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Chapter 2

Polynomiality of the double
ramification cycle

This chapter has already appeared as a preprint [Spe24].

Abstract. Let A = (a1, . . . , an) ∈ Zn be a sequence with sum k(2g − 2 + n).
The double ramification cycle DRg(A) ∈ CHg(Mg,n) is the virtual class of

the locus of curves (C, p1, . . . , pn) where the line bundle (ωlog
C )−k (

∑
aipi) is

trivial. Although there has long been a formula for DRg(A) [JPPZ17], the
exact dependence on A was unknown for a long time, though it was conjectured
to be polynomial in A. A proof was announced in [JPPZ17], and Pixton gave
a proof incorporating ideas of Zagier in [Pix23]. Here we present an alternative
proof of the polynomiality of the double ramification cycle.

2.1 Introduction

Let Mg,n be the moduli space of smooth curves (C/S, p1, . . . , pn) of genus g
with n distinct markings. Let A = (a1, . . . , an) ∈ Zn be a sequence with sum
0. Then the double ramification locus is

DRLg(A) =
{

(C/S, p1, . . . , pn) : OC
(∑

aipi

)
is fiberwise trivial

}
⊂Mg,n.

Equivalently, this is the locus of curves C with a rational function f : C → P1

with specified ramification profile above 0 and ∞.

17



18 CHAPTER 2. POLYNOMIALITY OF DR

In 2001 Eliashberg asked the question of how to compactify this substack, and
how to compute the compactification. Compactifying the substack was first
done in [GV03], using stable maps to P1 modulo the Gm action. They defined
the double ramification cycle

DRg(A) ∈ CHg(Mg,n)

as the virtual class of this compactification. There are other equivalent def-
initions, using birational geometry of Mg,n [Hol21] or logarithmic geometry
[MW20]. These latter definitions also generalise to the twisted double ramifi-
cation cycle

DRg(A)

for a sequence of integers A ∈ Zn summing to k(2g − 2 + n) for some k ∈ Z.
This double ramification cycle is the virtual class of the compactification of
the locus{

(C/S, p1, . . . , pn) : (ωlog
C )−k

(∑
aipi

)
is fiberwise trivial

}
.

The double ramification cycle has connections with ordinary Gromov–Witten
invariants through the localisation formula [JPPZ17, RK23]. It also has ties
with the world of PDE’s [Bur15, BR21] and to gauge theory [FTT16]. It has
also been used to find relations in the tautological ring [CJ18].

Pixton conjectured a formula for the double ramification cycle, and in 2014
this was proven in [JPPZ17] for the case k = 0, thereby answering the second
part of Eliashberg’s question. They define for every integer r ∈ Z≥1 an explicit
class

P rg (A) ∈ CHg(Mg,n),

in terms of decorated strata multiplied by certain numbers associated to the
combinatorics of the graph and the integers a1, . . . , an and r.

They prove that P rg (A) is polynomial in r for r large enough. Then they define
P 0
g (A) to be the constant term of this polynomial expression, and they prove

the equality
DRg(A) = P 0

g (A).

In [BHP+20] this result was extended to a formula for the twisted double
ramification cycle.

These two results were major breakthroughs, but a very simple questions re-
mained open: what is the behaviour of DRg(A) in terms of A? In [JPPZ17] the
double ramification cycle was conjectured to be polynomial in A, but this is a
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deceptively difficult question, as the formula itself has no obvious polynomial
dependency on A. A proof was announced in [JPPZ17]. A proof incorporating
ideas of Zagier was made public in 2023 [Pix23]. In this paper, we present a
different proof of the same theorem.

Theorem A (Theorem 2.5.1). Fix g, n. The cycle DRg(a1, . . . , an) is a poly-
nomial in (a1, . . . , an) ∈ Zn, where we require that (2g − 2 + n) |

∑
ai.

We use different techniques to prove this statement. Our methods are explicit
and can be recursively used to give a polynomial expression for the double
ramification cycle.

In Section 2.2 we recall the combinatorics necessary to state Pixton’s formula.
In Section 2.3 we give a brief recap of Pixton’s formula. In Section 2.4 we
prove the main technical result, a certain polynomiality statement for sums of
weightings on graphs. In Section 2.5 we finally give the proof of Theorem A.

2.2 Definitions

Definition 2.2.1. We denote by Gg,n the set of graphs

Γ = (V,H,L = (`i)
n
i=1, r : H → V, i : H → H, g : V → N)

where

1. V is the set of vertices;

2. H is the set of half edges;

3. i is an involution on H.

4. r assigns to every half edge the vertex it is incident to.

5. L = (`i)
n
i=1 ⊂ H is a list of the legs, the fixed points of the involution i;

6. (V,H) is a connected graph;

7. g(v) is the genus of vertex v;

8. for every vertex v we have 2g(v)−2+n(v) > 0 where n(v) is the number
of half edges incident to v;

9. the genus
∑
v∈V g(v) + h1(Γ) of the graph is g.

For such a graph, we denote by E the set of edges, i.e. the set of pairs {h, h′}
of half edges with h = i(h′) and h 6= h′.

Then Gg,n parametrises the strata ofMg,n. Every graph Γ ∈ Gg,n corresponds
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to a moduli space MΓ =
∏
v∈V (Γ)Mg(v),n(v) together with a glueing map

ζΓ :MΓ →Mg,n.

Definition 2.2.2. We fix a vector A ∈ Zn with sum k(2g−2+n). A weighting
for A on a graph Γ ∈ Gg,n is a map w : H(Γ) → Z satisfying the following
three conditions.

1. For i = 1, . . . , n we have w(`i) = ai.

2. For h ∈ H \ L we have w(h) + w(i(h)) = 0.

3. For every vertex v we have
∑
h : r(h)=v w(h) = k(2g(v)− 2 + n(v)).

For r ∈ N≥1, an weighting for A modulo r is a map w : H(Γ)→ {0, . . . , r−1} ⊂
Z satisfying these three conditions modulo r. We denote WΓ

A,r for the finite
set of weightings for A mod r.

We fix g, n, and we fix a graph Γ ∈ Gg,n. Let Q ∈ Z[xh : h ∈ H \ L] be a
polynomial.

Definition 2.2.3. For A = (a1, . . . , an) with
∑
ai = k(2g − 2 + n), consider

the sum

SΓ
A,r(Q) = r−h1(Γ)

∑
w∈WΓ

A,r

Q(w(h)). (2.2.0.1)

In [JPPZ20, Appendix A] they prove the following property of these sums.

Proposition 2.2.4 ([JPPZ17, Proposition 3”]). The sum SΓ
A,r(Q) are even-

tually polynomial in r.

This allows them to define the following quantity.

Definition 2.2.5. We denote the constant term of the polynomial expression
for SΓ

A,r(Q) for large r by

SΓ
A,0(Q).

2.3 Pixton’s formula for the double ramifica-
tion cycle

Fix g, n ∈ N, k ∈ Z with 2g − 2 + n > 0. Fix a sequence A ∈ Zn with sum
k(2g − 2 + n). In this section we will present Pixton’s formula for the double
ramification cycle DRg(A) ∈ CH∗(Mg,n). The first version of this, valid for
k = 0, was [JPPZ17, Theorem 1]. We will present the version from [BHP+20,
Theorem 7].
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For r ∈ N≥1, we define the term PΓ
r ∈ CH(MΓ) as follows.

PΓ
r = r−h

1(Γ)
∑

w∈WΓ
A,r

∏
e={h,h′}∈E(Γ)

1− exp
(
w(h)w(h′)

2 (ψh + ψh′)
)

ψh + ψh′
.

We remark that the factor

1− exp
(
w(h)w(h′)

2 (ψh + ψh′)
)

ψh + ψh′

is well-defined, as the denominator formally divides the numerator.

For every choice of monomial in the factors (ψh + ψ′h) for edges {h, h′}, the
corresponding coefficient of PΓ

r is of the form SΓ
A,r(Q) for some polynomial

Q where SΓ
A,r(Q) is as defined in Definition 2.2.3. Thus PΓ

r is eventually
polynomial per Proposition 2.2.4. We define

PΓ
0 ∈ CH(MΓ)

to be the element obtained by taking the constant term of the polynomial
expression.

Then by [BHP+20, Theorem 7] we have the formula

DRg(A) =

exp

(
−1

2
(k2κ1 −

∑
i

a2
iψi)

) ∑
Γ∈Gg,n

1

|Aut(Γ)|
ζΓ,∗P

Γ
0

g ,
(2.3.0.1)

where [·]g means the codimension g term.

2.4 Sums over weightings

We fix g, n as in the introduction, and we fix a graph Γ ∈ Gg,n. Write H \L =
{h1, . . . , hm}. Let Q ∈ Z[xh : h ∈ H \ L] be a polynomial.

Fix A ∈ Zn with
∑
ai = 0. We recall the sum

SΓ
A,r(Q) = r−h1(Γ)

∑
w∈WΓ

A,r

Q(w(h))

from (2.2.0.1), and the constant term of the polynomial expression for the sum
for large r

SΓ
A,0(Q).
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The main theorem in this section is the following polynomiality statement.

Theorem 2.4.1. For every polynomial Q ∈ Z[xh : h ∈ H \ L] the function

{A ∈ Zn :
∑

ai = 0} → Q

A 7→ SΓ
A,0(Q)

is polynomial in A.

We will prove this by induction on the number of edges of Γ. In Section 2.4.1
we treat the case where Γ has a separating edge. In Section 2.4.2 we prove
a preliminary result in the case where Γ has a non-separating edge. In Sec-
tion 2.4.3 we put everything together and finish the proof of Theorem 2.4.1.
We will then prove Corollary 2.4.7, generalising Theorem 2.4.1 to the domain
{A ∈ Zn : (2g − 2 + n) |

∑
ai}.

We first make some general observations and definitions.

Remark 2.4.2. We will use the notation v mod r to denote the unique element
in {0, . . . , r − 1} that is modulo r equivalent to v. We use the notation v ≡ w
(mod r) to denote that n and m are equivalent modulo r.

Lemma 2.4.3. Fix A. Then for r large enough and coprime to a fixed integer,
we have

SΓ
A,0(Q) ≡ SΓ

A,r(Q) (mod r).

Proof. We know SΓ
A,r(Q) is for r large enough a polynomial in r, with rational

coefficients. If the product of the denominators is coprime to r, this means
that SΓ

A,r(Q) ≡ SΓ
A,0(Q) (mod r).

Definition 2.4.4. Let e = {h1, h2} be an edge of Γ. We let Γe denote the
graph Γ with the edge e removed, and with two legs `n+1, `n+2 added at the
roots of the half-edges r(h1), r(h2).

2.4.1 Separating edge case

In this section we will prove Theorem 2.4.1 in the case that Γ has a separating
edge.

Proposition 2.4.5. Assume Γ has a separating edge. Then Theorem 2.4.1
holds, assuming that it holds for graphs with fewer edges than Γ.
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Proof. By linearity we can assume Q is a monomial, and we write

Q =
∏

h∈H\L

xchh .

Let e = {h1, h2} be a separating edge of Γ.

Then Γe is a disjoint union of two graphs, denoted Γ1 t Γ2. Let A1 denote
the subsequence of A consisting of elements whose corresponding vertex lies
in Γ1, and similarly for A2. We denote the sums

∑
a∈Ai a by si for i ∈ {1, 2}.

For i ∈ {1, 2} let Qi ∈ Z[xh : h ∈ Hi \Li] denote the monomial Q with all half
edges not in Hi \ Li set to 1, and let ci denote chi .

Note that then WΓ
A,r splits as WΓ1

(A1,−s1),r ×W
Γ2

(A2,−s2),r. Denote these sum-

mands by W1 and W2 respectively. Then we find the formula

SΓ
A,r(Q) = r−h1(Γ)

∑
w1∈W1

∑
w2∈W2

Q1(w1)(−s1 mod r)c1(−s2 mod r)c2Q2(w2)

=

(
r−h1(Γ1)

∑
w1∈W1

Q1(w1)

)
· (−s1 mod r)c1 ·

(−s2 mod r)c2 ·

(
r−h1(Γ2)

∑
w2∈W2

Q2(w2)

)
= SΓ1

(A1,−s1),r(Q1) · (−s1 mod r)c1(−s2 mod r)c2 · SΓ2

(A2,−s2),r(Q2)

By our assumption that Theorem 2.4.1 holds for graphs with fewer edges, we
know the first and last factors are modulo r equal to SΓ1

(Ai,−si),0(Qi) with i = 1

and 2 respectively (for r large enough and coprime to a fixed integer). In total
we see that for such r we have the following equalities

SΓ
A,0(Q) ≡ SΓ

A,r(Q) (mod r)

= SΓ1

(A1,−s1),r(Q1) · (−s1 mod r)c1(−s2 mod r)c2 · SΓ2

(A2,−s2),r(Q2)

≡ SΓ1

(A1,−s1),0(Q1) · (−s1)c1(−s2)c2 · SΓ2

(A2,−s2),0(Q2) (mod r).

By our assumption that Theorem 2.4.1 holds for graphs with fewer edges than
Γ the term

SΓ1

(A1,−s1),0(Q1) · (−s1)c1(−s2)c2 · SΓ2

(A2,−s2),0(Q2)
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is polynomial in A. As it agrees with SΓ
A,0 modulo an infinite number of

integers, we have

SΓ
A,0(Q) = SΓ1

(A1,−s1),0(Q1) · (s1s2)c1 · SΓ2

(A2,−s2),0(Q2) (2.4.1.1)

and in particular, SΓ
A,0(Q) is polynomial in A.

2.4.2 Non-separating case

In this section we will treat the case where Γ has a non-separating edge.

Proposition 2.4.6. Let e = {h1, h2} be a non-separating edge, and denote
vi = r(hi) the root of hi for i ∈ {1, 2}. Assume for i ∈ {1, 2} that there is a leg
`i with insertions ai and adjacent to vi. Let A ∈ Zn be a vector with total sum
zero. For a ∈ Z, let Aa be the vector (a1 − a, a2 + a, a3, a4, . . . , an). Assume
that Theorem 2.4.1 holds for graphs with fewer edges than Γ.

Then there exists a polynomial ΨΓ,e,Q(x1, . . . , xn, y, z1, . . . , zm) and polynomi-
als R1, . . . , Rm ∈ Z[xh : h ∈ H \ L] such that

SΓ
Aa,0(Q) = ΨΓ,e,Q(a1, . . . , an, a, S

Γ
A,0(R1), . . . , SΓ

A,0(Rm)).

Proof. By linearity we can assume Q is a monomial, and we write

Q =
∏

h∈H\L

xchh .

For i ∈ {1, 2} we let ci denote chi .

We first prove the case where a ≥ 0. We fix an r, and let Wa denote WΓ
Aa,r

.

We will first rewrite SΓ
Aa,r

(Q). Note there is a bijection

ϕa : W0 →Wa

w 7→

hi 7→


(w(h1) + a) mod r if i = 1

(w(h2)− a) mod r if i = 2

w(hi) if i > 2

 .

Let Q0(w) denote the monomial Q with xh1
and xh2

substituted by 1. We
then have the formula

SΓ
Aa,r(Q) = r−h1(Γ)

∑
w∈W0

Q(ϕa(w))

= r−h1(Γ)
∑
w∈W0

((w(h1) + a) mod r)c1((w(h2)− a) mod r)c2Q0(w).
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Now we will rewrite the factor ((w(h1) + a) mod r)c1((w(h2) − a) mod r)c2 ,
using some facts about m mod r for integers m.

For any m 6≡ 0 (mod r) we have (r −m) mod r = r − (m mod r) and hence

(m mod r)c1((r −m) mod r)c2 = (m mod r)c1(r − (m mod r))c2 .

For m ≡ 0 (mod r) we have

(m mod r)c1((r −m) mod r)c2 =

(m mod r)c1(r − (m mod r))c2 − (1− δc2,0)0c1rc2

where δ is the Kronecker delta. (This term (1 − δc2,0)0c1rc2 is usually 0, but
can be non-zero in the case c1 = 0 < c2). Also, m mod r = m − rbmr c is a
polynomial in m and rbmr c.
Now we will use this for m = w(h1) + a. All in all, the factor ((w(h1) +
a) mod r)c1((w(h2)− a) mod r)c2 can be rewritten as

p

(
w(h1), a, r, rbw(h1) + a

r
c
)
− δw(h1)+a mod r,0 · (1− δc2,0) · 0c1rc2

for the polynomial

p(x0, x1, x2, x3) = (x0 + x1 − x3)
c1 · (x2 − x0 − x1 + x3)

c2 .

Now we assume that r > a. Then we have 0 ≤ w(h1) + a < 2r and so

bw(h1) + a

r
c =

{
0 if r − w(h1) > a

1 if r − w(h1) ≤ a
. (2.4.2.1)

Define p0(x0, x1, x2) = p(x0, x1, x2, 0) and p1(x0, x1, x2, x3) = p−p0

x3
. Then we

can write
p = p0(x0, x1, x2) + x3p1(x0, x1, x2, x3).

Write
S1 := r−h1(Γ)

∑
w∈W0

p0(w(h1), a, r)Q0(w)

and

S2 := r−h1(Γe)
∑
w∈W0

bw(h1) + a

r
cp1(w(h1), a, r, rbw(h1) + a

r
c)Q0(w)
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and

S3 := r−h1(Γ)
∑

w∈W0 : w(h1)=−a (mod r)

(1− δc2,0) · 0c1rc2Q0(w).

so that SΓ
Aa,r

(Q) = S1+S2−S3. Here Γe is the graph defined in Definition 2.4.4

we have used that r−h1(Γ) · r = r−h1(Γe). We will show that each of S1, S2, S3

is modulo r of the required form.

Write p0(x0, x1, x2) =
∑d
i=0 p0,i(x0)xi1 +x2p2(x0, x1, x2) for some polynomials

p0,i, p2. Then we get S1 ≡
∑d
i=0 a

iSΓ
A,r(p0,i(w(h1)) ·Q0) (mod r). Hence for r

large enough and coprime to a finite set of integers S1 is modulo r equivalent to
a polynomial in a and terms SΓ

A,0(R) for some polynomials R, and in particular
modulo r it is of the required form.

By (2.4.2.1) we can rewrite the sum S2 as

S2 = r−h1(Γe)
∑

w∈W0 : 1≤r−w(h1)≤a

p1(w(h1), a, r, r)Q0(w)

=

a∑
j=1

p1(r − j, a, r, r)r−h1(Γe)
∑

w∈WΓe
(A,r−j,j−r),r

Q0(w)


=

a∑
j=1

p1(r − j, a, r, r)SΓe
(A,−j,j),r(Q0)

Taking r large enough with respect to a and coprime to a finite set of integers,
for every j the factor SΓe

(A,−j,j),r(Q0) is modulo r equivalent to SΓe
(A,−j,j),0(Q0).

By our induction hypothesis applied to the graph Γe, the term q(A, j) :=
SΓe

(A,−j,j),0(Q0) is a polynomial in A, j. Then S2 ≡
∑a
j=1 p1(−j, a, 0, 0)q(A, j)

(mod r), and
∑a
j=1 p1(−j, a, 0, 0)q(A, j) is a polynomial in A and a for a ≥ 0.

Finally, S3 is 0 unless c1 = 0 < c2, so assume c1 = 0 < c2. Then

S3 = rc2−1SΓe
(A,−a,a),r(Q0).

Modulo r this is either 0, or SΓe
(A,−a,a),0(Q0) which by the induction hypothesis

is polynomial in A, a.

In total SΓ
Aa,r

(Q) is modulo r equivalent to a fixed polynomial ΨΓ,e,Q in A, a

and in terms SΓ
A,0(Ri) for polynomials R1, . . . , Rm, for every r large enough
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and coprime to a fixed integer. This means that for a ≥ 0 we find

SΓ
Aa,0(Q) = ΨΓ,e,Q(a1, . . . , an, a, S

Γ
A,0(R1), . . . , SΓ

A,0(Rm)).

This finishes the proof for a ≥ 0.

Now we apply this to the edge with the opposite orientation and to Aa with
a positive. We find that for a, b ≥ 0 we have that SΓ

Aa−b,0
(Q) is a polynomial

in A, a, b and terms SΓ
Aa,0

(R) for polynomials R. These latter are polynomials

in A, a, SΓ
A,0(R′) for polynomials R′, so in total

SΓ
Aa−b,0

(Q)

is for a, b ≥ 0 a polynomial in A, a, b and terms SΓ
A,0(R). As it is also a function

of A, a− b and terms SΓ
A,0(R), it is a polynomial in A, a− b and terms SΓ

A,0(R)
and we find that

SΓ
Aa,0(Q) = ΨΓ,e,Q(a1, . . . , an, a, S

Γ
A,0(R1), . . . , SΓ

A,0(Rm))

holds for any a ∈ Z.

2.4.3 Proof of Theorem 2.4.1

Now we have assembled the ingredients to prove Theorem 2.4.1.

Proof of Theorem 2.4.1. We will prove this by induction on the number of
edges of Γ. For Γ a graph without edges this is immediately clear. Now we
assume Theorem 2.4.1 holds for graphs with fewer edges than Γ.

If Γ has a separating edge, it follows immediately from Proposition 2.4.5. We
now assume there are no separating edges.

We can assume there is exactly one leg at every vertex. We number the vertices
1 through n, in accordance with the attached leg. Let T be a spanning tree of
Γ. Without loss of generality, our numbering is such that for every k = 1, . . . , n
the vertices {1, . . . , k} form a subtree Tk of T . We denote

Pk := {A ∈ Zn :

k∑
i=1

ai = 0 ∧ ak+1 = · · · = an = 0}.

Then we will prove with induction on k that for every polynomial Q the map
A 7→ SΓ

A,0(Q) is polynomial when restricted to Pk.
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We start with a subtree with one vertex. By the total sum zero condition
we have P1 = {0}, and then for every polynomial Q the map Pk → Z, A 7→
SΓ
A,0(Q) is a constant map, and in particular polynomial.

Now assume we have proven it for k and want to prove it for k + 1. Let
j ≤ k be the vertex that in T is adjacent to vertex k + 1. Note that Pk+1 =
Pk +{a(ek− ej) : a ∈ Z} where ei is the i’th basis vector in Zn. The induction
step follows from Proposition 2.4.6. As Pn = {A ∈ Zn :

∑
i ai = 0} we are

done.

We immediately find the following corollary.

Corollary 2.4.7. The function

{A ∈ Zn : (2g − 2 + n) |
∑

ai} → Q

A 7→ SΓ
A,0(Q)

is polynomial in A.

Proof. We will prove this by reducing to the k = 0 case.

Let Γ′ ∈ Gg,n+#V be the graph Γ with one leg added at every vertex. Let
A′ denote the vector (a1, . . . , an, (−k(2g(v)− 2 + n(v)))v∈v). We see that the
sum of the elements in A′ is 0. Note that SΓ

A,r(Q) = SΓ′

A′,r(Q). The theorem

follows by applying Theorem 2.4.1 to SΓ′

A′,r(Q).

2.5 Polynomiality of the DR cycle

In this section we will prove polynomiality of the double ramification cycle.
With Theorem 2.4.1 and Pixton’s formula (2.3.0.1), we conclude with the
following theorem.

Theorem 2.5.1. Fix g, n. The cycle DRg(a1, . . . , an) ∈ CHg(Mg,n) is a
polynomial in (a1, . . . , an) ∈ Zn, where we require that

∑
ai is divisible by

(2g − 2 + n).

Proof. By the formula (2.3.0.1), we have that DRg(a) is a polynomial in a
finite set of decorated strata, the ai, and in terms SΓ

A,0(Q). The result follows
from Corollary 2.4.7.


