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Chapter 4

Logarithmic cohomological field
theories

This chapter has already appeared as a preprint [Spe22]. This is joint work
with David Holmes.

Abstract. We introduce a new logarithmic structure on the moduli stack
of stable curves, admitting logarithmic gluing maps. Using this we define
cohomological field theories taking values in the logarithmic Chow cohomology
ring, a refinement of the usual notion of a cohomological field theory. We
realise the double ramification cycle as a partial logarithmic cohomological
field theory.

4.1 Introduction

4.1.1 Background

Cohomology classes on the moduli space of curves are the central object of
study in Gromov-Witten theory. One of the most important structures such
cohomology classes can carry is that of a cohomological field theory (CohFT),
introduced in the 1990s by Kontsevich and Manin [KM94] to capture the
formal properties of the virtual fundamental class in Gromov-Witten theory.
A collection of classes forms a CohFT if they are compatible with pulling back
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66 CHAPTER 4. LOG COHOMOLOGICAL FIELD THEORIES

along the gluing maps

Mg1,n1+1 ×Mg2,n2+1 →Mg1+g2,n1+n2 ,

Mg−1,n+2 →Mg,n.

(see [Pan18] for a precise definition). CohFT structures have allowed for the
computation of many interesting tautological classes (see e.g. [PPZ15, Pan18]),
often via the Givental–Teleman classification of semisimple CohFTs, and Co-
hFTs form a bridge between algebraic geometry and integrable hierarchies (see
e.g. [DZ01, BR21]).

In recent years enhancing Gromov-Witten theory with additional data coming
from logarithmic (log) geometry [Che14, AC14, GS13] is becoming increasingly
important; this allows one to capture tangency conditions (recent examples in-
clude [BN22, RK23, vG23]), and plays a key role in degeneration arguments
[ACGS20a, KLR18, Ran19]. Log Gromov-Witten invariants live most natu-
rally in the log Chow ring of the moduli space of (stable) log curves; this is the
colimit over log blowups of the moduli space (equivalently, iterated blowups
in boundary strata), see Section 4.2.3 for a precise definition of this ring, and
[MPS21, HMP+22, MR21, HS22b] for examples and applications.

4.1.2 Logarithmic gluing maps

So far there is no notion of a cohomological field theory for classes in the
log Chow ring, because there is no simple theory of log gluing maps between
moduli spaces of log curves. We resolve both these problems, and give three
examples of the resulting ‘log cohomological field theories’ (one is only ‘partial’;
it does not satisfy the loop axiom).

To equip log curves with gluing maps, we make a simple change: we require
that the marked points of the log curves are logarithmic sections, rather than
just sections on the underlying schemes (see Definition 4.3.1 for details). We
call these log pointed curves, and write Mst

g,n for the stack of stable log pointed
curves.

Theorem F. The stack Mst
g,n of stable log pointed curves is an algebraic stack

with log structure. It admits a forgetful log map to the stack Mg,n of stable
curves. This map is an isomorphism on underlying algebraic stacks - it only
changes the log structure. There are log gluing maps

gl : Mst
g1,n1+1 ×Mst

g2,n2+1 →Mst
g1+g2,n1+n2

,

gl : Mst
g−1,n+2 →Mst

g,n.
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compatible with the usual gluing maps on Mg,n.

Remark 4.1.1. The theory of punctured log curves [ACGS20b], [Gro23] con-
structs gluing maps between spaces of punctured log curves, and indeed our
log pointed curves admit canonically the structure of punctured log curves
(see Section 4.3.2). However, the stacks of punctured log curves are larger and
more complex than ours, and the analogue of a CohFT in this context is not
clear to us.

4.1.3 Examples of log CohFTs

The gluing maps of Theorem F now allow us to define the notion of (partial) log
CohFT: a system of classes in LogCH(Mst

g,n) for every g, n with 2g−2+n > 0,
compatible with the gluing maps and the forgetful maps Mst

g,n+1 → Mst
g,n; see

Section 4.6 for the precise definition.

Every CohFT trivially gives rise to a log CohFT, but we give a number of
examples that do not arise in this way.

4.1.3.1 First examples: Minimal log CohFTs

Pandharipande and Zvonkine [PZ19] give examples of CohFTs coming from so-
called minimal classes in CH∗(Mg,n); a minimal class is a class that vanishes
under pullback along all gluing maps with target Mg,n. This CohFT is con-
structed so that γ is one of the values it takes. Their construction immediately
generalises to our setting, and given a minimal class γ in LogCH∗(Mst

g,n), one
obtains a log CohFT taking the value γ for a certain input. In Section 4.6.1.1
and Section 4.6.1.2 we give examples of minimal classes in LogCH∗(Mst

g,n) \
CH∗(Mst

g,n), and hence of log CohFTs that are not CohFTs.

4.1.3.2 The log double ramification cycle as a log CohFT

Given a vector of integers a = (a1, . . . , an) summing to zero, the double rami-
fication cycle DRg(a) onMg,n measures the locus where the divisor

∑
i aipi is

linearly equivalent to 0 (here p1, . . . , pn are the n sections of the curve). For-
mal definitions were given in [GV03], [Hol21], [MW20], via the Gromov-Witten
theory of rubber maps, using birational geometry, and using log geometry, re-
spectively. These equivalent constructions in fact naturally yield a slightly
more refined object, the log double ramification cycle, which lies on a blowup
of Mg,n (the usual double ramification cycle is obtained by pushing forward
toMg,n). This blowup is not canonical, but the resulting class is independent
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of the choice in the sense that the pullbacks to any common refinement will
coincide. In [HPS19, §9], we used this to define the log double ramification
cycle LogDRg(a) in the log Chow ring

LogCHHPS(Mg,n) = colim
Y ∈Bl(Mg,n)

CH∗(Y ), (4.1.3.1)

where the colimit runs over smooth log blowups of Mg,n. The log double
ramification cycle is shown to be tautological in [MR21] and [HS22b], and an
explicit formula is given in [HMP+22], inspired by Pixton’s formula as proven
in [JPPZ17]. Other applications can be found in [MPS21], [RK23].

In [BR21] it is proven that the double ramification cycle forms a partial co-
homological field theory (a cohomological field theory that fails to satisfy the
loop axiom). Our second main theorem is a generalisation of the result to the
log double ramification cycle. In Definition 4.4.5 we construct a further lift
of LogDRg(a), to the log Chow ring of the stack of log pointed curves. Con-

structing the latter ring is actually slightly subtle. The stacks Mg,n have a
simple log structure; it is the divisorial log structure coming from the boundary.
In particular, all their log blowups are birational, and can be dominated by
smooth log blowups. In contrast, the stacks Mst

g,n have generically non-trivial
log structure (in fact, the log structure has generic rank n, and the associated
line bundles are obtained by pulling back the relative dualising sheaf of the
curve along the corresponding marking). This means that log blowups of the
spaces Mst

g,n can have quite complicated shapes; in particular, they need not
be birational maps. A refined theory of log Chow rings that applies to such
stacks is under development by Barrott [Bar19], but for the convenience of
the reader we give in Section 4.2.3 a simplified definition, and in Section 4.8 a
comparison to Barrott’s construction.

With this theory in hand, in Section 4.7 we prove that this lift of LogDRg(a)
to LogCH(Mst

g,n) forms a partial log CohFT.

Theorem G (Theorem 4.7.10). For g, n with 2g − 2 + n > 0, let π : Mst
g,n →

Mg,n denote the forgetful map. For a sequence of integers (a1, . . . , an) ∈ Zn,
let LogDR(a) ∈ LogCH(Mst

g,n) denote π∗ LogDR(a) with the convention that
LogDR(a) = 0 if

∑
i ai 6= 0. Then the collection

(LogDRg,n)2g−2+n>0

forms a partial log CohFT.
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4.1.4 Evaluation maps

Our definition of log pointed curves also allows us to define logarithmic evalu-
ation maps, see Section 4.3.3. In Gromov-Witten theory, the evaluation map
Mg,n(X,β)→ Xn from the moduli of stable maps to X to the product Xn is
necessary for the definition of Gromov-Witten invariants. For the log moduli

spaceMlog
g,n(X,β) defined in [GS13] (where β now also encodes tangency con-

ditions), there is an evaluation mapMlog
g,n(X,β)→ Xn that is not logarithmic.

This makes it difficult to relate the log Chow theory of the target space X to
any log Gromov-Witten invariants. One possible fix is explored in [RK23],
using removal of log structure. Another possible fix is explored in [ACGS20b],
where the evaluation map is made logarithmic by changing the log structure
on the source.

In our language, the sections pi : S → C are already logarithmic, so we get log
evaluation maps for free. We explore this in Section 4.3.3. A comparison of
these approaches will be given in forthcoming work of the first-named author
with Leo Herr.

4.1.5 Tropical analogue

In Section 4.9 we give a tropical version of this story. In particular we give in
Definition 4.9.3 a tropical analogue of log pointed curves. In Section 4.9 we
define tropical gluing maps between moduli spaces of tropical pointed curves,
and tropical evaluation maps. This appendix can be read independently from
the rest of the paper.

4.1.6 Acknowledgements

We are grateful to Leo Herr, Alessandro Giacchetto and Nitin Chidambaram
for helpful discussions, to Mark Gross for sharing an early version of [ACGS20b],
and to Dan Abramovich for suggesting the pierced log structures introduced
in Section 4.5, which significantly streamlined the gluing procedure. We are
especially thankful to Johannes Schmitt for very careful feedback on an earlier
draft.

4.2 Conventions

Everywhere except Section 4.5 we work in the category LogSch of fs log schemes
over a fixed base log scheme. In Section 4.4, Section 4.6, Section 4.7 and
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Section 4.8 we take the base log scheme to be a point with trivial log struc-
ture, in order to have well-behaved Chow rings. In Proposition 4.4.6 and
Section 4.6.1.2 we furthermore assume we are in characteristic 0.

4.2.1 Log stacks

Definition 4.2.1. A log algebraic space (or log algebraic stack) is an algebraic
space (or algebraic stack) equipped with an (fs) log structure. If a fibred
category X/LogSch is represented by a log algebraic stack, we write X for the
underlying algebraic stack.

Definition 4.2.2. A log stack is a stack in groupoids over LogSchk for the
strict étale topology, admitting a log étale cover by an algebraic stack with
log structure, and with diagonal representable by algebraic spaces with log
structure.

Remark 4.2.3. Examples of log stacks include:

• any algebraic stack with log structure (in which case the cover can be
taken strict);

• the log and tropical multiplicative groups Glog and Gtrop;

• the log and tropical Picard groups of Molcho and Wise [MW22].

4.2.2 Log Curves

Following [Kat00], a log curve is a morphism of log algebraic spaces π : C →
S that is proper, integral, saturated, log smooth, and has geometric fibers
which are reduced, connected and of pure dimension 1. Kato proves that the
locus where C → S is not vertical is (Zariski-locally on S) a disjoint union of
schematic sections; however, these do not in general admit lifts to logarithmic
sections. Our notion of a pointed log curve imposes such lifts.

More formally, an n-pointed log curve is a tuple

(π : C → S, p1, . . . , pn) (4.2.2.1)

where π : C → S is a log curve, and pi : S → C is a map of algebraic spaces,
such that C/S is vertical at a point c ∈ C if and only if c does not lie in the
image of some pi.

We denote the moduli space of n-pointed genus g log curves by Mg,n, and the
substack of stable log curves by Mg,n. The underlying algebraic stacks Mg,n
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and Mg,n are respectively the moduli space of n-pointed genus g curves and
the moduli space of stable n-pointed genus g curves, with log structure given
by the normal crossings boundary divisor.

4.2.3 Log Chow rings

Throughout this subsection we work over a point with trivial log structure.
For a smooth DM stack X locally of finite type, we write CH∗(X) for the Chow
ring of algebraic cycles modulo rational equivalence, in the sense of [Vis89].

The log Chow ring of a smooth log smooth DM stack X was introduced in
[HPS19, §9]. We considered the category of smooth log blowups Y → X,
and given two such models f : Y1 → Y2 we have (by smoothness) a Gysin
pullback f ! : CH∗(Y2)→ CH∗(Y1). We defined the log Chow ring of X as the
corresponding (filtered) colimit in the category of rings:

LogCHHPS(X) = colim
Y ∈Bl(X)

CH∗(Y ). (4.2.3.1)

For the present paper we need to work with the log Chow rings of DM stacks
which are not log smooth; the standard example is a stratum of a log smooth
scheme, which is itself almost never log smooth. A very general theory is under
development by Barrott; see [Bar19]. However, for the present paper we can
make do with a much simpler definition, which we hope will make life easier
for the reader. Below we present our definition, and then in Section 4.8 we
explain why (under mild assumptions) our naive log Chow ring has a map to
that of Barrott, so that our results will transfer automatically to his framework
once the details of the latter are complete.

We start by setting up our terminology.

4.2.3.1 Chow cohomology

We work always with rational coefficients.

An Artin stack X locally of finite type over k admits various Chow theories;
to simplify we assume X equidimensional.

1. If X is quasi-compact and stratified by global quotient stacks, Kresch
[Kre99] defines a Chow group CH(X), and if X is smooth it comes with
a ring structure from the intersection pairing.

2. The operational Chow ring CHop(X) defined in [BHP+20, §2.2] is the
collection of morphisms CH(B)→ CH(B) for B → X maps from finite-
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type schemes, compatible with proper pushforward, flat pullback, and
refined Gysin pullback along lci morphisms. If schemes are replaced by
algebraic spaces or DM stacks, we obtain canonically isomorphic rings.

3. Bae and Schmitt [BSS22] consider a variant of (2) where the test objects
B are taken to be algebraic stacks of finite type stratified by global quo-
tient stacks, and the compatibilities are with representable proper push-
forward, flat pullback, and refined Gysin pullback along representable lci
morphisms. We denote this ring by CHOP(X).

In this paper we will work mainly with CHOP, but to help the reader relate
this work to others in the literature we summarise known comparisons.

1. Since every scheme is a stack, there is a restriction map CHOP(X) →
CHop(X).

2. If X is smooth, quasi-compact, and stratified by global quotient stacks,
then the intersection product defines a map CH(X)→ CHop(X).

3. If X is smooth, quasi-compact, and stratified by global quotient stacks,
then the map CH(X)→ CHOP(X) furnished by the intersection product
is an isomorphism, see [BSS22, Theorem C.6]

4. If X is smooth, quasi-compact, and DM, then all these maps are isomor-
phisms, see [Vis89, Proposition 5.6].

5. Even for X smooth and quasi-compact, we do not know whether the
map CHOP(X)→ CHop(X) is an isomorphism.

4.2.3.2 Log modifications

Definition 4.2.4. A morphism f : X̃ → X of log algebraic spaces is a log
modification if there exists a log scheme Y and log blowups Y → X̃, Y → X
making the obvious triangle commute.

Definition 4.2.5. A morphism f : X̃ → X of log stacks is a log modification
if for every log scheme T and map T → X, the natural map

T ×X X̃ → T (4.2.3.2)

is a log modification of log algebraic spaces.

4.2.3.3 Log Chow

Definition 4.2.6. Let X be a log stack. We say X is dominable if there
exists a log modification Y → X with Y a finite-type algebraic stack with log
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structure.

Definition 4.2.7. Let X/LogSch be a dominable log stack. We define the
log Chow ring of X as the colimit in rings

LogCH(X) := colim
X̃→X

CHOP X̃

where X̃ → X ranges over all log modifications with X̃ representable by finite-
type algebraic stacks with log structure.

The definition also makes sense for a non-dominable log stack, but is not
morally correct (it gives Q).

Example 4.2.8. Consider Glog
m (over the point with trivial log structure). This

has exactly one non-trivial log blowup, namely P1. We see that LogCH(Glog
m ) =

CH∗(P1) = Q[h]/(h2) where h = [0] is the class of 0 ∈ P1.

Example 4.2.9. If X is a log algebraic stack with Artin fan A then CHOP(A)
is the ring of strict piecewise polynomials on X, and LogCH(A) is the ring of
piecewise polynomials on X; this can be taken as a definition, or see [MR21,
Theorem B] for comparison to other definitions in the literature ([MPS21],
[HS22b], [HMP+22]).

Remark 4.2.10. Let X be a log smooth stack of finite type. Then [HS22b,
Definition 2.4] provides an alternative proposal LogCHHS(X) for the log Chow
ring. We do not know whether this is equivalent to the one we use here, because
[HS22b] work with CHop in place of CHOP (see Section 4.2.3.1), but there is
a natural map LogCH(X) → LogCHHS(X), and all constructions of [HS22b]
can naturally be lifted to LogCH(X).

4.2.3.4 Pullbacks

Recall that for any map f : X → Y of schemes, there is a pullback map
f∗ : CHOP(Y ) → CHOP(X). This notion extends to pullbacks for LogCH, as
we will define now.

Definition 4.2.11. Let f : X → Y be a morphism of dominable log stacks.
Let z ∈ LogCH(Y ), and let Ỹ /Y be a log blowup with z ∈ CH(Ỹ ). Consider
the fiber square

X̃ Ỹ

X Y

f̃

y

f
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Then we define f∗z ∈ LogCH(X) to be f̃∗z ∈ CH(X̃). As this is independent

of the choice of Ỹ , this defines a map

f∗ : LogCH(Y )→ LogCH(X).

4.3 Log pointed curves

Definition 4.3.1. Fix non-negative integers g and n. A log n-pointed curve
of genus g is a tuple (C/S, p1, . . . , pn) where

1. C/S is a log curve;

2. the pi : S → C are S-maps of log schemes, landing in the locus where C
is classically smooth over S, with disjoint images;

3. C → S is vertical precisely outside the images of the pi.

Remark 4.3.2. There is an important difference between a log pointed curve
(C/S, p1, . . . , pn) and a marked log curve (C/S, p

1
, . . . , p

n
). For a log pointed

curve, the sections pi are maps of log algebraic spaces, while for a marked log
curve the sections pi are just maps of the underlying algebraic spaces.

Definition 4.3.3. Let (C/S, p1, . . . , pn), (C ′/S′, p′1, . . . , p
′
n) be two log pointed

curves. A morphism of log pointed curves

(C ′/S′, p′1, . . . , p
′
n)→ (C/S, p1, . . . , pn)

consists of a morphism f : S′ → S and an S′-isomorphism of log schemes

ϕ : C ′ → C ×S S′ (4.3.0.1)

such that for every i, writing (pi)
′ : S′ → C ×S S′ for the map induced by pi,

we have p′i = (pi)
′.

These objects and morphisms form the category Mg,n of log n-pointed curves,
and the forgetful morphism taking (C/S, p1, . . . , pn) to S (and (f, ϕ) to f) gives
a functor to LogSch. Straightforward checking yields the following lemma.

Lemma 4.3.4. The forgetful functor Mg,n → LogSch is a CFG, and the
forgetful map Mg,n/LogSch→Mg,n/LogSch is a map of CFG’s.

Remark 4.3.5. A notion of ‘pointed log curve’ is defined in [HMU19], but this
is different from both the marked log curves and the log pointed curves in
the present work; in [loc.cit.] the word ‘pointed’ refers to pointed monoids:
monoids containing an absorbing element ∞. They define a pointed log curve



4.3. LOG POINTED CURVES 75

as a log curve where the edge length of inner edges of the graph is allowed to
be∞. This allows for the gluing of log curves by setting the length of the new
edge to be ∞.

Note that there is no natural map from the space of pointed log curves in the
sense of [HMU19] to the space of log curves. In addition, their theory does
not seem to furnish evaluation maps in the sense of Section 4.3.3.

Definition 4.3.6. Let C/S be a log pointed curve, and let pi : S → C be
one of the sections. Let Pi = im pi, with the strict log structure coming from
the closed embedding Pi → C. Then MPi = MS ⊕ N, with the natural map
MS → MPi induced from Pi → S being the inclusion.

We also have a map p∗i : MPi = MS ⊕ N→ MS . We define `(pi) ∈ MS(S), the
length of pi, to be the image of 1 ∈ N in MS .

Lemma 4.3.7. Let (C/S, p1, . . . , pn) be a log pointed curve, and let the map
α : MS → OS denote the structure morphism. Then ᾱ : MS → OS/O×S sends
`(pi) to 0.

Proof. It is enough to prove this on strict henselian points, so assume S =
SpecA for a strict henselian ring A. Then by [Kat00, Table 1.8], locally the
section pi of C/Spec k looks like

MA ⊕ tN A[t]

MA A

pi pi

with the map A[t] → A being t 7→ 0, and the map MA ⊕ tN → MA being
t 7→ `(pi). The commutativity of this diagram the implies that the map
MA → SpecA sends `(pi) to 0.

We will show in Section 4.3.1 that the moduli space Mg,n is represented by
the moduli space Mg,n of pre-stable curves, but with a different log structure
from the usual one. We do this by considering the minimal objects of the
category Mg,n, in the sense of [Gil12]. However, the resulting log structure is
fairly simple; it can be seen by embedding Mg,n as a stratum of Mg,2n, as we
now sketch for the benefit of the reader who prefers to skip the details of the
proof.

Remark 4.3.8. Let C/S be a genus g log n-pointed curve. Then one can glue
rational tails to the n markings, and put two markings on each of the newly
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created tails. Furthermore, one can assign the newly created node at marking
i the length `(pi). This gives a strict closed embedding Mg,n → Mg,2n of
CFGs over LogSch, identifying Mg,n with the stratum corresponding to the
dual graph shown in Figure 4.1.

n+ 11

2n

n

2

n+ 2

n− 12n− 1

i

n+ i
..
.

. . .

Figure 4.1: The dual graph of C

4.3.1 Basic objects

Let C/S ∈ Mg,n with S a geometric log point, with corresponding graph
Γ and length map NE(Γ) → MS . We also have a natural map Nn → MS ,
sending i to `(pi) as in Definition 4.3.6. In this way we have a natural map
NE(Γ) ⊕ Nn → MS .

Definition 4.3.9. We say C/S is basic if the natural map NE(Γ) ⊕Nn → MS

is an isomorphism. For a general log pointed curve, we say it is basic if it is
basic at every strict geometric point.

We repeat the definition of weakly terminal from [Gil12].

Definition 4.3.10. Let W be a category. We call a subset P of the objects
of W weakly terminal if

1. for every object w ∈W there is a map f : w → p with p ∈ P , and

2. for every object w ∈ W and every two maps fi : w → pi, i ∈ {1, 2} with
p1, p2 ∈ P there is a unique isomorphism g : p1 → p2 with f2 = g ◦ f1.
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To show that the basic curves form a weakly terminal subset of Mg,n, we study
the fiber of Mg,n over a scheme.

Definition 4.3.11. Let X be a CFG over LogSch. For S ∈ Sch, write XS

for the fiber product X ×Sch S. This consists of objects (S, Y ) where S is a
log scheme with underlying scheme S and Y is an object in X(S), and maps
(S, Y )→ (S′, Y ′) that lie over id : S → S.

Proposition 4.3.12. Let S ∈ Sch. Then the basic log pointed curves form a
weakly terminal set inside (Mg,n)S. Furthermore, the map sending a basic log
pointed curve in (Mg,n)S to the unique basic marked log curve (Mg,n)S under
it is an equivalence of setoids.

Proof. First we note that it suffices to prove this after shrinking S; the unique-
ness will allow us to glue.

Let C/S be a log pointed curve with S a log scheme with underlying scheme
S. Let C1/S1 be the unique minimal marked log curve under it. Then we
can construct a different log curve structure C2/S2 on C/S with sheaf of
monoids MS2

= MS1
⊕Nn. To give this the structure of a log pointed curve we

additionally specify that the map pi : S2 → im pi on the level of characteristic
monoids is given by MS2⊕N→ MS2 sending 1 ∈ N to (0, ei) ∈ MS1⊕Nn = MS2 .
Shrinking S, we can lift this to a map of log schemes.

So, perhaps after shrinking S, we get a map of log pointed curves C/S →
C2/S2, hence the log pointed curve C/S has a map to a basic log pointed
curve locally on the base.

It remains to show that a map to a basic log pointed curve is unique up to
unique isomorphism, as in Item 2 of Definition 4.3.10. This follows immediately
from the fact that, for a log scheme (Y,MY ), the functor from the category of
sharp fs monoid sheafs over MY to the category of log structures on Y lying
over MY given by M 7→ MY ×MY

M is an equivalence.

By [Spe22, Lemma A.3], a log pointed curve C/S is minimal (see [Gil12] for
the definition) if and only if lies in this weakly terminal set of basic log pointed
curves inside (Mg,n)S .

Corollary 4.3.13. An object in Mg,n is basic if and only if it is minimal.

Corollary 4.3.14. The CFG Mg,n/LogSch satisfies the conditions of the De-
scent Lemma of [Gil12] and therefore is represented by an algebraick stack Mg,n

with log structure. The forgetful map Mg,n → Mg,n induces an isomorphism
Mg,n →Mg,n on underlying algebraic stacks.
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Proof. In order to satisfy the Descent Lemma of [Gil12] we need the following
two conditions to hold.

1. Every log pointed curve C/S has a map to a minimal object C ′/S′ with
the induced map S → S′ being idS .

2. Let C/S be a minimal log pointed curve, and let f : S′ → S be a map
of log schemes. Then CS′/S

′ is minimal if and only if f is strict.

By Corollary 4.3.13, we can instead prove these claims for the basic objects
of our category. The first condition holds by Proposition 4.3.12. To prove the
second condition, we first note that being basic is a condition on strict geo-
metric points, and hence is retained under strict pullback. Then by Proposi-
tion 4.3.12 and the fact that every morphism decomposes as a strict morphism
and a morphism lying over the identity of the source, the second condition
holds as well.

Then by the Descent Lemma Mg,n is represented by the stack of minimal
objects Mg,n in Mg,n together with its canonical log structure Mg,n → LogSch
factoring through the inclusion in Mg,n.

Corollary 4.3.15. The stack Mg,n is of dimension 3g − 3 + n. The stra-
tum corresponding to a dual graph Γ = (V,E) has generic characteristic log
structure NE ⊕ Nn.

Remark 4.3.16. The moduli space Mst
0,3 is a point with log structure N3.

This scheme has log blowups of dimension 2, and hence LogCH∗(Mst
0,3) has

non-trivial graded pieces of degree 1 and 2. In fact, LogCH1(Mst
0,3) and

LogCH2(Mst
0,3) are infinite dimensional. We still have LogCH0(Mst

0,3) = Q.

Remark 4.3.17. The stack Mg,n is idealised log smooth over a point with
trivial idealised log structure. On the level of characteristic monoids we have
MMg,n = MMg,n

⊕ Nn. However, it is not true that MMg,n = MMg,n
⊕ Nn (cf.

Lemma 4.4.3).

4.3.2 Comparison to punctured log curves

In this section, we will show that a log pointed curve can naturally be given the
structure of a punctured log curve. A puncturing of a log scheme Y = (Y ,MY )
is a different log scheme Y punc = (Y ,Mpunc

Y ) with the same underlying scheme,
and where MY ⊂ Mpunc

Y ⊂ Mgp
Y and Mpunc

Y satisfies certain extra conditions,

see [ACGS20b, Definition 2.1]. The stack of punctured log curves M̆g,n is
constructed in [ACGS20b, 2.10].
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Definition 4.3.18. Let (C/S, p1, . . . , pn) be a log pointed curve. Let M be
the verticalisation of the log structure on C, and let P be the log structure
on C with respect to the divisor

∑
i pi, so that MC = M⊕O× P. Write 1i for

the section in P corresponding to pi. Then we define a puncturing Cpunc of C
along P to be the submonoid of M⊕O× Pgp generated by M⊕ P and (`i,−1i).
We define a map α : MCpunc → OC by sending (`i,−1i) to 0.

Proof. To check that this is a puncturing, we need to check that for every
geometric point x ∈ C we have that if (`i,−1i)x ∈ (MCpunc)x is not in (M⊕P)x
then α(`i) is zero. This follows from Lemma 4.3.7.

From the definition, we immediately get the following lemma.

Lemma 4.3.19. The map MC → MCpunc is an injective map of sheaves, and
an isomorphism after groupification.

Remark 4.3.20. Note that there is a natural map Cpunc → C, on the level of
log structures near pi given by the inclusion M⊕ N→ (M⊕ N)〈(`i,−1)〉.
Definition 4.3.21. Let (C/S, p1, . . . , pn) be a log pointed curve. For every
pi, let p̄i : MCpunc,pi → MS denote the map given by sending (m,n) ∈ (M ⊕
N)〈(`i,−1)〉 to m+ n`i.

Remark 4.3.22. The map p̄i in the previous definition is not sharp, as it sends
(`i,−1) to 0. Hence the map p∗i is not induced from a log section pi : S →
Cpunc. Put otherwise, the log section pi : S → C does not factor through
Cpunc → C. In Section 4.5.1 we explore a slightly different variant of Cpunc

that does allow a lift of the log section pi.

Proposition 4.3.23. Definition 4.3.18 defines a log monomorphism Mg,n →
M̆g,n, mapping C/S to Cpunc/S.

4.3.3 Evaluation maps

One of the major advantages of log pointed curves is the existence of evaluation
maps for moduli spaces of stable maps of log curves.

Definition 4.3.24. Let X be a log stack, and let β be a class of stable log
maps to X as in [GS13, Definition 3.1]. We let Mst

g,n(X,β) denote the moduli
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space with S-points diagrams of the form

C X

S

π

f

where (C/S, p1, . . . , pn) is a genus g log n-pointed curve of genus g and f is a
stable map such that f is of class β.

We define the evaluation map of log stacks as

ev : Mst
g,n(X,β)→ Xn

(C/S, p1, . . . , pn, f) 7→ (f ◦ p1, . . . , f ◦ pn).

Remark 4.3.25. In [GS13] Gross and Siebert defined moduli spaces of stable

maps of log curves Mlog
(X,β), without log sections. The evaluation map

Mlog
(X,β)→ Xn is only defined on the level of underlying schemes, and does

not in general admit a lift to the level of log schemes. This makes it difficult
to work with insertions from LogCH(X).

Remark 4.3.26. In [RK23] this problem of log evaluation maps is solved for
toric targets by removal of log structure on the target (whereas we add extra
log structure on the source). For a marking i they study maps into a fixed
stratum Wi of a toric target X, but equip Wi with its natural log structure as
a toric variety, not the log structure coming from X. This yields, for each i, a

logarithmic evaluation mapMlog
(X,β)→Wi. A comparison to the approach

we take here will appear in forthcoming work of the first-named author with
Leo Herr.

4.3.4 Forgetting a marking

We first define a map Mg,n+1 →Mg,n forgetting the last marking. Let

(C/S, p1, . . . , pn+1)

be an n + 1 log pointed curve. We define C ′/S and an S-map τ : C → C ′

by declaring τ to be an isomorphism on the underlying curves, and on the
log structures away from pn+1; and on a neighbourhood of pn+1 we define the
log structure on C ′ to be the kernel of the ‘slope’ map sn+1 : MC,pn+1 → N
obtained as the composite

MC,pn+1
→ MC,pn+1

= MS ⊕ N→ N. (4.3.4.1)
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Define qi = τ ◦ pi. Equipping C ′ with the sections q1, . . . , qn gives an S-point
of Mg,n.

Suppose now that 2g − 2 + n > 0. To build a map

Mst
g,n+1 →Mst

g,n (4.3.4.2)

we must work a little harder. Let (C/S, p1, . . . , pn+1) be an n + 1 stable log
pointed curve, and define an n-log pointed curve (C ′/S, q1, . . . , qn) as before,
which may not be stable. We build a stabilisation by reducing to the marked
case. We write (C ′/S, q

1
, . . . , q

n
) for the n-marked log curve obtained from

(C ′/S, q1, . . . , qn) by forgetting that the sections are log maps.

Lemma 4.3.27. The marked log curve (C ′/S, q
1
, . . . , q

n
) has a stabilisation

(Cst/S, q′
1
, . . . , q′

n
) and a log map σ : C ′ → Cst.

Proof. The log structure onMg,n is the divisorial one coming from its bound-
ary divisor, and the log structure on the universal curve Cg,n is the divisorial
one coming from the union of the sections with the inverse image of the bound-
ary from Mg,n. This corresponds exactly to the boundary divisor in Mg,n+1

under the standard identification of Cg,n withMg,n+1. In particular, the nat-
ural isomorphism Mg,n+1 → Cg,n is an isomorphism of log stacks, and yields
by composition a log map Mg,n+1 →Mg.n.

We define a map
Mst
g,n+1 →Mst

g,n (4.3.4.3)

by sending (C/S, p1, . . . , pn+1) to

(Cst/S, σ ◦ q1, . . . , σ ◦ qn). (4.3.4.4)

We also analyse what happens to the length of legs and edges under contrac-
tion. Fix an n + 1 log pointed curve (C/S, p1, . . . , pn+1). Suppose that S is
atomic strictly Hensellian local (or, more generally, that C/S is nuclear in the
sense of [HMOP23]).

Suppose first that pn+1 is the only marking on a rational bridge, and that `1
and `2 are the lengths of the edges connecting the bridge to the remainder of
the graph. Then in Cst the rational bridge is contracted, and replaced by a
single edge of length `1 + `2.

The remaining case is a contracted rational tail. Suppose that, on the closed
fibre, pn+1 and pn are together on a rational tail, which carries no other
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markings. We write `e ∈ MS(S) for the length of the edge attaching the
rational tail, and (as always) write `i for the length of leg pi. Following the
above notation, write (Cst/S, q′1, . . . , q

′
n) for the stabilisation, and `′i for the

length of q′i.

Lemma 4.3.28. For 1 ≤ i ≤ n− 1 we have `i = `′i, and

`′n = `n + `e. (4.3.4.5)

Proof. The equalities `i = `′i for 1 ≤ i ≤ n − 1 are immediate, since the
stabilisation map is an isomorphism on a neighbourhood of those sections. To
see what happens at pn, consider a global section β of MCst with non-zero
slope at the n’th leg; write β(v) ∈ MS(S) for the value at the generic point
of irreducible component v of the closed fibre, and s for the outgoing slope at
q′n. Pulling this back from Cst to C yields a global section β̃ of MC . Clearly

β̃ takes value β(v) at generic points of irreducible components which will not
be contracted. If v0 is the irreducible component to which the rational tail vr
is attached, the value of β̃ at vr is given by β(v0) + s`e. The slope of β̃ at q′n
is still s.

Since q′n is constructed by composing pn with other log maps, the value

(q′n)∗β ∈ MS(S) is equal to the value p∗nβ̃ ∈ MS(S). From the above de-
scription, we compute

(q′n)∗β = β(v0) + s`′n and p∗nβ̃ = β̃(vr) + s`n = β(v0) = s`e+ s`n. (4.3.4.6)

This immediately implies that `′n = `n + `e as required.

4.4 Piecewise polynomial functions and the DR
cycle

Piecewise polynomials functions give an efficient way to write classes in the log
Chow ring of a log stack, as exploited by [MPS21, HMP+22, HS22b, MR21].
As a first application of our log pointed curves, we show that psi classes can
now also be expressed in terms of piecewise polynomial functions, and use
this to write the log double ramification cycle purely in terms of piecewise
polynomials.

4.4.1 Piecewise polynomial functions

We recall the basic definitions.
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Definition 4.4.1. Let X be an algebraic stack with log structure, locally of
finite type over k. Write AX for the Artin fan of X, an algebraic stack with log
structure, locally of finite type over k. The ring of strict piecewise polynomial
functions on X is the Chow cohomology ring of AX :

sPPi(X) := CHi
OP(AX). (4.4.1.1)

The ring of piecewise polynomial functions on X is the colimit of Chow coho-
mology rings of subdivisions of AX :

PPi(X) := colim
Ã→AX

CHi
OP(Ã). (4.4.1.2)

In particular, sPP1(X) = M
gp

X (X) ⊗Z Q. Pulling back along the natural map
X → AX gives ring homomorphisms

sPPi(X)→ CHi
OP(X) (4.4.1.3)

and
PPi(X)→ LogCHi(X). (4.4.1.4)

Remark 4.4.2. The equivalence of this definition with others in the literature
(for example, in [HS22b] sPPi(X) is defined to be Symi(MS)(S)) is proven in
[HMP+22] for the case where X is smooth and log smooth over a point with
trivial log structure, and the general case follows from [MR21, Theorem B],
which is itself based on forthcoming work of Bae and Park.

4.4.2 Evaluating piecewise linear functions

Strict piecewise linear functions on Mg,n are generated by two special classes:

1. linear functions coming from boundary divisors

2. linear functions coming from the lengths `i of legs.

In the first case the corresponding element of CH1(Mg,n) is the corresponding
boundary divisor, just as for Mg,n. In the second case we recover psi classes,
as the next lemma shows.

Lemma 4.4.3. Let (C/S, p1, . . . , pn) be a log-pointed curve, and for 1 ≤ i ≤ n
let `i ∈ MS(S) be the length of marking i. Let s : S →Mg,n be the tautological
map. Then we have an equality of operational classes1 on S

c1(OS(−`i)) = s∗ψi. (4.4.2.1)
1We turn the Gm-torsor OS(−`i)× into a line bundle by gluing in the ∞ section.
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Proof. Recall that s∗ψi = c1(p∗iωC/S), and by adjunction we have the equality
p∗iωC/S = p∗iOC(−pi). It therefore suffices to show that

p∗iOC(−pi) = OS(−`i). (4.4.2.2)

We have a direct sum decomposition MC,pi = π−1MS ⊕ N, and pi induces a
map

p∗i : π−1MS ⊕ N→ MS (4.4.2.3)

which sends (0, 1) to `i. Now on a small neighbourhood Ui of the image of pi
we can view (0, 1) as a PL function on C, and we see that

OC((0, 1)) = OC(−pi). (4.4.2.4)

Thus

p∗iOC(−pi) = p∗iOC(−(0, 1)) = OS(−p∗i (0, 1)) = OS(−`i) (4.4.2.5)

as required.

Remark 4.4.4. Given that the log structure on Mg,n has generic rank n, it
seems reasonable to ask whether Mg,n admits a log smooth map to a point
with log structure Nn. The above lemma shows that this is not in general the
case. Indeed, if such a map existed then there would exist an invertible n× n
integer matrix M such that M [ψ1, . . . , ψn] is the zero vector, and this is not
in general the case.

However, a substitute can be built. Denote by Z the origin in the quotient
[A1/Gm], where A1 is equipped with its toric log structure; so Z is a BGm
with rank 1 log structure. To give a map from a log stack X to Z is to give a
section ᾱ ∈ MX(X) which is nowhere zero. The lengths of the n legs define a
map

Mg,n → Zn, (4.4.2.6)

which is easily seen to be log smooth. We might think of this as strictly
embedding Mst as the origin of the vector bundle over Mg,n given by ψ1 ⊕
· · ·ψn.

4.4.3 The double ramification cycle

Let a ∈ Zn be a vector of integers summing to 0. Then there is a locus inside
Mg,n where the line bundle O(a1p1 + · · ·+ anpn) is trivial, called the double
ramification locus. This locus has a natural extension to Mg,n, and admits
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a virtual fundamental class whose pushforward to Mg,n we denote DRg(a) ∈
CHg(Mg,n). In [HPS19, §9] a natural lift LogDRg(a) ∈ LogCHg(Mg,n) is
constructed.

Definition 4.4.5. Let a ∈ Zn be a vector of integers summing to 0. Let π
denote the forgetful map Mst

g,n →Mg,n. Then we define the log pointed double
ramification cycle LogDRg(a) := π∗ LogDRg(a) ∈ LogCHg(Mst

g,n).

In Section 4.7.1 we will give a more direct construction of LogDRg(a).

Proposition 4.4.6. Suppose the ground field k has characteristic zero. Let
a ∈ Zn be a vector of integers summing to 0. Then there exists a piecewise
polynomial function P on Mst

g,n of degree g whose image in LogCHg(Mst
g,n) is

equal to LogDRg(a).

Remark 4.4.7. An equivalent formulation of this proposition is so that that
this log double ramification cycle is a pullback of a cycle on the Artin fan of
Mst
g,n; in other words, it is a purely tropical class.

Proof. We let Φ denote the map PP∗(Mg,n) → LogCH∗(Mg,n) and Φ′ the
map PP∗(Mst

g,n)→ LogCH∗(Mst
g,n). By [HMP+22, Theorem B] and [HMP+22,

Eq. (19)] we have the formula

LogDRg(a) =

[
exp

(
1

2

(
n∑
i=1

a2
iψi − Φ(L)

))
· Φ(P)

]
g

for certain piecewise polynomials L ∈ PP1(Mg,n) and P ∈ PP∗(Mg,n) depen-
dent on a, where [·]g denotes the codimension g part.2 By the commutative
diagram

PPi(Mg,n) PPi(Mst
g,n)

LogCHi(Mg,n) LogCHi(Mst
g,n)

Φ Φ′

and Lemma 4.4.3 we see that the piecewise polynomial

Pg,n(a) =

[
exp

(
1

2

(
−

n∑
i=1

a2
i `i − L

))
· P

]
g

(4.4.3.1)

satisfies
π∗ LogDRg(a) = Φ′(Pg,n(a)).

2The piecewise polynomials L and P depend on a choice of a stability condition θ (see
[HMP+22, Section 1.6]). The class LogDRa is independent of this choice.
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4.5 Gluing log pointed curves

In this section we will construct the gluing maps

Mg1,n1+1 ×Mg2,n2+1 →Mg1+g2,n1+n2

and
Mg,n+2 →Mg+1,n

. These map play a major role in the study of algebraic curves, but do not
exist for marked log curves. For log pointed curves we do have gluing maps,
whose underlying maps are exactly the usual non-logarithmic gluing maps.
To define the gluing maps, we first define the piercing of a log pointed curve
at a section. This is similar to, but slightly different from, the notion of the
puncturing of a log pointed curve defined in Section 4.3.2

4.5.1 Pierced log curves

Definition 4.5.1. Let (π : C → S, p1, . . . , pn) be a log pointed curve, and
let 1 ≤ i ≤ n. We define the piercing of C along pi to be the log scheme
(C̊/S, p1, . . . , pn), together with map C̊ → C over S, defined as follows:

1. Away from pi, the map C̊ → C is an isomorphism;

2. C̊ → C is an isomorphism on underlying schemes;

3. Let M be the verticalisation of the log structure on C along pi, and
let P be the log structure on C with respect to the divisor pi, so that
MC = M⊕O× P, with natural map

p∗i : MC,pi = Mpi ⊕O× P→ MS. (4.5.1.1)

We define MC̊,pi
to be the largest submonoid of Mpi ⊕O× Pgp such that

the natural map
p∗i : Mpi ⊕O× Pgp → Mgp

S (4.5.1.2)

restricts to a sharp map of monoids MC̊,pi
→ MS ; in more concrete

terms,

MC̊,pi
= {x ∈ Mpi ⊕O× Pgp|p∗i x > 1 or x ∈ O×}. (4.5.1.3)

We claim that the structure map Mpi ⊕O× P → OC,pi extends uniquely to
a map MC̊,pi

→ OC,pi . There is an obvious extension sending an element of
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Mpi ⊕O× Pgp to an element of the punctured local ring of C along pi (i.e. first
invert the complement of the ideal associated to pi, then invert a generator
of the ideal); it remains to check that any element in MC̊,pi

has non-negative
valuation along pi, but this follows from the fact that any element of MC̊,pi

either lies in O×, or pulls back along pi to a positive element.

Lemma 4.5.2. Let (π : C → S, p1, . . . , pn) be as above. There is a unique lift
pi : S → C̊ of pi : S → C; on schemes this is the same map, on log structures
the map p∗i is defined above.

The slope of a PL function m ∈ M
gp

C̊ (C̊) along pi is the image of m in Pgp ∼= Z;

observe that even if m lies in MC̊(C̊), it can still have negative slope.

Remark 4.5.3. The piercing C̊ of a log pointed curve C at a marking p is not
an fs log scheme. For example, take C = A1 with log structure given by strict
inclusion of C as the x-axis in A2, the base Spec k with log structure N, and as
log section p the inclusion of the origin with the map on characteristic monoids
N2 → N given by addition. Then MCpunc,p ⊂ N × Z is fs, and generated by
(0, 1) and (1,−1). But MC̊,p ⊂ N × Z consists of (0, 0) and the pairs (x, y)
with x+ y > 0, which is not finitely generated.

Note that π : C → S is saturated and admits charts by integral monoids, but
not charts by finitely-generated monoids (we say C̊ → S is quasi-fine and
saturated).

Since the markings p1, . . . , pn are disjoint, we can pierce independently at any
subset of {p1, . . . , pn}.

4.5.2 Gluing pierced log curves

In this subsection we temporarily drop the assumption that log curves have
connected fibers, in order to treat uniformly the two gluing maps above.

Let S be a log scheme and let (C/S, p1, . . . , pn) be a log pointed curve, with
n ≥ 2. We will explicitly construct a log curve by gluing p1 and p2 together.
For simplicity of notation, we will assume n = 2.

Let (C̊, p1, p2) be the piercing at p1 and p2 from Definition 4.5.1. Define C̃ to
be the pushout

C̃ S

C̊ S t S

p

g

p1tp2

i
(4.5.2.1)
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in the category of quasi-fine S-algebraic spaces. The underlying scheme of C̃
is the pushout of the underlying schematic diagram, and the log structure is
the pullback of the corresponding diagram of log structures:

MC̃ = g∗MC̊ ×(p◦i)∗MStS p∗MS . (4.5.2.2)

Remark 4.5.4. The pushout C̃ is not a log curve. The stalk of the groupifica-
tion of the ghost sheaf at the new singular point p is given by

M
gp

C̃,p = M
gp

S ⊕ Z2. (4.5.2.3)

A section of MC̃,p has two slopes at p, given by the slopes of the pullbacks

along g ◦ p1 and g ◦ p2. We define Cgl to be the log scheme whose underlying
scheme is that of C̃, and whose log structure is the subsheaf of MC̃ consisting
of elements whose slopes at p1 and p2 sum to 0. Note there is a natural map
C̃ → Cgl.

Definition 4.5.5. We define Cgl, together with map of schemes p : S → Cgl

mapping to the new singular point and the gluing map C̊ → Cgl, to be the
gluing of C at p1 and p2.

Remark 4.5.6. We shortly present an alternative definition, found and ex-
plained to us by Dan Abramovich. We let S◦◦ be S with log structure
MS◦◦ = {(m,n) ∈ MS ⊕ Z : m̄ = 0 ⇒ n = 0}. This has a map to S and
a section q : S → S◦◦. We define the sections p◦1, p

◦
2 : S◦◦ → C̊ to agree with

p1, p2 on the level of algebraic spaces, and be given by

MC,p1 → MS◦◦ : (a, n) 7→ (a+ n`1, n)

and

MC,p2
→ MS◦◦ : (b,m) 7→ (b+m`2,−m)

on monoids. Then one can check we have the pushout diagram

Cgl S◦◦

C̊ S◦◦ t S◦◦
p◦1tp

◦
2

and one can define Cgl as the pushout C̊ tS◦◦tS◦◦ S◦◦.
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Lemma 4.5.7. The prelog scheme Cgl/S is a log curve, with new singular
point p of length `1 + `2. The natural gluing map C̊ → Cgl together with the
puncturing map C̊ → C induces an isomorphism C \ {p1, p2} → Cgl \ {p}.

Proof. Away from p this is obvious. At p, it follows from the computation of
the fiber product

MCgl,p =

(a1, s1, a2, s2) ∈ MS × Z×MS × Z

∣∣∣∣∣∣∣∣
a1 + s1`1 > 0 or (a1, s1) = 0
a2 + s2`2 > 0 or (a2, s2) = 0
a1 + s1`1 = a2 + s2`2
s1 + s2 = 0


=
{

(a1, a2) ∈ MS ×MS

∣∣`1 + `2 divides a1 − a2

}
.

To obtain gluing maps between moduli spaces of log pointed curves, we will
also need the following easy lemma.

Lemma 4.5.8. The construction of C → Cgl commutes with base-change over
S.

4.5.3 Gluing maps

We continue in the notation of the previous subsection.

Definition 4.5.9. Let X be a quasi-fine log stack. We define the groupoid of
pre-gluing data as the fiber product of groupoids

X(C̊)

X(S) X(S)×X(S).

(−◦p1,−◦p2)

∆

We say a pre-gluing datum f : C̊ → X in X(S)×X(S)×X(S)X(C̊) is glueable if

the slopes MX,f◦pi → Z at p1, p2 sum to zero. We denote the full subgroupoid

of glueable pre-gluing data by Homgl(C̊,X).

Theorem 4.5.10. Let X be a log stack. Then the map C̊ → Cgl induces an
equivalence of groupoids

Hom(Cgl, X)
∼−→ Homgl(C̊,X).
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Proof. The construction of C̃ as a pushout gives an isomorphism of groupoids
between Hom(C̃,X) and the groupoid of pre-gluing data. The theorem follows
by restricting to the full subgroupoid where the slopes sum to zero on both
sides.

We will later need to glue maps for the targets Glog
m and Gtrop

m . We spell out
what happens in Theorem 4.5.10 explicitly in these two cases.

Definition 4.5.11. For β ∈ M
gp

C resp. Mgp
C , we denote by β(pi) the pullback

along pi : S → C. Explicitly, for a piecewise linear function β taking value
a at the fiberwise irreducible component containing pi and with slope n, the
value β(pi) is a+ n`i.

Corollary 4.5.12. The map C̊ → Cgl induces bijections

M
gp

Cgl → {β ∈ M
gp

C : β(p1) = β(p2) and the slopes along p1, p2 add to 0}

and

Mgp
Cgl → {β ∈ Mgp

C : β(p1) = β(p2) and the slopes along p1, p2 add to 0}.

4.5.4 Gluing maps for moduli spaces of pointed log curves

By applying Definition 4.5.5 we obtain the following.

Theorem 4.5.13. Fix non-negative integers g1, g2, n1, n2, g, n. Then there
are natural gluing maps

gl : Mg1,n1+1 ×Mg2,n2+1 →Mg1+g2,n1+n2

gl : Mg,n+2 →Mg+1,n

The gluing maps are relatively representable by log algebraic spaces. On the
level of underlying algebraic stacks they coincide with the classical gluing maps.

4.6 Log CohFTs

With the work in Section 4.5 on log gluing maps, the preliminary work needed
for defining a log version of cohomological field theories is done. In this section
we present this definition, and a few examples.

Definition 4.6.1. Consider the following data:

• a possibly infinite dimensional vector space V with a basis (ei)I∈I ;
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• a non-degenerate symmetric 2-form (ηij)(i,j)∈I2 : V ⊗2 → k with a row
and column finite inverse (ηij)(i,j)∈I2 ;

• for every g, n with 2g − 2 + n > 0 a map

Ωg,n : V ⊗n → LogCH∗(Mst
g,n) (4.6.0.1)

If Ω satisfies the following two conditions, it is called a partial log CohFT.

1. The map Ωg,n is equivariant with respect to the action of the symmetric
group Sn acting simultaneously on the source and on the target.

2. Let g1 + g2 = g, n1 + n2 = n, and write gl for the gluing map Mst
g1,n1

×
Mst
g1,n1

→Mst
g,n. Then for every (v1, . . . , vn) ∈ V ⊗n the sum∑

i,j∈I
ηijΩg1,n1

(v1, . . . , vn1
, ei)� Ωg2,n2

(vn1+1, . . . , vn, ej)

is a finite sum, and the resulting map

V ⊗n → LogCH(Mst
g1,n1

×Mst
g1,n1

)

(v1, . . . , vn) 7→
∑
i,j∈I

ηijΩg1,n1
(v1, . . . , vn1

, ei)� Ωg2,n2
(vn1+1, . . . , vn, ej)

is equal to the map

gl∗ ◦ Ωg,n : V ⊗n → LogCH(Mst
g1,n1

×Mst
g1,n1

).

If furthermore the following condition, also known as the loop axiom, is satis-
fied, Ω is called a log cohomological field theory, or log CohFT for short.

3. Let g > 0, n be integers, and write gl for the gluing map Mst
g−1,n+2 →

Mst
g,n. Then for every (v1, . . . , vn) ∈ V ⊗n the sum∑

i,j∈I
ηijΩg1,n1(v1, . . . , vn1 , ei, ej)

is a finite sum, and the resulting map

V ⊗n → LogCH(Mst
g−1,n)

(v1, . . . , vn) 7→
∑
i,j∈I

ηijΩg1,n1
(v1, . . . , vn1

, ei, ej)

is equal to the map

gl∗ ◦ Ωg,n : V ⊗n → LogCH(Mst
g−1,n).
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Furthermore, if Ω is a (partial) log CohFT and there is a 1 ∈ V such that the
following conditions hold, then Ω is a (partial) log CohFT with unit.

4. Let π : Mst
g,n+1 →Mst

g,n be the forgetful map of Section 4.3.4. Then

Ωg,n+1(v1, . . . , vn, 1) = π∗Ωg,n(v1, . . . , vn)

holds for all v1, . . . , vn ∈ V .

5. The equation
Ω0,3(v1, v2, 1) = η(v1, v2)

holds for all v1, v2 ∈ V .

Remark 4.6.2. For a finite dimensional (partial) log CohFT the map η defines
an isomorphism ηL : V → V ∗, v 7→ η(v, ·). In general, the fact that η is non-
degenerate only implies that ηL is an injection with image spanned by the
duals of {ei : i ∈ I}.
Remark 4.6.3. Note that per Remark 4.3.16 the ring LogCH∗(Mst

0,3) is not
equal to Q, and hence the definition of the quantum product on V for CohFTs
does not automatically generalise to log CohFTs. Still, given a log CohFT
with unit, one can define a quantum product on V by taking the quantum
product of the topological part of the log CohFT. This allows one to define
when a log CohFT is semisimple.

It seems interesting to ask whether semisimple log CohFTs admit a classifica-
tion in the style of Givental-Teleman.

4.6.1 Examples of log CohFTs

Every CohFT is naturally a log CohFT.

Proposition 4.6.4. Let Ωg,n : V ⊗n → CH∗(Mg,n) be a (partial) CohFT.
Then by composing with the pullback CH∗(Mg,n) → LogCH∗(Mst

g,n) this de-
fines a (partial) log CohFT.

We will now construct a large family of log CohFTs that do not come from
CohFTs. We begin by recalling a construction of Pandharipande and Zvonkine
[PZ19]. Fix g and n, and let γ ∈ CH∗(Mst

g,n) be a class that vanishes under
pullback along all gluing maps. Given such a class, Pandharipande and Zvonk-
ine explicitly construct a CohFT that for some input takes the value γ (their
definition of a CohFT is slightly different from ours, involving a Z2-grading,
but by [PZ19, Remark 12] in the case where γ has even cohomological degree
in H∗(Mst

g,n) this Z2-grading vanishes).
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Suppose now that we have a class γ ∈ LogCH∗(Mst
g,n) that vanish under pull-

back along all log gluing maps; we call such a class a minimal class. Then the
construction of [PZ19] immediately generalises to yield a log CohFT.

We will construct two different kinds of minimal classes.

4.6.1.1 First construction of a minimal class

It is immediate that any class in LogCH∗(Mst
0,3) is minimal, as there are no

non-trivial gluing maps3. By Remark 4.3.16, the vector space LogCH∗(Mst
0,3)

is infinite dimensional, yielding a large number of examples of log CohFTs
that are not CohFTs.

4.6.1.2 Second construction of a minimal class

Let g = 3, n = 2. Assume the characteristic of the base field is 0. Let
τ0 ⊂Mtrop

g,n be the one-dimensional cone parametrising tropical pointed curves
(see Definition 4.9.3) with one vertex, no edges, and legs of equal length.

Then τ0 induces a star subdivision M̃trop
g,n of Mtrop

g,n , and this induces a log

blowup π : M̃st
g,n →Mst

g,n. Let τ1, τ2 ⊂Mtrop
g,n be the two one-dimensional cones

parametrising tropical pointed curves with one vertex, no edges and one of the
two legs of length 0. For i ∈ {0, 1, 2} write ϕτi for the unique strict piecewise

linear function on M̃trop
g,n that takes value 1 on the primitive generator of τi and

0 on all other rays.

For a piecewise polynomial function f on Mtrop
g,n , we write Φ(f) for its image in

LogCH(Mst
g,n) under the map (4.4.1.4). We claim the class

γ := λgλg−1ψ1Φ(ϕτ0) ∈ LogCH4(Mst
g,n)

is minimal and not contained in CH4(Mst
g,n). For the first part, by [BSZ16,

Proposition 2.1] we have that the class λgλg−1ψ1 is minimal and hence so is
γ.

By Lemma 4.6.5, it remains to show that γ is not the pullback of a class in
CH7(Mst

g,n). Note that M̃st
g,n is of dimension 9, while Mst

g,n is of dimension 8. In
fact, π is a P1-bundle, and in particular π∗π

∗ = 0. Note that Φ(ϕτ0) is minus
the class of a cycle that maps one-to-one to Mst

g,n, and π∗Φ(ϕτ0) = −[Mst
g,n].

Hence π∗γ = λgλg−1ψ1 6= 0. So γ is not the pullback of a class in Mst
g,n.

3In [PZ19] Pandharipande and Zvonkine explicitly assume (g, n) 6= (0, 3). However, this
is only because they have a parity condition, which is automatic in the even degree case by
[PZ19, Remark 12]. Their proof still works for (g, n) = (0, 3).
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Hence there is a log CohFT (Ωg,n)g,n for which Ω2,2 takes a value in the set
LogCH4(Mst

2,2) \ CH4(Mst
2,2); in particular, it does not come by pullback from

a CohFT.

Lemma 4.6.5. Let X be a finite type algebraic stack with log structure. Then
the pullback

f : CH(X)→ LogCH(X) (4.6.1.1)

is injective.

Proof. This is immediate from the fact that log blowups are proper and surjec-
tive (and both these properties are stable under base-change), together with
the injectivity of pullback of Chow cohomology along proper surjective mor-
phisms [ER22, §4.1].

4.7 The log double ramification cycle as a par-
tial log CohFT

We begin by lifting the construction of the double ramification cycle from
[MW20] to our stack of log pointed curves, to give a more direct construction
of the log DR cycle from Definition 4.4.5.

Definition 4.7.1. Let S be a log stack. We write Glog,S and Gtrop,S for the
sheaves of abelian groups on the big strict étale site of S given by T 7→ Mgp

T (T )

and T 7→ M
gp

T (T ) respectively. A log line over S is a Glog,S torsor, and a
tropical line is a Gtrop,S torsor.

Definition 4.7.2. Given non-negative integers g and n, and a vector of inte-
gers a = (a1, . . . , an) with

∑
i ai = 0, we define Divg,a to be the fibred category

over Mst
g,n whose objects are tuples

(C/S, p1, . . . , pn, P/S, ᾱ) (4.7.0.1)

where (C/S, p1, . . . , pn) is a stable log pointed curve, P/S is a tropical line,
and ᾱ : C → P is a map whose outgoing slope4 at leg i is equal to ai.

We similarly define Divg,a(O) to be the fibered category over Mst
g,n whose

objects are tuples
(C/S, p1, . . . , pn,P/S, α) (4.7.0.2)

where (C/S, p1, . . . , pn) is a stable log pointed curve, P/S is a log line, and
α : C → P is a map whose slope at leg i is equal to ai.

4The slope is independent of choice of local trivialisation of the torsor.
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Remark 4.7.3. Locally on S we can trivialise the torsors P and P, so that ᾱ
becomes a PL function on C, and α becomes a generating section of the line
bundle OC(ᾱ). We work with torsors in order that Divg,a and Divg,a(O) be
sheaves.

Write Picg,n for the universal Picard space of Cg,n/Mst
g,n; this is the strict

étale sheafification of the presheaf T 7→ Pic(CT )/Pic(T ), see [BLR90, §8] or
[FGI+05, Part 5] for background. It is a group algebraic space over Mst

g,n,
which we equip with the strict log structure over Mst

g,n.

There is an Abel-Jacobi map

AJ : Divg,a → Picg,n; ᾱ 7→ [OC(ᾱ)]. (4.7.0.3)

To define this map on a tuple (C/S, p1, . . . , pn, P/S, ᾱ) we first shrink S until
we can choose an isomorphism f : P

∼−→ Gtrop,S , then take the line bundle
OC(f(ᾱ)). The line bundle depends on the choice of trivialisation, but the
class in Picg,n does not, so this glues to a global construction.

We let Jg,n denote the multidegree 0 locus inside Picg,n (parametrising line
bundles having degree 0 on every irreducible component of every geometric
fibre), often called the generalised Jacobian.

Definition 4.7.4. Define Div0
g,a = Divg,a ×Picg,n Jg,n.

Lemma 4.7.5. The square

Divg,a(O) Mst
g,n

Div0
g,a Jg,n.

O

AJ
(4.7.0.4)

is a pullback.

Proof. Commutativity of the square yields a map from Divg,a(O) to the fibre
product. Checking that this map is an isomorphism can be done locally, and
we do so by constructing an inverse map. A point of the fibre product is a
point (C/S, p1, . . . , pn, P/S, ᾱ) of Divg,a such that [OC(ᾱ)] is trivial, and we
may shrink S until the torsor P is trivial; choose an identification P = Gtrop,S .
Then ᾱ is a PL function on C such that the line bundle OC(ᾱ) descends to S.

To build a point of Divg,a(O), we choose P = Glog,S . Perhaps shrinking S
again we may assume that OC(ᾱ) is trivial (since it descends to S), hence
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we can choose a generating section α of OC(ᾱ), yielding the desired point of
Divg,a(O). A different choice of trivialisation of O(ᾱ) would yield a different
section α, but there is a (unique) automorphism of the torsor P = Glog,S

interchanging these choices.

The next lemma is the technical heart of the definition of the double ramifi-
cation cycle.

Lemma 4.7.6. The natural map

π : Divg,a(O)→Mst
g,n (4.7.0.5)

is proper.

Proof. Properness depends only on the underlying stacks (not on the log struc-
tures). The underlying algebraic stack of Mst

g,n is Mg,n, and the underlying
algebraic stack of Divg,a is the same as the underlying algebraic stack of a con-
nected component of the space Div of Marcus and Wise (and the Abel-Jacobi
maps match up). The result then follows by base-changing [MW20, Theorem
4.3.2].

4.7.1 Virtual fundamental class

There are multiple possible equivalent definitions for the normal log double
ramification cycle, for example [HS22b, Lemma 4.5] and [HS22b, Lemma 4.12],
or the formula [HMP+22, Theorem B]. Here we will use [HS22b, Definition 4.4]
in the context of log pointed curves. We recall in outline [HS22b, Section 3.5].

We start by considering the commutative diagram

Divg,a(O) Mst
g,n

Div0
g,a Jg,n

Mst
g,n

y
e

(4.7.1.1)

Here the pullback square is from Lemma 4.7.5.

We choose smooth log blowups M̃st
g,n resp. D̃iv

0

g,a of Mst
g,n and Div0

g,a such that

the map D̃iv
0

g,a → M̃st
g,n becomes an open immersion of smooth log smooth
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stacks. We define Z fitting into the diagram

Z Mst
g,n

D̃iv
0

g,a Jg,n

M̃st
g,n

Mst
g,n

y

j

e

(4.7.1.2)

Let [D̃iv
0

g,a] denote the fundamental class in CH∗(D̃iv
0

g,a). Then the class

j∗e
![D̃iv

0

g,a] lies in CH∗(M̃st
g,n), and taking its Poincaré dual5 yields a class

in CHOP(M̃st
g,n). This in turn gives a class in LogCH∗(Mst

g,n).

Lemma 4.7.7. The Poincaré dual of the class j∗e
![D̃iv

0

g,a] ∈ CH∗(M̃st
g,a) is

equal to the class LogDR(a) from Definition 4.4.5.

Proof. If the blowups M̃st
g,n respectively D̃iv

0

g,a are pullbacks of blowups of

Mg,n and Div0
g,n,a, then Lemma 4.7.7 follows immediately from [HS22b, Defi-

nition 4.4].

In [HS22b, Section 3.5] it is shown that there are blowups ofMg,n and Div0
g,n,a

that satisfy the necessary conditions, so it remains to show that the class

j∗e
![D̃ivg,a] is independent of the choice of the blowups M̃st

g,n and D̃iv
0

g,a. As in
[HS22b, Section 3.5], this follows immediately from Gysin pullbacks along lci
morphisms commuting with each other and with projective pushforward.

Remark 4.7.8. Note that the above log blowups of Mst
g,n and Div0

g,a are not
assumed to be birational (though they can always be chosen so). For example,

if g = 0, n = 3 one can choose M̃st
g,n = P2.

5That is, allowing it to act via intersection/Gysin homomorphism.
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4.7.2 LogDR as a partial log CohFT

Now we can show that the classes LogDRg(a) form a partial log CohFT.

Definition 4.7.9. Let V be the infinite dimensional Q-vector space with basis
{ea : a ∈ Z}. Let η : V ⊗V → Q be the non-degenerate symmetric form sending
ea ⊗ eb to δa+b,0. Write 1 = e0 ∈ V . For every g, n with 2g − 2 + n > 0, let
Ωg,n : V ⊗n → LogCH(Mst

g,n) be the map that sends

ea1
⊗ · · · ⊗ ean

to LogDR(a).

In this section we will show the following theorem.

Theorem 4.7.10. The collection (Ωg,n)g,n forms a partial log CohFT with
unit 1 ∈ V .

Recall the gluing map

gl : Mst
g1,n1+1 ×Mst

g2,n2+1 →Mst
g,n.

Let a ∈ Zn be a vector summing to 0, and let

b1 = (a1, . . . , an1 ,−
n1∑
i=1

ai), b2 = (an1+1, . . . , an,

n1∑
i=1

ai),

vectors of lengths n1 + 1 and n2 + 1 respectively, both summing to 0. We need
to prove the equality

gl∗ LogDRg(a) = LogDRg1
(b1)� LogDRg2

(b2).

To lighten notation, we write the gluing map as Mst
1 ×Mst

2 →Mst, and we write
Div0,Div0

1,Div
0
2 for Div0

g,a,Div
0
g1,b1 and Div0

g2,b2 respectively, and similarly for
Div(O).

We will now construct log gluing maps for Div0 and Div(O).

Definition 4.7.11. Define

gl : Div0
1 × Div0

2 → Div0 (4.7.2.1)

to be the map sending a pair

((C1/S, p1, . . . , pn1+1, P1, ᾱ1), (C2, q1, . . . , qn2+1, P2, ᾱ2)) (4.7.2.2)
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to

(gl(C1, C2)/S, p1, . . . , qn2
, P1⊗P2, ᾱ1⊗ ᾱ2(qn2+1)∨ ᾱ1(pn1+1)⊗ ᾱ2). (4.7.2.3)

where α1⊗α2(qn2+1)∨α1(pn1+1)⊗α2 denotes the gluing of functions as defined
in Corollary 4.5.12. Similarly, define

gl : Div1(O)× Div2(O)→ Div(O) (4.7.2.4)

to be the map sending a pair

((C1/S, p1, . . . , pn1+1,P1, α1), (C2, q1, . . . , qn2+1,P2, α2)) (4.7.2.5)

to

(gl(C1, C2)/S, p1, . . . , qn2 ,P1⊗P2, α1⊗α2(qn2+1)∨α1(pn1+1)⊗α2). (4.7.2.6)

We obtain a commutative diagram

M1 ×M2 M

Div1(O)× Div2(O) Div(O)

J1 × J2 J

Div0
1 × Div0

2 Div0

Mst
1 ×Mst

2 Mst.

e1×e2 e

(4.7.2.7)

Lemma 4.7.12. All the squares in (4.7.2.7) are pullback squares.

Proof. Let C1/S,C2/S be two log 1-pointed curves. Let C/S denote the gluing
of these two curves, and let f : (C1 t C2)punc → C be the natural map. Let
L/C be a line bundle. Then the line bundle L is trivial if and only if f∗L
is trivial, L has multidegree 0 if and only if f∗L has multidegree 0, and L is
twistable by a PL function to multidegree 0 if and only if f∗L is. The lemma
immediately follows.
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In order to prove compatibility of LogDR with pullback along the gluing maps,
we now need to find blowups of Mst,Mst

1 ,Mst
2 ,Div

0,Div0
1,Div

0
2 that are compat-

ible with the gluing maps.

Proposition 4.7.13. There are smooth log blowups M̃st, M̃st
1 , M̃st

2 of respec-
tively Mst,Mst

1 ,Mst
2 that contain as opens smooth log blowups of respectively

Div0,Div0
1,Div

0
2 and that satisfy the condition

gl∗M̃st = M̃st
1 × M̃st

2 .

Proof. We let Mtrop,Mtrop
1 ,Mtrop

2 denote the tropicalisations, i.e. the cone
stacks, of Mst

g,n,Mst
g1,n1+1,Mst

g2,n2+1 respectively. Then there is a tropical gluing

map Mtrop
1 ×Mtrop

2 →Mtrop.

Similarly, we let Divtrop ⊂ Mtrop,Divtrop1 ⊂ Mtrop
1 ,Divtrop2 ⊂ Mtrop

2 denote the
tropicalisations of the maps Div0 →Mst,Div0

1 →Mst
1 ,Div

0
2 →Mst

2 .

Let Γ be the decorated graph with two vertices and one edge, where the two
vertices have genera g1 and g2, and carry n1 resp. n2 markings.

Now we pick two smooth subdivisions Σ1,Σ2 of Mtrop
1 ,Mtrop

2 that arise by

pullback from smooth subdivisions of Mtrop
1 ,Mtrop

2 and that contain smooth
subdivisions of Divtrop1 ,Divtrop2 , and such that the corresponding subdivision
Σ1 × Σ2 of Mtrop

1 ×Mtrop
2 is Aut(Γ)-invariant.

We let Mtrop
Γ ⊂ Mtrop denote the image of Mtrop

1 × Mtrop
2 under the gluing

map. As the subdivision Σ1×Σ2 is Aut(Γ)-invariant, it descends to a smooth
subdivision ΣΓ of Mtrop

Γ . As Mtrop
Γ is a maximal subcone stack of Mtrop, we can

extend this to a subdivision Σ of Mtrop with Σ|Mtrop
Γ

= ΣΓ.

As a tropical analogue of Lemma 4.7.12 we have the following pullback square
of cone stacks

Divtrop1 × Divtrop2 Divtrop

Mtrop
1 ×Mtrop

2 Mtrop.

(4.7.2.8)

This means Σ already contains a smooth subdivision of Divtrop|Mtrop
Γ

. By re-

peated star subdivision in maximal cones of Σ that do not lie in Mtrop
Γ , we

obtain a smooth subdivision Σ̃ that contains a smooth subdivision of Divtrop
and such that Σ̃|Mtrop

Γ
= ΣΓ.

Let M̃st, M̃st
1 , M̃st

2 be the log blowups obtained from the respective subdivisions
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Σ̃,Σ1,Σ2. Then by construction these satisfy all the requirements.

Remark 4.7.14. Consider a non-degenerate small stability condition θ, as de-
fined in [KP19]. It is shown in [HMP+22, Theorem A] that LogDRg(a) can

be supported on a specific log blowupMθ

g,a depending on a and θ. In [Mol23]

Molcho constructs explicitly a smooth log blowup M̃θ
g,a of Mθ

g,a. Choosing

M̃st = M̃θ
g,a ×Mg,n

Mst
g,n in the above argument also works.

Proof of Theorem 4.7.10. We need to show that conditions 1, 2, 4 and 5 of
Definition 4.6.1 all hold.

The Sn-invariance 1 and the unit axioms 4 and 5 are trivial. It remains to
check the compatibility with pullback along the separating gluing map. We
continue with the notation set up in this section.

We consider the smooth log blowups

M̃st, M̃st
1 , M̃st

2

coming from Proposition 4.7.13. By combining (4.7.1.2) and (4.7.2.7) we get
the commutative diagram

M1 ×M2 M

Z1 × Z2 Z

J1 × J2 J

D̃iv1 × D̃iv2 D̃iv

M̃st
1 × M̃st

2 M̃st

e1×e2 e

g̃l

(4.7.2.9)

where all the squares are pullback squares. We let j1×j2 denote the composite

Z1 × Z2 → M̃st
1 × M̃st

2 ,

and j the composite
Z → M̃st.
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We now perform the following computation inside LogCH(Mst
1 ×Mst

2 ).

gl∗Ωg,n(a) =g̃l
∗
(LogDRg,n(a))

=g̃l
∗
(j∗e

!([D̃iv]))PD by Lemma 4.7.7

=
(
g̃l

!
j∗e

!([D̃iv])
)PD

=
(

(j1 × j2)∗g̃l
!
e!([D̃iv])

)PD

=
(

(j1 × j2)∗e
!g̃l

!
([D̃iv])

)PD

=
(

(j1 × j2)∗(e1 × e2)!g̃l
!
([D̃iv])

)PD

=
(

(j1 × j2)∗(e1 × e2)!([D̃iv1 × D̃iv2])
)PD

=(j1,∗e
!
1[D̃iv1])PD � (j2,∗e

!
2[D̃iv2])PD

=LogDRg1,n1+1(a1, . . . , an1 ,−
n1∑
i=1

ai)

� LogDRg2,n2+1(an1+1, . . . , an,

n1∑
i=1

ai) by Lemma 4.7.7

This was exactly what we needed to check for condition 2. We conclude that
Ω satisfies conditions 1, 2, 4 and 5 of Definition 4.6.1.

4.8 Comparison with log Chow rings of Barrott

A general theory of bivariant log Chow rings is under development by Barrott,
in [Bar19]. In this section we show that the log Chow ring we defined in
Definition 4.2.7 has a map to the log Chow ring of Barrott (under some mild
conditions on the space), and thereby show that all our results still hold for the
log Chow rings defined by Barrott. We first give a short summary of Barrott’s
definition.

If f : X → Y is a log blowup of log schemes with source and target locally free,
Barrott defines a Gysin map f ! : CH∗(Y )→ CH∗(X). For X a log scheme, he
then defines the log Chow group of X as

CH†∗(X) = colim
X̃→X

CH∗(X̃) (4.8.0.1)
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where the colimit is taken over locally free log blowups of X, with transition
maps given by the Gysin pullback. For X → Y a map of log schemes, he
proposes definitions of various operations, including:

1. if f : X → Y is proper, a pushforward map f∗ : CH†∗(X)→ CH†∗(Y );

2. if f : X → Y is log flat, a pullback map f∗ : CH†∗(Y )→ CH†∗(X);

3. if f : X → Y is a strict regular embedding, a Gysin pullback map
f ! : CH†∗(Y )→ CH†∗(X);

4. if f : X → Y is a log blowup with source and target locally free, a Gysin
pullback map f ! : CH†∗(Y )→ CH†∗(X).

Barrott then defines the log Chow cohomology ring CH∗†(X) of a log scheme X;
an object x ∈ CH∗†(X) consists of the data of, for every log scheme T → X, a

morphism zT : CH†∗(T ) → CH†∗(T ), and these maps zT should commute with
saturated proper pushforward, log flat pullback, and strict Gysin pullback.

Lemma 4.8.1. Let X be a log scheme locally of finite type over k. Let z ∈
CHop(X) and let t : T → X be a morphism of log schemes. Then

1. The morphisms zT̃ : CH∗(T̃ )→ CH∗(T̃ ) for T̃ → T log blowups assemble
into a group homomorphism

z†T : CH†∗(T )→ CH†∗(T ). (4.8.0.2)

2. The data of the maps z†T for varying T from (1) commute with satu-
rated proper pushforward, log flat pullback, and strict Gysin pullback,
and hence define an element z† ∈ CH∗†(X).

Proof. The first claim is Lemma 4.8.2 below. For the second claim, commu-
tation with strict Gysin pullback is immediate from [Ful84, Def 17.1, C1].
Commutation with log flat pullback and saturated proper pushforward are
more involved. After unravelling Barrott’s definitions, all the constructions
are composed of proper pushforward, flat pullback, and Barrott’s Gysin pull-
back. Compatibility with the former two operations holds by definition of the
operational class [Ful84, Def 17.1], so it remains to check compatibility with
Barrott’s Gysin pullback, which is Lemma 4.8.2.

Lemma 4.8.2. Let t : T → X be a morphism from a locally free finite-type
log scheme, and let π : T̃ → T be a log blowup with T̃ also locally free. Let
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z ∈ CHop(X). Then the diagram

CH∗(T ) CH∗(T̃ )

CH∗(T ) CH∗(T̃ )

zT

π!

zT̃

π!

(4.8.0.3)

commutes, where π! is Barrott’s Gysin pullback.

Proof. Suppose first that we can find a cartesian square

T̃ T̃

T T

π Π
(4.8.0.4)

with horizontal arrows strict, and Π a log blowup between smooth log smooth
log schemes (in particular, Π is l.c.i.). Then Barrott’s π! is just the Gysin
pullback induced by Π, and the result is immediate from the commutation of
z with smooth pullbacks and with Gysin pullback along regular embeddings.

In general such a cartesian square need not (we suppose) exist. However, it’s

role can be played by the Artin fans AT and AT̃ of T and T̃ . We have a
cartesian diagram

T̃ AT̃

T AT

π Π
(4.8.0.5)

where Π is a representable l.c.i. map between smooth log smooth log algebraic
stacks. Following [Kre99, §3.1] we have a refined Gysin pullback Π!, and this
coincides with Barrott’s pullback.

Now, the operational class z commutes (by definition) with Gysin pullbacks for
lci morphisms of schemes, but not a-priori lci morphisms of stacks. However,
this is in fact automatic. For smooth morphisms this is clear, so it is enough
to check compatibility with Gysin pullbacks along regular closed immersions
of stacks. The precise statement is Lemma 4.8.3.

Lemma 4.8.3. Let X be a scheme of finite type over k, and let z ∈ CHop(X) be
an operational class. Let f : S′ → S be a regular closed immersion of algebraic
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stacks of finite type over k. Let T be a finite-type k scheme with maps to X
and to G. Consider the fibre diagram

T ′ S′

T S

X.

f

(4.8.0.6)

Then the diagram

CH∗(T ) CH∗(T
′)

CH∗(T ) CH∗(T
′)

zT

f !

zT ′

f !

(4.8.0.7)

commutes, where f ! is Kresch’s Gysin pullback.

Proof. The ‘stacky Gysin pullback’ f ! is constructed in [Kre99, §3.1] as a
composite of several maps. In our situation each step in the construction is
either a proper pushforward, flat pullback, or Gysin pullback along a map of
schemes. In particular, these all commute with the action of z.

Having finished proving Lemma 4.8.1, we collect some consequences. First,
Lemma 4.8.1 yields a ring homomorphism

CHop(X)→ CH∗†(X). (4.8.0.8)

Lemma 4.8.4. If π : X̃ → X is a log blowup, there is a canonical isomorphism
CH∗†(X̃) = CH∗†(X), and the diagram

CHOP(X) CHop(X) CH∗†(X)

CHOP(X̃) CHop(X̃) CH∗†(X̃)

(4.8.0.9)

commutes, where the right horizontal arrows are from (4.8.0.8), and the middle
and left vertical arrows are the pullback of Chow cohomology.
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Proof. Immediate from the definition of the pullback on Chow cohomology
and the construction of the map (4.8.0.8).

In this way we build the promised ring homomorphism

LogCH(X)→ CH∗†(X). (4.8.0.10)

The following lemma on compatibility of pullbacks follows immediately.

Lemma 4.8.5. Let f : X → Y be a map of dominable log stacks. Then there
is a commutative square

LogCH(Y ) LogCH(X)

CH∗†(Y ) CH∗†(X)

f∗

f∗

We do not know whether the map (4.8.0.10) is injective or surjective. In this
paper we work with the naive ring LogCH(X), but with this map and the
compatibility lemma 4.8.5 our constructions and results transfer immediately
to Barrott’s setup of log Chow cohomology rings CH∗†(X).

4.9 Tropical gluing

In this section we will introduce tropical pointed curves. These are the tropical
versions of log pointed curves, and many of the properties enjoyed by log
pointed curves have a tropical analogue. For example, there are tropical gluing
maps and tropical evaluation maps. In this section we omit all proofs, and
refer the interested reader to the logarithmic versions of the statements.

We start by recalling the notion of a tropical unpointed curve. For more details
we refer to [CCUW20, Section 3.1].

Definition 4.9.1. We denote by Gg,n the set of graphs

G = (V,H,L = (pi)
n
i=1 ⊂ H, r : H → V, i : H → H, g : V → N)

where

1. V is the set of vertices;

2. H is the set of half edges;
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3. i is an involution on H.

4. r assigns to every half edge the vertex it is incident to.

5. L ⊂ H is a list of the legs, the fixed points of the involution i, required
to be of size n;

6. (V,H) is a connected graph;

7. g(v) is the genus of vertex v;

8. the graph is stable, i.e. for every vertex v we have 2g(v)− 2 + n(v) > 0
where n(v) is the number of half edges incident to v;

9. the total genus
∑
v∈V g(v) + h1(G) is g;

We call this a genus g graph with n markings.

Recall the category of rational polyhedral cones RPC and the category of
rational polyhedral cone complexes RPCC from [CCUW20, Section 2.1].

Now we can define the notion of a pointed tropical curve as in [CCUW20].

Definition 4.9.2. Let σ ∈ RPC and let P be the corresponding sharp dual
monoid. An pointed tropical curve Γ/σ of genus g with n markings consists
of a graph G ∈ Gg,n and a length function ` : H \ L → P>0 invariant under
the involution i.

This notion then automatically extends to a category over RPCC, fibred in

groupoids. This category is called Mtrop
g,n , and it is shown in [CCUW20] that

this is a cone stack and has many similarities to the moduli stack of log curves.

Similar to the moduli stack of log curves, there is no notion of gluing for
pointed tropical curves. However, as for log curves, one can define a notion of
tropical pointed curves for which gluing does exist.

Definition 4.9.3. Let σ ∈ RPC and let P be the corresponding sharp dual
monoid. An tropical pointed curve Γ/σ of genus g with n markings consists
of a graph G ∈ Jg,n and a ` : H → P>0 invariant under the involution i.

This again immediately extends to a category fibred in groupoids over RPCC.

Definition 4.9.4. We let Mtrop
g,n /RPCC denote the cone stack of tropical

pointed curves.

Remark 4.9.5. Under the equivalence of cone stacks and Artin fans, Mtrop
g,n is

the Artin fan of Mst
g,n.

Remark 4.9.6. Compare Definition 4.9.3 with Definition 4.3.6, where it is
shown that for a log pointed curve the legs naturally have lengths whose val-
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ues lie in the characteristic monoid of the base. In fact, imitating [CCUW20,
Section 7], a stable log pointed curve over an algebraically closed field can be
tropicalised to obtain a tropical pointed curve.

Proposition 4.9.7. There is a natural isomorphism of cone stacks

Mtrop
g,n
∼=M

trop
g,n × Rn≥0.

From now on we use tropical curve to mean tropical pointed curve. We can
now see that we can glue tropical curves, as per the following definition.

Definition 4.9.8 (Cf. Section 4.5). Let Γ/σ be a (not necessarily connected)
tropical curve and let p1, p2 ∈ H be two legs. Let G denote the graph of Γ and
let Ggl denote the graph G where p1, p2 have been removed and been replaced
by two half-edges h1, h2 with i(h1) = h2. We define the gluing Γgl to be be
the tropical curve with underlying graph Ggl and length function ` given by
`(h1) = `(h2) = `(p1) + `(p2), and all other lengths equal to those of Γ.

By applying this to either the disjoint union of two tropical curves, or to a
single tropical curve, we get the following tropical gluing maps.

Definition 4.9.9 (Cf. Section 4.5.4). The gluing construction Definition 4.9.8
defines natural gluing maps

Mtrop
g1,n1+1 ×Mtrop

g2,n2+1 →Mtrop
g1+g2,n1+n2

and

Mtrop
g−1,n+2 →Mtrop

g,n .

Now we will discuss the other benefits of tropical pointed curves, namely eval-
uation maps and the ability to glue maps. To do this, we first recall that any
unpointed tropical curve Γ/σ can be realised as a relative cone complex of
relative dimension 1. One can realise pointed tropical curves either by realis-
ing the legs as having length 0 or length ∞, both with their advantages and
disadvantages. For tropical pointed curves, we have the following notion of
realisation.

Definition 4.9.10. Let Γ/σ be a tropical curve with n marked points. We
write ΓR/σ for the relative cone complex of relative dimension 1 containing
one copy of σ for every vertex, and for every half leg h up to the involution,
one cone of relative dimension 1 over σ such that the fiber over x ∈ σ has
length `(h)(x). For i = 1, . . . , n we write pi : σ → ΓR for the map that over
every fiber, sends s ∈ σ to the endpoint of leg i in ΓR|s.
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Now we can state the existence of evaluation maps and the universal property
of the gluing.

Definition 4.9.11 (Cf. Section 4.3.3). Let X be a cone complex. Let Γ/σ
be a tropical curve, and let p1, . . . , pn be the legs. For X a cone complex
and f : ΓR → X a map of cone complexes, we write f(pi) for the composition
f ◦ pi : σ → X.

Theorem 4.9.12 (Cf. Theorem 4.5.10). Let X be a cone complex. Let Γ/σ
be a (not necessarily connected) tropical curve, and let p1, p2 be two legs. Then
there is a natural bijection

Hom(Γgl
R , X)

∼−→

{
f ∈ Hom(ΓR, X) :

f(p1) = f(p2) and the slopes

of f along p1, p2 add up to 0

}
.

(4.9.0.1)
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