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1Chapter 1

Introduction



Background

Inherently dangerous, anesthesia has matured into an essentially safe practice
due to major advancements in the field. Over the decades, even since the 1950s,
the field of anesthetic and perioperative care has witnessed a continuous decline
in mortality rates.1 These advancements can be attributed to the utilization of
safer anesthetic agents, the development of advanced technical instruments and
techniques, and comprehensive training programs, among other pivotal factors.
Despite these remarkable progressions, challenges and gaps in our understand-
ing persist.

The evolution of drug use in anesthesiology is particularly noteworthy. Ini-
tially focused on facilitating surgical procedures and enhancing patient health
outcomes, in the current landscape of 2023, anesthetics have expanded their
applications well beyond the confines of the operating room. They are now inte-
gral in diverse medical contexts, including trauma care, resuscitation, sedation,
intensive care, and the management of acute and chronic pain.2 Furthermore,
the exploration of unconventional agents, such as psychedelics for pain, and the
use of anesthetic agents in other disciplines, underscores the dynamic nature of
modern medical practice and interdisciplinary research.3

For instance, consider ketamine, an N -methyl-D-aspartate receptor (NM-
DAR) blocker, introduced as an intravenous anesthetic in 1965. Since the 1990s
its applications have extended to include the management of acute and chronic
pain. More recently, since the early 2000s, nasal S -ketamine marketed as Spra-
vato, has also found utility in psychiatry, offering an alternative treatment for
therapy-resistant depression and post-traumatic stress disorder. This presents a
potential replacement for traditional treatments like electroconvulsive therapy
or antipsychotic therapy in specific cases.4,5 Studies on this fascinating drug
can be advantageous for both the fields of psychiatry and anesthesiology.

One persistent challenge of drugs in anesthesiology revolves around the
efficacy and side-effect profile of contemporary analgesics. Both non-opioid
and opioid analgesics, while indispensable in pain management, exhibit limita-
tions in certain patient groups, particularly those suffering from chronic pain.
Conversely, these drugs have adverse effects, including the potential for abuse,
as observed with ketamine and opioids, as well as the life-threatening risk of
opioid-induced respiratory depression. The combination of addiction and res-
piratory depression stands at the core of the current opioid epidemic in the
United States, characterized by more than 100,000 deaths from opioid overdose
in 2022.6

Both the efficacy and side-effect profile of these analgesics are intertwined
with the critical role played by the patient’s phenotype.”One Size Fits All”
is a thing of the past and research and guidelines are increasingly tailored to
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individual factors due to the heterogeneity of clinical effects. Notably, a recent
observational study involving over 1,300 patients highlighted that factors such as
male sex, older age, opioid naivety, sleep-disordered breathing, and heart failure
are associated with an increased risk of opioid-induced respiratory depression.7

Additional risk factors encompass the presence of comorbidities, concomitant
use of systemic opioids and sedatives, and higher BMI.8,9 While clinical trials,
typically conducted on young and healthy subjects, illuminate drug effects,
questions are raised about the applicability of their findings. Therefore, we
focus on studying a new opioid in a representative study sample comprising
male and female volunteers of older age, including overweight participants.

Of particular interest is the role of obesity as a risk factor for opioid-induced
respiratory depression. Obesity’s global prevalence is staggering, and it directly
heightens the risk of opioid-induced respiratory depression due to obesity-related
changes in the respiratory system, alterations in respiratory drive, and breath-
ing abnormalities during sleep.9,10 Furthermore, obesity increases the likelihood
of developing insulin resistance and type 2 diabetes. Intriguingly, studies indi-
cates that insulin resistance can modulate ventilatory drive, and type 2 diabetes
can lead to the development of sleep-disordered breathing, independent of obe-
sity.11,12,13 While speculative, these factors may contribute to an elevated risk
of premature mortality among individuals with type 2 diabetes who use opioids
over an extended period.14

In this thesis, I will present a series of studies conducted in our laboratory,
focusing on the pharmacology of ketamine oral and buccal thin film, intravenous
oliceridine and morphine, and type 2 diabetes. The studies encompass phar-
macological aspects (ketamine, oliceridine, and morphine) and their effects on
ventilatory control (morphine, oliceridine, and type 2 diabetes), spanning the
important effects of these drugs in clinical practice.

Thesis overview

While ketamine has been used for nearly six decades, ongoing developments
have led to new indications and new formulations are still being developed. As
an analgesic, ketamine is employed in the prehospital setting, emergency ward,
perioperatively, and for chronic pain syndromes.15,16,17,18 Substantial gaps
persist in our understanding of its efficacy and safety when considering different
routes of administration, varied durations, dosages, and distinct enantiomers in
diverse clinical contexts.

This thesis delves into the pharmacology of a novel S -ketamine oral and
buccal thin film in Chapters 2 and 3, exploring its pharmacokinetics and
pharmacodynamics, respectively. To achieve this, we employ a population
pharmacokinetic/pharmacodynamic model, which integrates the changes in
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concentration over time with the relationship between the concentration at the
effect site and the intensity of the observed response, while considering multiple
covariables.19 While the precise clinical indications for S -ketamine films remain
undefined, our research primarily centers on evaluating its analgesic efficacy
and its profile of side effects. It is conceivable that this thin film formulation
may eventually find application as a potential treatment for therapy-resistant
depression, akin to its intranasal counterpart.

In Chapter 4, we compare the respiratory effects of oliceridine, a mu-
opioid receptor agonist with biased characteristics, to morphine, a prototypical
mu-opioid receptor agonist. The concept of biased agonism, or functional
selectivity, underscores the origins of these distinctive characteristics.20 The
respiratory effects of opioids are exerted via mu-opioid receptors in important
brainstem respiratory centers. Upon binding to the mu-opioid receptor, opi-
oids trigger the activation of distinct intracellular pathways. Earlier studies
pointed towards the role of beta-arrestin recruitment in adverse effects of opi-
oids, including respiratory depression.21 This understanding paved the way for
the development of oliceridine, a mu-opioid receptor agonist exhibiting a pro-
nounced bias in favor of G-protein signaling.22 The resultant net effect is an
opioid that mitigates the extent of respiratory depression, offering a potential
therapeutic advantage.

Finally, in Chapter 5, we explore the effect of type 2 diabetes and hy-
perinsulinemia on ventilatory control. Only recently, a link between metabolic
disorders and changes in ventilatory control has been established in animal and
preclinical studies.23,24,25 These changes comprise changes in chemoreflex sen-
sitivity, modifications in breathing patterns, and adjustments in carotid-body
mediated sympathetic outflow.26,27,28 Given the increased incidence, morbidity,
and mortality associated with SARS-COV-2 among individuals with type 2
diabetes, our particular interest was the ventilatory effect of hypoxia in this
group of patients. The hypoxic ventilatory response is crucial in determining
an individual’s predisposition to hypoxia-related pathologies. Therefore, this
response was obtained in individuals with type 2 diabetes and compared to
healthy controls, both during fasting conditions and under the influence of a
hyperinsulinemic-euglycemic clamp. This study provides insight into the effects
of metabolic dysregulation on ventilatory control. Given the large increase in
patients with type 2 diabetes worldwide, this is an important study that may
guide our approach to type 2 diabetics, particularly under conditions of changes
in ventilatory control, such as those encountered perioperatively or following
opioid administration.
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Ventilatory control

Two chapters in this thesis are dedicated to ventilatory control and the effect of
drugs (morphine and oliceridine in Chapter 4) and type 2 diabetes (Chapter
5) on the ventilatory control system. In the field of anesthesiology, the study
of ventilatory control has been of particular interest due to its implications
for patient safety. Comprehending its underlying mechanisms is crucial, since
disturbances in the normal respiratory rhythm generation may have severe
cardiorespiratory consequences.

The generation of respiratory rhythms occurs in specialized respiratory
networks located in the pons and medulla. These networks receive
afferent input from various sources, including the central and peripheral
chemoreceptors, mechanoreceptors, and behavioral control from higher
centers.29 The central chemoreceptors, dispersed in the hindbrain, sense minor
changes in CO2/H

+within the cerebrospinal fluid.30 The carotid bodies, the
main peripheral chemoreceptors located in the fork of the carotid arteries,
monitor hypoxia, hypercapnia as well as a variety of metabolic stimuli
including arterial blood glucose concentrations.31 These chemoreceptors work
together in an additive fashion. Upon metabolic acidosis, the input from the
chemoreceptors activates the respiratory networks causing a hyperventilatory
response, aimed a compensating the metabolic acidosis. A similar response is
triggered by the exogenous administration of carbon dioxide, the hypercapnic
ventilatory response or HCVR, and is used to determine the sensitivity of the
ventilatory control system to CO2. The HCVR is particularly sensitive to the
effects of opioids.

In case of hypoxia, the carotid bodies are activated and a hyperventilatory
response occurs that is biphasic.32 An initial acute response is followed by a
slow decline, the hypoxic ventilatory decline. The secondary adaptation has a
central origin, although its exact mechanism has yet to be elucidated. Apart
from inducing a brisk hypoxia-induced hyperventilatory response, the carotid
bodies induce an arousal response, as is observed in patients with obstructive
sleep apnea. The obstruction and ensuring hypoxia stimulate the carotid bodies,
causing an arousal response that clears the upper airways, followed by a short
hyperventilatory response.

In Chapter 4, we obtain hypercapnic ventilatory responses induced by CO2

rebreathing according to the method developed by the Australian investigator
D.J.C Read in the mid-1960s. Inhalation of 7% CO2 (in 93% O2) from a 4-
6 liter rebreathing bag results in a linear increase in ventilation. We used
the ventilation at an extrapolated end-tidal PCO2 of 55 mmHg as the main
endpoint in our study. Recent studies from our laboratory indicate that this is
the most sensitive parameter when determining the effect of drugs on ventilatory
control.33

In Chapter 5, we use the more sophisticated dynamic end-tidal forcing
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technique to obtain the ventilatory response to acute (5 min) hypoxia. This
technique uses computer-controlled feedforward input to a series of mass flow
controllers that allow manipulation of the inspired gas concentrations to induce
a change in end-tidal gas concentration (and thus also arterial gas concentration)
independent of the content of the venous return.
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Study objectives

The objectives of this thesis are:

1. To quantify the pharmacokinetics and pharmacodynamics (pain relief and
psychomimetic adverse effects) of a novel S -ketamine oral thin film;

2. To quantify the pharmacokinetics and respiratory pharmacodynamics of
the biased ligand oliceridine, in comparison to morphine;

3. Explore the effects of insulin on the hypoxic ventilatory response in type
2 diabetics compared to healthy controls.
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