between the residue
disk Tf (Zp)t and Zg+1

p that is not a parametrization in the sense of Defini-
tion 6.3.13. For a definition of this logarithm, see [Hon70]. To describe the
relationship between this bijection and the parametrization of this residue disk
we need the framework of convergent power series.

Definition 6.3.15. Let n ∈ N. The ring of convergent power series in n
variables is defined as

Qp〈x1, . . . , xn〉 := {
∑
I∈Nn

aIx
I ∈ Qp[[x1, . . . , xn]] | lim

I→∞
|aI | = 0}

where x = (x1, . . . , xn) is the vector of variables. An element of this ring is
called an integral convergent power series if it lies inside Zp[[x1, . . . , xn]]. The
convergent power series are those power series converging on all of Znp . Unlike
formal power series, one can always compose two (integral) convergent power
series, since by definition the resulting infinite sum inside the ring of (integral)
convergent power series converges.

Remark 6.3.16. Let Y be a smooth scheme over Zp of relative dimension d,
let y ∈ Y (Fp), and let θ, θ′ : Y (Zp)y → Zdp be two parametrizations. Then

the composite θ′ ◦ θ−1 : Zdp → Zdp is given by (multivariate) integral convergent
power series that are linear modulo p, and in fact are of degree at most M
modulo pM .

Lemma 6.3.17. Let G be a smooth, commutative group scheme over Zp of
relative dimension d. Let G(Zp)0 be the residue disk containing the unit 0 ∈



150 CHAPTER 6. GEOMETRIC QUADRATIC CHABAUTY

G(Zp). Let θ : G(Zp)0 → Zdp be a parametrization, and let log : G(Zp)0 → pZdp
be a choice of logarithm. Then log ◦ θ−1 : Zdp → pZdp is given by d integral
convergent power series in d variables. For n ≥ 0 the coefficient of a degree n
monomial in one of these power series has valuation at least max(1, n−vp(n)).

Proof. By [Spe20, Lemma 3.7] the function log ◦ θ−1 is given by integral con-
vergent power series. There the third author gives the vector-valued formula

log =
∑

I∈Nd\(0,...,0)

aIc|I|x
I

where x = (x1, . . . , xd) is the vector of variables, the coefficients aI lie in Zp,
the notation |I| means i1 + · · · + id where I = (i1, . . . , id), and cn = pn/n.
(In this paper we do not divide by p in the log, unlike in [Spe20]). The result
follows immediately from the observation that vp(c|I|) = |I| − vp(|I|).

The following result establishes the analyticity of the map ψ on residue disks
of M×.

Lemma 6.3.18 ([EL21, Section 9.3]). Let z ∈M×(Fp). Let z̃ be a lift of z to
M×(Zp). Let Θ: Z2g+1

p →M×(Zp)z be a parametrization. Consider the map

ψz : M×(Zp)z → Qp

z 7→ ψ(z)− ψ(z̃)

p
.

Then ψz ◦Θ is given by a convergent power series.

As discussed above, we can now find a bijection between residue disks of Tf and
Zgp × Qp. We use the logarithm of the Jacobian, which gives an isomorphism
log : J(Zp)0 → pZgp by choosing a basis of H0(JZp ,Ω

1) as well as the map
ψ defined in (6.3.3.1). For ease of notation, we suppress the monomorphism
Tf →M× in our notation, and apply ψ directly to Tf (Zp).
Definition 6.3.19. Recall that we fixed a t ∈ Tf (Fp). Choose t̃ ∈ Tf (Zp)t to
be a lift of t. Let ϕf : Tf (Zp)t → Zgp ×Qp be defined by

ϕf (z) = ((logξf (z)− logξf (t̃))/p, (ψ(z)− ψ(t̃))/p)

where ψ is defined in (6.3.3.1) and the map ξf : Tf → J is the structure
morphism of Tf .

We call ϕf a pseudoparametrization of the residue disk Tf (Zp)t.
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Similarly to Example 6.3.14, this is not a parametrization; it shares some of
the properties of a parametrization, notably the property in Remark 6.3.16,
as the following lemma shows.

Lemma 6.3.20. The pseudoparametrization ϕf is an injection, and for any
parametrization θ : Tf (Zp)t → Zg+1

p the resulting map ϕf ◦ θ−1 : Zg+1
p → Zgp ×

Qp is given by g+1 convergent power series. The valuation of the coefficient of
any degree n monomial occurring in one of the first g convergent power series
is at least max(0, n− 1− vp(n)).

Proof. By Lemma 6.3.17 and Lemma 6.3.18 the pseudoparametrization is given
by convergent power series and the valuations of the coefficients behave in the
required way. It remains to prove that it is an injection. First, note that the
maps 1

p log : J(Zp)0 → Zgp and 1
p log : Gm(Zp)1 → Zp are bijections.

Let [D],m(f([D]) + c) ∈ J(Zp)0 with disjoint representing divisors D and
E, and let λ0, λ1 ∈ Gm(Zp) such that for i = 0, 1 we have ([D], [E], λi) ∈
Tf (Zp)t. Assume that ϕf (([D], [E], λ0)) = ϕf (([D], [E], λ1)). Then we have
that logλ+hp(D,E) = logλ′+hp(D,E) so, because 1

p log is injective on residue

disks, then λ = λ′, and ϕf is injective.

By Lemma 6.3.17 the result follows.

6.3.5 The torsor T

Let f1, . . . , fρ−1 be a basis for the trace zero endomorphisms of J . We simplify
our notation by setting ci := cfi , αi := αfi , Ti := Tfi , and ξi := ξfi : Ti → J .

Now we define ξ : T → J to be the Gρ−1
m -torsor given by the fiber product

T := T1 ×J T2 ×J · · · ×J Tρ−1.

Finally, let j̃b : U → T be a choice of morphism (well defined up to the choice

of ρ− 1 signs) coming from the morphisms j̃b,fi : U → Ti.

As in Section 6.3.4, we can pseudoparametrize residue disks of T .

Definition 6.3.21. Recall that we fixed a t ∈ T (Fp). We also fix

t̃ = (t̃1, . . . , t̃ρ−1) ∈ T (Zp)t
a lift of t. Let ϕ : T (Zp)t → Zgp ×Qρ−1

p be defined by

ϕ(z1, . . . , zρ−1) =

((logξ1(z1)− logξ1(t̃1))/p, (ψ(z1)− ψ(t̃1)/p), . . . , (ψ(zρ−1)− ψ(t̃ρ−1)/p))
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where ψ is defined in (6.3.3.1). We call ϕ a pseudoparametrization of the
residue disk T (Zp)t. (Recall that ξi(zi) and ξi(t̃i) are independent of i, since
T is a fibered product over J .)

Corollary 6.3.22. The pseudoparametrization map ϕ is an injection, and for
any parametrization θ : T (Zp)t → Zg+ρ−1

p the resulting map ϕ◦θ−1 : Zg+ρ−1
p →

Zgp×Qρ−1
p is given by g+ ρ− 1 convergent power series. For any of the first g

power series, the valuation of the coefficient of a degree n monomial is at least
n− 1− vp(n).

Proof. This is a corollary of Lemma 6.3.20.

The main advantage of this method is that for ϕf we need only to compute
the map ψ defined in (6.3.3.1); it is this fact that allows to us to mainly work
in N and only translate back to the image of the residue disk under ϕ when
needed.

6.4 The line bundle

In this section we describe how to explicitly construct the nontrivial Gm-
torsor T and give a formula for the section j̃b : U → T . For this, we work with
endomorphisms of J . We make this explicit by considering correspondences
on XQ×XQ and extensions on U ×X. Recall that p > 2 is henceforth a prime
of good reduction.

Remark 6.4.1. To work with divisors on U, X or U × X explicitly, we use
equations for a projective regular model of X. There are multiple ways to
do this. On a theoretical level, a regular model itself is projective over Z
because it is a repeated blowup of the projective closure of its generic fiber.
On a practical level, this process could embed the regular model in a high-
dimensional projective space, and it is easier to work on affine patches. In this
case we give divisors on each of the affine patches by Gröbner bases, compatible
with the glueing data. For a practical implementation, we recommend this
latter method. This is implemented in Magma, for example. The methods in
the rest of the section are agnostic to the exact implementation. Throughout
this section, we assume we can represent effective divisors on the regular model
by a Gröbner basis, and we represent general divisors by a difference between
two effective divisors.

As explained in Section 6.3.5, to construct the torsor T , we need ρ − 1 in-
dependent trace zero endomorphisms (fi)

ρ−1
i=1 : J → J . (In general one only
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needs n independent nontrivial trace zero endomorphisms where n is such
that r < g + n, but one expects to obtain a smaller superset of p-adic points
containing X(Z) for higher n. In fact, if we use n nontrivial independent en-
domorphisms such that r < g+n− 1, then we expect to cut out X(Z) exactly
unless there is some geometric reason for extra points.) To work with any en-
domorphism f : J → J explicitly, we recall some facts about correspondences,
as can be found in [Smi05]. A correspondence on X × X is a divisor D on
X ×X.

Write D =
∑
i niDi as a sum of prime divisors. Denote by πDi1 : Di → X

the projection onto the first factor of X ×X and similarly πDi2 for projection
onto the second factor. The correspondence D induces an endomorphism of
the Jacobian ξD =

∑
i niπ

Di
2,∗π

Di,∗
1 . In particular, it sends the Jacobian point

[x− y] to OX(D|x×X −D|y×X).

Example 6.4.2. Consider negation −1· : J → J on a hyperelliptic curve of the
form y2 = h(x, z) in weighted projective space. If we give X×X the projective
coordinates x, y, z, x′, y′, z′, then a correspondence representing −1· is given by
the homogeneous equation y = −y′.
The aim of this section is to describe, given correspondences for all fi, how to
calculate the morphism j̃b : U → T . For this goal, we partially follow [EL21,
Section 7].

In the case where XQ is a classical modular curve we can construct many trace
zero endomorphisms using the Hecke algebra. See for example the computation
leading to (6.9.0.4) in Section 6.9.

We now focus on the computations for a single trace zero endomorphism
f : J → J . We can compute equations for a correspondence Df,Q ⊂ XQ ×XQ
inducing f using the code of Costa, Mascot, Sijsling, and Voight [CMSV19].
The input of that algorithm is the g × g matrix giving the representation of
the morphism f on a basis of differential forms H0(XQ,Ω

1).

Algorithm 6.4.3 (Compute Aα).
Input: Df,Q ⊂ XQ ×XQ a divisor.
Output: a divisor Aα on Xsm ×X.

1. Spread out Df,Q to D′f over Xsm × X by clearing denominators of the
generators of the Gröbner basis.

2. Set B := D′f |Xsm×b and C := D′f |∆Xsm .

3. Set Aα := m
(
D′f −B ×X +Xsm ×B −Xsm × C

)
(where m is defined
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in (6.2.0.1)).

4. Return Aα, as a Gröbner basis over Z.

Lemma 6.4.4. The divisor Aα on Xsm ×X given by Algorithm 6.4.3 is the
unique divisor on Xsm ×X with the following properties:

(a) the endomorphism of J induced by the correspondence Aα is m · ◦f ;

(b) OXsm(Aα|U×b) is rigidified with trivializing section 1;

(c) OXsm(Aα|∆) is rigidified, compatible with the previous rigidification;

(d) the degree of Aα restricted to fibers of the first projection is 0.

Proof. By [Smi05, Theorem 3.4.7], any divisor inducing the endomorphism
m · ◦f is of the form mDf + F such that F is a sum of vertical or horizontal
divisors, so then (a) holds. Conditions (b) and (c) force F to be m(−B×X +
Xsm×B−Xsm×C). Finally, by [BL04, Proposition 11.5.2] and the important
fact that the trace of f is zero we have that deg(Aα|P×X) = 0 and (d) holds.
So Aα is the desired divisor.

Remark 6.4.5. Conditions (b) and (d) are the other way from the order chosen
in Edixhoven–Lido, in order to agree with the convention in [CMSV19]. (That
is, in Edixhoven–Lido, they require that the fibers of the second projection are
degree 0.)

This divisor Aα determines a line bundle Lα = OXsm×X(Aα) on Xsm × X,
rigidified on Xsm× b, of degree 0 on the fibers of the first projection, and such
that ∆∗Lα is trivial. This induces the endomorphism m · ◦f by

[x− y] 7→ (Lα)x×X ⊗ (Lα)−1
y×X . (6.4.0.1)

Corollary 6.4.6. Let c := [(Lα,Q)b×X ] ∈ J(Q) = J(Z). Let α = m · ◦ trc ◦f
be the morphism α : J → J0. Then j∗b (id, α)∗M× is trivial over U .

Proof. This follows directly from [EL21, Proposition 7.2]

The rest of this section will be dedicated to computing α, and computing the
trivialization of j∗b (id, α)∗M×.

Algorithm 6.4.7 (Compute c).

Input: equations for a correspondence Aα output by Algorithm 6.4.3, inducing
the morphism m · ◦f : J → J .
Output: a divisor representing c = [(Lα)b×X ] ∈ J(Q) = J(Z).
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1. Set Af := Aα/m (recall that Aα was defined as m times a different
correspondence, so this is well defined).

2. Compute the generic fiber Af,Q of Af .

3. Compute equations for the divisor Af,Q|b×X by specializing the equations
of Af,Q to b in the first copy of Xsm.

4. Return a Gröbner basis for Af,Q|b×X over Q.

Algorithm 6.4.8 (Compute f∗).

Input: a morphism of projective schemes f : X → Y given as a graded ring
morphism f∗ : S → R, where X = ProjR and Y = ProjS; an irreducible
subvariety Z of X given by a Gröbner basis for its defining ideal J in R.
Output: the pushforward f∗([Z]), given by a Gröbner basis.

1. Let B be a set of generators of S.

2. Set I ⊂ S ⊗ R to be the ideal generated by {b ⊗ 1 − 1 ⊗ f∗(b) | b ∈ B}
and 1⊗ J .

3. Compute a Gröbner basis B for I with respect to the lexicographical or-
dering on S ⊗R.

4. Set K := I ∩ S with Gröbner basis B ∩ S.

5. Compute the degree d := deg (f |Z : ProjR/J → ProjS/K).

6. Return a Gröbner basis for Kd.

Proof. By construction, K is the defining ideal for the image of Z. The push-
forward of Z is then exactly (deg f |Z) · [im f |Z ].

Remark 6.4.9. In Step 5, we need to compute the degree of a morphism be-
tween projective schemes. There are algorithms to compute the degree of a
rational map between two projective schemes. See for example [Sta18b] for a
discussion on an implementation in Macaulay2.

Algorithm 6.4.10 (Apply f).

Input: a ring S and two effective divisors D+ and D− on Xsm
S of the same

degree; the correspondence Aα from Algorithm 6.4.3 inducing the morphism
m · f : J → J .

Output: the Jacobian point m · f([D+ −D−]) ∈ J(S).

1. For D ∈ {D+, D−} do:
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(a) Compute a Gröbner basis for Aα|D×X as a divisor on D ×X.

(b) Write D =
∑
i niDi as a sum of irreducible components using pri-

mary decomposition.

(c) Compute the Gröbner basis for the pushforward E(Di) := nif∗(Di)
on X using Algorithm 6.4.8 for every Di.

(d) Set E(D) :=
∑
iE(Di).

2. Return E(D+)− E(D−).

Remark 6.4.11. In the case where one can write [D+−D−] as a sum
[∑k

i=1 niPi

]
of S-points, one can use the isomorphism Pi × X ' X to simply compute

Aα|Pi×X on X and take the linear combination
[∑k

i=1 niAα|Pi×X
]
.

Finally, we discuss the section j̃b : U → T lying above the Abel–Jacobi map
jb : U → J with base point b. Let z̄ ∈ X(Fp). Since the pullback j∗bT is

trivial, there is a morphism j̃b : U → T embedding each residue disk U(Zp)z
into the (g + ρ − 1)-dimensional residue disk T (Zp)j̃b(z). To compute this

map, we follow [EL21, Section 7]. Let n be the product of all primes of bad
reduction. We first need to compute the numbers Wq and Vq mentioned in
[EL21, Proposition 7.8] for q | n. These numbers have an involved definition
in general. Nevertheless, they can be explicitly computed in our case, and we
explain their meaning below.

By Lemma 6.4.4 the line bundles ∆∗(Lα) and (id, b)∗(Lα) are trivial with
trivializing sections ` = 1. Then Wq is defined as the valuation of this section
` on UFq . In our case, these are always 0. It remains to compute Vq. We
recall the definition. Note that Lα has degree 0 on the fibers of the projection
U ×X → U , but it might not have multidegree 0.

Definition 6.4.12. We define V to be the unique vertical divisor on U ×X
having support disjoint from U × b such that Lα(V ) has multidegree 0 on
all fibers of the projection. Write VFq as a sum of irreducible components of
UFq × XFq , i.e., as a linear combination of UFq × YFq where YFq is an irre-
ducible component of XFq . For q | n define Vq ∈ Z to be the coefficient of the
component (UFq × UFq ) in VFq .

Lemma 6.4.13. The local height hq(z − b, Aα|z×X) is equal to −Vq logq for
any z ∈ U(Zq).

Proof. Since V is the unique vertical divisor with Aα + V having multidegree
0 on all fibers of the projection, we have that hq(z − b, Aα|z×X) is equal to
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−((z− b) · (Aα+V )|z×X)q logq. By construction, the divisors z− b and Aα|z×X
are disjoint over Z, hence it remains to show that ((z−b) ·V |z×X)q = Vq. This
follows from Definition 6.4.12 and the fact that V has support disjoint from
U × b.

To compute these numbers, we give the following algorithm.

Algorithm 6.4.14 (Calculate Vq).

Input: the curve X, a bad prime q dividing n, the open set U such that U(Fq) 6=
∅, and the divisor Aα on X ×X.
Output: the integer Vq.

1. Pick a point Q ∈ U(Fq).
2. Compute Aα|Q×X .

3. Compute the multidegree of Aα|Q×X .

4. Compute the multidegree of the irreducible components of XFq .

5. Compute the unique linear combination D ⊂ XFq of these irreducible

components such that D does not meet b and such that Aα|Q×X +D has
multidegree 0 at the fiber over q.

6. Set Vq to be the coefficient of the irreducible component containing UFq
in D.

7. Return Vq.

Remark 6.4.15. If U(Fq) is empty for some prime q, we can discard U . Integer
points reduce to smooth points, so U(Z) = ∅ in this case.

Remark 6.4.16. These local heights can also be computed using harmonic
analysis on the dual graph, see [BD20, Section 12]. Even though both the
geometric method and the harmonic method can be realized as combinatorics
on the dual graph, it is not clear how to compare the two computations of
local heights.

Let R be a ring and z ∈ U(R). By [EL21, Proposition 7.5] we have

Tf (jb(z)) =M×(jb(z), α(jb(z))) = z∗(z, id)∗(Lα)× ⊗ b∗(z, id)∗(Lα)×,−1

= (Lα)×(z, z)⊗ (Lα)×(z, b)−1 = (Lα)×(z, z).

We apply [EL21, Proposition 7.8] to give a formula for j̃b(z) when R ⊂ Zp.
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We have that

j̃b(z) =
∏
q|n

q−Vq (z∗1)⊗ (b∗1)−1 = (z − b)∗
∏
q|n

q−Vq ∈ (z − b)∗OX(Aα|z×X)

(6.4.0.2)

is a trivializing section over the curve. The image in N is given by

ψ(j̃b(z)) = hp(z − b, Aα|z×X)−
∑
q|n

Vq logq. (6.4.0.3)

Corollary 6.4.17. The function Ψ ◦ j̃b : U(Zp)→ N is given by

z 7→ ([z − b], [Aα|z×X ], hp(z − b, Aα|z×X)−
∑
q|n

Vq logq).

6.5 Embedding the curve

We now describe how to compute the embedding of the curve into the torsor
through the evaluation of the trivializing section j̃b on a residue disk of the
point P ∈ U(Fp). Recall the pseudoparametrization ϕ : T (Zp)j̃b(P ) → Zgp ×
Qρ−1
p from Definition 6.3.21. Let ν be a local parameter in the residue disk of

the curve above P . We can parametrize this residue disk by evaluating

Zp → U(Zp)P , ν 7→ Pν .

This is also a parametrization in finite precision, i.e. we have bijections
Z/pkZ → U(Z/pk+1Z)P for any integer k ≥ 1. Define the map λ : Zp →
T (Zp)j̃b(P ) to be the composite of this parametrization Zp → U(Zp)P and j̃b.
In this section, we show how to apply the following proposition.

Proposition 6.5.1. The map ϕ ◦ λ : Zp → Zgp ×Qρ−1
p is given by convergent

power series.

The image im(ϕ◦λ) inside imϕ is cut out by equations g1 = · · · = gg+ρ−2 = 0
where g1, . . . , gg+ρ−2 ∈ Zp〈x1, . . . , xg+ρ−1〉 are integral convergent power se-
ries.

Proof. This follows from Corollary 6.3.22 and [Bou98, Corollary 2, III.4.5].

For actual calculations with the convergent power series ϕ ◦ λ, we need to
produce a lower bound for the valuation of the coefficients.
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Proposition 6.5.2. Consider the g+ ρ− 1 convergent power series in Qp〈ν〉
given by ϕ ◦ λ : Zp → Zgp × Qρ−1

p . For any of the first g convergent power
series, the valuation of the coefficient of νn is at least n − 1 − vp(n). For
any of the last ρ − 1 power series, the valuation of the coefficient is at least
n− 1− 2blogpnc+ v, where v is an explicit (possibly negative) constant.

Proof. The result about the coefficients of the first g power series follows from
Corollary 6.3.22.

Let i ∈ {1, . . . , ρ − 1}. Then [BDM+21, Lemma 4.5] states that the Nekovář
height hNek

i,p : X(Qp) → Qp corresponding to the trace zero endomorphism fi
is analytic on residue disks. Let c = min{0,minj dj(η)} for the dj(η) defined
in [BDM+21, Section 4]. Furthermore they show that the valuation of the
coefficient of νn is at least n−1−2blogpnc+v′, where v′ := min(ordp(γFil), c+
c2), and γFil and c2 are explicit constants defined in [BDM+21, Section 4],
depending on fi among other things. (The valuation of the coefficients of νn

stated in [BDM+21, Lemma 4.5] differs by n from the value given here, because
our coordinates differ from theirs by a factor of p.)

In Section 6.8 we go more into detail about this Nekovář height. In particular,
in Theorem 6.8.10 together with Proposition 6.8.11 we show that hNek

i,p (z) and
hp(z − b, Aαi |z×X) differ by a factor of −m. It follows from Corollary 6.4.17
that we can take v := v′ + vp(m).

Remark 6.5.3. In the example of Section 6.9, we calculate that the constant
v is 0 for the residue disk of the curve we consider there. We suspect that
this constant can often be taken to be 0, at least in the cases p > 2g − 1 and
p - #J(Fp).
We first present a general algorithm to compute the trivializing section ϕ ◦ λ.
For example, if p > 3 and v = 0, to compute j̃b(Pν) inN modulo p, it suffices to

compute j̃b on two values, for example j̃b(P0) and j̃b(P1). Since the embedding
must be linear in ν on U(Z/p2Z)P , we can interpolate between these values
to determine the map. In general, to compute ϕ ◦ λ to finite precision, it is
enough to determine the map on Z/pkZ-points for some large enough k. We

give an algorithm to compute j̃b(P ) when P is a Z/pkZ-point.

Algorithm 6.5.4 (The trivializing section).

Input: A point Pν ∈ U(Z/pkZ)P .
Output: The value ϕ ◦ λ(ν) to finite precision.

1. Calculate the Coleman integral log(Pν − b).
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2. Compute Aαi |Pν×X for each i = 1, . . . , (ρ− 1) using Algorithm 6.4.10.

3. Calculate all hp(Pν − b, Aαi |Pν×X).

4. For each Aαi , compute cU,i := −
∑
q|n Vq logq using Algorithm 6.4.14,

where n is the product of the primes of bad reduction for X.

5. Return

(ϕ ◦ λ)(ν) = (log(Pν − P0), hp(Pν − b, Aα1
|Pν×X) + cU,1, . . . ,

hp(Pν − b, Aαρ−1
|Pν×X) + cU,ρ−1).

For the rest of this section, we describe a practical algorithm to do Step 3
of Algorithm 6.5.4 in the case where X is a hyperelliptic curve of the form
y2 = H(x). For hyperelliptic curves where H has odd degree, there is an
algorithm to compute the local Coleman–Gross height at p of two disjoint
divisors given as a sum of points [BB12, Algorithm 5.7]. Recent work [GM23]
extends this algorithm to even degree models.

For any i = 1, . . . , (ρ− 1) since the divisor Aαi |Pν×X on XQp may not split as
a sum of points, we instead consider multiples of this divisor nAαi |Pν×X for
n ∈ N. We can hope some large enough multiple splits as a sum of points.
Therefore, we must explicitly describe arithmetic in the Jacobian. For hyper-
elliptic curves, this process can be done via Cantor’s algorithm [Can87]. The
main idea is to use the Mumford representations of divisors. We use the im-
plementation of Cantor’s algorithm done by Sutherland in [Sut19, Section 3].
The only extra step is to keep track of the function that realizes the linear
equivalence with a Mumford representation of the sum. Even though Suther-
land works with even degree models for hyperelliptic curves, the algorithms
still apply to our odd degree model hyperelliptic curves (see [Sut19, p.433]).

Remark 6.5.5. In practice, we represent divisors with ideals of polynomial
rings. We can translate from a Gröbner basis of an ideal to a Mumford rep-
resentation in the following way. Let Y be a hyperelliptic curve over a field k
given by y2 = H(x). Let π : Y → P1 be the degree two morphism forgetting y.
Let D be an effective divisor on the affine chart k[x, y]/(y2−H(x)) of Y , given
by a Gröbner basis. We assume that D and ι(D) are disjoint. Then we can
find a Mumford representation for D by simply taking a Gröbner basis with
respect to the lexicographical ordering y ≤ x. If D and ιD are not disjoint,
one can explicitly compute an effective divisor E on P1 such that D − π∗E
is disjoint from ι(D − π∗E), and hence find a Mumford representation for
D − π∗E.
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We can now give a practical algorithm to compute the local heights at p in Step
3 of Algorithm 6.5.4. When X is a hyperelliptic curve of the form y2 = H(x),
given Pν ∈ U(Z/pkZ) we can apply Algorithm 6.4.10 to obtain Aαi |Pν×X as a
divisor on XQp .

Algorithm 6.5.6 (Local heights for the trivializing section on a hyperelliptic
curve).

Input: A point Pν ∈ U(Z/pkZ)P on a hyperelliptic curve Y : y2 = H(x) and
the Mumford representation of Aαi |Pν×Y as a divisor on Y .
Output: The value hp(Pν − b, Aαi |Pν×Y ) to finite precision.

1. Set n := 1.

2. Use Cantor’s Algorithm to compute a Mumford representation (un, vn)
and a rational function sn such that Div(un, vn) + Divsn = nAαi |Pν×Y
[Can87].

3. Check if un factors completely over Qp into linear factors.

4. If yes, set xj to be the roots of un for j = 1, . . . ,deg(un). If no, increase
n by 1 and go back to Step 2.

5. Set yj := vn(xj).

6. Set Qj := (xj , yj) ∈ Y (Qp).

7. Compute hp(Pν−b,
∑deg(un)
j=1 Qj−deg(un)∞) using [BB12, Algorithm 5.7].

8. Return (1/n)(hp(Pν − b,
∑deg(un)
j=1 Qj − deg(un)∞) + log(sn(Pν − b))).

Algorithm 6.5.6 does not always terminate; we cannot guarantee that eventu-
ally nAαi |Pν×Y splits completely into a sum of points over Qp. In theory, we
can split any divisor as a sum of points over some finite extension of Qp. How-
ever, working with these field extensions of Qp is often currently not possible
in practice.

Remark 6.5.7. Algorithm 6.5.4 and Algorithm 6.5.6 take in a point Pν of
precision k, but their output can be of smaller precision. This depends on the
precision loss in the computation of the p-adic height; see [BB12, Section 6.2].

6.6 Integer points of the torsor

Next we discuss the integer points of the torsor T . We give an algorithm to
construct a map κ : Zrp → T (Zp)j̃b(P ) with image exactly T (Z)j̃b(P ).
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In practice, to give an upper bound on #U(Z)P , we only need to compute the
image of the map κ in T (Z/p2Z)j̃b(P ), because after composing with the pseu-
doparametrization ϕ from Definition 6.3.21 the map κ is given by convergent
power series. In fact, in this section we will show that by virtue of our choice of
pseudoparametrization, they are given by g homogeneous linear polynomials
and ρ− 1 quadratic polynomials.

For now we restrict to a single trace zero endomorphism f and the corre-
sponding torsor Tf . By iterating over the linearly independent trace zero
endomorphisms f1, . . . , fρ−1 we recover T and κ.

Note that if the residue disk Tf (Z)j̃b(P ) is empty, then its p-adic closure is also

empty, and therefore we do not need to consider P . If the disk is not empty,
then we can find t̃ ∈ Tf (Z)j̃b(P ) by arithmetic in the Jacobian. It is enough

to consider if the corresponding residue disk J(Z)jb(P ) is empty. This is an
instance of the Mordell–Weil sieve at p.

As an intermediate step, we need to compute points Qij on N , the trivial biex-
tension, that are the image under Ψ (defined in Definition 6.3.8) of generating
sections on certain fibers of M×(Z).

We construct points on N that are the image of generating sections of residue
disks of M×,ρ−1(Z) following the method in Example 6.3.6.

Algorithm 6.6.1 (Compute the Qij). Input: G1, . . . , Gr′ a generating set of
the Mordell–Weil group of J , a trace zero endomorphism f : J → J .
Output: Points Qij on N that are the image of the generating section of

M×(Gi, f(Gj))(Z)

and Qi0 that are the image of the generating section of

M×(Gi, c)(Z)

for 1 ≤ i, j ≤ r′.
1. Compute E1, . . . , Er′ representing divisors of G1, . . . , Gr′ .

2. For each Gi, use Algorithm 6.4.10 to compute representing divisors
D1, . . . , Dr′ of f(Gi).

3. Use Algorithm 6.4.7 to compute a divisor D0 whose class is the point
c ∈ J(Z).

4. Compute the local height hp(Ei, Dj) and hp(Ei, D0) for 1 ≤ i, j ≤ r′.
5. Using [vBHM20, Section 2], compute the height h`(Ei, Dj) at ` 6= p and

h`(Ei, D0) at ` 6= p for 1 ≤ i, j ≤ r′.
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6. Return Qij := (Gi, f(Gj),
∑
` prime h`(Ei, Dj)) and

Qi0 := (Gi, c,
∑
` prime h`(Ei, D0)) for 1 ≤ i, j ≤ r′.

LetG1, . . . , Gr′ be a generating set for the full Mordell–Weil group, with r′ ≥ r.
Let G̃i be a basis for the kernel of reduction J(Z) → J(Fp) for i = 1, . . . , r.
(Note that the reduction map is injective when restricted to the torsion of
J(Z), so the kernel of reduction is a free Z-module of rank r.) Write

G̃i =

r′∑
j=1

eijGj

for some eij ∈ Z. Let G̃t denote the projection of t̃ ∈ T (Z)j̃b(P ) to Jjb(P ).
Write

G̃t =

r′∑
i=1

e0iGi

for some e0i ∈ Z. Using the biextension group laws and the points Qij we
construct a series of points in M×(Z) living over certain points in J × J
that are the image of generating sections of the corresponding residue disks in
M×(Z).

A formula for the points Pij over (G̃i, f(mG̃j)) is

Pij :=

r′∑
1

k=1

eik ·1

 r′∑
2

`=1

m ·2 ej` ·2 Qk`

 . (6.6.0.1)

Here, ·i and
∑
i for i = 1, 2 denote the biextension group laws (6.3.2.4) and

(6.3.2.3).

Next Rit̃ live over (G̃i, α(G̃t)) and hence

Rit̃ :=

r′∑
1

k=1

eik ·1

m ·2 Qk0 +2

r′∑
2

`=1

m ·2 e0` ·2 Qk`

 . (6.6.0.2)

Finally, St̃j live over (G̃t, f(mG̃j)) and so

St̃j :=

r′∑
1

k=1

e0k ·1

 r′∑
2

`=1

m ·2 ej` ·2 Qk`

 . (6.6.0.3)
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Remark 6.6.2. InM×(Z), these points are all unique up to sign. Since we are
recording the image in N , this sign does not matter.

For n = (n1, . . . , nr) ∈ Zr we can now construct the points At̃(n), Bt̃(n),
C(n), and Dt̃(n) in T (Z) given by [EL21, (4.2)-(4.4)]. The key property of

this construction is that Dt̃(n) lies above the point G̃t +
∑
i niG̃i ∈ J(Z)jb(P ).

Furthermore, by [EL21, (4.6)-(4.9)], we have that Dt̃((p−1)n) is in the residue
disk Tf (Z)j̃b(P ), allowing us to explicitly construct the map

κf,Z : Zr → Tf (Z)j̃b(P ), (n1, . . . , nr) 7→ Dt̃((p− 1)n1, . . . , (p− 1)nr),

(6.6.0.4)

Finally, by [EL21, Theorem 4.10], the map κf,Z extends uniquely to a contin-
uous map

κf : Zrp → Tf (Zp)j̃b(P ). (6.6.0.5)

The image of κf is Tf (Z)j̃b(P ).

By iterating over the basis f1, . . . , fρ−1 of trace zero endomorphisms, we obtain
the map

κZ : Zr → T (Zp)j̃b(P ) (6.6.0.6)

and its unique extension to a continuous map

κ : Zrp → T (Zp)j̃b(P ). (6.6.0.7)

The map κ has image T (Z)j̃b(P ).

Recall the pseudoparametrization ϕ : T (Zp)j̃b(P ) → Zgp × Qρ−1
p from Defini-

tion 6.3.21.

Proposition 6.6.3. The map ϕ ◦ κ : Zrp → Zgp ×Qρ−1
p is given by g homoge-

neous linear polynomials and ρ− 1 polynomials of degree at most 2.

Proof. It is enough to show this for κZ, since ϕ ◦ κ is continuous.

We make the identification J(Z)jb(P ) = D0 + J(Z)0 ' D0 + Zr ' Zr where

D0 ∈ J(Z)jb(P ). Under this bijection, the map ϕ ◦κZ : J(Z)j̃b(P ) → Zgp×Qρ−1
p

is given by

D 7→ log(D −D0),
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on the first g components. Since log is a group homomorphism, it follows the
first g polynomials are homogeneous linear as desired.

Now we fix one of the ρ−1 trace zero endomorphisms f : J → J . Let πf : Zgp×
Qρ−1
p → Qp be the projection onto the coefficient corresponding to f . Consider

the map τ := πf ◦ ϕ ◦ κZ. We write F for the affine linear map

Zr ' J(Z)jb(P )

f−→ J(Z)α(jb(P )) ' Zr

where we identify J(Z)α(jb(P )) with Zr by subtracting α(D0) and use J(Z)0 '
Zr.
By [EL21, (4.2)-(4.4)] we have that τ(n1, . . . , nr) is a sum of a constant term, a
linear function in the integers n1, . . . , nr, a linear function in Fn and a bilinear
form evaluated in (n, Fn). Since F is linear, in total, this gives a function of
degree at most 2 in n.

6.7 The geometric quadratic Chabauty algo-
rithm

In this section, we present the main algorithm of this paper for doing geometric
quadratic Chabauty. This algorithm ties together the results of the previous
sections.

Algorithm 6.7.1 (Geometric quadratic Chabauty in a single disk).

Input:

• XQ/Q a smooth, projective, geometrically irreducible curve over Q such
that XQ(Q) 6= ∅ with a regular model X of genus g and Mordell–Weil
rank r, and with Jacobian of Néron–Severi rank ρ > 1, such that r <
g + ρ− 1;

• ρ − 1 nontrivial independent trace zero endomorphisms represented by
(g×g)-matrices giving the action on the sheaf of differentials with respect
to a fixed basis;

• an open set U ⊂ Xsm containing the smooth points of one geometrically
irreducible component of XFq for all primes q;

• a prime p > 2 of good reduction for X;

• a precision k ∈ N;

• a base point b ∈ X(Z);
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• a point P ∈ U(Fp);
• a generating set G1, . . . , Gr′ of the Mordell–Weil group of J .

Output: g + ρ − 2 integral convergent power series in Zp〈z1, . . . , zr〉 up to

precision k, defining j̃b(U(Zp)P ) ∩ T (Z) inside T (Z).

For each of the given trace zero endomorphisms f do Steps 2 through 5.

1. For each of the given trace zero endomorphisms f do the following.

(a) Compute the correspondence Aα that induces the endomorphism m ·
◦f : J → J as given in Lemma 6.4.4.

(b) Find the divisor representing c = [(Lα)b×X ] ∈ J(Z) using Algo-
rithm 6.4.7.

(c) Choose a local parameter ν to parametrize U(Zp)P as ν 7→ Pν .
By Proposition 6.5.2 the map ν 7→ ϕ ◦ λ(ν) is modulo pk given by
a polynomial with bounded degree. By calculating enough values,
interpolate to find the polynomial expression. In particular, when
v = 0 and p > 3, for k = 1, the degree bound is 1. In this case,
compute ϕ ◦ λ(0), ϕ ◦ λ(1) and interpolate the resulting line.

(d) With the generating set G1, . . . , Gr′ , use Algorithm 6.6.1 to com-
pute points Qij , Qi0 ∈ N up to precision k that are the images of
the generating sections ofM×(Gi, f(Gj))(Z) andM×(Gi, c)(Z) for
1 ≤ i, j ≤ r′.

(e) Using the elements Qij, find the map κf,Z : Zr → Tf (Z)j̃b(P ) as in

(6.6.0.4) and extend it to the map κf : Zrp → Tf (Zp)j̃b(P ).

2. Using the κf for f = f1, . . . , fρ−1 constructed in Step 1e, construct κ as
in (6.6.0.7).

3. Compose with the pseudoparametrization ϕ to compute the g homoge-
neous linear and ρ − 1 quadratic polynomials describing ϕ ◦ κ : Zrp →
Zgp ×Qρ−1

p , as guaranteed by Proposition 6.6.3, up to precision k.

4. Use Hensel lifting to compute the power series g1, . . . , gg+ρ−2 defined in
Proposition 6.5.1 that cut out im(ϕ ◦ λ), up to precision k.

5. Return gi ◦ (ϕ ◦ κ) for i = 1, . . . , g + ρ− 2.

By iterating this over all simple opens Ui such that (Ui(Z))i∈I covers X(Z)
(as in Section 6.2), and also iterating over all Fp-points of Ui, we obtain mul-
tivariate power series up to precision k cutting out X(Zp)Geo.
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Remark 6.7.2. By [EL21, Section 9.2], the power series in the output of Algo-
rithm 6.7.1 have at most finitely many zeros in Zp. In practice, one can solve
these power series up to enough precision by using a multivariate Hensel’s
lemma [Kuh11, Theorem 25]. This assumes that the Jacobian matrix of the
sequence of power series is invertible over Qp. We expect this to always happen
unless there is a geometric obstruction.

Often solving these power series modulo p is enough to determine X(Zp)Geo.
See for example [EL21, Theorem 4.12], which we use in Section 6.9. Even
if computations modulo p are not enough, one can increase the precision by
considering the residue disks U(Zp)P , where P ∈ U(Z/pkZ) for some integer
k. An example of the geometric Chabauty method with higher precision is
given in Remark 6.9.9.

Remark 6.7.3. In practice, to run Algorithm 6.7.1 we need to be able to com-
pute Coleman–Gross heights on the curve X. Currently, this has only been
made algorithmic for hyperelliptic curves.

6.8 The comparison theorem

In this section we give a comparison theorem between the geometric method
and cohomological quadratic Chabauty [BD18, BD21, BDM+19, BDM+21].
In Theorem 6.8.5, we show that the geometric method produces a refined set
of points, as is the case for classical Chabauty–Coleman [HS22a].

For this section we assume that p is a prime of good reduction, that r = g, that
ρ > 1, and further, that J(Z) has finite index in J(Zp). The cohomological
quadratic Chabauty set in [BD18] is defined under these assumptions. We
do not require a semistable model for X/Qq, q|n as is sometimes assumed; a
semistable model can make explicit calculations of heights away from p easier,
see [BD20] or [BDM+21, Section 3.1]. By [Bet21, Lemma 6.1.1] the local
heights away from p factor through the component set of the minimal regular
model.

Let Z1, . . . , Zρ−1 be a basis for ker(NS(J) → NS(X)). In the cohomological
method, from the transpose Z>i of such a correspondence1 we can construct
a quadratic Chabauty function σi : X(Qp) → Qp and a finite subset Ωi ⊂ Qp
described explicitly in terms of local heights at primes of bad reduction such

1Due to a difference of conventions of rigidifications for line bundles on X ×X, we have
to take the transpose of Zi for the methods to align perfectly. The transpose Z>i induces
the same endomorphism of the Jacobian.
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that σi(z) ∈ Ωi for all z ∈ X(Q). This finite subset Ωi consists of one constant
cU,i for every simple open U .

We describe the construction of σi and the set Ωi in more detail after we
present the main theorem. The divisor Zi is the correspondence of a trace
zero endomorphism fi : J → J of the Jacobian. In the geometric method, we
work with the endomorphism αi := m · ◦ trci ◦fi. This multiplication with m
will result in all the heights in the trivial biextension N to be a factor m larger
than in the cohomological case.

Definition 6.8.1. Define X(Qp)Coh :=
⋃
U{x ∈ X(Qp) | σi(x) = cU,i, for i =

1, . . . , ρ− 1} where the union is over all simple opens U .

Remark 6.8.2. As far as we know, the existing literature does not explicitly
define the quadratic Chabauty set in the case of multiple endomorphisms. In
the case where one uses a single trace zero endomorphism, the set is defined
in [BD18, Theorem 1.2]. One can see Definition 6.8.1 as a special case of
the finite set implicitly defined in [Bet21, Theorem A], for the quotient of the
fundamental group that is an extension of the abelianization by Qp(1)ρ−1.

The alternative definition is
⋂
i

⋃
U{x ∈ X(Qp) | σi(x) = cU,i}. Here the

union and the intersection have been switched, and hence the resulting set
can be bigger. The difference between the two sets consists exactly of points
x ∈ X(Qp) such that σi(x) ∈ Ωi for every i, but such that there is no U with
σi(x) = cU,i for every i. In particular, the points in the difference do not lie
in any of the simple opens U , and hence are not rational points.

Recall the definition of X(Zp)Geo from Definition 6.2.3. Given a covering of
X(Z) by simple opens U we have that

X(Zp)Geo :=
⋃
U

j̃b
∗
(j̃b(U(Zp)) ∩ T (Z)) ⊂

⋃
U

U(Zp) = X(Zp).

The following definitions give terminology for two of the cases where X(Qp)Coh

is strictly bigger than X(Zp)Geo.

Definition 6.8.3. We say that the Mordell–Weil group is of good reduction
(modulo p) if the map J(Z)0/pJ(Z)0 → J(Z/p2Z)0 is injective. Otherwise, we
say that it is of bad reduction.

The Mordell–Weil group being of good reduction is equivalent to the map
J(Z)0 → J(Zp)0 being an isomorphism. On the level of abstract groups, this
map is always an embedding Zgp → Zgp with image of index some power of

p. Another equivalent way of stating this is that the p-saturation of J(Z)0 in
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J(Zp)0

{x ∈ J(Zp)0 | ∃k, pkx ∈ J(Z)0}

is always equal to J(Zp)0, and the Mordell–Weil group is of bad reduction if

and only if this p-saturation is bigger than J(Z)0.

Definition 6.8.4. For Q ∈ X(Fp), if jb(Q) is not in the image of the reduction
map J(Z)→ J(Fp), then we say Q fails the Mordell–Weil sieve (at p). In this
case, the residue disk X(Zp)Q cannot contain a rational point. Otherwise, Q
passes the Mordell–Weil sieve (at p).

Our main theorem is the following comparison theorem.

Theorem 6.8.5. There is an inclusion X(Q) ⊆ X(Zp)Geo ⊆ X(Qp)Coh. For
P ∈ X(Qp)Coh we have P 6∈ X(Zp)Geo if and only if one of the following
conditions holds:

1. P fails the Mordell–Weil sieve at p;

2. the Mordell–Weil group is of bad reduction at p and jb(P ) does not lie in
the p-adic closure of the Mordell–Weil group, but only in its p-saturation.

Remark 6.8.6. It follows immediately from the proof of Theorem 6.8.5 that the
inclusion X(Q) ⊆ X(Zp)Geo ⊆ X(Qp)Coh and comparison from Theorem 6.8.5
also hold when the sets X(Zp)Geo and X(Qp)Coh are constructed using a fixed
subset Zi1 , . . . , Zik of 1 ≤ k < ρ − 1 independent elements of ker(NS(J) →
NS(X)), instead of a full basis.

Remark 6.8.7. In [HS22a], an analogous theorem is given for the comparison
between the classical Chabauty–Coleman method, as in [Col85b, BBK10], and
the geometric linear Chabauty, as developed in [Spe20] and [HS22a]. The
comparison theorem [HS22a, Theorem 5.1] (Theorem 5.5.1) shows that the set
of candidates found by the classical Chabauty–Coleman method contains the
set found by geometric linear Chabauty method. Furthermore, the two sets
differ by conditions analogous to conditions 1 and 2.

Let 1 ≤ i ≤ ρ(J) − 1. We briefly recall the constructions of σi and Ωi from
[BDM+21]. For more details, the reader can also consult [BD18, BDM+19].
The cohomological method for quadratic Chabauty uses Nekovář’s theory
[Nek93] of p-adic heights of certain Galois representations to construct a global
height hNek

i : X(Q) → Qp by attaching a family of Galois representations to
X(Q) and X(Qp). The Galois representation depends on the choice of base
point b as well as the correspondence Zi. We suppress this dependence on b
in our notation. The global height also depends on a choice of splitting of the
Hodge filtration and idèle class character, which we choose to be compatible
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with the choices made to construct the Coleman–Gross height h. In particular
we choose the cyclotomic character. This global height hNek

i factors through
hNek : J(Q) × J(Q) → Qp [BDM+21, Section 2.3]. We can thus extend hNek

on J(Q) × J(Q) to a bilinear function on J(Qp) × J(Qp) → Qp and evaluate
it on elements of X(Qp).
This global height decomposes as a sum of local heights over finite places

hNek
i =

∑
v

hNek
i,v

where hNek
i,v : X(Qv)→ Qp. Define the quadratic Chabauty function

σi(z) := hNek
i (z)− hNek

i,p (z)

for z ∈ X(Qp), recalling that the right hand side implicitly depends on
Zi. Then, for any z ∈ X(Q), using the decomposition above we can write
hNek
i (z) = hNek

i,p (z) +
∑
q 6=p h

Nek
i,q (z). The set Ωi ⊂ Qp is defined by the local

heights in the following way. Let

Ωi,q := {hNek
i,q (z) | z ∈ X(Qq)}.

If XFq is geometrically irreducible, then Ωi,q = {0}. We can therefore define
the finite set

Ωi := {
∑
q

wq | wq ∈ Ωi,q}, (6.8.0.1)

Hence, when z ∈ X(Q), we have σi(z) ∈ Ωi and so X(Qp)Coh ⊇ X(Q).

Remark 6.8.8. The function σi(z) is locally analytic [BDM+21, pp. 6, 10]. If
X has sufficiently many rational points, then one can explicitly express the
function σi(z) as a power series in every residue disk, and for each c ∈ Ωi and
each residue disk of X(Qp) find the roots of σi(z) − c to explicitly solve for
elements of X(Qp)Coh.

The following theorem relates the local height of the Galois representation
associated to a point P ∈ X(Qp) to a pairing with a divisor that is studied in
[DRS12].

Definition 6.8.9. Let z 6= b be a point in X(Qp). Define DZ>i
(z, b) to be the

degree zero divisor on X given by DZ>i
(z, b) := Zi|∆ − Zi|X×b − Zi|z×X .



6.8. THE COMPARISON THEOREM 171

Theorem 6.8.10. [BD18, Theorem 6.3] Let q be a prime and let z 6= b be
a point in X(Qp). We have the equality of local heights hNek

i,q (z) = hq(z −
b,DZ>i

(z, b)) and moreover

hNek
i (z) = h(z − b,DZ>i

(z, b))

where h is the Coleman–Gross height.

Proposition 6.8.11. Let z ∈ X(Zp) be such that z 6= b. We have

−mDZ>i
(z, b) = Aαi |z×X

and

−m[DZ>i
(z, b)] = [αi(z − b)].

Proof. Write B = Zi|X×b and C = Zi|∆. Then

DZ>i
(z, b) = C −B − Zi|z×X .

Define A = Zi−B×X+X×B−X×C. Then we see A|z×X = Zi|z×X+B−C =
−DZ>i

(z, b). Then by Lemma 6.4.4, mA is equal to Aαi and the proposition
follows.

Definition 6.8.12. Define ρN : N → Qp by (D1, D2, x) 7→ h(D1, D2)− x.

Note that ρN does not depend on Zi.

Lemma 6.8.13. The function ρN vanishes on the image Ψ(M×(Z)) in N ,
and in particular, on Ψ(Ti(Z)).

Proof. This follows from Proposition 6.3.11.

In order to characterize the difference between X(Zp)Geo and X(Qp)Coh, we
will use the following lemma.

Lemma 6.8.14. The difference Z(ρN ) \Ψ(M×(Z)) consists of all the points
(D,E, x) with D,E ∈ J(Zp) such that

1. D or E fail the Mordell–Weil sieve, or;

2. the Mordell–Weil group is of bad reduction, and at least one of D or E
does not lie in the p-adic closure J(Z) of the Mordell–Weil group, and
only lies in its p-saturation.
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Proof. Note that Z(ρN ) is in bijection with J(Zp)×J(Zp). In contrast, the set

Ψ(M×(Z)) is in bijection with J(Z)× J(Z). By assumption, J(Z)0 ⊂ J(Zp)0

is a finite index Zp-sub-module, and therefore has p-saturation J(Zp)0. Hence

J(Zp)\J(Z) consists exactly of points failing the Mordell–Weil sieve and points

that only lie in the p-saturation of J(Z) and not in J(Z) itself. This can only
happen if J(Z)0 is a proper subgroup of J(Zp)0 ' Zgp. A finite index Zp-
submodule G ⊂ Zgp is a proper subgroup if and only if after tensoring with Fp
the induced map G/pG → Fgp is not an isomorphism. This is equivalent to
G/pG → Fgp not being injective. So the second condition can only happen if
the Mordell–Weil group is of bad reduction.

Definition 6.8.15. Let U ⊂ Xsm be a simple open set of Xsm. Define cU,i ∈
Ωi ⊂ Qp to be

∑
q 6=p hq(zq − b,DZ>i

(zq, b)) for any zq ∈ U(Zq) with zq 6= b.

Remark 6.8.16. By Lemma 6.4.13, this is well defined and by this lemma as
well as Proposition 6.8.11 we have that mcU,i is equal to

∑
q Vq logq, with

Vq as defined in Definition 6.4.12. Hence by (6.4.0.3) we have that ψ ◦
j̃b : U(Zp)→ Qp is given by z 7→ hp(z − b, Aα|z×X)−mcU,i and (Ψ ◦ j̃b)(z) =
(z − b, Aα|z×X , hp(z − b, Aα|z×X)−mcU,i).
Lemma 6.8.17. The function −m(σi(z)− cU,i) is the pullback along

Ψ ◦ j̃b|U : U(Zp)→ N

of ρN .

Proof. Let z ∈ U(Zp) ⊂ X(Zp) with z 6= b. By Theorem 6.8.10 and Proposi-
tion 6.8.11 we have that

−mhNek
i,q (z) = −mhq(z − b,DZ>i

(z, b)) = hq(z − b, Aα|z×X).

By Lemma 6.4.13,

hq(z − b, Aα|z×X) = −Vq logq

.

Then

−m(σi(z)− cU,i) = −m(hNek(z)− hNek
p (z)− cU,i)

= h(z − b, Aα|z×X)− hp(z − b, Aα|z×X) +mcU,i.
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This is equal to

h(z − b, Aα|z×X)− (hp(z − b, Aα|z×X)−mcU,i) =

ρN ((z − b, Aα|z×X , hp(z − b, Aα|z×X)−mcU,i)) = ρN (j̃b(z)).

This last equality follows from Corollary 6.4.17.

Proof of Theorem 6.8.5. Let c ∈ Ωi, and consider the function σi − c. By
(6.8.0.1), Theorem 6.8.10, and Definition 6.8.15 there is a simple open U ⊂ X
such that c = cU,i.

Let j̃b,U,i denote the map U → Ti. According to Lemma 6.8.17 we have that
−m(σi − c) : U(Zp)→ Qp is the composite

U(Zp)
j̃b,U,i−−−→ Ti(Zp)→M×(Zp)

Ψ−→ N ρN−−→ Qp, (6.8.0.2)

where Ti(Zp)→M×(Zp) is the natural injective map. Define gU,i := −m(σi−
c). Note that the first three maps in (6.8.0.2) are injections.

With this formulation we have

X(Qp)Coh =
⋃
U

⋂
i

Z(gU,i).

Similarly, we can write

X(Zp)Geo =
⋃
U

⋂
i

j̃b,U,i
∗
(j̃b,U,i(U(Zp)) ∩ Ti(Z)).

By Lemma 6.8.13, the set Z(gU,i) contains

j̃b,U,i
∗
(j̃b,U,i(U(Zp)) ∩ Ti(Z)).

Therefore, we get the containment X(Zp)Geo ⊆ X(Qp)Coh.

By Lemma 6.8.14 for fixed U, i the difference

Z(gU,i) \ j̃b,U,i
∗
(j̃b,U,i(U(Zp)) ∩ Ti(Z))

consists exactly of points P that fail the Mordell–Weil sieve and points P
such that jb(P ) lies not in J(Z) but only in its p-saturation. We see that an
element of X(Qp)Coh \X(Zp)Geo satisfies condition Item 1 or condition Item 2
of Theorem 6.8.5.

On the other hand, if P ∈ X(Qp)Coh fails the Mordell–Weil sieve or jb(P ) /∈
J(Z), then P 6∈ X(Zp)Geo. The theorem follows.
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6.9 Example

We give an example of the implementation on the modular curve X0(67)+ of
the algorithms presented. The rational points on this curve have already been
determined [BBB+21] using quadratic Chabauty and a Mordell–Weil sieve, but
we can also use the methods presented here to show the following proposition
about the rational points of the curve in one residue disk. Magma code that
can be used to verify the computations here can be found in [DRHS]. Let X
be a regular model for X0(67)+ over the integers given by the homogenization
of y2 + (x3 + x+ 1)y = x5 − x in the weighted projective plane P2

(1,3,1). Then

X(Q) = X(Z) and we show the following.

Theorem 6.9.1. The integer points of X(Z) that do not reduce to (1, 4) ∈
X(F7) are contained in the set

{[0 : −1 : 1], [4 · 7 +O(72) : 6 + 6 · 7 +O(72) : 1], [0 : 0 : 1],

[4 · 7 +O(72) : 3 · 7 +O(72) : 1], [1 : 0 : 1], [1 + 2 · 7 +O(72) : 5 · 7 +O(72) : 1],

[1 : −3 : 1], [1 + 2 · 7 +O(72) : 4 +O(72) : 1], [1 : −1 : 0],

[1 : 6 + 3 · 7 +O(72) : 3 · 7 +O(72)], [1 : 0 : 0], [1 : 4 · 7 +O(72) : 4 · 7 +O(72)]}.

Remark 6.9.2. The residue disk above (1, 4) ∈ X(F7) has at least two integer
points, [1 : −3 : 2] and [1 : −10 : 2]. Using geometric quadratic Chabauty
modulo p2, we cannot bound the size of this residue disk. After doing the nec-
essary calculations, it turns out im j̃b(z) = imκ(0, n2). In this case, applying
[EL21, Theorem 4.12], since the ring Fp[n1, n2]/(g1, g2) ' Fp[n2] is not finite,
we cannot determine the solutions using calculations modulo p2.

By increasing precision we are guaranteed a finite set of solutions in this
residue disk. In practice, this requires computing heights of points that lie
in residue disks at infinity which is not possible using current implementations
of Coleman–Gross heights.

We present the computations in a single residue disk over P = (0,−1) ∈ X(F7)
where we show the following.

Proposition 6.9.3. The integer points of X(Z) reducing to (0,−1) ∈ X(F7)
are contained in the set

{(0,−1), (4 · 7 +O(72), 6 +O(72))}.

We first list some facts about this curve that will be useful in our computations.
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The curve X is a projective curve of genus 2 with Jacobian J . We recall some
details about X and its Jacobian that are presented in [BBB+21, Section 6].
The Jacobian J has Mordell–Weil rank 2 and JQ has Néron–Severi rank 2. In
addition, the only prime of bad reduction of X is 67. At 67, the special fiber is
geometrically irreducible: it has one component with two nodes defined over
F672 . Hence, there are only geometrically irreducible fibers over every prime.

Remark 6.9.4. For this example curve, all of the fibers are geometrically irre-
ducible, leading to a simplification in the notation used in the example com-
pared to the notation in the preceding sections. In general, one needs to
consider a distinction between J and J0, where J0 is the fiberwise connected
component of 0 in J . We also omit the constant m which is the least common
multiple of the exponents of all J/J0(Fp), with p ranging over all primes. Since
J = J0, we have m = 1. Let Xsm denote the open subscheme of X consisting
of points at which X is smooth over Z. Above, we consider the simple open
subschemes U of Xsm. In this example, there is only one simple open to con-
sider: the scheme Xsm obtained by removing the two Galois conjugate nodes
in the fiber over 67. Since X is regular, Xsm(Z) = X(Z).

Let ι be the hyperelliptic involution of X. We list some rational points on the
curve that will be used in our computations:

P := [0 : −1 : 1], ιP := [0 : 0 : 1],

Q := [−1 : 0 : 1], ιQ := [−1 : 1 : 1],

b := [1 : 0 : 1], ιb := [1 : −3 : 1], (6.9.0.1)

R := [1 : −3 : 2], ιR := [1 : −10 : 2],

∞+ := [1 : 0 : 0], ∞− := [1 : −1 : 0].

These points turn out to be the only rational points on X, as proven in
[BBB+21, Theorem 6.3] by a combination of quadratic Chabauty and the
Mordell–Weil sieve.

Let p = 7. We first perform some local computations. There are 9 points
on X(Fp). For each Fp-point x of Xsm, we need an element in T (Z)j̃b(x), or

equivalently an element in J(Z)jb(x). Every residue disk of X(Zp) contains an
integer point; only R and ιR reduce to the same point. Therefore, none of the
residue disks J(Z)jb(x) are empty. So we cannot rule out any residue disks of
the torsor immediately; in fact, this calculation is a Mordell–Weil sieve at p,
see [HS22a, Section 3.4] for more details.

This example presents the specific case of the residue disk corresponding to
X(Z)P , where P is the point defined in (6.9.0.1). Because we can consider
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residue disks up to the hyperelliptic involution, this also gives us the analogous
result for the residue disk corresponding to ιP .

Let jb : Xsm → J denote the Abel–Jacobi map with base point b defined in
(6.9.0.1). We also have a set of generators for the Mordell–Weil group J(Z)
from the LMFDB,

G1 := [P − ιP ], (6.9.0.2)

G2 := [P +Q− 2 · ιP ].

Since X is a modular curve, its Jacobian has an action by the Hecke algebra.
To describe the Hecke action on J explicitly, we fix the following basis for
H0(XQ,Ω

1
XQ

) : {
dx

2y − x3 − x− 1
,

xdx

2y − x3 − x− 1

}
. (6.9.0.3)

We focus on the endomorphism given by the action of the Hecke operator T2

on 1-forms of X. The Kodaira–Spencer map gives an isomorphism between
H0(XQ,Ω

1
XQ

) and S2(67)+. We choose a basis for S2(67)+ that is given by
q-expansions with rational coefficients, as follows:

g1 := q − 3q3 − 3q4 − 3q5 + q6 + 4q7 + 3q8 +O(q9),

g2 := q2 − q3 − 3q4 + 3q7 + 4q8 +O(q9).

Then we choose the model for X where du
v corresponds to g1

dq
q and uduv

corresponds to g2
dq
q , by setting u = g2

g1
and v = q du

g1dq
. This allows us to find

q-expansions for the monomials {v2, 1, u, u2, . . . , u5, u6} and use linear algebra
to get an explicit equation for the new model of X,

v2 = 9u6 − 14u5 + 9u4 − 6u3 + 6u2 − 4u+ 1.

Writing down an explicit change of model to the regular model, we can find the
q-expansion of the forms in (6.9.0.3) and compute the Hecke action on these
q-expansions. This gives us the matrix representation of the Hecke operator
T2 with respect to the basis on (6.9.0.3). The trace of this matrix is nonzero,
so we let f := 2T2 + 3 id: J → J . The endomorphism f has trace zero and
matrix representation (

1 −2
−2 −1

)
(6.9.0.4)

https://www.lmfdb.org/Genus2Curve/Q/4489/a/4489/1


6.9. EXAMPLE 177

with respect to the basis presented in ((6.9.0.3)). Using the work of [CMSV19],
we can compute a divisor Df ⊂ XQ × XQ inducing f . The equations that
define this divisor are given in [DRHS23, Appendix A]. Then Algorithm 6.4.3
produces the divisor Aα that satisfies the properties of Lemma 6.4.4.

We now use Algorithm 6.4.10 to calculate f(G1) and f(G2), where G1 and G2

are the generators of the Mordell–Weil group of J as in (6.9.0.2).

Since J(Z) = J(Q), the divisor f(Gi) only needs to be computed over the ratio-
nals for i = 1, 2. For example, applying (6.4.0.1) we get f(G1) = OX(Df |P×X−
Df |ι(P )×X) and we can compute an explicit divisor f(G1) using the equations
for Df . We find that

f(G1) = −G1 + 2G2 = [−(P − ιP ) + 2(P +Q− 2ιP )] = [P + 2Q− 3ιP ],
(6.9.0.5)

f(G2) = 2G1 +G2 = [2(P − ιP ) + 1(P +Q− 2ιP )] = [3P +Q− 4ιP ].

Furthermore, we compute c = [−11G1 − 8G2] using Algorithm 6.4.7.

We can parametrize the residue disk over P up to finite precision by

Fp → X(Z/p2Z)P , ν 7→ Pν such that x(Pν)/p = ν. (6.9.0.6)

We now find the trivializing section ϕ ◦ λ, following Section 6.5. By di-
rect computation the constant v from Proposition 6.5.2 is 0, hence the pseu-
doparametrization ϕ has codomain Z3

p (instead of Z2
p×Qp). This computation

is done using code from the repository [BDM+].

Since p > 3, by Proposition 6.5.2 the map ϕ ◦ λ : Zp → Z3
p is linear modulo p.

We will calculate j̃b(P0) and j̃b(P1) following Algorithm 6.5.4 and interpolate
to determine the map. What the following computations show is that

ϕ ◦ λ(ν) ≡ (2ν, 0, 6− ν) mod p. (6.9.0.7)

By Proposition 6.5.1, the image of the map ϕ ◦λ is cut out by two convergent
power series. Giving Z3

p the coordinates (x1, x2, x3), we see the image of ϕ◦λ is
cut out by the equations g1 = 0, g2 = 0 with g1 ≡ x2 mod p, g2 ≡ 2x3 +x1 +2
mod p.

Algorithm 6.5.4 relies on being able to compute Coleman–Gross local heights
at p and at primes of bad reduction. We first note that, since the special fiber of
X at 67 is geometrically irreducible, the heights at ` 6= p are all trivial, and we
only have to consider the heights at p. Balakrishnan [Bal] has implemented
Coleman–Gross local heights hp(D,E) for disjoint divisors of degree 0 on a
curve Y with a few requirements:
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1. the hyperelliptic curve Y : y2 = H(x) is given by a monic odd degree
model;

2. the divisors D and E split as a sum of points D =
∑
i niPi, E =∑

jmjQj with Pi, Qj ∈ Y (Qp).
Remark 6.9.5. Suppose that D =

∑
i niPi and E = Div r + E′ where E′ =∑

jmjQj with Pi, Qj ∈ Y (Qp). Then

hp(D,E) = hp(D,E
′ + Div r)

= hp(D,E
′) + hp(D,Div r)

= hp(D,E
′) + log(r(D))

so we can also compute hp(D,E).

Therefore we make a change of model when doing computations on N . The
even degree model of X is given by

y2 = g(x) := x6 + 4x5 + 2x4 + 2x3 + x2 − 2x+ 1,

where g(x) has a 7-adic zero β = 4 + 3 · 7 + 4 · 72 + O(73). We can construct
a degree 5 model:

β6y′2 = g(βx′/(x′ − 1)) · (x′ − 1)6.

Letting c0 = 5 + 3 · 7 + 3 · 72 +O(73) be a 5th root of the leading coefficient of
g(βx′/(x′−1)) we obtain an odd degree model over Qp given by the coordinate
transformation from the even degree model

(x, y) 7→ (c0 · x/(x− β), β3y/(x− β)3). (6.9.0.8)

Remark 6.9.6. Recent work of Gajović and Müller [GM23] gives a practical
algorithm and code for computing Coleman–Gross local heights hp(D,E) on
even degree hyperelliptic curves.

We now compute for P the local height ψ(j̃b(P )) = hp(P − b, Aα|P×X). Let
B,C be the divisors on X defined in Algorithm 6.4.3. One can check that
B ∩Pν is empty over Z/p2Z for all ν ∈ Fp, so we have Aα|Pν×X = Df |Pν×X +
B − C; we denote Aα|P0×X by EP0

. Over the rationals

EP0 ∼ [0 : 0 : 1]− [−1 : 1 : 1] + 2[−1 : 0 : 1]− 2[1 : −3 : 1] =: E′P0
,

with EP0
= E′P0

+DivgP0
where gP0

is computed explicitly as an element of the
function field and given in [DRHS23, Appendix A]. By Remark 6.9.5, we can
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decompose hp(P − b, EP0
) = hp(P − b, E′P0

) + hp(P − b,DivgP0
). We compute

hp(P − b,DivgP0) = loggP0(P )/gP0(b) = log(4/9) ≡ 7 mod 49.

We also compute

hp(P − b, E′P0
) = 5 · 7 + 3 · 72 + 3 · 73 + 6 · 74+

75 + 5 · 76 + 2 · 77 + 6 · 78 +O(79).

So, ψ(j̃b(P )) = 6 · 7 +O(72).

Unlike the P0 case, the divisor DP1
:= Df |P1×X is not a sum of two p-adic

points. Instead we use the explicit Cantor’s algorithm [Can87, Sut19] to get a
linearly equivalent multiple which does split as a sum of p-adic points.

Let (u1, v1) be the Mumford representation for DP1
. Then using [Sut19, Al-

gorithm Compose] we can compute (u2, v2), the Mumford representation for
2DP1

. Applying [Sut19, Algorithm Reduce] we obtain the Mumford represen-
tation (u3, v3) for the reduction of 2DP1

along with r = (y − v2(x))/u3(x),
satisfying the relationship

2DP1
= Div(u1, v1) = Div((y − v2(x))/u3(x)) + Div(u3, v3). (6.9.0.9)

Remark 6.9.7. Since the computations for DP1
were done on the regular

model, we need to change the equations to the odd degree model. The
Mumford divisor for DP1

is a sum of 2 points over a totally ramified ex-
tension of Qp. Using the equations (6.9.0.8) for the change of model we
can map the points to two points (x1, y1), (x2, y2) on the odd degree model
and construct the corresponding degree 2 Mumford divisor (u1, v1) vanish-
ing on the x-coordinates using interpolation: u1(x) = (x − x1)(x − x2) and
v1(x) = y2 · (x− x1)/(x2 − x1) + y1 · (x− x2)/(x1 − x2).

Then 2DP1 is linearly equivalent to a divisor that splits into a sum of two
points over the odd degree model. The splitting is given by

{Q1, Q2} := {(469610 · 7 +O(79),−15018865 +O(79)),

(499647 +O(79),−14480684 +O(79))}.

By (6.9.0.9) we have

2DP1
= Q1 +Q2 + Div((y − v2(x))/u3(x)) + 2∞,
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where

v2(x) := −(462222 +O(78))x3 + (73804 +O(78))x2+

(1999391 +O(78))x− 1649234 +O(78)

and

u3(x) := (1 +O(78))x2 + (1977884 +O(78))x+ 297368 · 7 +O(78).

With the splitting in hand, we can compute j̃b(P1):

1

2
hp(P1 − b, 2DP1

) + hp(P1 − b, B − C) =

hp(P1−b, B−C)+
1

2
hp(P1−b,Q1+Q2+2∞)+

1

2
hp(P1−b,Div((y−v2(x))/u3(x))).

The divisor B − C is not a sum of points, but we have that B − C is equal
to 4∞− − ιb− 5ιQ+ Div(gP1

), where gP1
is given in [DRHS23, Appendix A].

Therefore ψ(j̃b(P1)) is

hp(P1 − b,DP1 +B − C)

=
1

2
hp(P1 − b,Q1 +Q2 + 2∞+ 2(4∞− − ιb− 5ιQ))

+
1

2
log((y − v2)(P1 − b)/u3(P1 − b)) + loggP1

(P1 − b).

Then

loggP1
(P1 − b) = 6 · 7 + 3 · 72 + 2 · 73 + 2 · 74 +O(75)

log(y − v2)(P1 − b)/u3(P1 − b)) = 72 + 3 · 73 + 2 · 74 +O(75))

hp(P1 − b,Q1 +Q2 + 2∞+ 2(4∞− − ιb− 5ιQ)) = 5 · 7 + 72 + 4 · 73 +O(74)

So ψ(j̃b(P1)) = 5 · 7 +O(72).

Now we can calculate j̃b(P1) in the map ϕ : T (Zp)j̃b(P ) → Z3
p given in Defi-

nition 6.3.21. We can compute this using the logarithm, normalized by the
logarithm at P :

log(P0 − b)− log(P0 − b) = (0, 0),

log(P1 − b)− log(P0 − b) = (2 · 7 +O(72), O(72)).
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Hence we see ϕ(j̃b(P0)) = (0, 0, 6) and ϕ(j̃b(P1)) = (2, 0, 5). By interpolating
these values we get (6.9.0.7).

We now discuss the map κ using formulas in Section 6.6. We will show that the
map ϕ ◦κ : Z2

p → Z3
p, which is by Proposition 6.6.3 given by two homogeneous

linear polynomials and one quadratic polynomial, is modulo p equal to

(n1, n2) 7→ (n1,−n1 − 2n2,−3n2
1 − n1n2 − n1 + n2 − 1). (6.9.0.10)

Following Algorithm 6.6.1 we construct the points of M×(Gi, f(Gj))(Z) and
M×(Gi, c)(Z) for i, j = 1, 2 as in [EL21, Section 8.3].

We work out the example M×(G1, f(G2))(Z) here in detail. Recall that by
(6.9.0.5) we have G1 = [P − ιP ] and f(G2) = [3P + Q − 4ιP ]. By (6.3.2.2),
the Gm-torsorM×(G1, f(G2)) is f(G2)∗O×X(G1). Since we want to work with
the image in N , and this representation of f(G2) is not disjoint from G1 over
Q, we represent G1 by the linearly equivalent divisor ιb−∞+ +∞− −Q and
f(G2) by the linearly equivalent divisor 3(P − ιP ) + (P − ιQ). These divisors
are not disjoint over Z because −ιQ and ιb intersect over Z/2Z so

h(P − ιP, 3(P − ιP ) + (P − ιQ)) =

hp(ιb−∞+ +∞− −Q, 3(P − ιP ) + (P − ιQ)) + log(2).

We can compute

Q12 = ([P − ιP ], [3(P − ιP ) + (P − ιQ)], h(ιb−∞+ +∞− −Q, 3(P − ιP ) + (P − ιQ))

= (G1, f(G1), 5 · 7 + 6 · 72 + 6 · 73 +O(74)).

The remaining Qij are:

Q11 = (G1, f(G1), 2 · 7 + 5 · 73 +O(74)),

Q21 = (G2, f(G1), 4 · 7 + 3 · 72 + 2 · 73 +O(74)),

Q22 = (G2, f(G2), 3 · 72 + 4 · 73 +O(74)),

Q10 = (G1, c, 3 · 7 + 4 · 72 + 5 · 73 +O(74)),

Q20 = (G2, c, 2 · 7 + 2 · 73 +O(74)).

Remark 6.9.8. In practice, since we will need to add Qij in N ' J(Qp) ×
J(Qp)×Qp we use the map log : J(Qp)→ Qgp for i, j = 1, 2 and for j = 0, we
store Qij as the vector (log(Gi), log(f(Gj)), h(Gi, f(Gj))). This allows us to
add in Qgp instead of J(Qp).
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We proceed to compute the bijection κ : Z2
p → T (Zp)j̃b(P ) of the integral points

of T modulo p2, as in [EL21, Section 8.5]. The divisor jb(P ) ∈ J(Fp) is equal
to the image of

G̃t := G1 + 3G2

in J(Fp) and correspondingly we define e01 := 1 and e02 := 3.

Let G̃1 and G̃2 be a basis for the kernel of reduction J(Z)→ J(Fp). Since

G̃1 = −3G1 + 7G2, G̃2 = 7G1 + 4G2

we define e11 = −3, e12 = 7, e21 = 7, e22 = 4.

The map κZ is given in coordinates in N by sending (n1, n2) to

((7 + 72 + 73 +O(74)) · n1 + (4 · 73 +O(74)) · n2 + 5 · 7 + 5 · 72 + 73 +O(74),

(6 · 7 + 4 · 72 + 3 · 73 +O(74)) · n1 + (5 · 7 +O(74)) · n2 + 5 · 72 + 3 · 73 +O(74)),

((6 · 7 + 5 · 72 + 6 · 73 +O(74)) · n1 + (2 · 7 + 2 · 72 + 6 · 73 +O(74),

(4 · 7 + 3 · 72 + 3 · 73 +O(74)) · n1 + (3 · 7 + 3 · 72 +O(74)) · n2 + 4 · 7 + 2 · 73 +O(74)),

(4 · 7 + 6 · 72 + 3 · 73 +O(74)) · n2
1 + (6 · 7 + 72 + 4 · 73 +O(74)) · n2

2+

(6 · 7 + 3 · 72 + 2 · 73 +O(74)) · n1 + (7 + 73 +O(74)) · n2 + 6 · 7 + 6 · 72 + 3 · 73 +O(74))

where we apply the logarithm to the first two coordinates as in Remark 6.9.8.

Finally, by [EL21, Theorem 4.10], the map κZ extends to a bijection

κ : Z2
p → T (Zp)j̃b(P ) (6.9.0.11)

with image T (Z)j̃b(P ). This map ϕ◦κ is polynomials (κ1, κ2, κ3) ∈ Qp[x1, x2]3,
with κ1, κ2 homogeneous linear and κ3 at worst quadratic. Applying Corol-
lary 6.3.22, we obtain the formula for ϕ ◦ κ given in (6.9.0.10).

We now have the tools to prove the upper bound on the number of points in
the residue disk #X(Z)P . We define

p1 := (ϕ ◦ κ)∗g1 = −n1 − 2n2, p2 := (ϕ ◦ κ)∗g2 = n2
1 − 2n1n2 − n1 + 2n2,

and A := Fp[n1, n2]/(p1, p2). The ring A is isomorphic to Fp[n2]/(n2
2 − 3n2) '

Fp×Fp, so by [EL21, Theorem 4.12] we have an upper bound of 2 on #X(Z)P .
Specifically, we see that there is at most one point reducing to P0, namely P
itself, and at most one point reducing to P4 in X(Z/p2Z)P ; the other Pν have
no rational points lying over them.
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Remark 6.9.9. If we calculate κ and j̃b with greater p-adic precision, we can
compute the point reducing to P4 with greater precision. This can be done by
brute force, that is, trying all lifts of the found solution n1 = 1, n2 = 3, ν = 4
and seeing when any of the calculated values of κ or j̃b agree modulo the
required precision. However, there is a more efficient way. We can look at
the “higher residue disks” X(Zp)P4

and T (Zp)j̃b(P4), consisting of points that

reduce to a specified Z/p2Z-point. We can parametrize X(Zp)P4 with the
map Zp → X(Zp)P4 sending µ to P4+pµ. With respect to our usual map
ϕ : T (Zp)j̃b(P ) → Z3

p, we get a bijection of the higher residue disk of the

torsor T (Zp)j̃b(P4) → (1, 0, 2) + pZ3
p. Given these identifications, the inclu-

sion j̃b : Xsm(Zp)P4 → T (Zp)j̃b(P4) is given by power series that are linear
modulo p. Like in Section 6.5, these can be found by interpolation. Simi-
larly, κ restricted to (1 + pZp)× (3 + pZp) gives the inclusion κ : T (Z)j̃b(P4) →
T (Zp)j̃b(P4). For these identifications, κ is actually homogeneous linear mod-
ulo p. Solving the resulting affine linear system of equations, we get that the
only possible intersection of the image of κ and of j̃b in the higher residue disk
T (Z/p3Z)j̃b(P4) ' F3

p is (5, 1, 5), corresponding to P4+pµ with µ = 4. This is

the point P32 ∈ X(Z/p3Z)P4 .

In total, we can strengthen Proposition 6.9.3 to say the residue disk X(Z)P is
contained in the set

{P, (4 · 7 + 4 · 72 +O(73), 6 + 6 · 7 + 6 · 72 +O(73))}.
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