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Chapter 4

Logarithmic cohomological field
theories

This chapter has already appeared as a preprint [Spe22]. This is joint work
with David Holmes.

Abstract. We introduce a new logarithmic structure on the moduli stack
of stable curves, admitting logarithmic gluing maps. Using this we define
cohomological field theories taking values in the logarithmic Chow cohomology
ring, a refinement of the usual notion of a cohomological field theory. We
realise the double ramification cycle as a partial logarithmic cohomological
field theory.

4.1 Introduction

4.1.1 Background

Cohomology classes on the moduli space of curves are the central object of
study in Gromov-Witten theory. One of the most important structures such
cohomology classes can carry is that of a cohomological field theory (CohFT),
introduced in the 1990s by Kontsevich and Manin [KM94] to capture the
formal properties of the virtual fundamental class in Gromov-Witten theory.
A collection of classes forms a CohFT if they are compatible with pulling back
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66 CHAPTER 4. LOG COHOMOLOGICAL FIELD THEORIES

along the gluing maps

M917n1+1 X Mgz,n2+1 - M91+92,n1+n2’
Mgfl’n+2 — Mg,n.

(see [Pan18] for a precise definition). CohFT structures have allowed for the
computation of many interesting tautological classes (see e.g. [PPZ15, Panl18]),
often via the Givental-Teleman classification of semisimple CohFTs, and Co-
hFTs form a bridge between algebraic geometry and integrable hierarchies (see
e.g. [DZ01, BR21)).

In recent years enhancing Gromov-Witten theory with additional data coming
from logarithmic (log) geometry [Chel4, AC14, GS13] is becoming increasingly
important; this allows one to capture tangency conditions (recent examples in-
clude [BN22, RK23, v(G23]), and plays a key role in degeneration arguments
[ACGS20a, KLR18, Ranl19]. Log Gromov-Witten invariants live most natu-
rally in the log Chow ring of the moduli space of (stable) log curves; this is the
colimit over log blowups of the moduli space (equivalently, iterated blowups
in boundary strata), see Section 4.2.3 for a precise definition of this ring, and
[MPS21, HMP*22, MR21, HS22b] for examples and applications.

4.1.2 Logarithmic gluing maps

So far there is no notion of a cohomological field theory for classes in the
log Chow ring, because there is no simple theory of log gluing maps between
moduli spaces of log curves. We resolve both these problems, and give three
examples of the resulting ‘log cohomological field theories’ (one is only ‘partial’;
it does not satisfy the loop axiom).

To equip log curves with gluing maps, we make a simple change: we require
that the marked points of the log curves are logarithmic sections, rather than
just sections on the underlying schemes (see Definition 4.3.1 for details). We
call these log pointed curves, and write M;ﬁn for the stack of stable log pointed
curves.

Theorem F. The stack M;tm of stable log pointed curves is an algebraic stack
with log structure. It admits a forgetful log map to the stack Mg, of stable
curves. This map is an tsomorphism on underlying algebraic stacks - it only

changes the log structure. There are log gluing maps

st

. st st
gl Mgh"l-‘rl x Mgzﬂlz-‘rl - M91+g27"1 +ngo

. st st
gl: ML, ., — M.
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compatible with the usual gluing maps on Hg,n.

Remark 4.1.1. The theory of punctured log curves [ACGS20b], [Gro23] con-
structs gluing maps between spaces of punctured log curves, and indeed our
log pointed curves admit canonically the structure of punctured log curves
(see Section 4.3.2). However, the stacks of punctured log curves are larger and
more complex than ours, and the analogue of a CohFT in this context is not
clear to us.

4.1.3 Examples of log CohFTs

The gluing maps of Theorem F now allow us to define the notion of (partial) log
CohFT: a system of classes in LogCH(M,,) for every g, n with 29 —2+n > 0,
compatible with the gluing maps and the forgetful maps M;t’n 11— MZEH; see
Section 4.6 for the precise definition.

Every CohFT trivially gives rise to a log CohFT, but we give a number of
examples that do not arise in this way.

4.1.3.1 First examples: Minimal log CohFTs

Pandharipande and Zvonkine [PZ19] give examples of CohFTs coming from so-
called minimal classes in CH*(M,,,); a minimal class is a class that vanishes
under pullback along all gluing maps with target MM. This CohFT is con-
structed so that v is one of the values it takes. Their construction immediately
generalises to our setting, and given a minimal class v in LogCH" (M, ), one
obtains a log CohFT taking the value v for a certain input. In Section 4.6.1.1
and Section 4.6.1.2 we give examples of minimal classes in LogCH"(Ms',,) \

CH*(Mg,,), and hence of log CohFTs that are not CohFTs.

4.1.3.2 The log double ramification cycle as a log CohFT

Given a vector of integers a = (a1, . .., a,) summing to zero, the double rami-
fication cycle DR4(a) on M, ,, measures the locus where the divisor ), a;p; is
linearly equivalent to O (here py,...,p, are the n sections of the curve). For-

mal definitions were given in [GV03], [Hol21], [MW20], via the Gromov-Witten
theory of rubber maps, using birational geometry, and using log geometry, re-
spectively. These equivalent constructions in fact naturally yield a slightly
more refined object, the log double ramification cycle, which lies on a blowup
of My, (the usual double ramification cycle is obtained by pushing forward
to Mg,n). This blowup is not canonical, but the resulting class is independent
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of the choice in the sense that the pullbacks to any common refinement will
coincide. In [HPS19, §9], we used this to define the log double ramification
cycle LogDR,,(a) in the log Chow ring

LogCHyps(Myn) = colim CH*(Y), (4.1.3.1)
YeBI(Mg,n)

where the colimit runs over smooth log blowups of ﬂgyn. The log double
ramification cycle is shown to be tautological in [MR21] and [HS22b], and an
explicit formula is given in [HMP¥22], inspired by Pixton’s formula as proven
in [JPPZ17]. Other applications can be found in [MPS21], [RK23].

In [BR21] it is proven that the double ramification cycle forms a partial co-
homological field theory (a cohomological field theory that fails to satisfy the
loop axiom). Our second main theorem is a generalisation of the result to the
log double ramification cycle. In Definition 4.4.5 we construct a further lift
of LogDR,(a), to the log Chow ring of the stack of log pointed curves. Con-
structing the latter ring is actually slightly subtle. The stacks Mg,n have a
simple log structure; it is the divisorial log structure coming from the boundary.
In particular, all their log blowups are birational, and can be dominated by
smooth log blowups. In contrast, the stacks M, have generically non-trivial
log structure (in fact, the log structure has generic rank n, and the associated
line bundles are obtained by pulling back the relative dualising sheaf of the
curve along the corresponding marking). This means that log blowups of the
spaces Mztn can have quite complicated shapes; in particular, they need not
be birational maps. A refined theory of log Chow rings that applies to such
stacks is under development by Barrott [Barl9], but for the convenience of
the reader we give in Section 4.2.3 a simplified definition, and in Section 4.8 a
comparison to Barrott’s construction.

With this theory in hand, in Section 4.7 we prove that this lift of LogDR,,(a)
to LogCH(MS',,) forms a partial log CohFT.

Theorem G (Theorem 4.7.10). For g,n with 29 —2+n >0, let 7: M5, —

Mg denote the forgetful map. For a sequence of integers (as,...,a,) € Z",
let LogDR(a) € LogCH(M',,) denote n* LogDR(a) with the convention that
LogDR(a) =0 if >, a; # 0. Then the collection

(LogDR ,,)2g—24n>0

forms a partial log CohF'T.



4.2. CONVENTIONS 69

4.1.4 Evaluation maps

Our definition of log pointed curves also allows us to define logarithmic evalu-
ation maps, see Section 4.3.3. In Gromov-Witten theory, the evaluation map
Myn(X,8) — X™ from the moduli of stable maps to X to the product X" is
necessary for the definition of Gromov-Witten invariants. For the log moduli

space ﬂ';i(X , ) defined in [GS13] (where 8 now also encodes tangency con-

ditions), there is an evaluation map M;i(X ,8) = X" that is not logarithmic.
This makes it difficult to relate the log Chow theory of the target space X to
any log Gromov-Witten invariants. One possible fix is explored in [RK23],
using removal of log structure. Another possible fix is explored in [ACGS20b],
where the evaluation map is made logarithmic by changing the log structure
on the source.

In our language, the sections p; : S — C' are already logarithmic, so we get log
evaluation maps for free. We explore this in Section 4.3.3. A comparison of
these approaches will be given in forthcoming work of the first-named author
with Leo Herr.

4.1.5 Tropical analogue

In Section 4.9 we give a tropical version of this story. In particular we give in
Definition 4.9.3 a tropical analogue of log pointed curves. In Section 4.9 we
define tropical gluing maps between moduli spaces of tropical pointed curves,
and tropical evaluation maps. This appendix can be read independently from
the rest of the paper.

4.1.6 Acknowledgements

We are grateful to Leo Herr, Alessandro Giacchetto and Nitin Chidambaram
for helpful discussions, to Mark Gross for sharing an early version of [ACGS20b],
and to Dan Abramovich for suggesting the pierced log structures introduced
in Section 4.5, which significantly streamlined the gluing procedure. We are
especially thankful to Johannes Schmitt for very careful feedback on an earlier
draft.

4.2 Conventions

Everywhere except Section 4.5 we work in the category LogSch of fs log schemes
over a fixed base log scheme. In Section 4.4, Section 4.6, Section 4.7 and
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Section 4.8 we take the base log scheme to be a point with trivial log struc-
ture, in order to have well-behaved Chow rings. In Proposition 4.4.6 and
Section 4.6.1.2 we furthermore assume we are in characteristic 0.

4.2.1 Log stacks

Definition 4.2.1. A log algebraic space (or log algebraic stack) is an algebraic
space (or algebraic stack) equipped with an (fs) log structure. If a fibred
category X/ LogSch is represented by a log algebraic stack, we write X for the
underlying algebraic stack.

Definition 4.2.2. A log stack is a stack in groupoids over LogSch,, for the
strict étale topology, admitting a log étale cover by an algebraic stack with
log structure, and with diagonal representable by algebraic spaces with log
structure.

Remark 4.2.3. Examples of log stacks include:

e any algebraic stack with log structure (in which case the cover can be
taken strict);

e the log and tropical multiplicative groups Giog and Gerop;

e the log and tropical Picard groups of Molcho and Wise [MW22].

4.2.2 Log Curves

Following [Kat00], a log curve is a morphism of log algebraic spaces m: C' —
S that is proper, integral, saturated, log smooth, and has geometric fibers
which are reduced, connected and of pure dimension 1. Kato proves that the
locus where C' — S is not vertical is (Zariski-locally on S) a disjoint union of
schematic sections; however, these do not in general admit lifts to logarithmic
sections. Our notion of a pointed log curve imposes such lifts.

More formally, an n-pointed log curve is a tuple

(ﬂ—: C_>S7p1>"‘7pn) (4221)

where 7: C' — S is a log curve, and p;: S — C is a map of algebraic spaces,
such that C/S is vertical at a point ¢ € C if and only if ¢ does not lie in the
image of some p;.

We denote the moduli space of n-pointed genus g log curves by 9, ,,, and the
substack of stable log curves by M, ,,. The underlying algebraic stacks 9, ,
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and ﬂgyn are respectively the moduli space of n-pointed genus g curves and
the moduli space of stable n-pointed genus g curves, with log structure given
by the normal crossings boundary divisor.

4.2.3 Log Chow rings

Throughout this subsection we work over a point with trivial log structure.
For a smooth DM stack X locally of finite type, we write CH*(X) for the Chow
ring of algebraic cycles modulo rational equivalence, in the sense of [Vis89)].

The log Chow ring of a smooth log smooth DM stack X was introduced in
[HPS19, §9]. We considered the category of smooth log blowups ¥ — X,
and given two such models f: Y7 — Y5 we have (by smoothness) a Gysin
pullback f': CH*(Yz) — CH*(Y;). We defined the log Chow ring of X as the
corresponding (filtered) colimit in the category of rings:

LogCHypg(X) = Yceoé}gl() CH*(Y). (4.2.3.1)

For the present paper we need to work with the log Chow rings of DM stacks
which are not log smooth; the standard example is a stratum of a log smooth
scheme, which is itself almost never log smooth. A very general theory is under
development by Barrott; see [Bar19]. However, for the present paper we can
make do with a much simpler definition, which we hope will make life easier
for the reader. Below we present our definition, and then in Section 4.8 we
explain why (under mild assumptions) our naive log Chow ring has a map to
that of Barrott, so that our results will transfer automatically to his framework
once the details of the latter are complete.

We start by setting up our terminology.

4.2.3.1 Chow cohomology

We work always with rational coefficients.

An Artin stack X locally of finite type over k admits various Chow theories;
to simplify we assume X equidimensional.

1. If X is quasi-compact and stratified by global quotient stacks, Kresch
[Kre99] defines a Chow group CH(X), and if X is smooth it comes with
a ring structure from the intersection pairing.

2. The operational Chow ring CHop(X) defined in [BHP120, §2.2] is the
collection of morphisms CH(B) — CH(B) for B — X maps from finite-



72 CHAPTER 4. LOG COHOMOLOGICAL FIELD THEORIES

type schemes, compatible with proper pushforward, flat pullback, and
refined Gysin pullback along lci morphisms. If schemes are replaced by
algebraic spaces or DM stacks, we obtain canonically isomorphic rings.

3. Bae and Schmitt [BSS22] consider a variant of (2) where the test objects
B are taken to be algebraic stacks of finite type stratified by global quo-
tient stacks, and the compatibilities are with representable proper push-
forward, flat pullback, and refined Gysin pullback along representable lci
morphisms. We denote this ring by CHop(X).

In this paper we will work mainly with CHopp, but to help the reader relate
this work to others in the literature we summarise known comparisons.

1. Since every scheme is a stack, there is a restriction map CHop(X) —
CHop(X).

2. If X is smooth, quasi-compact, and stratified by global quotient stacks,
then the intersection product defines a map CH(X) — CHqp(X).

3. If X is smooth, quasi-compact, and stratified by global quotient stacks,
then the map CH(X) — CHop(X) furnished by the intersection product
is an isomorphism, see [BSS22, Theorem C.6|

4. If X is smooth, quasi-compact, and DM, then all these maps are isomor-
phisms, see [Vis89, Proposition 5.6].

5. Even for X smooth and quasi-compact, we do not know whether the
map CHop(X) — CHyp(X) is an isomorphism.

4.2.3.2 Log modifications

Definition 4.2.4. A morphism f: X — X of log algebraic spaces is a log
modification if there exists a log scheme Y and log blowups ¥ — X, Y — X
making the obvious triangle commute.

Definition 4.2.5. A morphism f: X — X of log stacks is a log modification
if for every log scheme T and map 7" — X, the natural map

TxxX—=T (4.2.3.2)

is a log modification of log algebraic spaces.

4.2.3.3 Log Chow

Definition 4.2.6. Let X be a log stack. We say X is dominable if there
exists a log modification Y — X with Y a finite-type algebraic stack with log
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structure.

Definition 4.2.7. Let X/LogSch be a dominable log stack. We define the
log Chow ring of X as the colimit in rings

LogCH(X) := colim CHop X
X—X

where X — X ranges over all log modifications with X representable by finite-
type algebraic stacks with log structure.

The definition also makes sense for a non-dominable log stack, but is not
morally correct (it gives Q).

Ezample 4.2.8. Consider G!°¢ (over the point with trivial log structure). This
has exactly one non-trivial log blowup, namely P!. We see that LogCH(G!%¢) =
CH, (P) = Q[h]/(h?) where h = [0] is the class of 0 € PL.

Ezample 4.2.9. If X is a log algebraic stack with Artin fan A then CHop(A)
is the ring of strict piecewise polynomials on X, and LogCH(A) is the ring of
piecewise polynomials on X; this can be taken as a definition, or see [MR21,

Theorem B] for comparison to other definitions in the literature ([MPS21],
[HS22b], [HMP*22]).

Remark 4.2.10. Let X be a log smooth stack of finite type. Then [HS22b,
Definition 2.4] provides an alternative proposal LogCHyg(X) for the log Chow
ring. We do not know whether this is equivalent to the one we use here, because
[HS22b] work with CHp in place of CHop (see Section 4.2.3.1), but there is
a natural map LogCH(X) — LogCHyg(X), and all constructions of [HS22b]
can naturally be lifted to LogCH(X).

4.2.3.4 Pullbacks

Recall that for any map f: X — Y of schemes, there is a pullback map
f*: CHop(Y) — CHop(X). This notion extends to pullbacks for LogCH, as
we will define now.

Definition 4.2.11. Let f: X — Y be a morphism of dominable log stacks.
Let z € LogCH(Y), and let Y /Y be a log blowup with z € CH(Y"). Consider
the fiber square

P P
ok
< — <N
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Then we define f*z € LogCH(X) to be f*z € CH(X). As this is independent
of the choice of Y, this defines a map

f*: LogCH(Y) — LogCH(X).

4.3 Log pointed curves

Definition 4.3.1. Fix non-negative integers g and n. A log n-pointed curve
of genus g is a tuple (C'/S,p1,...,p,) where

1. C/S is a log curve;

2. the p;: S — C are S-maps of log schemes, landing in the locus where C
is classically smooth over S, with disjoint images;

3. C — § is vertical precisely outside the images of the p;.

Remark 4.3.2. There is an important difference between a log pointed curve
(C/S,p1,...,pn) and a marked log curve (C/S@l, e ’Bn)' For a log pointed
curve, the sections p; are maps of log algebraic spaces, while for a marked log
curve the sections p; are just maps of the underlying algebraic spaces.

Definition 4.3.3. Let (C/S,p1,...,pn), (C'/S’, 0}, ..., pl) be two log pointed
curves. A morphism of log pointed curves

(C//S/7p?l7""p'/n.)%(C/S’plﬂ"'7pn)
consists of a morphism f: S’ — S and an S’-isomorphism of log schemes
p: 0" = CxgS (4.3.0.1)

such that for every i, writing (p;)’: S — C xg S’ for the map induced by p;,
we have p, = (p;)’.
These objects and morphisms form the category My ,, of log n-pointed curves,

and the forgetful morphism taking (C/S,p1,...,pn) to S (and (f, ) to f) gives
a functor to LogSch. Straightforward checking yields the following lemma.

Lemma 4.3.4. The forgetful functor My, — LogSch is a CFG, and the
forgetful map My ,,/ LogSch — M, ,/ LogSch is a map of CFG'’s. O

Remark 4.3.5. A notion of ‘pointed log curve’ is defined in [HMU19], but this
is different from both the marked log curves and the log pointed curves in
the present work; in [loc.cit.] the word ‘pointed’ refers to pointed monoids:
monoids containing an absorbing element co. They define a pointed log curve
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as a log curve where the edge length of inner edges of the graph is allowed to
be co. This allows for the gluing of log curves by setting the length of the new
edge to be co.

Note that there is no natural map from the space of pointed log curves in the
sense of [HMU19] to the space of log curves. In addition, their theory does
not seem to furnish evaluation maps in the sense of Section 4.3.3.

Definition 4.3.6. Let C/S be a log pointed curve, and let p; : S — C be
one of the sections. Let P; = im p;, with the strict log structure coming from
the closed embedding P; — C. Then MR = Mg @ N, with the natural map
Mg — Mp, induced from P; — S being the inclusion.

We also have a map p} : Mp, = Mg & N — Mg. We define £(p;) € Mg(S), the
length of p;, to be the image of 1 € N in Mg.

Lemma 4.3.7. Let (C/S,p1,...,pn) be a log pointed curve, and let the map
a: Mg — Og denote the structure morphism. Then & : Mg — (95/(9§ sends
4(p;) to 0.

Proof. Tt is enough to prove this on strict henselian points, so assume S =
Spec A for a strict henselian ring A. Then by [Kat00, Table 1.8], locally the
section p; of C'// Speck looks like

My @t —— Alt]

A

My — A

with the map A[t] — A being ¢ + 0, and the map M4 @ tY — M4 being
t — £(p;). The commutativity of this diagram the implies that the map
M4 — Spec A sends £(p;) to 0. O

We will show in Section 4.3.1 that the moduli space M, ,, is represented by
the moduli space M, ,, of pre-stable curves, but with a different log structure
from the usual one. We do this by considering the minimal objects of the
category My ,,, in the sense of [Gill2]. However, the resulting log structure is
fairly simple; it can be seen by embedding M, ,, as a stratum of M, »,,, as we
now sketch for the benefit of the reader who prefers to skip the details of the
proof.

Remark 4.3.8. Let C'/S be a genus g log n-pointed curve. Then one can glue
rational tails to the n markings, and put two markings on each of the newly



76 CHAPTER 4. LOG COHOMOLOGICAL FIELD THEORIES

created tails. Furthermore, one can assign the newly created node at marking
i the length £(p;). This gives a strict closed embedding M, — 9,2, of
CFGs over LogSch, identifying M, ,, with the stratum corresponding to the
dual graph shown in Figure 4.1.

1 n—+1

\'4

2n

> <

n+2

2n—1 n—-1 n—+i

Figure 4.1: The dual graph of C'

4.3.1 Basic objects

Let C/S € My, with S a geometric log point, with corresponding graph
I' and length map NP — Mg. We also have a natural map N — Mg,
sending ¢ to ¢(p;) as in Definition 4.3.6. In this way we have a natural map
NET) @ N* — Mg.

Definition 4.3.9. We say C'/S is basic if the natural map N¥F@) g N* — Mg
is an isomorphism. For a general log pointed curve, we say it is basic if it is
basic at every strict geometric point.

We repeat the definition of weakly terminal from [Gil12].

Definition 4.3.10. Let W be a category. We call a subset P of the objects
of W weakly terminal if

1. for every object w € W there is a map f: w — p with p € P, and

2. for every object w € W and every two maps f;: w — p;,4 € {1,2} with
p1,p2 € P there is a unique isomorphism g : p; — p2 with fo = go fi.
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To show that the basic curves form a weakly terminal subset of M ,,, we study
the fiber of M, ,, over a scheme.

Definition 4.3.11. Let X be a CFG over LogSch. For S € Sch, write Xg
for the fiber product X Xxgc, S. This consists of objects (S,Y) where S is a
log scheme with underlying scheme S and Y is an object in X (5), and maps
(S,Y) — (5',Y’) that lie over id : § — S.

Proposition 4.3.12. Let S € Sch. Then the basic log pointed curves form a
weakly terminal set inside (Mg ,)s. Furthermore, the map sending a basic log
pointed curve in (Mg ,)s to the unique basic marked log curve (My.,)s under
it is an equivalence of setoids.

Proof. First we note that it suffices to prove this after shrinking S; the unique-
ness will allow us to glue.

Let C/S be a log pointed curve with S a log scheme with underlying scheme
S. Let C1/S; be the unique minimal marked log curve under it. Then we
can construct a different log curve structure C3/Ss on C/S with sheaf of
monoids Mg, = Mg, ®N". To give this the structure of a log pointed curve we
additionally specify that the map p;: S3 — im p; on the level of characteristic
monoids is given by Mg, ®N — Mg, sending 1 € N to (0, ¢;) € Mg, ®N"* = Mg, .
Shrinking S, we can lift this to a map of log schemes.

So, perhaps after shrinking S, we get a map of log pointed curves C/S —
C3/Ss, hence the log pointed curve C/S has a map to a basic log pointed
curve locally on the base.

It remains to show that a map to a basic log pointed curve is unique up to
unique isomorphism, as in Item 2 of Definition 4.3.10. This follows immediately
from the fact that, for a log scheme (Y, My ), the functor from the category of
sharp fs monoid sheafs over My to the category of log structures on Y lying
over My given by M — My X, M is an equivalence. O

By [Spe22, Lemma A.3], a log pointed curve C/S is minimal (see [Gil12] for
the definition) if and only if lies in this weakly terminal set of basic log pointed
curves inside (M ,,)s.

Corollary 4.3.13. An object in My, is basic if and only if it is minimal.

Corollary 4.3.14. The CFG M, ,,/ LogSch satisfies the conditions of the De-
scent Lemma of [Gil12] and therefore is represented by an algebraick stack Mg ,,
with log structure. The forgetful map My ,, — My, induces an isomorphism
Mg, — My 5 on underlying algebraic stacks.
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Proof. In order to satisfy the Descent Lemma of [Gil12] we need the following
two conditions to hold.

1. Every log pointed curve C'/S has a map to a minimal object C’/S’ with
the induced map S — S’ being idg.

2. Let C/S be a minimal log pointed curve, and let f : S — S be a map
of log schemes. Then Cg/ /S’ is minimal if and only if f is strict.

By Corollary 4.3.13, we can instead prove these claims for the basic objects
of our category. The first condition holds by Proposition 4.3.12. To prove the
second condition, we first note that being basic is a condition on strict geo-
metric points, and hence is retained under strict pullback. Then by Proposi-
tion 4.3.12 and the fact that every morphism decomposes as a strict morphism
and a morphism lying over the identity of the source, the second condition
holds as well.

Then by the Descent Lemma M, ,, is represented by the stack of minimal
objects My ,, in M ,, together with its canonical log structure M, ,, — LogSch
factoring through the inclusion in M ,,. O

Corollary 4.3.15. The stack M ,, is of dimension 3g — 3 + n. The stra-
tum corresponding to a dual graph T' = (V, E) has generic characteristic log
structure N¥ @ N,

Remark 4.3.16. The moduli space Mg is a point with log structure N,
This scheme has log blowups of dimension 2, and hence LogCH*(MBt,g) has

non-trivial graded pieces of degree 1 and 2. In fact, LogCHl(Mf‘ig) and
LogCH?(ME';) are infinite dimensional. We still have LogCH’(Mg;) = Q.

Remark 4.3.17. The stack M ,, is idealised log smooth over a point with
trivial idealised log structure. On the level of characteristic monoids we have

My, ,, = Mz, . @ N". However, it is not true that My, , = Mgz @ N" (cf.
Lemma 4.4.3).

4.3.2 Comparison to punctured log curves

In this section, we will show that a log pointed curve can naturally be given the
structure of a punctured log curve. A puncturing of a log scheme Y = (Y, My')
is a different log scheme YP'" = (Y, M}/") with the same underlying scheme,
and where My C My C M§P and M} satisfies certain extra conditions,
see [ACGS20b, Definition 2.1]. The stack of punctured log curves Mg,n is
constructed in [ACGS20b, 2.10].
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Definition 4.3.18. Let (C/S,p1,...,pn) be a log pointed curve. Let M be
the verticalisation of the log structure on C, and let P be the log structure
on C with respect to the divisor >, p;, so that Mg = M @px P. Write 1; for
the section in P corresponding to p;. Then we define a puncturing CP""¢ of C'
along P to be the submonoid of M @px P8 generated by M@ P and (¢;, —1;).
We define a map a: Mgmne — O¢ by sending (¢;, —1;) to 0.

Proof. To check that this is a puncturing, we need to check that for every
geometric point € C' we have that if (¢;, —1;), € (Mcgpunc), is not in (M@ P),,
then «(¢;) is zero. This follows from Lemma 4.3.7. O

From the definition, we immediately get the following lemma.

Lemma 4.3.19. The map Mo — Mcepune is an injective map of sheaves, and
an isomorphism after groupification.

Remark 4.3.20. Note that there is a natural map CP'""¢ — C, on the level of
log structures near p; given by the inclusion M @ N — (M & N){((¢;, —1)).

Definition 4.3.21. Let (C/S,p1,...,pn) be a log pointed curve. For every

i, let p; : Mgpune ,, — Mg denote the map given by sending (m,n) € (M @
N){(¢;,—1)) to m + n;.

Remark 4.3.22. The map p; in the previous definition is not sharp, as it sends
(¢;,—1) to 0. Hence the map p; is not induced from a log section p; : S —
CPUr. Put otherwise, the log section p; : S — C does not factor through
CPi"¢ — (C. In Section 4.5.1 we explore a slightly different variant of CP'"¢
that does allow a lift of the log section p;.

Proposition 4.3.23. Definition 4.3.18 defines a log monomorphism Mg, —

v

Mg,n; mapping C/S to Cpunc/S.

4.3.3 Evaluation maps

One of the major advantages of log pointed curves is the existence of evaluation
maps for moduli spaces of stable maps of log curves.

Definition 4.3.24. Let X be a log stack, and let 5 be a class of stable log
maps to X as in [GS13, Definition 3.1]. We let M}, (X, 3) denote the moduli
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space with S-points diagrams of the form

CLX

gr

where (C/S,p1,...,pn) is a genus g log n-pointed curve of genus g and f is a
stable map such that f is of class .

We define the evaluation map of log stacks as
ev: Mzt’n(X, B) — X"
(C/Sapla"'apnaf) = (fop17"'afopn)'

Remark 4.3.25. In [GS13] Gross and Siebert defined moduli spaces of stable

maps of log curves ﬂlog(X ,B), without log sections. The evaluation map
ﬂlog (X, ) — X" is only defined on the level of underlying schemes, and does
not in general admit a lift to the level of log schemes. This makes it difficult

to work with insertions from LogCH(X).

Remark 4.3.26. In [RK23] this problem of log evaluation maps is solved for
toric targets by remowval of log structure on the target (whereas we add extra
log structure on the source). For a marking i they study maps into a fixed
stratum W; of a toric target X, but equip W; with its natural log structure as
a toric variety, not the log structure coming from X. This yields, for each i, a
logarithmic evaluation map ﬂ'°g (X, 8) = W;. A comparison to the approach
we take here will appear in forthcoming work of the first-named author with
Leo Herr.

4.3.4 Forgetting a marking
We first define a map My 1 — M, ,, forgetting the last marking. Let

(O/Svpla .. apn-‘rl)

be an n + 1 log pointed curve. We define C’/S and an S-map 7: C — C’
by declaring 7 to be an isomorphism on the underlying curves, and on the
log structures away from p,,1; and on a neighbourhood of p,,11 we define the
log structure on C’ to be the kernel of the ‘slope’ map s,41: Mcyp,,, — N
obtained as the composite

M¢ — MC}anrl = MS &N — N. (4341)

sPn+41
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Define ¢; = 7 o p;. Equipping C’ with the sections ¢1, ..., g, gives an S-point
of My .

Suppose now that 2g —2 +n > 0. To build a map
M;t,nJrl — Mzt’n (4.3.4.2)

we must work a little harder. Let (C/S,p1,...,pnt1) be an n + 1 stable log
pointed curve, and define an n-log pointed curve (C'/S,q1,...,q,) as before,
which may not be stable. We build a stabilisation by reducing to the marked
case. We write (C'/S, g ,gn) for the n-marked log curve obtained from
(C'/S,q1,...,qn) by forgetting that the sections are log maps.

Lemma 4.3.27. The marked log curve (C'/S,q,,...,q,) has a stabilisation
(C*"/S,q,,.... ) and a log map o: C' — C*".

Proof. The log structure on Mg’n is the divisorial one coming from its bound-
ary divisor, and the log structure on the universal curve Cy , is the divisorial
one coming from the union of the sections with the inverse image of the bound-
ary from M, ,,. This corresponds exactly to the boundary divisor in M ,, 11
under the standard identification of Cy , with ﬂg,m_l. In particular, the nat-
ural isomorphism Mg7n+1 — Cy,n is an isomorphism of log stacks, and yields
by composition a log map ﬂg’n+1 — ﬂg,n. O

We define a map
MZEHH — Mzt’n (4.3.4.3)

by Sending (C/Sv P1,- .. 7pn+1) to

(C*)S,00q1,...,00qn). (4.3.4.4)

We also analyse what happens to the length of legs and edges under contrac-
tion. Fix an n 4 1 log pointed curve (C/S,p1,...,pn+1). Suppose that S is
atomic strictly Hensellian local (or, more generally, that C/S is nuclear in the
sense of [HMOP23]).

Suppose first that p,y1 is the only marking on a rational bridge, and that ¢;
and /5 are the lengths of the edges connecting the bridge to the remainder of
the graph. Then in C** the rational bridge is contracted, and replaced by a
single edge of length ¢; + /5.

The remaining case is a contracted rational tail. Suppose that, on the closed
fibre, pn,+1 and p, are together on a rational tail, which carries no other
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markings. We write £, € Mg(S) for the length of the edge attaching the
rational tail, and (as always) write £; for the length of leg p;. Following the
above notation, write (C**/S,q,...,q,) for the stabilisation, and ¢, for the
length of ¢j.

Lemma 4.3.28. For 1 <i<n—1 we have {; = ¢}, and

0 =t + L. (4.3.4.5)

Proof. The equalities ¢; = £, for 1 < ¢ < n — 1 are immediate, since the
stabilisation map is an isomorphism on a neighbourhood of those sections. To
see what happens at p,, consider a global section 3 of M¢s: with non-zero
slope at the n’th leg; write 3(v) € Mg(S) for the value at the generic point
of irreducible component v of the closed fibre, and s for the outgoing slope at
¢!, Pulling this back from C** to C yields a global section 3 of M. Clearly
E takes value 5(v) at generic points of irreducible components which will not
be contracted. If vg is the irreducible component to which the rational tail v,
is attached, the value of 8 at v, is given by S(vg) + sf.. The slope of § at ¢/,
is still s.

Since ¢}, is constructed by composing p, with other log maps, the value
(¢))*B € Mg(S) is equal to the value p:3 € Mg(S). From the above de-
scription, we compute

(q,)" B = B(vo) +st, and p;:B = g(v,«) + 8y, = B(vg) = sle + 8l,. (4.3.4.6)

This immediately implies that ¢/, = ¢,, + £. as required. O

4.4 Piecewise polynomial functions and the DR
cycle

Piecewise polynomials functions give an efficient way to write classes in the log
Chow ring of a log stack, as exploited by [MPS21, HMP*22, HS22b, MR21].
As a first application of our log pointed curves, we show that psi classes can
now also be expressed in terms of piecewise polynomial functions, and use
this to write the log double ramification cycle purely in terms of piecewise
polynomials.

4.4.1 Piecewise polynomial functions

We recall the basic definitions.
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Definition 4.4.1. Let X be an algebraic stack with log structure, locally of
finite type over k. Write Ax for the Artin fan of X, an algebraic stack with log
structure, locally of finite type over k. The ring of strict piecewise polynomial
functions on X is the Chow cohomology ring of Ax:

sPP*(X) = CHbp(Ax). (4.4.1.1)

The ring of piecewise polynomial functions on X is the colimit of Chow coho-
mology rings of subdivisions of Ax:

PP!(X) := colim CHjp(A). (4.4.1.2)

A—Ax

In particular, sPP*(X) = Mﬁ?(X) ®z Q. Pulling back along the natural map
X — Ax gives ring homomorphisms

sPPY(X) — CHhp(X) (4.4.1.3)
and

PP’ (X) — LogCH'(X). (4.4.1.4)

Remark 4.4.2. The equivalence of this definition with others in the literature
(for example, in [HS22b] sPP’(X) is defined to be Sym‘(Mg)(S)) is proven in
[HMP*22] for the case where X is smooth and log smooth over a point with
trivial log structure, and the general case follows from [MR21, Theorem B],
which is itself based on forthcoming work of Bae and Park.

4.4.2 Evaluating piecewise linear functions

Strict piecewise linear functions on M, ,, are generated by two special classes:
1. linear functions coming from boundary divisors
2. linear functions coming from the lengths ¢; of legs.

In the first case the corresponding element of CHl(Mgm) is the corresponding
boundary divisor, just as for M, ,,. In the second case we recover psi classes,
as the next lemma shows.

Lemma 4.4.3. Let (C/S,p1,...,pn) be a log-pointed curve, and for 1 <i <n
let ¢; € Mg(S) be the length of marking i. Let s: S — M, ,, be the tautological
map. Then we have an equality of operational classes' on S

01(05(—&)) = S*¢i. (4.4.2.1)

IWe turn the G,-torsor Og(—£;)* into a line bundle by gluing in the co section.
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Proof. Recall that s*¢; = ¢1(p;jwcys), and by adjunction we have the equality
piweys = p; Oc(—ps). Tt therefore suffices to show that

p;iOc(=pi) = Os(—i). (4.4.2.2)

We have a direct sum decomposition Mc,pi = 17 'Mg @ N, and p; induces a
map o o
pi:m Mg @ N — Mg (4.4.2.3)

which sends (0,1) to ¢;. Now on a small neighbourhood U; of the image of p;
we can view (0,1) as a PL function on C, and we see that

O0c((0,1)) = Oc(=pi). (4.4.2.4)

Thus
PEOc(—=pi) = prOc(—(0,1)) = Og(—p:(0,1)) = Og(—L;) (4.4.2.5)
as required. O

Remark 4.4.4. Given that the log structure on My, has generic rank n, it
seems reasonable to ask whether My , admits a log smooth map to a point
with log structure N”. The above lemma shows that this is not in general the
case. Indeed, if such a map existed then there would exist an invertible n x n
integer matrix M such that M[iq,...,¢y] is the zero vector, and this is not
in general the case.

However, a substitute can be built. Denote by Z the origin in the quotient
[A/G,,], where A' is equipped with its toric log structure; so Z is a BG,,
with rank 1 log structure. To give a map from a log stack X to Z is to give a
section & € My (X) which is nowhere zero. The lengths of the n legs define a
map

My, = 2", (4.4.2.6)

which is easily seen to be log smooth. We might think of this as strictly
embedding M** as the origin of the vector bundle over M, ,, given by 1 &

o wn-

4.4.3 The double ramification cycle

Let a € Z™ be a vector of integers summing to 0. Then there is a locus inside
M. where the line bundle O(a1p; + - -+ + anpy) is trivial, called the double
ramification locus. This locus has a natural extension to M, ,, and admits
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a virtual fundamental class whose pushforward to My, we denote DRy(a) €

CHY(M,,,). In [HPS19, §9] a natural lift LogDR,(a) € LogCHY(M, ) is
constructed.

Definition 4.4.5. Let a € Z" be a vector of integers summing to 0. Let 7
denote the forgetful map M;tn — Mg . Then we define the log pointed double
ramification cycle LogDR(a) == 7* LogDR(a) € LogCH? (Mg, ).

In Section 4.7.1 we will give a more direct construction of LogDR,(a).

Proposition 4.4.6. Suppose the ground field k has characteristic zero. Let
a € Z™ be a vector of integers summing to 0. Then there exists a piecewise
polynomial function P on M, of degree g whose image in LogCHY (M) is
equal to LogDR,,(a).

Remark 4.4.7. An equivalent formulation of this proposition is so that that
this log double ramification cycle is a pullback of a cycle on the Artin fan of

M;ﬁn; in other words, it is a purely tropical class.

Proof. We let ® denote the map PP*(M, ,,) — LogCH*(M,,) and @' the
map PP*(M ) — LogCH* (M%,,). By [HMP*22, Theorem B] and [HMP22,
Eq. (19)] we have the formula

LogDR,(a) = [exp (; (Z a2 — @(ﬁ))) 9(P)
i=1

for certain piecewise polynomials £ € PP*(M,,,) and P € PP*(M,,,) depen-
dent on a, where [-], denotes the codimension g part.? By the commutative
diagram

g

PP'(My,,) —— PP' (M)
[o o
LogCH'(My,,,) — LogCH'(MZ",)

and Lemma 4.4.3 we see that the piecewise polynomial

Pyn(a) = |ﬁXP (; <— Za?& — /3)) <P

7" LogDR, (a) = ®'(Py . (a))- O

2The piecewise polynomials £ and P depend on a choice of a stability condition 6 (see
[HMP*22, Section 1.6]). The class LogDR,, is independent of this choice.

(4.4.3.1)

g

satisfies
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4.5 Gluing log pointed curves
In this section we will construct the gluing maps

M917m+1 X Mgz,nz-‘rl - M91+92,n1+n2

and
Mg,nt2 = Mgiin

. These map play a major role in the study of algebraic curves, but do not
exist for marked log curves. For log pointed curves we do have gluing maps,
whose underlying maps are exactly the usual non-logarithmic gluing maps.
To define the gluing maps, we first define the piercing of a log pointed curve
at a section. This is similar to, but slightly different from, the notion of the
puncturing of a log pointed curve defined in Section 4.3.2

4.5.1 Pierced log curves

Definition 4.5.1. Let (7: C — S,p1,...,pn) be a log pointed curve, and
let 1 < i < n. We define the piercing of C along p; to be the log scheme
(C/S,p1,...,pn), together with map C' — C over S, defined as follows:

1. Away from p;, the map C — Cis an isomorphism;
2. C' = C' is an isomorphism on underlying schemes;

3. Let M be the verticalisation of the log structure on C' along p;, and
let P be the log structure on C with respect to the divisor p;, so that
Me = M @px P, with natural map

pi: Mgy, =M, ®ox P — Ms. (4.5.1.1)

We define M, p, to be the largest submonoid of My, ®ox P& such that
the natural map
p;k Mpi @Ox pep M%p (4512)

restricts to a sharp map of monoids M o Mg; in more concrete
terms,

Mg, = {2 € My, ®ox PEPIpjz > 1orz € O} (4.5.1.3)

We claim that the structure map M, ®pox P — O¢,p, extends uniquely to
amap Mg~ — Ocp,. There is an obvious extension sending an element of
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M,, Box PeP to an element of the punctured local ring of C along p; (i.e. first
invert the complement of the ideal associated to p;, then invert a generator
of the ideal); it remains to check that any element in M ¢.p; has non-negative
valuation along p;, but this follows from the fact that any element of M : G

either lies in O™, or pulls back along p; to a positive element.

Lemma 4.5.2. Let (r: C — S,p1,...,pn) be as above. There is a unique lift
pi: S — C of pi: S — C; on schemes this is the same map, on log structures
the map p? is defined above.

The slope of a PL function m € M?(C) along p; is the image of m in P& = Z;
observe that even if m lies in M(C), it can still have negative slope.

Remark 4.5.3. The piercing C of a log pointed curve C' at a marking p is not
an fs log scheme. For example, take C' = A! with log structure given by strict
inclusion of C' as the z-axis in A2, the base Spec k with log structure N, and as
log section p the inclusion of the origin with the map on characteristic monoids
N? — N given by addition. Then M¢pun » C NxZis fs, and generated by
(0,1) and (1,—1). But MC C N x Z consists of (0,0) and the pairs (z,y)
with « +y > 0, which is not ﬁnltely generated.

Note that 7: C' — S is saturated and admits charts by integral monoids, but
not charts by finitely-generated monoids (we say C' — S is quasi-fine and
saturated).

Since the markings p1, ..., p, are disjoint, we can pierce independently at any
subset of {p1,...,pn}.

4.5.2 Gluing pierced log curves

In this subsection we temporarily drop the assumption that log curves have
connected fibers, in order to treat uniformly the two gluing maps above.

Let S be a log scheme and let (C/S,p1,...,pn) be a log pointed curve, with
n > 2. We will explicitly construct a log curve by gluing p; and p, together.
For simplicity of notation, we will assume n = 2.

Let (Co',pl,pg) be the piercing at p; and ps from Definition 4.5.1. Define C to
be the pushout

gT J (4.5.2.1)

C+— Sus
p1Up2
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in the category of quasi-fine S-algebraic spaces. The underlying scheme of C
is the pushout of the underlying schematic diagram, and the log structure is
the pullback of the corresponding diagram of log structures:

Mé = g*Mé X (poi)«Mgus p*Ms. (4.5.2.2)

Remark 4.5.4. The pushout C is not a log curve. The stalk of the groupifica-
tion of the ghost sheaf at the new singular point p is given by

&P 8P
Mg, = Mg @ Z%. (4.5.2.3)

A section of Mé,p has two slopes at p, given by the slopes of the pullbacks
along g op; and g o po. We define C® to be the log scheme whose underlying
scheme is that of C, and whose log structure is the subsheaf of Mz consisting
of elements whose slopes at p; and pz sum to 0. Note there is a natural map
C — C*.

Definition 4.5.5. We define C¥, together with map of schemes p : S — ce
mapping to the new singular point and the gluing map C — C®', to be the
gluing of C at p; and po.

Remark 4.5.6. We shortly present an alternative definition, found and ex-
plained to us by Dan Abramovich. We let S°° be S with log structure
Mgeo = {(m,n) € Ms ®Z : m = 0 = n = 0}. This has a map to S and
a section g : S — 5°°. We define the sections pg,p5 : S°° — C to agree with
p1, p2 on the level of algebraic spaces, and be given by

Mcp, = Mgoo: (a,n) — (a + nly,n)

and
Mc p, = Mgoo: (b,m) — (b+ mla, —m)

on monoids. Then one can check we have the pushout diagram

Cgl geo

I |

é (ﬁ SOOI—ISOO

P1Up2

and one can define C# as the pushout C Ugoopg00 S°°
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Lemma 4.5.7. The prelog scheme C#/S is a log curve, with new singular
point p of length {1 + l2. The natural gluing map C' — C® together with the
puncturing map C — C induces an isomorphism C \ {p1,p2} — C& \ {p}.

Proof. Away from p this is obvious. At p, it follows from the computation of
the fiber product

a1+ s1f1 > 0or (a,81) =0
— - — — ag + s2ls > 0 or (az,s2) =0
Mcg\7p— (al,sl,ag,SQ)eMstxMSxZ a1 + $101 = ay + Sl
s1+s,=0
= {(al,ag) € Mg x Mg |€1 + {5 divides a; — aQ}. O

To obtain gluing maps between moduli spaces of log pointed curves, we will
also need the following easy lemma.

Lemma 4.5.8. The construction of C — C& commutes with base-change over

S.

4.5.3 Gluing maps

We continue in the notation of the previous subsection.

Definition 4.5.9. Let X be a quasi-fine log stack. We define the groupoid of
pre-gluing data as the fiber product of groupoids

X(C)
J{(—Oph—opz)
X(8) —2 X(S) x X(9).

We say a pre-gluing datum f : C— X in X(8) X x(5)xx(5) X(C) is glueable if
the slopes M X,fops — Z at p1, pa sum to zero. We denote the full subgroupoid
of glueable pre-gluing data by Homg|(Cov , X).

Theorem 4.5.10. Let X be a log stack. Then the map C — C® induces an
equivalence of groupoids

Hom(C®, X) = Homg|(é, X).
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Proof. The construction of Casa pushout gives an isomorphism of groupoids
between Hom(C, X') and the groupoid of pre-gluing data. The theorem follows
by restricting to the full subgroupoid where the slopes sum to zero on both
sides. 0

We will later need to glue maps for the targets G'° and G'°P. We spell out

what happens in Theorem 4.5.10 explicitly in these two cases.

Definition 4.5.11. For 8 € MY, resp. ME?, we denote by S(p;) the pullback
along p; : S — C. Explicitly, for a piecewise linear function g taking value
a at the fiberwise irreducible component containing p; and with slope n, the
value B(p;) is a + né;.

Corollary 4.5.12. The map C — C® induces bijections
M&w — {8 € M% : B(p1) = B(p2) and the slopes along py, ps add to 0}
and

MEP

e = {8 € ME : B(p1) = B(p2) and the slopes along p1, p2 add to 0}.

4.5.4 Gluing maps for moduli spaces of pointed log curves
By applying Definition 4.5.5 we obtain the following.
Theorem 4.5.13. Fiz non-negative integers gi, g2, N1, Na, g, n. Then there

are natural gluing maps

gl : Mglxn1+1 X Mgz,nr‘rl — Mg1+g2,n1+n2
gl : Mg,n+2 — Mngl,n

The gluing maps are relatively representable by log algebraic spaces. On the
level of underlying algebraic stacks they coincide with the classical gluing maps.

4.6 Log CohFTs

With the work in Section 4.5 on log gluing maps, the preliminary work needed
for defining a log version of cohomological field theories is done. In this section
we present this definition, and a few examples.

Definition 4.6.1. Consider the following data:

e a possibly infinite dimensional vector space V with a basis (e;)rer;
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e a non-degenerate symmetric 2-form (1;;) ¢ jyer> : V®2 - k with a row
and column finite inverse (n”)(m)e I2;

e for every g,n with 2g —2+n > 0 a map
Qgn: VO — LogCH*(MZﬁn) (4.6.0.1)

If Q satisfies the following two conditions, it is called a partial log CohFT.

1. The map €, 5, is equivariant with respect to the action of the symmetric
group S, acting simultaneously on the source and on the target.

2. Let g1 + g2 = g,n1 + n2 = n, and write gl for the gluing map Mt X

g1,n1
Mg, — M. Then for every (vy,...,v,) € V" the sum
Iy
E n nghnl (Ul, cee 7vn1aei) X Qg2,n2 (vn1+17 <oy Un, 6]‘)
i,j€1

is a finite sum, and the resulting map

VO™ — LogCH(M | x M )

gi,n1 gi,n1

(V1,...,0,) — Z Uingl,m(Ul» s Uny €) Qg 0y (Uny g1, -0, Uns )
i,j€l

is equal to the map

gl 0 Qg : VO — LogCH(MS, , x M ).

gi,n1 gi,n1

If furthermore the following condition, also known as the loop axiom, is satis-
fied, Q is called a log cohomological field theory, or log CohF'T for short.

3. Let g > 0,n be integers, and write gl for the gluing map M;t_17n+2 —

Ms',,. Then for every (vy,...,v,) € V™ the sum
y
§ : n ngl;nl (U17 -5 Ung, €4,y e])
ijel

is a finite sum, and the resulting map
Ve — LogCH(MS )

(vla s ,’Un) = Z ninghm (Ulv <oy Uny,y €4, ej)
i,j€T

is equal to the map

gl o Qg : VO™ = LogCH(ME , ,,).
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Furthermore, if Q is a (partial) log CohFT and there is a 1 € V' such that the
following conditions hold, then Q is a (partial) log CohFT with unit.

4. Let m: M, .1 — M, be the forgetful map of Section 4.3.4. Then

Qg 1V, U, 1) =7 Qg (V1,0 Un)

holds for all vy,...,v, € V.

5. The equation
Qo,3(v1,v2,1) = n(v1,v2)

holds for all vy,v, € V.

Remark 4.6.2. For a finite dimensional (partial) log CohFT the map 71 defines
an isomorphism 7 : V — V* v — n(v,-). In general, the fact that n is non-
degenerate only implies that 7 is an injection with image spanned by the
duals of {e; : i € I'}.

Remark 4.6.3. Note that per Remark 4.3.16 the ring LogCH" (M 3) is not
equal to Q, and hence the definition of the quantum product on V for CohFTs
does not automatically generalise to log CohFTs. Still, given a log CohFT
with unit, one can define a quantum product on V by taking the quantum
product of the topological part of the log CohFT. This allows one to define
when a log CohFT is semisimple.

It seems interesting to ask whether semisimple log CohFTs admit a classifica-
tion in the style of Givental-Teleman.

4.6.1 Examples of log CohFTs

Every CohFT is naturally a log CohFT.
Proposition 4.6.4. Let Q,, : V®" — CH*(My,) be a (partial) CohFT.

Then by composing with the pullback CH* (M, ) — LogCH" (M) this de-
fines a (partial) log CohFT.

We will now construct a large family of log CohFTs that do not come from
CohFTs. We begin by recalling a construction of Pandharipande and Zvonkine
[PZ19]. Fix g and n, and let v € CH*(M,,) be a class that vanishes under
pullback along all gluing maps. Given such a class, Pandharipande and Zvonk-
ine explicitly construct a CohFT that for some input takes the value ~ (their
definition of a CohFT is slightly different from ours, involving a Zs-grading,
but by [PZ19, Remark 12] in the case where v has even cohomological degree
in H*(Mg,,) this Zs-grading vanishes).
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Suppose now that we have a class v € LogCH*(MZﬁn) that vanish under pull-
back along all log gluing maps; we call such a class a minimal class. Then the
construction of [PZ19] immediately generalises to yield a log CohFT.

We will construct two different kinds of minimal classes.

4.6.1.1 First construction of a minimal class

It is immediate that any class in LogCH" (M 3) is minimal, as there are no
non-trivial gluing maps®. By Remark 4.3.16, the vector space LogCH* (M%t’g)
is infinite dimensional, yielding a large number of examples of log CohFTs
that are not CohFTs.

4.6.1.2 Second construction of a minimal class

Let ¢ = 3,n = 2. Assume the characteristic of the base field is 0. Let
T0 C Mfﬁf be the one-dimensional cone parametrising tropical pointed curves
(see Definition 4.9.3) with one vertex, no edges, and legs of equal length.

Then 79 induces a star subdivision My of M, and this induces a log

blowup 7: I\Nﬂ;tn — M. Let 71,72 C M9 be the two one-dimensional cones
parametrising tropical pointed curves with one vertex, no edges and one of the
two legs of length 0. For ¢ € {0,1,2} write ., for the unique strict piecewise
linear function on Mtgrgf

0 on all other rays.

that takes value 1 on the primitive generator of 7; and

For a piecewise polynomial function f on M;‘;{’, we write ®(f) for its image in

LogCH(MS',,) under the map (4.4.1.4). We claim the class
Y= )‘g)‘gfﬂ/’lq’(‘z@m) € LogCH4(M‘;n)

is minimal and not contained in CH4(M§;’n). For the first part, by [BSZ16,
Proposition 2.1] we have that the class AgAg_171 is minimal and hence so is
5.

By Lemma 4.6.5, it remains to show that 7 is not the pullback of a class in
CH7(M?’n). Note that Mztﬂ is of dimension 9, while M, is of dimension 8. In
fact, 7 is a P!-bundle, and in particular m,7* = 0. Note that ®(¢,,) is minus
the class of a cycle that maps one-to-one to M, and 7. ®(¢5,) = —[M5,].

g,n?’

Hence 7,y = AgAg—191 # 0. So ~ is not the pullback of a class in Mztn

3In [PZ19] Pandharipande and Zvonkine explicitly assume (g,n) # (0, 3). However, this
is only because they have a parity condition, which is automatic in the even degree case by
[PZ19, Remark 12]. Their proof still works for (g,n) = (0, 3).
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Hence there is a log CohFT (g.,)g,n for which s 2 takes a value in the set
LogCH4(M52t’2) \ CH4(M52t’2); in particular, it does not come by pullback from
a CohFT.

Lemma 4.6.5. Let X be a finite type algebraic stack with log structure. Then
the pullback

f: CH(X) — LogCH(X) (4.6.1.1)
18 injective.

Proof. This is immediate from the fact that log blowups are proper and surjec-
tive (and both these properties are stable under base-change), together with
the injectivity of pullback of Chow cohomology along proper surjective mor-
phisms [ER22, §4.1]. O

4.7 The log double ramification cycle as a par-
tial log CohFT

We begin by lifting the construction of the double ramification cycle from
[MW20] to our stack of log pointed curves, to give a more direct construction
of the log DR cycle from Definition 4.4.5.

Definition 4.7.1. Let S be a log stack. We write Giog,5 and Gyrop,s for the
sheaves of abelian groups on the big strict étale site of S given by T' — M5 (T)
and T +— M3 (T) respectively. A log line over S is a Giog,s torsor, and a
tropical line is a Gyrop,s torsor.

Definition 4.7.2. Given non-negative integers g and n, and a vector of inte-
gers a = (ay,...,an) with >, a; = 0, we define Div, 4 to be the fibred category
over Mzt whose objects are tuples

(C/S,p1,...,pn, P/S, Q) (4.7.0.1)

n

where (C/S,p1,...,pn) is a stable log pointed curve, P/S is a tropical line,
and @: C — P is a map whose outgoing slope* at leg i is equal to a;.

We similarly define Div, ,(O) to be the fibered category over Ms', whose
objects are tuples
(C/S;p1,..,Pn,P/S, ) (4.7.0.2)

where (C/S,p1,...,pn) is a stable log pointed curve, P/S is a log line, and
a: C — P is a map whose slope at leg i is equal to a;.

4The slope is independent of choice of local trivialisation of the torsor.
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Remark 4.7.3. Locally on S we can trivialise the torsors P and P, so that &
becomes a PL function on C, and « becomes a generating section of the line
bundle O¢(a). We work with torsors in order that Div, , and Div, 4(O) be
sheaves.

Write Pic, , for the universal Picard space of C,, /Mg, ; this is the strict
étale sheafification of the presheaf T +— Pic(Cr)/Pic(T), see [BLR90, §8] or
[FGIT05, Part 5] for background. It is a group algebraic space over M

g,n?
which we equip with the strict log structure over M, .

There is an Abel-Jacobi map
AJ: Divy 4 — Picgn; a— [Oc(a)). (4.7.0.3)

To define this map on a tuple (C/S,p1,...,pn, P/S, &) we first shrink S until
we can choose an isomorphism f: P — Gyop, s, then take the line bundle
Oc(f(a&)). The line bundle depends on the choice of trivialisation, but the
class in Picy, does not, so this glues to a global construction.

We let J,,, denote the multidegree 0 locus inside Picy,, (parametrising line
bundles having degree 0 on every irreducible component of every geometric
fibre), often called the generalised Jacobian.

Definition 4.7.4. Define Div}) , = Divg 4 Xpic, , Jgn-
Lemma 4.7.5. The square

Divg 4(0) —— M;tn

l io (4.7.0.4)

-0 AJ
Divy o — Jgn-

is a pullback.

Proof. Commutativity of the square yields a map from Div, ,(O) to the fibre
product. Checking that this map is an isomorphism can be done locally, and
we do so by constructing an inverse map. A point of the fibre product is a
point (C'/S,p1,...,pn, P/S,a) of Divy, such that [Oc(a)] is trivial, and we
may shrink S until the torsor P is trivial; choose an identification P = Gop,s-
Then @ is a PL function on C' such that the line bundle O¢ (@) descends to S.

To build a point of Divy 4(O), we choose P = Giog,5. Perhaps shrinking S
again we may assume that O¢(@) is trivial (since it descends to S), hence
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we can choose a generating section o of O¢ (@), yielding the desired point of
Divy 4(O). A different choice of trivialisation of O(&) would yield a different
section «, but there is a (unique) automorphism of the torsor P = Giog s
interchanging these choices. O

The next lemma is the technical heart of the definition of the double ramifi-
cation cycle.

Lemma 4.7.6. The natural map
7: Divg o(O) = My, (4.7.0.5)
18 proper.

Proof. Properness depends only on the underlying stacks (not on the log struc-
tures). The underlying algebraic stack of M;tyn is M, n, and the underlying
algebraic stack of Div, , is the same as the underlying algebraic stack of a con-
nected component of the space Div of Marcus and Wise (and the Abel-Jacobi
maps match up). The result then follows by base-changing [MW20, Theorem

4.3.2). O

4.7.1 Virtual fundamental class

There are multiple possible equivalent definitions for the normal log double
ramification cycle, for example [HS22b, Lemma 4.5] and [HS22b, Lemma 4.12],
or the formula [HMP*22, Theorem B]. Here we will use [HS22b, Definition 4.4]
in the context of log pointed curves. We recall in outline [HS22b, Section 3.5].

We start by considering the commutative diagram
Divg 4(O) ’ Mzt,n
L]
0
Divg , — Jgn (4.7.1.1)
Mgn
Here the pullback square is from Lemma 4.7.5.

~ —0
We choose smooth log blowups M;tn resp. Div, , of M;"’n and ]D)ivgyg such that

~0 < . .
the map Div, , — M, becomes an open immersion of smooth log smooth
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stacks. We define Z fitting into the diagram
Z —— Mg,
7

[ ~o0
! Div, , —— Jgn

a

l (4.7.1.2)
Mgn

|

st
g,m

—~ 0 —~ 0

Let [Div,,] denote the fundamental class in CH,(Div,,). Then the class
—~0 _ ~ -

jx€'Div, ] lies in CH. (M), and taking its Poincaré dual® yields a class

in CHop (Mztn) This in turn gives a class in LogCH" (M, ).

—0 ~
Lemma 4.7.7. The Poincaré dual of the class j*eI[ID)ivg&] € CH. (M ,) is
equal to the class LogDR(a) from Definition 4.4.5.

Proof. If the blowups I\\/Jl_f]tn respectively ID)|vg . are pullbacks of blowups of
M,.,, and Div?

then Lemma 4.7.7 follows immediately from [HS22b, Defi-
nition 4.4].

In [HS22b, Section 3.5] it is shown that there are blowups of M, ,, and Div? g
that satlsfy the necessary conditions, so it remains to show that the class

g,n,a’

[]D)lvg o] is independent of the choice of the blowups MSt and ]D)lvg As in
[HSQQb Section 3.5], this follows immediately from Gysm pullbacks along lci
morphisms commuting with each other and with projective pushforward. [

Remark 4.7.8. Note that the above log blowups of M, and ]Dlv o are not
assumed to be birational (though they can always be chosen $0). For example,
if g=0, n—3onecanchooseM on = P2

5That is, allowing it to act via intersection/Gysin homomorphism.
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4.7.2 LogDR as a partial log CohFT
Now we can show that the classes LogDRg(g) form a partial log CohFT.

Definition 4.7.9. Let V be the infinite dimensional Q-vector space with basis
{eq :a € Z}. Letn: VRV — Q be the non-degenerate symmetric form sending
€q ® ep t0 dq1p0. Write 1 = ey € V. For every g,n with 29 —2+n > 0, let
Qgn = V" — LogCH(MS ,) be the map that sends

ea1®...®ean

to LogDR(a).
In this section we will show the following theorem.

Theorem 4.7.10. The collection (2g.5)gn forms a partial log CohF'T with
unit 1 € V.

Recall the gluing map

. st st st
gl: Mg, 1 X Mg, npp1 = My,

Let @ € Z™ be a vector summing to 0, and let

ny

ny
bl = (alv"'aanu_zai)v bQ = (an1+1,'~'7anazai)v
i=1 1=1

vectors of lengths ny + 1 and no + 1 respectively, both summing to 0. We need
to prove the equality

gl" LogDR, (a) = LogDR,, (b;) X LogDR,, (by).

To lighten notation, we write the gluing map as M5t x Mi§" — M®*, and we write
Div’, Div), Div) for ]D)iv!oM,ID)ivgl’b1 and ID)iVSZ’l72 respectively, and similarly for
Div(0).

We will now construct log gluing maps for Div® and Div(0).
Definition 4.7.11. Define

gl: Div) x Divy — Div® (4.7.2.1)
to be the map sending a pair

((Cl/Svplv e apn1+1apl7dl)a (027(11; .. '7q’n2+laP27072)) (4722)
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to
(gl(cla CQ)/SJ)M <oy Qngs Pl ®P2; Qay ®C_¥2(qn2+1)\/541(]97“4-1)@@2)- (4723)

where a1 @2 (n,+1) Va1 (Pn,+1)®as denotes the gluing of functions as defined
in Corollary 4.5.12. Similarly, define

gl: Divy(O) x Divy(O) — Div(O) (4.7.2.4)
to be the map sending a pair

((CI/S7p17 e 7pn1+177)17a1)5 (627 qi,--- ,qn2+1,7)2,042)) (4725)

to

(l(C1,C2)/S,p1s- -, Gy, PL® P2, 01 @2 (Gnyt1) Va1 (Pn,+1) @az). (4.7.2.6)

We obtain a commutative diagram

m
////A /// ¢
Divy(O) x Dive(O) Div(O)
J
v0 /

E)ﬁlximg

€1 Xeg

|

Ji % Jo (4.7.2.7)
DivY x Div) Di
Mt % Mt Mt

Lemma 4.7.12. All the squares in (4.7.2.7) are pullback squares.

Proof. Let C1/S,C3/S be two log 1-pointed curves. Let C'/S denote the gluing
of these two curves, and let f : (Cy U C2)P"" — C be the natural map. Let
L/C be a line bundle. Then the line bundle £ is trivial if and only if f*£
is trivial, £ has multidegree 0 if and only if f*£ has multidegree 0, and L is
twistable by a PL function to multidegree 0 if and only if f*£ is. The lemma
immediately follows. O
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In order to prove compatibility of LogDR with pullback along the gluing maps,
we now need to find blowups of Mst, Mst, Migt, Div®, Div!, Div) that are compat-
ible with the gluing maps.

Proposition 4.7.13. There are smooth log blowups M“,M?M-‘g of respec-
tively M, M5t MS' that contain as opens smooth log blowups of respectively
ID)ivO,ID)iv%}D)ivg and that satisfy the condition

gl Mt = M5t x M.

Proof. We let M'°P M}°P, M5°" denote the tropicalisations, i.e. the cone
stacks, of M5y, MI5" | oy, M |, respectively. Then there is a tropical gluing
map M{P x My — MErop,

Similarly, we let Div™ C M Div{® ¢ M Divi® c M5°® denote the
tropicalisations of the maps Div® — M, Div) — Mst, Div — M.

Let T be the decorated graph with two vertices and one edge, where the two
vertices have genera g; and g2, and carry n; resp. ns markings.

Now we pick two smooth subdivisions 1,y of M{°" M5 that arise by
pullback from smooth subdivisions of M;rOp,M;rOP and that contain smooth
subdivisions of Div{"® Divy°?, and such that the corresponding subdivision

Y1 x Xy of M x M5°P is Aut(T)-invariant.

We let M{® C M denote the image of M{*® x M5° under the gluing
map. As the subdivision 3; X X5 is Aut(T')-invariant, it descends to a smooth
subdivision X of M{°P. As M[**" is a maximal subcone stack of M, we can
extend this to a subdivision ¥ of M with Xy = Xr.

As a tropical analogue of Lemma 4.7.12 we have the following pullback square

of cone stacks
.t .t .
Divy"? X Divy®? —— Divtrer

l l (4.7.2.8)

MYP x M5 ——— MrP,

This means ¥ already contains a smooth subdivision of Divt'°p|MtFrop. By re-
peated star subdivision in maximal cones of ¥ that do not lie in M{°P, we

obtain a smooth subdivision ¥ that contains a smooth subdivision of Divt™P

and such that E‘Mii"" =Xr.

Let M®t, Mst, Mgt be the log blowups obtained from the respective subdivisions
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i, Y1,Y5. Then by construction these satisfy all the requirements. O
Remark 4.7.14. Consider a non-degenerate small stability condition 6, as de-
fined in [KP19]. It is shown in [HMP*22, Theorem A] that LogDR,(a) can
be supported on a specific log blowup MS@ depending on @ and 4. In [Mol23]
Molcho constructs explicitly a smooth log blowup Mg’g of ﬂ;g. Choosing

Vist — A0 _ st ;
Mt = Mg, XMym MY, in the above argument also works.

Proof of Theorem 4.7.10. We need to show that conditions 1, 2, 4 and 5 of
Definition 4.6.1 all hold.

The S, -invariance 1 and the unit axioms 4 and 5 are trivial. It remains to
check the compatibility with pullback along the separating gluing map. We
continue with the notation set up in this section.

We consider the smooth log blowups

M, M, M3
coming from Proposition 4.7.13. By combining (4.7.1.2) and (4.7.2.7) we get
the commutative diagram

My x My ———— M

/ o xes / .

Zy % Zs Z
|
Jy % Jo J (4.7.2.9)
_— /
Div; x Divy Div
Mg £ M3 . Mt

gl

where all the squares are pullback squares. We let j; X jo denote the composite
Zl X Zz — Mslt X Mth,

and j the composite _
7 — M.
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We now perform the following computation inside LogCH(MSt x M).

g1* Q.. (a) =gl (LogDR,,(a))
:a*(j*e!([m]))PD by Lemma 4.7.7

= (' BN))

(jl X j2)*e!g|

(
( (D))

— ((j1 X ja)«(€1 X 62)@!([]1%’]))131)
(

=(j1,+€1 [Div1])PP ® (jz, ey [Diva] )PP

=LogDRy, ,,, 11(a1,- .. an,,— Zai)
i=1

ny
X LogDR,, ,1,+1(@n, 415+ an, Z a;) by Lemma 4.7.7
i=1

This was exactly what we needed to check for condition 2. We conclude that
Q) satisfies conditions 1, 2, 4 and 5 of Definition 4.6.1. O

4.8 Comparison with log Chow rings of Barrott

A general theory of bivariant log Chow rings is under development by Barrott,
in [Barl9]. In this section we show that the log Chow ring we defined in
Definition 4.2.7 has a map to the log Chow ring of Barrott (under some mild
conditions on the space), and thereby show that all our results still hold for the
log Chow rings defined by Barrott. We first give a short summary of Barrott’s
definition.

If f: X — Y is alog blowup of log schemes with source and target locally free,
Barrott defines a Gysin map f': CH,(Y) — CH,(X). For X a log scheme, he
then defines the log Chow group of X as

CH!(X) = colim CH,.(X) (4.8.0.1)
X=X
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where the colimit is taken over locally free log blowups of X, with transition
maps given by the Gysin pullback. For X — Y a map of log schemes, he
proposes definitions of various operations, including:

1. if f: X — Y is proper, a pushforward map f,: CHI(X) — CHI! (Y);
2. if f: X — Y is log flat, a pullback map f*: CHI(Y) — CHI(X);

3. if f: X = Y is a strict regular embedding, a Gysin pullback map
f': CHE(Y) — CHI(X);

4. if f: X — Y is a log blowup with source and target locally free, a Gysin
pullback map f': CHI(Y) — CHI(X).

Barrott then defines the log Chow cohomology ring CHZ (X) of a log scheme X;
an object z € CH}(X) consists of the data of, for every log scheme T' — X, a
morphism zp: CHI(T) — CHI(T), and these maps 2z should commute with
saturated proper pushforward, log flat pullback, and strict Gysin pullback.

Lemma 4.8.1. Let X be a log scheme locally of finite type over k. Let z €
CHop(X) and let t: T — X be a morphism of log schemes. Then

1. The morphisms zz CH,(T) — CH,(T) for T — T log blowups assemble
into a group homomorphism

24 CHI(T) — CHI(T). (4.8.0.2)

2. The data of the maps z; for varying T from (1) commute with satu-
rated proper pushforward, log flat pullback, and strict Gysin pullback,
and hence define an element z' € CHI (X).

Proof. The first claim is Lemma 4.8.2 below. For the second claim, commu-
tation with strict Gysin pullback is immediate from [Ful84, Def 17.1, C1].
Commutation with log flat pullback and saturated proper pushforward are
more involved. After unravelling Barrott’s definitions, all the constructions
are composed of proper pushforward, flat pullback, and Barrott’s Gysin pull-
back. Compatibility with the former two operations holds by definition of the
operational class [Ful84, Def 17.1], so it remains to check compatibility with
Barrott’s Gysin pullback, which is Lemma 4.8.2. O

Lemma 4.8.2. Let t: T — X be a morphism from a locally free finite-type
log scheme, and let : T =T bea log blowup with T also locally free. Let
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z € CHop(X). Then the diagram

CH,(T) —™— CH,(T)
JZT lzf (4.8.0.3)
CH,(T) —™— CH,(T)

commutes, where 7' is Barrott’s Gysin pullback.

Proof. Suppose first that we can find a cartesian square

T —— T
l’“ jn (4.8.0.4)

T ——T

with horizontal arrows strict, and I a log blowup between smooth log smooth
log schemes (in particular, IT is l.c.i.). Then Barrott’s 7' is just the Gysin
pullback induced by II, and the result is immediate from the commutation of
z with smooth pullbacks and with Gysin pullback along regular embeddings.

In general such a cartesian square need not (we suppose) exist. However, it’s
role can be played by the Artin fans Ap and Az of T and T. We have a
cartesian diagram

CZN—' E— AT

Jﬂ J{H (4.8.0.5)

T —— Ar

where I is a representable l.c.i. map between smooth log smooth log algebraic
stacks. Following [Kre99, §3.1] we have a refined Gysin pullback II', and this
coincides with Barrott’s pullback.

Now, the operational class z commutes (by definition) with Gysin pullbacks for
lci morphisms of schemes, but not a-priori lci morphisms of stacks. However,
this is in fact automatic. For smooth morphisms this is clear, so it is enough
to check compatibility with Gysin pullbacks along regular closed immersions
of stacks. The precise statement is Lemma 4.8.3. O

Lemma 4.8.3. Let X be a scheme of finite type over k, and let z € CHop(X) be
an operational class. Let f: S — S be a regular closed immersion of algebraic
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stacks of finite type over k. Let T be a finite-type k scheme with maps to X
and to G. Consider the fibre diagram

T/ S/

I

T pe (4.8.0.6)

|

X.

Then the diagram
CH,(T) —— CH,(T")
lZT lzT, (4.8.0.7)

CH,(T) —L— CH,.(T")

commutes, where f' is Kresch’s Gysin pullback.

Proof. The ‘stacky Gysin pullback’ f' is constructed in [Kre99, §3.1] as a
composite of several maps. In our situation each step in the construction is
either a proper pushforward, flat pullback, or Gysin pullback along a map of
schemes. In particular, these all commute with the action of z. O

Having finished proving Lemma 4.8.1, we collect some consequences. First,
Lemma 4.8.1 yields a ring homomorphism

CHop(X) — CHJ(X). (4.8.0.8)

Lemma 4.8.4. Ifn: X > Xisa log blowup, there is a canonical isomorphism
CH}(X) = CH}(X), and the diagram

CHop(X) —— CHop(X) —— CH}(X)

l l l (4.8.0.9)

CHop(X) — CHop(X) —— CH}(X)

commutes, where the right horizontal arrows are from (4.8.0.8), and the middle
and left vertical arrows are the pullback of Chow cohomology.
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Proof. Immediate from the definition of the pullback on Chow cohomology
and the construction of the map (4.8.0.8). O

In this way we build the promised ring homomorphism

LogCH(X) — CH{(X). (4.8.0.10)

The following lemma on compatibility of pullbacks follows immediately.

Lemma 4.8.5. Let f: X =Y be a map of dominable log stacks. Then there
18 a commutative square

LogCH(Y) —L LogCH(X)

| |

* f* *
CH}(Y) —— CH}(X)

We do not know whether the map (4.8.0.10) is injective or surjective. In this
paper we work with the naive ring LogCH(X), but with this map and the
compatibility lemma 4.8.5 our constructions and results transfer immediately
to Barrott’s setup of log Chow cohomology rings CH; (X).

4.9 Tropical gluing

In this section we will introduce tropical pointed curves. These are the tropical
versions of log pointed curves, and many of the properties enjoyed by log
pointed curves have a tropical analogue. For example, there are tropical gluing
maps and tropical evaluation maps. In this section we omit all proofs, and
refer the interested reader to the logarithmic versions of the statements.

We start by recalling the notion of a tropical unpointed curve. For more details
we refer to [CCUW?20, Section 3.1].

Definition 4.9.1. We denote by G ., the set of graphs
G=(V,H,L=(p;))i-yCH,r:H—Vi:H—Hg:V—N)

where
1. V is the set of vertices;

2. H is the set of half edges;
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3. ¢ is an involution on H.

4. r assigns to every half edge the vertex it is incident to.

5. L C H is a list of the legs, the fixed points of the involution i, required
to be of size n;

6. (V,H) is a connected graph;

7. g(v) is the genus of vertex v;

8. the graph is stable, i.e. for every vertex v we have 2¢g(v) — 2+ n(v) > 0
where n(v) is the number of half edges incident to v;

9. the total genus Y . g(v) +hY(G) is g;
We call this a genus g graph with n markings.

Recall the category of rational polyhedral cones RPC and the category of
rational polyhedral cone complexes RPCC from [CCUW20, Section 2.1].

Now we can define the notion of a pointed tropical curve as in [CCUW?20].

Definition 4.9.2. Let ¢ € RPC and let P be the corresponding sharp dual
monoid. An pointed tropical curve I'/o of genus g with n markings consists
of a graph G € G, and a length function ¢ : H \ L — Psq invariant under
the involution 1.

This notion then automatically extends to a category over RPCC, fibred in
groupoids. This category is called ﬂ;‘:’, and it is shown in [CCUW20] that
this is a cone stack and has many similarities to the moduli stack of log curves.
Similar to the moduli stack of log curves, there is no notion of gluing for
pointed tropical curves. However, as for log curves, one can define a notion of
tropical pointed curves for which gluing does exist.

Definition 4.9.3. Let ¢ € RPC and let P be the corresponding sharp dual
monoid. An tropical pointed curve I'/o of genus g with n markings consists
of a graph G € J,,, and a £ : H — P invariant under the involution :.

This again immediately extends to a category fibred in groupoids over RPCC.

Definition 4.9.4. We let My?/RPCC denote the cone stack of tropical
pointed curves.

Remark 4.9.5. Under the equivalence of cone stacks and Artin fans, M{P is

the Artin fan of M;t’n.

Remark 4.9.6. Compare Definition 4.9.3 with Definition 4.3.6, where it is
shown that for a log pointed curve the legs naturally have lengths whose val-
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ues lie in the characteristic monoid of the base. In fact, imitating [CCUW20,
Section 7], a stable log pointed curve over an algebraically closed field can be
tropicalised to obtain a tropical pointed curve.

Proposition 4.9.7. There is a natural isomorphism of cone stacks

——trop

trop ~v n
MU = 17 x R,

From now on we use tropical curve to mean tropical pointed curve. We can
now see that we can glue tropical curves, as per the following definition.

Definition 4.9.8 (Cf. Section 4.5). Let I'/o be a (not necessarily connected)
tropical curve and let py,p2 € H be two legs. Let G denote the graph of I and
let G&' denote the graph G where p;, po have been removed and been replaced
by two half-edges hi, ho with i(hi) = hy. We define the gluing I'®' to be be
the tropical curve with underlying graph G& and length function ¢ given by
L(hy) = L(he) = £(p1) + £(p2), and all other lengths equal to those of T

By applying this to either the disjoint union of two tropical curves, or to a
single tropical curve, we get the following tropical gluing maps.

Definition 4.9.9 (Cf. Section 4.5.4). The gluing construction Definition 4.9.8
defines natural gluing maps

t t
XMy, 41 = Mg Lo, ntny

and

trop trop
Mq—17n+2 - Mg,n )

Now we will discuss the other benefits of tropical pointed curves, namely eval-
uation maps and the ability to glue maps. To do this, we first recall that any
unpointed tropical curve I'/o can be realised as a relative cone complex of
relative dimension 1. One can realise pointed tropical curves either by realis-
ing the legs as having length 0 or length oo, both with their advantages and
disadvantages. For tropical pointed curves, we have the following notion of
realisation.

Definition 4.9.10. Let T'/o be a tropical curve with n marked points. We
write g /o for the relative cone complex of relative dimension 1 containing
one copy of o for every vertex, and for every half leg h up to the involution,
one cone of relative dimension 1 over o such that the fiber over x € o has
length ¢(h)(z). For ¢ = 1,...,n we write p;: 0 — I'g for the map that over
every fiber, sends s € o to the endpoint of leg ¢ in T'g|s.
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Now we can state the existence of evaluation maps and the universal property
of the gluing.

Definition 4.9.11 (Cf. Section 4.3.3). Let X be a cone complex. Let I'/o
be a tropical curve, and let py,...,p, be the legs. For X a cone complex
and f: I'g — X a map of cone complexes, we write f(p;) for the composition
fopiio— X.

Theorem 4.9.12 (Cf. Theorem 4.5.10). Let X be a cone complex. Let T'/o

be a (not necessarily connected) tropical curve, and let p1,pa be two legs. Then
there is a natural bijection

~ = d the sl
Hom(Fﬁ%,X) =5 { f € Hom(Tg, X) : f(p1) = f(p2) and the slopes '
of f along p1,p2 add up to 0

(4.9.0.1)
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