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Chapter 1

Introduction

In this thesis, we consider two different topics related to algebraic curves.
The first topic is counting curves and intersection theory on moduli spaces of
curves. The thesis takes a logarithmic geometry approach, focussing on log
moduli spaces and their intersection theoretical properties. The second topic
is finding rational points on curves, using a general principle called Chabauty’s
method.

The six main chapters of this thesis are the six papers [Spe24, Spe22, HS23,
HS22a, DRHS23, BDRHS24].

In Section 1.1 we discuss the general motivation for studying moduli spaces
of curves and their intersection theory by relating it to curve counting. In
Section 1.2 we shortly discuss how logarithmic geometry enters the picture. In
Sections 1.1.1, 1.2.1 and 1.2.2 we introduce Chapters 2, 3 and 4.

In Section 1.3 we introduce the problem of finding rational points on curves,
Chabauty’s method, and some of its many variations. In Sections 1.3.1, 1.3.2
and 1.3.3 we introduce Chapters 5, 6 and 7.

1.1 Moduli spaces of curves and intersection
theory

Enumerative geometry is the study of computing numbers of solutions to ge-
ometric problems. The main example is given by Gromov—Witten invariants,
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counts of curves in varieties satisfying certain conditions. Classically, some
examples are:

e there is exactly one line through two general points in the plane;
e there is exactly one conic through five general points in the plane;

e there are exactly twelve nodal cubics through eight general points in the
plane.

Currently, these invariants are viewed through the lens of intersection theory
on moduli spaces of curves.

The moduli space of smooth curves' My parametrises smooth curves of

genus g with n marked points. Its compactification M, , parametrises curves
of genus g with n marked points with at worst nodal singularities and finite
automorphism groups. The crucial insight is that these spaces, parametrising
geometric objects, are themselves geometric objects, namely Deligne-Mumford
stacks (orbifolds). The intersection theory on M, , is encoded in the Chow
ring CH*(M,,,), consisting of sums of closed substacks up to rational equiva-
lence, with an intersection product. A condition on curves can now be thought
of as a closed substack of M, ,,, and intersection theory will tell us the (virtual)

cardinality of the intersection of the conditions.

This way of thinking has paid off. One of the first general results was the count
of genus 0 degree d curves in P? passing through 3d — 1 general points, gen-
eralising the counts mentioned above [KM94, Kon95]. Currently, complicated
generalisations of these problems are being studied, for example generalising
the target variety, or counting higher genus curves.

In Chapter 2, summarised in Section 1.1.1, we study the double ramification
cycle, a cycle DRy(A) € CH*(M,,,,), dependent on a sequence A € Z" with
sum 0, that is related to Gromov—Witten invariants and can be seen as a
count of curves in the stack [P!/G,,]. In [JPPZ17] they announced a proof
of polynomiality of DR,(A) in A, and in [Pix23] gave a proof. We give an

alternative proof of the fact that DR, (A) is polynomial in A.

In Chapter 3 and Chapter 4 we take a logarithmic geometry approach to mod-
uli spaces. Logarithmic geometry is a key language for combining geometry
and combinatorics, and is in general very useful for breaking problems into
smaller pieces by degenerating varieties to non-smooth but simpler varieties.
In Section 1.2 we introduce log geometry and give some motivations. In Sec-

n this section, a curve C/S is a proper, flat scheme with reduced and connected fibers
of dimension 1.
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tions 1.2.1 and 1.2.2 we give introductions to Chapters 3 and 4 respectively.

1.1.1 Chapter 2: Polynomiality of the double ramifica-
tion cycle

Let A € Z™ be a sequence with sum 0. Then the double ramification locus is
the substack

DRL,(A) = {(C/S7 D1y, 0n) : Oc (Z aipi) is fiberwise trivial} C Mg.p.

Equivalently, this is the locus of curves C' that admit a rational map to a
P! with ramification profile over 0 and oo given by the positive and negative
entries of the a; respectively. This can be compactified to a cycle in CH? (M, ,,)
in several equivalent ways. In 2003 Graber and Vakil [GV03] defined the double
ramification cycle DRy (A) as the the virtual class of the space of stable maps
to P! with specified tangency conditions modulo the G,,-action. Since then
there have also been constructions using birational geometry of M, ,, [HKP18§]
or logarithmic geometry [MW20]. Using either of these latter constructions,
one can also define the twisted double ramification cycle

DRy (A)

for a vector A € Z™ with sum k(29 — 2 + n) for some integer k. This is the
virtual class of the compactification of the locus

{(C/S,pl, N K (ou'covg)*lC (Z aip,;) is fiberwise trivial} .

For a long time, it was an open question on how to actually compute the
(twisted) double ramification cycle. In 2016 [JPPZ17] answered this by giving
a formula for DR, (A) for £ = 0, known as Pixton’s formula. Later this was
generalised to general k [BHPT20].

One question about the double ramification cycle has remained open for quite
some time: whether DR, (A) is polynomial in A. The formula itself does not
seem polynomial in A, but instead depends on the combinatorics of A and the
strata of M, ,,. In [JPPZ17] they announced a proof of this statement, and in
2023 Pixton gave a proof incorporating ideas of Zagier of the polynomiality of
DR, (A) [Pix23]. We present an alternative proof of the following statement.

Theorem 1 (Theorem A). Fiz g,n. The cycle DR(aq,...,a,) € CHI (M, )
is a polynomial in (a1, ...,a,) € Z", where we require that (2g—2+n) | > a;.
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1.2 Logarithmic moduli spaces

Since the computation of the genus 0 Gromov—-Witten invariants of P? [KM94,
Kon95], the goal has shifted to computing higher genus invariants of more
complicated varieties. One of the main tools we have is degeneration. When
degenerating a space, the curves inside degenerate as well, and its Gromov—
Witten invariants can degenerate into log Gromov—-Witten invariants, counts
of curves that also take into account tangency conditions [GS13, ACGS20b,
RK23]. This calls for a language where we can both degenerate varieties
and curves, and deal with the complicated combinatorics and geometry that
appears. Logarithmic geometry, or log geometry, is an extension of algebraic
geometry particularly equipped at dealing with degenerations. A log scheme
X is a scheme X with some extra structure. See for example [Kat89, Tem22]
for introductions to log schemes, or [Ogul8] for a reference work.

Ezample 1.2.1. Any scheme X with a normal crossings boundary divisor D
has a natural log structure.

A log curve C/S is roughly a log smooth map of log schemes such that the
underlying map of schemes is a curve. See [Kat96] for a more in depth study
of this terms.

Every nodal curve has a canonical log curve structure on it. The log stack
parametrising stable log curves is simply M, ,, with log structure given by
the normal crossings boundary divisor My, \ My ,. Per definition, all log
curves are all log smooth. This log smoothness causes all log curves to behave
similarly to smooth curves. And correspondingly, as nodal curves are shadows
of log curves, many classical constructions on MM turn out to be shadows
of easier, better behaved log constructions. Constructing log analogues has
been fruitful even in order to prove purely algebraic results [HPS19, HMOP23,
RK23] (see e.g. [FIJP23, KRZBI16] for some examples where classical results
are proven by generalising classical constructions to tropical geometry, the
combinatorial part of log geometry). In Chapter 3 and Chapter 4 we treat two
log constructions, relating to enriched structures and gluing maps respectively.

1.2.1 Chapter 3: The moduli stack of enriched structures
and a logarithmic compactification

There is interest in understanding how line bundles can degenerate when a
smooth curve degenerates to a nodal curve. This has been studied extensively
in the context of limits of so-called linear series, subspaces of the space of
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global sections of a line bundle on a smooth curve (see for example [GHS0,
HMS82, FJP23], or the introduction of [Oss19]). Eisenbud and Harris initiated
this area by studying how these linear series degenerate if the smooth curve
degenerates into two curves meeting in a single node [EH86]. Currently, an
important tool in the study of limit linear series is the following notion of an
enriched structure on a curve, defined by Maino.

Definition 1.2.2 (First definition of [Mai98]). Let C/Speck with k = k be
a stable curve with irreducible components Cy, ..., C,. An enriched structure
on C is a collection of line bundles L1,..., L, on C such that there exists a
regular smoothing €/ Spec k[[t]] with £; = O¢(C;)|c. An enriched curve is a
stable curve together with an enriched structure.

Maino’s work on this has been important for Osserman’s work on limit linear
series [Oss16, Oss19], and in other problems degenerating structures on smooth
curves to a nodal curve [EM02, ES07].

However, Definition 1.2.2 does not readily generalise to curves over a base
scheme, as the combinatorial notion of irreducible components break down. In
[AP14] Abreu and Pacini study a tropical version of Definition 1.2.2, with the
goal to find a well-behaved moduli space whose geometric points correspond
to enriched curves, and a well-behaved modular compactification.

There is an intricate combinatorial definition of a stack in [BH19] whose ge-
ometric points corresponds to enriched curves, but some questions remained
open, namely whether their definition has a modular smooth compactification,
and whether it is an open inside a blowup of the moduli space 9T of prestable
curves. Log geometry is perfect for generalising combinatorial definitions, and
it turns out that with logarithmic tools, we can easily find a moduli space
whose geometric points correspond to enriched curves.

We do this by defining when a log curve is rich (Definition 3.1.1). This defines
a substack of the stack of log curves, whose underlying algebraic stack does
not embed into the stack of curves.

Theorem 2 (Theorem B,Theorem C). There is a log substack Min(RLC) of
M consisting of rich log curves whose fiber over a geometric point C/Speck
naturally corresponds to the set of enriched structures on C. It has a modular
compactification Min( WRLC) consisting of weakly rich log curves, which is
a smooth blowup® of M.

2In fact, it is a log blowup of M. A log blowups of a log stack with divisorial log structure
is an iterated blowup in boundary strata. Log blowups have many special properties and
play an important role in log geometry
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Figure 1.1: The gluing of two lines.

This affirmatively answers the two open questions from [BH19].

We also generalise the notion of richness to r-richness for r € Z>1 U {0},

in order to study the universal Néron-model-admitting stack M. This stack
roughly parametrises curves C'/S that are smooth over a dense open U C S and
that admit a proper separated Néron model J/S of the Jacobian Jac(C|y)/U.
This universal Néron-model-admitting stack is not quasi-compact, but it does
admit a stratification with nice stacks, as per the following theorem.

Theorem 3 (Theorem D,Theorem E). For r € Z>q U {0} there is a smooth
log substack Min(RLC,.) of M consisting of r-rich log curves that give rise to
a moduli stratification

M =Min(RLCx) = | J Min(RLC,).

TEZzl

For r € Z>1 the space Min(RLC,) has a modular compactification
Min( WRLC,)

consisting of weakly r-rich log curves, which is a blowup of 9.

1.2.2 Chapter 4: Logarithmic cohomological field theo-
ries

A crucial notion in the classical study of M, , is the gluing maps.

Definition 1.2.3. Let C/S be a (possibly disconnected) curve with two dis-
tinct points p,q : S — C. We let C® denote the curve with p and ¢ glued
together, or more formally the quotient C' under the equivalence relation p ~ gq.
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For an example, see Figure 1.1. This construction induces gluing maps
M917n1+1 X Mg2,n2+1 - Mg1+gz7n1+n2’

et T (1.2.2.1)
M9717n+2 — Mg’n.

These gluing maps automatically land in the boundary divisor of nodal curves.
They help us immensely in understanding M, ,, recursively. For example, they

are vital in the construction of the tautological ring R*(M, ), a subring of

CH"(M,,,) containing many geometrically natural classes [Mum83], and for
computing many interesting classes, such as certain Gromov—Witten invari-

ants, in R*(M,.,,).

A particularly nice phenomenon they capture is that of (partial) cohomological
field theories or CohFT. These are collections of cycle classes satisfying some
compatibilities with the gluing maps. For example, Gromov—Witten invariants
of a fixed variety form a CohFT. The notion of a (partial) CohFT, a collec-
tion of classes satisfying some compatibility with respect to gluing maps, has
been very fruitful. A semisimple CohFT is by the Givental-Teleman classifi-
cation always of a specific form, and the Givental-Teleman classification has
been used to calculate many intersection classes, giving rise to many formulas,
and to the famous Pizton relations in the tautological ring of M, ,, [PPZ15].
An important example is that of the double ramification cycles explained in
Section 1.1.1, that were proven to be a partial CohFT in [BR21].

However, the gluing maps (1.2.2.1) do not respect the logarithmic structure
on M, ,, in that they do not lift to maps of log stacks. Fundamentally, the
issue is that the log structure on a log curve remembers the length of every
node. When creating a new node with the gluing map, there is often no valid
(or at least, no functorial) choice for the length of the new node.

In joint work with David Holmes, we have solved these issues, by keeping track
of the lengths of markings.

Theorem 4 (Theorem F, Holmes-S.). There is a log stack My ,, with under-
lying stack My ., that admits logarithmic gluing maps

Mglﬂlﬁ*l X M921n2+1 - Mgl+927nl+n2
Mg—1n42 = Mgn

We use this to define (partial) log CohFTs, and prove the following generali-
sation of the result of [BR21].

Theorem 5 (Theorem G, Holmes-S.). The logarithmic double ramification
cycles form a partial logarithmic cohomological field theory.
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These results open up a new research line, asking what theorems and defini-
tions about CohFTs we can generalise to the logarithmic case, and how it can
help in calculating logarithmic classes. It also opens up a new and simpler
approach to evaluation maps, and to logarithmic Gromov-Witten invariants.
This is subject of future work.

1.3 Chabauty’s method

An ancient mathematical problem is that of solving diophantine equations.
Given a multivariate polynomial f € Q[x1,...,x,]| with rational coefficients,
one can study the rational zeros {x € Q™ : f(x) = 0}. From an algebro-
geometric perspective, this corresponds to rational points on the algebraic
variety given by the zeroes of f inside C™. Much has been said about this for
all kinds of varieties, but we will focus on the case of algebraic curves over Q,
and how to explicitly find their rational points.

Algebraic curves are stratified by their genus g € Z>o. While for C' a curve
of genus 0 or 1 it is in practice possible to find the rational points®, for C' a
curve of genus at least 2 it is much more difficult.

It was conjectured in 1922 by Mordell [Mor22b] that if g > 2 then the set
of rational points C(Q) is always finite. In 1983, this was finally proven by
Faltings [Fal83a]. However, Faltings’ theorem is not effective. That is, given
any specific curve C/Q, it does not help with determining C(Q). Guessing all
rational points on a curve is easy, as a brute force search usually gives a few
small points, with heuristics suggesting that one does not need to seek any
further. But finding effective algorithms for provably determining C(Q) is a
difficult task. The current state-of-the-art methods are based on Chabauty’s
partial proof of Faltings’ theorem in 1941 [Cha4l], which we will explain now.

Let C/Q be a curve of genus g > 2, and let J be its Jacobian. Assume C has a
rational point b, and use this to construct an Abel-Jacobi embedding C — J.

3In theory this is a very difficult problem for g = 1, related to finiteness of the Tate-
Shafarevich group of an elliptic curve. In practice, [Cre97] gives many tricks to rapidly
compute the rational points of an elliptic curve, and the LMFDB database [LMF23] contains
the rational points of 3824372 elliptic curves.
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Let p be a prime. Then we can form the commutative diagram of embeddings

C(Q —— J(Q)

l l (1.3.0.1)

CQp) — J(@)

Let r be the rank of the Mordell-Weil group J(Q). Then if r < g, the closure
J(Q) of J(Q) inside J(Q,) is of p-adic dimension less than g, while J(Q,) is of
dimension g. Hence we expect the intersection J(Q) N C(Q,) to be finite. By
construction the intersection contains C'(Q), which then would also be finite.

Indeed, Chabauty proved the intersection is always finite for r < g [Cha41].

The first known way to make this effective was developed by Coleman [Col85a],
in a method now known as Chabauty—Coleman. He defined the Coleman
integral fPQw for P,Q € C(Qp) and w € HO(CQP,QCQP), which naturally
extends to a pairing [ : J(Q,) x HO(C’QP, QCQP) — @Qp. Locally, integrals can
be determined by expanding w as a power series and integrating formally.

Then one can define the vanishing differentials V' C H%(Cq,,Qcq, ) to be
the differentials orthogonal to J(Q) under this pairing. As r < g, this has
dimension at least g —r > 1. Then the rational points P of C satisfy fbp w=20
for w € V. This gives at least g—r equations that rational points satisfy, and by
locally expanding these equations as power series, one can use Hensel’s lemma
to find all of the (finitely many) p-adic solutions. One can then recognise the
rational points as a subset, and only finitely many other points remain. Often
(and conjecturally always) one can use the Mordell-Weil sieve [BS10, Sik15]
to show that these remaining points do not come from rational points.

There are currently many different variations on this theme, and the name
of the game is to find explicit algorithms that work in ever more cases and
produce ever smaller sets of p-adic points.

The modern perspective on Chabauty’s method and Chabauty—Coleman is
that the map C' — J induces the abelianisation of the fundamental group of
C. Replacing this abelian quotient by bigger, non-abelian quotients one can
hopefully find effective finiteness proofs even when the assumption r < g does
not hold. This perspective is worked out by Kim, and is known as Chabauty—
Kim [Kim09]. He produces an infinite sequence of subsets of C(Q,)

C(Qp) 2C(Qp)1 2C(Qy)2 2 --- 2 C(Q).
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Here C(Q,)1 is the same set as produced by Chabauty—Coleman. The sequence
is conjectured to be eventually finite for any curve, and is even conjectured to
be eventually equal to C'(Q) for any curve. However, computing these higher
Chabauty sets C(Q,),, for n > 2 is extremely difficult. For a slightly bigger set
C(Qp)con 2 C(Qyp)2 this method, called (cohomological) quadratic Chabauty,
has been made explicit [BD18, BD21], which has famously led to finding all
rational points on the “cursed curve” X (13) [BDM*19).

Let p be the rank of the Néron—Severi group NS(J). This is always at least 1.
Cohomological quadratic Chabauty theoretically produces a finite set when-
ever r < g+ p—1, but has only been made algorithmic in the case where r = g,
the map J(Q) ®q Q, = J(Q,) ®z, Q, is an isomorphism, and p > 2.

Recently, Edixhoven and Lido developed a geometric version of quadratic
Chabauty, called geometric quadratic Chabauty [EL21]. They work with a
G 1-bundle T/J, and embed C into T. After spreading out over Z, the Z-
points of T" are in bijection with J(Q) X G,,(Z)?~" = J(Q) x {£1}*~!. As the
dimension of T is g+ p — 1, one expects C(Q)geo = T'(Z) N C(Z,) to be finite
if r < g+ p—1, and indeed this holds. Geometric quadratic Chabauty was
conjectured to be comparable to cohomological quadratic Chabauty.

Jointly with Sachi Hashimoto we first proved a comparison theorem between
Chabauty—Coleman and a geometric variant, called geometric linear Chabauty,
and then jointly with Juanita Duque-Rosero and Sachi Hashimoto we proved
a comparison theorem between geometric quadratic Chabauty and cohomo-
logical quadratic Chabauty [HS22a, DRHS23]. These papers are reproduced
in Chapter 5 and Chapter 6, and the main theorems are summarised in Sec-
tion 1.3.1 and Section 1.3.2.

In Section 1.3.3 we give a short introduction for Chapter 7 on computing local
heights, an important ingredient of quadratic Chabauty.

1.3.1 Chapter 5: A geometric linear Chabauty compari-
son theorem

In my master’s thesis I developed and implemented a geometric version of
Chabauty—Coleman, called geometric linear Chabauty, which can also be in-
terpreted as a linear case of geometric quadratic Chabauty. In [HS22a], joint
work with Sachi Hashimoto, we proved a comparison result. Assume r < g,
and let C(Qp)gLc be the set of p-adic points obtained by geometric linear
Chabauty, and C(Q,)cc the set obtained by Chabauty—Coleman. Then we
showed the following theorem.
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Theorem 6 (Theorem 5.5.1,Hashimoto-S.). Geometric linear Chabauty out-
performs Chabauty—Coleman, in that in the case r < g we have an inclusion

C(Qp)cc 2 C(Qp)are 2 C(Q).

In addition, we give an explicit characterisation of the difference C'(Qp)cc \

C(Qp)GLC-

1.3.2 Chapter 6: Geometric quadratic Chabauty and p-
adic heights

In this chapter we prove the following comparison theorem.

Theorem 7 (Theorem H,Duque-Rosero-Hashimoto-S.). Geometric quadratic
Chabauty outperforms cohomological quadratic Chabauty, in that in the case
where v = g, the map J(Q) ®q Q, — J(Qp) ®z, Q, is an isomorphism, and
p > 2 we have an inclusion

C(Qp)Coh 2 C(Qp)Gco 2 C(Q)

In addition, we give an explicit characterisation of the difference C(Qp)con \
C(Qp)Geo-

1.3.3 Chapter 7: Local heights on hyperelliptic curves
and quadratic Chabauty
Let C be a curve with r = g,p > 2 and for which the map J(Q) ®qg Q, —

J(Qp) ®z, Qp is an isomorphism. Front and center in cohomological quadratic
Chabauty on C is the Néron—Tate height, a quadratic function

h:J(Q)—Q,

defined with respect to some trace 0 element Z of End(J). We first explain
how exactly h is used in cohomological quadratic Chabauty. This function
splits as a sum of functions

h=hy+ Y h
L#£p

where ¢ ranges over primes distinct from p, and for any prime ¢ the function
hyg is the local height at ¢ and hy : J(Qq) — Q,. The function h,, is an analytic
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function, while for ¢ # p the function hy only takes finitely many values. For
all primes of good reduction, h, is even identically zero.

By the assumption that the map J(Q) ®q Q, — J(Qp) ®z, Q, is an iso-
morphism one can naturally extend the quadratic function h to a quadratic
function h : J(Qp) — Qp. Then the function p = h — hy, : J(Qp) — Q, lands
in the finite set

S = Z(H:Vf,%éimhz
t#p

when evaluated on the rational points. And hence this is also true for the
pullback of p to the curve C. By finding the zeroes in C of p — ¢ for ¢ € 5,
one hence finds all rational points of C.

Computing h, has been implemented in [BDM™"] and in other places. But
computing S is deceptively difficult. Accordingly, quadratic Chabauty has
almost exclusively been used for curves where all local heights h, for £ # p
happen to vanish.

Joint with Alex Betts, Juanita Duque-Rosero and Sachi Hashimoto we have
given an algorithm to compute these local heights h, for hyperelliptic curves
and odd primes ¢. This allows quadratic Chabauty to be applied to curves
whose rational points could not be computed because of non-trivial local
heights. We present the first example of quadratic Chabauty applied to a
curve with non-trivial local heights contributions from two bad primes, as per
the following theorem.

Theorem 8 (Theorem I, Betts—Duque-Rosero-Hashimoto-S.). The curve
2_ 6 4 3 2
y° =a° +18/5z" + 6/5x> + 9/5x” + 6/52 + 1/5

has 10 rational points.



