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Chapter 5

A geometric linear Chabauty
comparison theorem

This chapter has already been published in Acta Arithmetica [HS22a]. This
is joint work with Sachi Hashimoto.

Abstract. The Chabauty–Coleman method is a p-adic method for finding
all rational points on curves of genus g whose Jacobians have Mordell–Weil
rank r < g. Recently, Edixhoven and Lido developed a geometric quadratic
Chabauty method that was adapted by Spelier to cover the case of geometric
linear Chabauty. We compare the geometric linear Chabauty method and the
Chabauty–Coleman method and show that geometric linear Chabauty can out-
perform Chabauty–Coleman in certain cases. However, as Chabauty–Coleman
remains more practical for general computations, we discuss how to strengthen
Chabauty–Coleman to make it theoretically equivalent to the geometric linear
Chabauty method. We apply these methods to genus 2 and genus 3 curves.

5.1 Introduction

Let CQ/Q be a smooth, proper, geometrically integral curve of genus g ≥ 2.
Faltings’s theorem [Fal83b] states that the set of rational points CQ(Q) is
finite. However, it does not provide an explicit method for computing this
finite set. Let JQ/Q be the Jacobian of CQ, with Mordell–Weil rank r. Fix a
prime p > 2 of good reduction for CQ. The Chabauty–Coleman method is an
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112 CHAPTER 5. GEOMETRIC LINEAR CHABAUTY

explicit p-adic method for computing the set of rational points on CQ when
r < g. Letting C be a model of CQ over Z(p), the method computes a finite
set of p-adic points C(Zp)CC containing the rational points C(Z(p)) = CQ(Q).

In recent years, the Chabauty–Coleman method has been extended to lift the
restriction r < g; Balakrishnan, Besser, Müller, Dogra, Tuitman, and Vonk
[BBM16, BD18, BD21, BDM+19] developed the quadratic Chabauty method.
Edixhoven and Lido proposed a parallel geometric quadratic Chabauty method
[EL21] that uses algebro-geometric methods and works in torsors over the
Jacobian instead of a certain Selmer variety.

Spelier [Spe20] adapted the geometric method in Edixhoven–Lido to the lin-
ear case of Chabauty–Coleman. They outlined a theory of geometric linear
Chabauty that parallels the Chabauty–Coleman method. Their method works
in the Jacobian itself instead of its image under the logarithm in Qgp.
This idea of working in the Jacobian itself is not new. Previously, Flynn [Fly97]
also leveraged the Jacobian group law to perform Chabauty-type calculations
in a similar way to our geometric method. Flynn’s method relied on explicit
equations and explicit group laws for JQ in high-dimensional projective space;
the method was used to compute the rational points in several new cases
of genus 2 and Mordell–Weil rank 1 curves. However, some of the ideas in
[Fly97] do not generalize that easily to higher genus and higher rank examples.
Flynn uses specific equations for the embedding of genus 2 curves in P15 and
theorems on the number of zeros of p-adic univariate polynomials that both do
not extend easily to generic higher genus Jacobians and higher Mordell–Weil
ranks.

While geometric linear Chabauty’s method sacrifices the explicit nature of
Flynn’s method, it can nevertheless be applied to curves of any genus. The geo-
metric linear Chabauty method computes a finite set of p-adic points C(Zp)GLC

containing the set of rational points CQ(Q). The method can be performed
modulo pn for any precision n ∈ Z>0, although it does not always result in an
upper bound on the number of rational points. Done modulo p, the computa-
tions are simply linear algebra.

In this paper, we survey both the geometric linear Chabauty and Chabauty–
Coleman methods, and we provide many examples of the new geometric lin-
ear Chabauty method of Spelier. Our main result is a comparison theorem
between the two methods. In Theorem 5.5.1, we show that the geometric lin-
ear Chabauty method outperforms the Chabauty–Coleman method in certain
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cases. We have the inclusions:

CQ(Q) ⊆ C(Zp)ofGLC ⊆ C(Zp)CC.

Furthermore we give an explicit characterization of the set C(Zp)CC\C(Zp)GLC,
i.e. any excess points the Chabauty–Coleman method finds.

However, because the geometric linear Chabauty method can be prohibitively
difficult to implement, in Algorithm 5.5.4 we instead provide an upgrade for
the Chabauty–Coleman method that makes it equivalent to geometric linear
Chabauty. Finally, this paper makes a practical improvement to the geomet-
ric linear Chabauty method, replacing complicated Jacobian arithmetic over
Z/p2Z with very low precision Coleman integration on the curve and arith-
metic in Fgp.
We start by defining our notational conventions in Section 5.3.1. In Sec-
tion 5.3.2 we introduce the geometric linear Chabauty method of Spelier. Sec-
tion 5.3.5 reviews the Chabauty–Coleman method. We showcase the explicit
linear algebra method for finding rational points on CQ in Section 5.4. The
main theorem and discussion on comparison is found in Section 5.5.

5.2 Acknowledgments

We are very grateful to Jennifer Balakrishnan for helpful comments during
the preparation of this paper. We are also thankful to Bas Edixhoven for his
generous advice and Steffen Müller for assistance with Magma computations.
We thank the anonymous referee for many helpful suggestions for improving
the paper.

5.3 Background

5.3.1 Set-up

Let CQ/Q be a smooth, proper, geometrically integral curve of genus g ≥ 2.
Fix p > 2 a prime of good reduction for CQ and let C/Z(p) be a smooth model
for the curve over the local ring. Then

C(Z(p)) = CQ(Q) (5.3.1.1)

so the problem of determining Q-points on CQ can be replaced by the problem
of determining Z(p)-points on C.
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Let J/Z(p) be the Jacobian of C and suppose that the Mordell–Weil rank
r of JQ(Q) or, equivalently, J(Z(p)) is less than g. We use M to denote

the p-adic closure of the Mordell–Weil group J(Z(p)) in J(Zp). Denote the
torsion subgroup of M by M tors. Let r′ ≤ r be the rank of M/M tors as a Zp-
module; we assume we have computed r′ elements of J(Z(p)) that topologically
generate M . We also assume C(Z(p)) is non-empty and fix forever a basepoint

b ∈ C(Z(p)). Let b ∈ C(Fp) denote the reduction of b modulo p.

Remark 5.3.1. In the case that r is at most g, one usually has r′ = r. If
r′ < r, there is generally a geometric reason for this, for example the Jacobian
splitting as a product of smaller abelian varieties up to isogeny, in which case r′

itself and r′ topological generators can often be computed if the Mordell–Weil
group is known.

For X a scheme, R a local ring with residue field Fp, and Q ∈ X(Fp), let
X(R)Q denote the residue disk {x ∈ X(R) : x̄ = Q} over Q; we use the same
notation for the residue disks of M .

We will need a description of X(R)Q, the residue disk of a smooth scheme over
Zp. For this, we use the following lemma from [Spe20] that can be applied to
an affine chart of X containing Q.

Lemma 5.3.2 ([Spe20, Lemma 2.2]). Let X be a smooth affine scheme over
Zp of relative dimension d, let Q be an Fp-point of X, and let t1, . . . , td be
parameters of X at Q, i.e. elements of the local ring OX,Q such that the
maximal ideal is given by (p, t1, . . . , td). Define t̃i := ti/p. Then evaluation of
t̃, the vector (t̃1, . . . , t̃d), gives a bijection t̃ : X(Zp)Q → (Zp)d.

In fact, this is shown in a geometric fashion by giving a bijection between
X(Zp)Q and X̃p

Q(Zp), an open affine subscheme of the blowup of X at Q.

Then the coordinate ring of X̃p
Q(Zp) has p-adic completion equal to the ring

of convergent power series

Zp
〈
t̃1, . . . , t̃d

〉
= {f ∈ Zp[[t̃1, . . . , t̃d]] : for all n ≥ 0, f ∈ Zp[t̃1, . . . , t̃d] + (pn)}.

Evaluating the t̃i yields a bijection X̃p
Q(Zp)→ Zdp by the formula

X̃p
Q(Zp) = Hom(OX̃pQ ,Zp) = Hom(Zp

〈
t̃1, . . . , t̃d

〉
,Zp) = AdZp .

Remark 5.3.3. Lemma 5.3.2 works equally well modulo pn, giving a bijection

X(Z/pnZ)Q ' (Z/pn−1Z)d.
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5.3.2 The geometric linear Chabauty method

We recall an idea of Chabauty proving the finiteness of rational points on
certain curves of genus g ≥ 2.

Theorem 5.3.4 ([Cha41]). Let AJb : C(Zp) → J(Zp) denote the Abel–Jacobi
map induced by the basepoint b. Then AJb(C(Zp)) ∩M is finite and therefore
C(Z(p)) is.

The geometric linear Chabauty method makes Theorem 5.3.4 explicit by com-
puting the set AJb(C(Zp)) ∩M exactly. To start, we break up the set into a
union of residue disks. Fix Q ∈ C(Fp) and consider the set AJb(C(Zp)Q) ∩
MQ−b in J(Zp). We study the closure of the Mordell–Weil group and the
image of the curve under Abel–Jacobi separately.

To describe MQ−b, we simply need to know whether it is empty; if not, fix a
choice of T ∈ J(Z(p))Q−b; if it is, then AJb(C(Zp)Q)∩MQ−b is empty, so we can
sieve out this residue disk. Indeed, this is a reformulation of the Mordell–Weil
sieve at the prime p, as discussed in Section 5.3.4.

Now we identify J(Zp)Q−b with Zgp by Lemma 5.3.2. Note that this identifica-
tion does not preserve the additive structure. Then AJb(C(Zp)Q) is cut out by
convergent power series f1, . . . , fg−1 in the ring of convergent p-adic power se-
ries Zp〈z1, . . . , zg〉 [Spe20, Remark 2.6] (for the right choice of parameters, we
may assume the fi are linear), and the inclusion MQ−b → J(Zp)Q−b, identify-

ing the former with Zr′p , is given by g power series κ1, . . . , κg ∈ Zp〈x1, . . . , xr′〉
[Spe20, Theorem 3.1]. All in all, we get the diagram

0

Zg−1
p

0 MQ−b J(Zp)Q−b

C(Zp)Q

0

κ

f

AJb

λQGLC

. (5.3.2.1)
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The coordinates λi for i = 1, . . . , g − 1 of λQGLC consist of the pullbacks of
f1, . . . , fg−1 along κ. They are given by composing convergent power series
that are affine linear mod p and thus themselves are given by convergent power
series that are affine linear mod p. In this diagram, the vertical sequence is
exact in the sense that f−1(0) = AJb(C(Zp)Q). That is the key behind the
following proposition.

Proposition 5.3.5 ([Spe20, Theorem 4.1]). Let Q be an Fp-point of C such

that there exists an element T ∈ J(Z(p))Q−b. The zero set Z(λQGLC) is equal
to MQ−b ∩ AJb(C(Zp)Q) = (M0 + T ) ∩ AJb(C(Zp)Q).

Thus λQGLC consists of the equations we will use to compute Chabauty’s finite
set explicitly.

Definition 5.3.6. Let

C(Zp)GLC :=
⋃
Q s.t.

J(Z(p))Q−b 6=∅

Z(λQGLC) (5.3.2.2)

be the geometric linear Chabauty set.

In practice, the λi can only be calculated in finite p-adic precision, where,
because they are given by convergent power series, they become polynomials.
Although one can say quite a lot about the degrees of these polynomials [Spe20,
Lemma 3.7], this method is especially fruitful modulo p, where the λi become

affine linear polynomials. To give an upper bound on Z(λQGLC), one can use
the following theorem.

Proposition 5.3.7 ([EL21, Theorem 4.12]). Denote

A = Zp〈x1, . . . , xr′〉 /(λ1, . . . , λg−1)

and
Ā := Fp[x1, . . . , xr′ ]/(λ1, . . . , λg−1)

its reduction modulo p. Assume Ā is finite. Then Ā is Artinian and so Ā '∏
m∈MaxSpec(Ā) Ām.

We have the following upper bound on |HomZp(A,Zp)| and hence on the num-
ber of points in C(Z(p))Q:∑

m

dimFp Ām ≥ |HomZp(A,Zp)| ≥ C(Z(p))Q

where the sum is taken over m such that Ā/mĀ = Fp.
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By Proposition 5.3.7, as long as Ā is finite-dimensional, it suffices to compute
λi modulo p to obtain upper bounds for C(Z(p)). The λi are affine linear
modulo p, so Ā can only be finite-dimensional if it is Fp or the zero ring,
which happens if the linear system of equations {λi ≡ 0 mod p for all i} has
respectively one or zero solution(s). This observation enables the following
reformulation of Proposition 5.3.7.

Corollary 5.3.8. Assume M0/pM0 → J(Z/p2Z)0 is injective with imageM0.
If in every residue disk of J(Z/p2Z) there is at most one intersection between
the image M of J(Z(p)) and AJb(C(Z/p2Z)), then

|C(Z(p))| ≤ |M ∩ AJb(C(Z/p2Z))| ≤ |C(Fp)|

.

In particular, if the (not necessarily homogeneous) linear system of equations
{λi ≡ 0 mod p for all i} in Proposition 5.3.7 has zero or one solution, there is
respectively zero or at most one point in C(Z(p))Q.

Definition 5.3.9. We say that the Mordell–Weil group is of good reduction
(modulo p) if the map M0/pM0 → J(Z/p2Z)0 is injective. Otherwise, we say
that it is of bad reduction.

Remark 5.3.10. This method is independent of the choice of b ∈ C(Z(p)).
Choosing a different basepoint b′ shifts the image of the curve by b−b′. Equiv-
alently, it shifts M by b′ − b. But b′ − b is an element of the Mordell–Weil
group, so the translation is equal to M.

Remark 5.3.11. In genus g > 2, finding the generators of the Mordell–Weil
group can be intractable using the current methods. Often, one can hazard
a guess by giving a subgroup G ⊂ M (for example, taking the subgroup
generated by the differences of rational points on C of bounded height). But
verifying that the given subgroup is indeed the entire Mordell–Weil group
is a very difficult task. For genus 3 hyperelliptic curves, this can be done
(see [Sto17]), but it may take weeks of CPU time. However, to execute the
geometric linear Chabauty algorithm in a fixed residue disk over Q ∈ C(Fp),
given T ∈ J(Z(p))Q−b, we do not need generators of the Mordell–Weil group;
we only need p-adic generators of the closure of the kernel of reduction of the
Mordell–Weil group M0. This is immediately satisfied if the index [M : G]
is not divisible by p, equivalently, if G is saturated at p. The condition that
G is saturated at p can be checked by reducing G modulo ` for small primes
`. Regarding the required T ∈ J(Z(p))Q−b, we can just produce such a T ; if
instead we want to prove that it does not exist, we need that the image of G
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in J(Fp) is equal to the image of M ; it is enough to check G is saturated at
(some of) the primes dividing |J(Fp)|.
For applications and more details, see Example 5.5.7 and Example 5.5.8.

5.3.3 The modulo p method

We now describe how to translate geometric linear Chabauty modulo p into
Fp-linear algebra. For each Q ∈ C(Fp), we can find T ∈ J(Z(p))Q−b, or there
is no rational point in the residue disk C(Zp)Q (these two options are not
mutually exclusive); this is explained in greater detail in Section 5.3.4. Fix a
choice of T . We want to calculate AJb(C(Zp)Q) ∩MQ−b by finding the affine
linear polynomials λi mod p of Proposition 5.3.5. To calculate these linear
polynomials modulo p it suffices to work in residue disks of J(Z/p2Z). In this
section, we assume the Mordell–Weil group is of good reduction.

Choosing a parameter tQ for C atQ gives a bijection t̃Q : C(Z/p2Z)Q
∼−→ Fp; we

write Qµ for the point mapping to µ. In the same way, by choosing parameters,
we have an isomorphism J(Z/p2Z)0 ' Fgp as groups. After translation by −T ,
we see C(Z/p2Z)Q embeds as a 1-dimensional affine subspace of J(Z/p2Z)0 by
the map C(Z/p2Z)Q → J(Z/p2Z)0, sending x 7→ x− b− T .

Write MQ−b = T + M0. Let M denote the image of M in J(Z/p2Z); then

M0
∼= Fr′p and we see that (AJb(C(Z/p2Z)Q)∩MQ−b)− T is exactly equal to

(AJb(C(Z/p2Z)Q)− T ) ∩M0.

Now, let DQ ⊂ J(Z/p2Z)0 be the one-dimensional subspace

DQ := {Qµ −Q0 : µ ∈ Fp}, (5.3.3.1)

and let v := Q0 − b − T . We can rephrase Corollary 5.3.8 purely in terms of
linear algebra: let ϕ denote the linear map ϕ : DQ⊕M0 → J(Z/p2Z)0 arising
from taking the sum of the embeddings DQ,M0 ⊂ J(Z/p2Z)0, then by the
equations AJb(C(Z/p2Z)Q) = DQ +Q0 − b and MQ−b =M0 + T we get

|(AJb(C(Z/p2Z)Q) ∩MQ−b)| = |ϕ
−1(v)|. (5.3.3.2)

Remark 5.3.12. If we know there is a rational point P in the residue disk
C(Zp)Q, then we can take tQ to be a parameter at P , and choose T = P − b
to get v = 0 and hence |ϕ−1(0)| on the right side of this equation. (In general,
|ϕ−1(0)| is always an upper bound on |ϕ−1(v)|.)
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5.3.4 The Mordell–Weil sieve

For each residue disk C(Zp)Q, if it contains a rational point then there exists
T ∈ J(Z(p))Q−b. Assuming we have generators of a subgroup of the Mordell–
Weil group that has the same image in J(Fp), as described in Remark 5.3.11,
the existence of T can be checked by a simple calculation in J(Fp). This
calculation can be thought of as a Mordell–Weil sieve [BS10, Sik15] at the single
prime p. The Mordell–Weil sieve is a more general technique that produces
information about congruence conditions of rational points for subvarieties of
abelian varieties.

To determine whether T exists, we consider the diagram

C(Z(p)) J(Z(p))

C(Fp) J(Fp)

AJb

α

β

. (5.3.4.1)

For Q ∈ C(Fp), if β(Q) is not in the image of α, then we say Q fails the
Mordell–Weil sieve (at p). In this case, the residue disk C(Zp)Q cannot contain
a rational point. Otherwise, Q passes the Mordell–Weil sieve (at p).

5.3.5 The Chabauty–Coleman method

We briefly outline the Chabauty–Coleman method for producing a finite set
of p-adic points C(Zp)CC ⊂ C(Zp) that contains the rational points C(Z(p)).
For more details and other perspectives on the method, we refer the reader to
[Col85c, Wet97, MP12].

Fix a basepoint b ∈ C(Z(p)) and consider the inclusion of the curve into the
Jacobian AJb : C(Zp) → J(Zp) via the Abel–Jacobi map. Coleman [Col85c,
Theorem 2.11] defined a p-adic integral on the curve C. The Coleman integral
on regular one-forms agrees with the logarithm on J(Zp)0 interpreted as a
p-adic Lie group via the equality J(Qp)0 = J(Zp)0. We recall some properties
of the logarithm here.

Remark 5.3.13. Much of the literature on formal groups and the logarithm
works with Qp-vector spaces. We will need results about Zp-modules. Most
results carry over; for details on the Zp-module case we reference [Spe20, Sec-
tion 3]; for the Qp-vector space case see [Hon70] or [Bou89, III §7].

Recall H0(JZp ,Ω
1
JZp

) is a free Zp-module of rank g. For any element j ∈ J(Zp),
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we have an element

log(j) :=
1

p

∫ j

0

∈ HomZp(H0(JZp ,Ω
1
JZp

),Qp), (5.3.5.1)

sending a differential ω to the logarithm 1/p
∫ j

0
ω. The resulting map log : j 7→

1/p
∫ j

0
is a homomorphism of abelian groups.

Remark 5.3.14. The value of the logarithm in (5.3.5.1) is defined to be 1/p
the value of the usual Coleman integral. We divide by p to renormalize: the

value
∫ j

0
ω is always divisible by p if j ∈ J(Zp)0.

Proposition 5.3.15 ([Spe20, Lemma 3.7]). Recall that we assume p > 2;
then the logarithm induces an isomorphism of abelian groups on the kernel of
reduction J(Zp)0

∼−→ H0(JZp ,Ω
1
JZp

)∨, where the dual is taken in the category

of Zp-modules.

Write m := Ann(J)(Fp) to denote the smallest positive integer such that m·j =

0 for all j ∈ J(Fp). In particular, the integral 1/p
∫ j

0
:= 1/p · (1/m ·

∫mj
0

) lands
in the submodule HomZp(H0(JZp ,Ω

1
JZp

), (1/Ann(J)(Fp)) · Zp).

As Ω1
JZp

is locally free,

log : JZ/pnZ(Z/pnZ)0 → H0(JZ/pnZ,Ω
1
JZ/pnZ

)∨ ⊗ Z/pn−1Z,

j 7→ 1/p

∫ j

0

is an isomorphism given by lifting j to Zp, taking log, then reducing modulo
pn−1. If |J(Fp)| is invertible in Zp, this even extends to a morphism

JZ/pnZ(Z/pnZ)→ H0(JZ/pnZ,Ω
1
JZ/pnZ

)∨ ⊗ Z/pn−1Z. (5.3.5.2)

Choosing a basis (ωi)
g
i=1 of H0(JZp ,Ω

1
JZp

) and dualizing, we get log : J(Zp)0 →
Zgp, reducing to log : J(Z/pnZ)0 → (Z/pn−1Z)g.

Fix a point R ∈ J(Fp). For j ∈ J(Zp)R, the logarithm log(j) has a con-
vergent power series expansion [Spe20, Lemma 3.7]. Let t1, . . . , tg be local
parameters of J at R and expand ωi(t1, . . . , tg) =

∑g
i=1 fi(t1, . . . , tg)dti, with

fi ∈ Zp[[t1, . . . , tg]].
By formally integrating, ωi has a unique local antiderivative gi on J(Zp)R such

that dgi = ωi and gi ∈ Qp[[t1, . . . , tg]] with constant term 0. Let R̃ ∈ J(Zp)R
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be the point where all ti vanish. We may then evaluate the power series at j
using the local parameters at R by

log(j) := (g1(t1(j), . . . , tg(j))/p, . . . , gj(t1(j), . . . , tg(j))/p)+ log(R̃). (5.3.5.3)

Remark 5.3.16. For computational purposes, it is easier to exploit the iso-
morphism AJ∗b : H0(C,Ω1

C) ' H0(J,Ω1
J). Then we may evaluate log(j) using

linearity of the logarithm and expanding in a local parameter on CZp at each
point. As C is one-dimensional over Z(p), we only need one parameter, see
[Bal15] for example.

Consider the inclusion of M into J(Zp). Let

V := {v ∈ H0(JZp ,Ω
1
JZp

) : 1/p

∫ m

0

v = 0 for all m ∈M}. (5.3.5.4)

Since rankZp H
0(JZp ,Ω

1
JZp

) = g but rankZpM = r′, we see V is a rank (g− r′)
Zp-module. Let B be a basis for V and let

v : HomZp(H0(JZp ,Ω
1
JZp

), (1/Ann(J)(Fp)) · Zp)→
1

Ann(J)(Fp)
Zg−r

′

p

denote the map ψ 7→ (ψ(ν))ν∈B . By construction, the map v vanishes on
log(j) for j ∈M .

Next consider the Abel–Jacobi embedding AJb : C(Zp)→ J(Zp) and the com-
position ΛCC := v ◦ log ◦ AJb. We get the following diagram:

M J(Zp) HomZp(H0(JZp ,Ω
1
JZp

), 1
Ann(J)(Fp) · Zp) ( 1

Ann(J)(Fp) ) · Zg−r′p

C(Zp)

0

AJb

log v

ΛCC

(5.3.5.5)

Definition 5.3.17. We define the Chabauty–Coleman set to be the following:

C(Zp)CC := Z(ΛCC) = {P ∈ C(Zp) : 1/p

∫ P−b

0

ν = 0 for all ν ∈ B}.

(5.3.5.6)
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Then AJb(C(Zp)) ∩M is contained in C(Zp)CC.

Lemma 5.3.18. Fix R = AJb(Q) ∈ J(Fp) with Q ∈ C(Fp). Let z̃ : C(Zp)Q
∼−→

Zp be given by a parameter z at Q, and denote by Qµ the element with image
µ. Then log(Qµ − b) can be expressed as f + c where f ∈ Zp〈µ〉g and c ∈
1/Ann(J)(Fp) · Zgp.

Proof. Write log(Qµ − b) = log(Qµ − Q0) + log(Q0 − b), and t1, . . . , tg for
parameters of J at 0. Then by [Spe20, Remark 2.3] the function µ 7→ t̃i(Qµ −
Q0) is given by a convergent power series in µ. Also, log : J(Zp)0 → Zgp consists

of g convergent power series in t̃1, . . . , t̃g. The composition of convergent power
series exists and is itself a convergent power series, so log(Qµ −Q0) ∈ Zp〈µ〉g.
By Proposition 5.3.15, the constant term log(Q0 − b) lives in 1/Ann(J)(Fp) ·
Zdp.

In practice, to compute C(Zp)CC, we must truncate the power series by work-
ing modulo pn for some n ∈ Z>0. The choice of n depends on the Newton
polygon of the power series: n must be large enough so that the truncated
power series has the same number of zeros as the original power series, allow-
ing us to Hensel lift the solutions of the truncated power series to Zp.
To compare the geometric linear Chabauty and Chabauty–Coleman methods,
we describe how the Chabauty–Coleman method works in a single residue
disk. We fix an Fp-point Q ∈ C(Fp), and assume Q passes the Mordell–Weil

sieve, i.e. J(Z(p))Q−b contains an element T . Since T ∈M , we know 1/p
∫ T
b
v

vanishes, so ker(v◦ log) = ker(v◦ log◦tr−T ). Then diagram (5.3.5.5), restricted
to this residue disk, becomes

MQ−b J(Zp)Q−b H0(JZp ,Ω
1
JZp

)∨ Zg−r′p

C(Zp)Q

0

AJb

log◦tr−T v

λQCC

(5.3.5.7)

where λQCC is now the composition v ◦ log ◦ tr−T ◦AJb. Note that log ◦ tr−T is
a bijection J(Zp)Q−b → H0(JZp ,Ω

1
JZp

)∨.



5.4. EXPLICIT GEOMETRIC LINEAR CHABAUTY MOD P 123

Unfortunately, the sequence

0→MQ−b
log◦tr−T ◦κ−−−−−−−→ H0(JZp ,Ω

1
JZp

)∨
v−→ Zg−r

′

p → 0

is not necessarily exact at the middle term. In fact, ker(v ◦ log) is the p-
saturation N0 of M0 inside J(Zp)0, by the following lemma.

Lemma 5.3.19. Let A be a free Zp-module of rank n, let B be a Zp-submodule
of rank m, and let v : A → Zn−mp be a full rank linear map vanishing on B.
Then ker v is the p-saturation of B.

Proof. By linearity of v, ker v contains the p-saturation of B. Comparing
dimensions, we see that (ker v) ⊗Zp Qp must equal B ⊗Zp Qp. Then ker v is
contained in (B ⊗Zp Qp) ∩A, which is exactly the p-saturation of B.

Applying Lemma 5.3.19 to A = J(Zp)0 and B = M0, we see ker(v◦log◦tr−T ) =
T +N0. That gives us the following corollary.

Corollary 5.3.20. Let Q be an Fp-point of C that passes the Mordell–Weil

sieve, with T ∈ J(Z(p))Q−b. Then Z(λQCC) is exactly the intersection (N0 +
T ) ∩ AJb(C(Zp)Q−b) pulled back along AJb.

5.4 Explicit Geometric linear Chabauty mod p

We outline a practical method for doing explicit geometric linear Chabauty
modulo p using Coleman integration. Previously, in [Spe20], this was done by
using the birationality of the map Symg C → J given by subtracting a generic
degree g divisor, and using the Khuri-Makdisi representation of elements of the
Jacobian ([KM04]), where elements of the Jacobian are represented as certain
submodules of Riemann–Roch spaces. This approach of using the birationality
of the map Symg C → J is taken in [EL21] for geometric quadratic Chabauty
as well.

The advantage of using Coleman integration is that the map J(Z/p2Z)0 →
Fgp can be made much more explicit, making the computations simple linear
algebra. In what follows, we describe this map and give examples of the
method.

The logarithm is linear modulo p for p > 2 [Spe20, Lemma 3.7] (when p = 2 the
logarithm is not necessarily linear modulo p, hence we exclude this case). We
choose parameters for J(Z/p2Z)0 and a Zp-basis of H0(JZp ,Ω

1
JZp

). Then again
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by [Spe20, Lemma 3.7] the reduction modulo p of the logarithm, i.e. the map
log : Fgp → Fgp, is an isomorphism of vector spaces over Fp, allowing us to carry
out the methods in Section 5.3.2. For example, the vector in Fgp corresponding

to j ∈ J(Z/p2Z)0 is (1/p
∫ j

0
ωi)

g
i=1. This translates linear algebra in a vector

space J(Z/p2Z)0 of dimension g where addition is difficult, to linear algebra
in Fgp. This is the final step needed to perform geometric linear Chabauty
modulo p.

5.4.1 Examples

Example 5.4.1. Let C/Z(5) be (the smooth projective model of) the genus 2
curve (LMFDB label 10989.a.10989.1) given by

y2 = x5 + x3 + x2 + 1/4

with Mordell–Weil rank 1. Then C has the known rational points

C(Z(5))known = {∞ = (1 : 0 : 0), P1 = (0 : −1/2 : 1), P2 = (0 : 1/2 : 1)}.

The Mordell–Weil group of J is isomorphic to Z and generated by P1 −∞.

Let p = 5. Over F5 we have the points

C(F5) = {(1 : 0 : 0), (0 : 2 : 1), (0 : 3 : 1)}.

At the finite non-Weierstrass residue disks corresponding to the points P 1 =
(0 : 2 : 1) and P 2 = (0 : 3 : 1), we have the local parameter x giving isomor-
phisms C(Z/52Z)P i

∼−→ 5Z/52Z. At the infinite point, the local parameter is

t = x2/y. We identify J(Z/52Z)0 with F2
5 by choosing the basis of differentials

ω0 = dx/y, ω1 = xdx/y, then applying log : j 7→ (1/5
∫ j

0
ω0, 1/5

∫ j
0
ω1).

Consider the residue disk C(Z5)P 1
: our goal is to show there is only one

point in this disk (and each other disk). We start by computing M0. Since
P1 − ∞ generates the Mordell–Weil group, computing M0 is equivalent to
finding the smallest n such that n(P1−∞) = 0 in J(F5). We find n = 15, that
is, m = 15(P1 −∞) generates M0. A simple calculation with tiny Coleman
integrals shows that logm = (3, 1) ∈ F2

5. That automatically means that
the map M0 → J(Z5)0 is of good reduction, and M0 is the F5-vector space
generated by (3, 1).

By specializing λ = 0 and λ = 1 we see that DP 1
⊂ J(Z/52Z)0 is generated

by d = (5 : −1/2 : 1)− (0 : −1/2 : 1) and logd = (4, 0).

https://www.lmfdb.org/Genus2Curve/Q/10989/a/10989/1
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Now the matrix A representing the map ϕ : DP 1
⊕M0 → J(Z/52Z)0 is(

4 3
0 1

)
.

As A is invertible, |ϕ−1(v)| = 1. Hence, by (5.3.3.2) the only rational point in
the residue disk of P1 is P1 itself. Using the hyperelliptic involution, we see
the same holds for P2.

For the point ∞, we carry out a similar calculation. We change our basepoint
to ∞, allowing us to again work in J(Z/52Z)0 = F2

5. Then D∞ is generated
by d′ = (1 : 5 : 0) − (1 : 0 : 0) and logd′ = (0, 4). So we again conclude that
the only rational point in the residue disk containing ∞ is ∞.

As we have now treated all three residue disks, we have proven

CQ(Q) = {(1 : 0 : 0), (0 : −1/2 : 1), (0 : 1/2 : 1)}.

Example 5.4.2. Let C/Z(3) be (the smooth projective model of) the genus 2
curve (LMFDB label 29395.a.29395.1) given by the equation

y2 + (x2 + x+ 1)y = x5 − x4 + x3

with Mordell–Weil rank 1. Then C has known rational points

C(Z(3))known = {∞ = (1 : 0 : 0), (0 : 0 : 1), (0 : −1 : 1)}.

The Mordell–Weil group is J(Z(p)) ' Z and is generated by d := (0 : −1 :
1)−∞.

Let p = 3, then C(F3) is

{(1 : 0 : 0), (0 : 0 : 1), (0 : 2 : 1), (1 : 1 : 1), (1 : 2 : 1), (2 : 0 : 1), (2 : 2 : 1)}.

In this example we show how to rule out some of the residue disks that do not
contain rational points using geometric linear Chabauty.

For each residue disk C(Z3)Q not containing a known rational point, using
arithmetic in J(F3) we are able to find T := md such that T ∈ J(Z(3))Q−∞.

The order of d in J(F3) is 29 so m < 29. Since all Q ∈ C(F3) pass the
Mordell–Weil sieve, we proceed to compute the matrix A for each Q.

First we compute M0, which does not depend on Q. To do this, we compute
log(29d) = (2, 2) ∈ F2

3.

https://www.lmfdb.org/Genus2Curve/Q/29395/a/29395/1
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Then, for each residue disk C(Z3)Q without a known rational point, we will
compute the one-dimensional subspace DQ. To do this, we lift Q in two
different ways Q1 and Q2 to finite precision, and then take the tiny Coleman
integral log(Q1 −Q2).

Q m Q1 Q2 log(Q1 −Q2)
(1 : 1 : 1) 20 (1 +O(33) : 4 +O(33) : 1) (4 +O(33) : 1 +O(33) : 1) (0, 2)
(1 : 2 : 1) 9 (1 +O(33) : 20 +O(33) : 1) (4 +O(33) : 5 +O(33) : 1) (0, 1)
(2 : 0 : 1) 16 (2 +O(33) : 6 +O(33) : 1) (5 +O(33) : 6 +O(33) : 1) (2, 2)
(2 : 2 : 1) 13 (2 +O(33) : 14 +O(33) : 1) (5 +O(33) : 17 +O(33) : 1) (1, 1)

Table 5.1: Values for DQ

For the F3-points, (2 : 0 : 1) and (2 : 2 : 1), we see modulo 3 thatM0 and DQ

give determinant zero matrices:

A(2:0:1) =

(
2 2
2 2

)
, A(2:2:1) =

(
2 1
2 1

)
.

We check whether for v = Q1 −∞ −md, the vector logv is in the image of
AQ. For (2 : 0 : 1) we have logv = (−3 +O(32),−2 +O(32)) and for (2 : 2 : 1)
we have logv = (O(32), 2 +O(32)). Therefore by (5.3.3.2) neither residue disk
can contain a Z(3)-point.

However, for (1 : 1 : 1) and (1 : 2 : 1), we see that AQ is invertible:

A(1:1:1) =

(
2 0
2 2

)
, A(2:2:1) =

(
2 0
2 1

)
.

Hence geometric linear Chabauty modulo 3 shows that there is at most one
rational point in each of the two corresponding residue disks.

It is possible to show that there are no rational points in these residue disks,
for example using a Mordell–Weil sieve at strategically chosen primes ` 6= 3.

In the previous pair of examples, the geometric linear Chabauty method and
Chabauty–Coleman method find the same set of 3-adic points, i.e. C(Z3)CC =
C(Z3)GLC. In the following example we show this is not always the case. We
will study the differences between the two methods in the final section.

Example 5.4.3. Let C/Z(3) be (the smooth projective model of) the genus 2
curve (LMFDB label 9470.a.37880.1) given by the equation

y2 + xy = x5 + 2x4 + 4x3 + 4x2 + 3x+ 1

https://www.lmfdb.org/Genus2Curve/Q/9470/a/37880/1
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with Mordell–Weil rank 1. Then C has the known rational points

C(Z(3))known = {(1 : 0 : 0), (0 : −1 : 1), (0 : 1 : 1)}.

But

C(F3) = {(1 : 0 : 0), (0 : 1 : 1), (0 : 2 : 1), (1 : 0 : 1), (1 : 2 : 1), (2 : 2 : 1)}.

The Mordell–Weil group of J is isomorphic to Z, generated by d := (0 : −1 :
1) − (1 : 0 : 0). In J(F3), d has order 11. Sieving, we find the only residues
c ∈ C(F3) such that there exists m ∈ Z such that c−∞ = md are the images
of rational points under the reduction map.

In their corresponding residue disks, the geometric linear Chabauty method
only finds one solution, so C(Z3)GLC = C(Z(3))known = C(Z(3)).

However, the Chabauty–Coleman method finds the rational points along with
the p-adic points

{(2+3+32+2·33+2·34+35+36+O(37) : 2+2·32+33+34+2·36+O(37) : 1),

(1 + 2 · 32 + 2 · 33 + 2 · 34 + 36 +O(37) : 2 · 3 + 33 + 2 · 35 +O(37) : 1),

(1 + 2 · 32 + 2 · 33 + 2 · 34 + 36 +O(37) : 2 + 2 · 33 + 2 · 34 + 2 · 35 +O(37) : 1)}.

One of the 3-adic points lies in a Weierstrass disk. Since it is the only point
in its disk and is fixed by the hyperelliptic involution, the point is 2-torsion,
while the other two points do not readily have explanations for being in the
Chabauty–Coleman set (in particular, they are not torsion in J(Z3) and not
recognizably algebraic).

5.5 Comparison

Throughout this section, Q still denotes a point in C(Fp) and T still denotes
a point in J(Z(p))Q−b (i.e., we assume Q passes the Mordell–Weil sieve at p,
see Section 5.3.4).

To compare the geometric linear Chabauty and Chabauty–Coleman methods,
we first recall some notation in the following commutative diagram, which is
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the union of the diagrams (5.3.2.1) and (5.3.5.7):

0

Zg−1
p

0 MQ−b J(Zp)Q−b H0(JZp ,Ω
1
JZp

)∨ Zg−r′p

C(Zp)Q

0

κ

f

AJb

log◦tr−T v

λQGLC

λQCC

(5.5.0.1)
where we recall

• the maps κ and f are defined as in diagram (5.3.2.1);

• AJb : C(Zp)Q → J(Zp)Q−b is the Abel–Jacobi embedding at b ∈ C(Z(p));

• the map v is given by g− r′ linearly independent Coleman integrals that
vanish on M ;

• and log : J(Zp)0
∼−→ H0(JZp ,Ω

1
JZp

)∨ is given by the (normalized) Cole-

man integral log : x 7→ (ω 7→ 1/p
∫ x

0
ω).

Now we can give a comparison theorem for the geometric linear Chabauty and
Chabauty–Coleman methods.

Theorem 5.5.1. Let C(Zp)GLC and C(Zp)CC be the finite subsets of C(Zp)
defined in Definition 5.3.6 and Definition 5.3.17. We have the inclusions

C(Z(p)) ⊆ C(Zp)GLC ⊆ C(Zp)CC.

Furthermore, for any point R ∈ C(Zp)CC \C(Zp)GLC, one of the following two
conditions holds:

1. the point R fails the Mordell–Weil sieve at p, i.e. the image of R− b in
J(Fp) is not contained in the image of M in J(Fp);

2. or for T ∈ J(Z(p))R−b, the element log(R − b − T ) is not in the Zp-

submodule logM0 of H0(JZp ,Ω
1
JZp

)∨, only in its p-saturation logN0.
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Proof. We may prove this disk-by-disk. Suppose Q ∈ C(Fp) fails the Mordell–

Weil sieve. Then MQ−b = Z(λQGLC) = ∅, and so Item 1 holds.

Otherwise, we can find T ∈ J(Z(p))Q−b. Then, by Proposition 5.3.5, we know

Z(λQGLC) = (M0 + T ) ∩ AJb(C(Zp)Q−b)

and by Corollary 5.3.20 we know

AJb(Z(λQCC)) = (N0 + T ) ∩ AJb(C(Zp)Q−b).

So we see that R − b belongs to AJb(Z(λQCC)) − κ(Z(λQGLC)) if and only if
log ◦ tr−T (R− b) = log(R− b− T ) is in logN0 \ logM0. (As any two choices of
T differ by an element of M0, this statement is choice-independent.)

Remark 5.5.2. In the case of good reduction of the Mordell–Weil group, the ob-
struction Item 2 cannot occur, as then by definition M0 is its own p-saturation.

Corollary 5.5.3. If p - |J(Fp)|, then Theorem 5.5.1 Item 2 is equivalent to
log(R− b) not lying in the submodule logM of H0(JZp ,Ω

1
JZp

)∨.

Proof. Recall from Proposition 5.3.15 that the isomorphism log : J(Zp)0 →
H0(JZp ,Ω

1
JZp

)∨ extends to a map log : J(Zp) → m−1H0(JZp ,Ω
1
JZp

)∨ where

m = Ann(J)(Fp), by sending x to log(mx)/m. Under the condition p - |J(Fp)|,
we see that m is a p-adic unit, so the logarithm extends to a map log : J(Zp)→
H0(JZp ,Ω

1
JZp

)∨. Hence logM0 = logM as submodules of H0(JZp ,Ω
1
JZp

)∨. As

logT is an element of logM , we conclude that log(R−b−T ) not lying in logM0

is equivalent to log(R− b) not lying in logM .

Hence the geometric method is theoretically strictly better. However, de-
pending on the curve and the level of precision needed, the geometric linear
Chabauty method can be tricky to execute; the best known method for ex-
pressing λQGLC as polynomials modulo some power of p uses interpolation, then
one has to solve multiple power series in r variables. Sometimes one can use
the implicit function theorem for power series [Haz12, Proposition A.4.5] to
reduce to fewer variables, but in general this can be an arduous task. Hence
in practice, we advise the following adjustment of the Chabauty–Coleman
method.

Algorithm 5.5.4.

1. Calculate S := C(Zp)CC using the Chabauty–Coleman method.
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2. Let (Ei)
r′

i=1 ∈ J(Z(p)) be a set of topological generators of M0 and (ωj)
g
j=1

a basis of H0(JZp ,Ω
1
JZp

).

3. Calculate logEi = (1/p
∫ Ei

0
ωj)

g
j=1 ∈ Zgp for i = 1, . . . , r′.

4. For R ∈ S, remove R from S if it does not pass the Mordell–Weil sieve
at p.

5. For R ∈ S, let T ∈ J(Z(p))R−b. If log(R − b − T ) is not a Zp-linear

combination of (logEi)
r′

i=1, remove R from S.

6. Return S.

From the previous discussion, we have the following theorem.

Theorem 5.5.5. Algorithm 5.5.4 computes AJb(C(Zp)) ∩M .

Proof. This is immediate from Theorem 5.5.1 and Proposition 5.3.5.

Remark 5.5.6. Note that Step 4 in Algorithm 5.5.4 executes a Mordell–Weil
sieve at the single prime p on top of the usual Chabauty–Coleman method.
The Mordell–Weil sieve is often used in combination with Chabauty–Coleman
to sieve out extra p-adic points that are not rational. For example, the im-
plementation of Chabauty–Coleman in Magma for genus 2 curves based on
[BS10, Section 4.4] executes the Chabauty–Coleman method to find C(Zp)CC

and then runs a Mordell–Weil sieve at a set of primes {`1, . . . , `n} to try to
determine C(Z(p)) = CQ(Q). This is a more extensive Mordell–Weil sieve than
the one used in Algorithm 5.5.4. In practice, for the genus 2 curves in Exam-
ple 5.4.1, Example 5.4.2, and Example 5.4.3, Magma determines C(Z(p)) in a
fraction of a second.

The points removed in Step 5 pass a Mordell–Weil sieve at p, but are ruled out
by Theorem 5.5.1 Item 2. They may fail a Mordell–Weil sieve at some other
prime ` 6= p.

In Theorem 5.5.1 there are two obstructions to the Chabauty–Coleman method
calculating AJb(C(Zp)) ∩M exactly. We give two examples that show these
both occur, and where geometric linear Chabauty outperforms Chabauty–
Coleman. In light of Remark 5.5.6, we turn our attention to genus 3 curves.

The following examples were computed in Magma and Sage. The code is
available at the repository [HS].

Example 5.5.7. Let C/Z(5) be the (smooth projective model of) the genus 3
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curve given by the equation

y2 = 4x7 − 12x6 + 16x5 − 12x4 + 4x3 + 4x2 − 4x+ 1

taken from a database of genus 3 hyperelliptic curves over Q [Sut] computed
using the methods in [BSS+16]. According to computations with the fake 2-
Selmer group done by the method RankBounds in Magma, the Mordell–Weil
rank of J is 2.

Computing the Chabauty–Coleman set with p = 5 we find

C(Z5)CC = {∞ = (1 : 0 : 0), (0 : −1 : 1), (0 : 1 : 1), (1 : −1 : 1), (1 : 1 : 1),

W := (2 + 5 + 52 + 2 · 53 + 4 · 54 + 4 · 55 + 3 · 56 +O(56) : O(56) : 1)

R1 := (4 + 3 · 5 + 2 · 52 + 3 · 54 + 3 · 55 +O(56) : 4 + 2 · 5 + 4 · 53 + 54 + 4 · 55 +O(56) : 1)

R2 := (4 + 3 · 5 + 2 · 52 + 3 · 54 + 3 · 55 +O(56) : −(4 + 2 · 5 + 4 · 53 + 54 + 4 · 55 +O(56)) : 1)

R3 := (3 + 5 + 2 · 52 + 4 · 53 + 4 · 54 + 4 · 55 +O(56) : 3 + 5 + 53 + 2 · 55 +O(56)+ : 1)

R4 := (3 + 5 + 2 · 52 + 4 · 53 + 4 · 54 + 4 · 55 +O(56) : −(3 + 5 + 53 + 2 · 55 +O(56)) : 1)}.

Then W is a Weierstrass point, and therefore gives rise to a 2-torsion point
in J , but the Ri are not readily recognizable. We can verify by computing
Coleman integrals that they are not torsion in J(Z5). However, the geometric
linear Chabauty method rules out the residue disks of the Ri.

We first compute

C(F5) ={(1 : 0 : 0), (0 : 4 : 1), (0 : 1 : 1), (1 : 4 : 1), (1 : 1 : 1),

(2 : 0 : 1), (4 : 4 : 1), (4 : 1 : 1), (3 : 3 : 1), (3 : 2 : 1)}.

In general, one does not always have computational access to generators of
the Mordell–Weil group of a genus 3 curve. However, this is not needed; see
Remark 5.3.11. Instead, we can consider the set of differences of pairs of known
rational points inside the Mordell–Weil group. Computing the canonical height
pairing of each of the set of differences themselves, we look for the elements
with the smallest canonical height (using code from [Sto17]); let G1 := (0 : 1 :
1)−∞ and G2 := (1 : 1 : 1)−∞. We can check that G1 and G2 are linearly
independent by computing that their logarithms are linearly independent. Let
H be the subgroup of the Mordell–Weil group generated by G1 and G2. We
cannot always expect H is equal to the full Mordell–Weil group J(Z), but by
Remark 5.3.11 it is enough for H to be saturated at 5 and the primes dividing
|J(F5)| = 340.

To check whether H is saturated at a given prime `, we compute the kernel of



132 CHAPTER 5. GEOMETRIC LINEAR CHABAUTY

the map

G/`G→
∏
q

J(Fq)/`J(Fq)

where q runs over some small primes such that ` | |J(Fq)| and check if this
kernel is trivial [Sto17, Section 12] (using code from [MS]). If the kernel is
not trivial, then we cannot apply geometric linear Chabauty, but if we suspect
G is equal to M , then in practice, this verification step terminates almost
instantaneously.

We construct the following subgroup of J(F5):

H :=
〈
G1, G2

〉
.

This allows us to sieve at 5 by intersecting with the image of C(F5)

H ′ := {c : c ∈ C(Fp) and (c−∞) ∈ H} = {(1 : 0 : 0), (0 : ±1 : 1), (1 : ±1 : 1)},

showing that only the reductions of the Z(5)-points modulo 5 do not fail the
Mordell–Weil sieve.

The Chabauty–Coleman method finds points in residue disks corresponding
to the F5-points {(2 : 0 : 1), (4 : 4 : 1), (4 : 1 : 1), (3 : 3 : 1), (3 : 2 : 1)}, which
are ruled out by this test.

The extra points Ri and W found by the Chabauty–Coleman method but not
the geometric linear Chabauty method are torsion in J(Z5)/M but do not lie
in M .

Example 5.5.8. Finally, we give an example of Theorem 5.5.1 Item 2 where M
does not have good reduction, and the Chabauty–Coleman set contains extra
points R such that log(R − b) is not in logM , only in its p-saturation. These
extra points pass the Mordell–Weil sieve but are ruled out by the geometric
linear Chabauty method.

Let C/Z(3) be (the smooth projective model of) the genus 3 curve

y2 = x7 − 3x6 + 5x5 − 5x4 + 3x3 − x2 + 1/4

taken from a database of genus 3 hyperelliptic curves over Q [Sut] computed
using the methods in [BSS+16].

The points up to height 1000 are

C(Z(3))known :=

{(1 : 0 : 0), (0 : −1/2 : 1), (0 : 1/2 : 1), (1 : −1/2 : 1), (1 : 1/2 : 1)}.
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According to computations with the fake 2-Selmer group done by the method
RankBounds in Magma, the Mordell–Weil rank of J is 2.

The Chabauty–Coleman method produces the set

C(Z3)CC =

{(1 : 0 : 0), (0 : −1/2 : 1), (0 : 1/2 : 1), (1 : −1/2 : 1), (1 : 1/2 : 1),

R1 := (2 + 33 + 2 · 34 + 2 · 37 +O(38) : 1 + 3 + 2 · 34 + 2 · 35 + 2 · 36 +O(38) : 1),

R2 := (2 + 33 + 2 · 34 + 2 · 37 +O(38) : −(1 + 3 + 2 · 34 + 2 · 35 + 2 · 36 +O(38)) : 1)}.

However, we will use geometric linear Chabauty modulo p = 3 to show that
the residue disks over the reductions Ri do not contain any rational points.
We consider the residue disk over R1 = (2 : 1 : 1); the other will follow by
the hyperelliptic involution. Using Magma, we can check the residue disk of
the Mordell–Weil group over R1 − b is non-empty, and we can even find an
explicit T ∈MR1−b, namely T := 73((1 : 0 : 0)− (0 : −1 : 1)).

Similar to the previous example, as per Remark 5.3.11, we compute G1 := (0 :
1/2 : 1) − ∞ and G2 := (1 : 1/2 : 1) − ∞ generating a subgroup H of the
Mordell–Weil group, and verify that H is saturated at the single prime p = 3.
Since R1 passes the Mordell–Weil sieve at 3, we do not have to check H is
saturated at any other primes.

To compute M0, we find a basis 〈G̃1 := −6G1 − 4G2, G̃2 := −10G1 + 11G2〉
for the kernel of reduction modulo 3, and compute

log(G̃1) = (2, 1, 1)

log(G̃2) = (2, 1, 1)

in F3
3. The map M0/3M0 → J(Z/32Z)0 has a 1-dimensional kernel generated

by G̃1 − G̃2, so M0 has bad reduction.

By lifting R1 in two different ways, Q1 and Q2, and taking a tiny integral,
we compute that the subspace DQ = 〈Q1 −Q2〉 is spanned by the vector
log(Q1 − Q2) = (2, 1, 2) in F3

3. Finally, log(v) = log(Q1 −∞− T ) = (2, 2, 1).
Altogether, we have computed the determinant zero matrix

A(2:1:1) =

2 2 2
1 1 1
1 1 2


representing the linear map ϕ : DQ ⊕M0 → J(Z/3Z)0. Since log(v) is not in
the image of this matrix, the residue disk over R1 does not contain any rational
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points. Furthermore, applying the hyperelliptic involution to the calculations,
we can also rule out the residue disk of R2 from containing rational points.

Hence C(Z3)GLC = C(Z(3)) = C(Z(3))known does not contain R1 and R2.
Another way to see this, by Corollary 5.5.3, which is applicable as |J(F3)| =
2 · 53, is to compute the following integral

log(R1 −∞)

= (2 + 2 · 3 + 2 · 32 +O(33), 2 + 3 +O(33), 1 + 2 · 3 + 2 · 32 +O(33));

we see that reduced modulo 3, this is not in the span of the reductions modulo
3 of log(G̃1) and log(G̃2). We can compute that, truncated to 5 digits of
precision, we have

log(R1 −∞) = (2 · 3−1 + 2 + 34 +O(35))log(G̃1)+

(3−1 + 1 + 3 + 32 + 2 · 33 + 2 · 34 +O(35))log(G̃2),

further explaining why this point is found by the Chabauty–Coleman method
but not by geometric linear Chabauty, since R1 −∞ lies in the 3-saturation
of M inside J(Z3), but not in M itself.


