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Chapter 6
Complexity for conformal field
theories

Attribution

This chapter was published as a journal article under the title “Complexity for
Conformal Field Theories in General Dimensions” in the journal Physical Review
Letters (PRL), volume 128, issue 5 (2022), together with Shira Chapman, Jan de Boer
and Claire Zukowski.

6.1 Introduction

The peculiarity of quantum systems is rooted in their entanglement pattern.
Hence, there is increasing interest in studying measures characterizing entanglement
in quantum states. The most famous of these measures is the entanglement entropy,
which estimates the knowledge a given subsystem has about the full quantum state. In
recent years, it became apparent that entanglement entropy is not enough to capture
the full information about quantum correlations in a state. As a consequence, a new
measure from quantum information became prominent in studies of quantum states.
This measure, known as quantum computational complexity (QCC), estimates how
hard it is to construct a given state from a set of elementary operations [230, 231, 56].
QCC is also of clear interest in recent efforts to construct quantum computers.

QCC has attracted a lot of attention in high energy theory due to its proposed
relation to black holes [232, 54]. This relation was explicitly formulated within the
holographic (or AdS/CFT) correspondence [25]. It turns out that the growth of black hole
interiors behaves in a very similar way to the growth of complexity during Hamiltonian
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evolution in quantum systems, see, e.g., [233, 234, 235, 236, 237, 238, 239]. These ideas
suggest a promising avenue to address puzzles related to black hole spacetimes and
their interior geometry.

However, the lack of a complete framework for studying QCC within quantum
field theory (QFT) has been a stumbling block towards rigorously establishing the
connection between black hole interiors and QCC. Significant progress was made for
free and weakly coupled QFTs [240, 241, 242, 243, 244, 245, 246] and for strongly
coupled two-dimensional conformal field theories (CFTs) [247, 248, 249, 250, 251].
Yet, no results exist at present for circuit complexity in CFTs in d > 2 and further,
its precise connection with holography has not been established in any dimension.
The importance of studying complexity in d > 2 becomes evident when noting that
holographic complexity behaves very differently in d = 2 and in d > 2, in particular
when studying the complexity of formation of thermofield double states [252] or its
sensitivity to defects [253, 254]. The goal of this letter is to bridge these gaps by
studying complexity of CFTs in d > 2 and further by establishing a rigorous connection
between complexity and geometry in holography.

We employ the symmetry generators to construct circuits in unitary representa-
tions of the Lorentzian conformal group and present explicit results for state-dependent
distance functions along these circuits. Our circuits live in a phase space which is a
coadjoint orbit of the conformal group and the various cost functions take the form
of simple geometric notions on these orbits. Using symmetry generators to construct
circuits restricts the circuits to move in the space of generalized coherent states. We
use this fact to generalize our results to general symmetry groups. We illustrate our
methods by focusing on circuits starting from a scalar primary state whose coadjoint
orbit can be identified with the coset space SO(d,2)/(SO(2)×SO(d)), but our techniques
are also applicable to more general spinning states. We derive bounds on the complexity
and its rate of change.

We explicitly relate our unitary circuits to timelike geodesics in anti-de Sitter
spacetimes. We find that the line element in the complexity metric admits a very simple
interpretation as the average of the minimal and maximal squared distances between
two nearby geodesics. This provides a novel bulk description for complexity which is
rigorously derived from the CFT and opens new possibilities for testing the holographic
complexity proposals.

This paper is organized as follows: in Sec. 6.2, we introduce the relevant complexity
distance functions. In Sec. 6.3 we present the result for the complexity of CFT states in
general dimensions. In Sec. 6.4-6.5, we connect our results to the notions of coadjoint
orbits and generalized coherent states. In Sec. 6.6 we connect our results to holography.
We conclude in Sec. 6.7 with a summary and outlook.
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6.2 Preliminaries

Explicitly, QCC is defined as the minimal number of gates required to reach a
desired target state, starting from a (typically simpler) reference state. For several
applications, it is advantageous to focus on continuous notions of complexity rather
than a discrete gate counting. Such ideas were put forward by Nielsen [58, 57, 255]
who translated the problem of studying minimal gate complexity to that of studying
geodesics on the space of unitary transformations. In a very similar way, we can
study notions of continuous complexity using geodesics through the space of quantum
states.

Continuous complexity is defined using a cost function F (σ), with circuit parame-
ter σ. The complexity is the minimal cost among all possible trajectories moving from
the reference state to the target state: C ≡min

∫
dσF (σ). Past attempts to study state

complexity in CFTs (e.g., [247]) focused on two cost functions: the F1 cost function and
the Fubini-Study (FS) norm defined as

F1(σ)dσ=
∣∣∣〈ψ∣∣∂σψ〉∣∣∣dσ=

∣∣∣〈ψR
∣∣U†dU

∣∣ψR
〉∣∣∣ , (6.1a)

FFS(σ)dσ=
√〈

ψR
∣∣dU†dU

∣∣ψR
〉− ∣∣∣〈ψR

∣∣U†dU
∣∣ψR

〉∣∣∣2, (6.1b)

where
∣∣ψ(σ)

〉≡U(σ)
∣∣ψR

〉
are the states along the unitary circuit,

∣∣ψR
〉

is the reference
state and ds2

FS =F2
FS(σ)dσ2 is the well known FS-metric. Our analysis in the next

section demonstrates that the F1 cost function assigns zero cost to certain gates and
has therefore disadvantages as a complexity measure.

The FS-metric along straight-line trajectories eitH |ψR〉 is proportional to the

variance ∆E =
√〈

H2
〉−|〈H

〉 |2. We can interpret H as the Hamiltonian and t as
the time. This variance was shown by [256] to bound the time required to reach an
orthogonal state τorth. ≥ πħ/(2∆E) on compact spaces. Inspired by these bounds on
orthogonality time, Lloyd conjectured a bound on the rate of computation [257] (see
also [234]). Unlike [256], our state manifold is non-compact and our states never become
orthogonal. Nonetheless, we will derive bounds on the complexity and its rate of change
by other means. Deriving bounds on the state overlap in our setup is an interesting
question for future study.

6.3 Complexity in General Dimensions

Consider the Euclidean conformal algebra in d ≥ 2 with D,Pµ,Kµ,Lµν the
Euclidean conformal generators (used to construct unitary representations of the
Lorentzian conformal group in Sec. 6.A) satisfying

D† = D , K†
µ = Pµ , L†

µν =−Lµν , (6.2)
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in radial quantization.

As the reference state, we consider a scalar primary state
∣∣ψR

〉= ∣∣∆〉
satisfying

D
∣∣∆〉=∆ ∣∣∆〉

and Kµ

∣∣∆〉= Lµν

∣∣∆〉= 0 and focus on circuits generated by the unitary

U(σ)≡ eiα(σ)·P eiγD (σ)D

 ∏
µ<ν

eiλµν(σ)Lµν

 eiβ(σ)·K , (6.3)

with σ a circuit parameter and αµ,βµ,γD and λµν a priori complex parameters, further
constrained by the restriction that U(σ) be unitary. The circuits take the form

∣∣α(σ)
〉≡

U(σ)
∣∣∆〉≡N (σ)eiα(σ)·P ∣∣∆〉

where N (σ) ≡ exp
(
iγD(σ)∆

)
is a normalization factor and

γD(σ)≡ γR
D(σ)+ iγI

D(σ), with R/I indicating the real/imaginary part. Unitarity of U(σ)
implies γI

D(σ)=− 1
2 log A(α,α∗) (see Sec. 6.B) where

A(α,α∗)≡ 1−2α ·α∗+α2α∗2 > 0 , (6.4)

and requiring a positive spectrum for the Hamiltonian D along the circuit implies
α∗ ·α< 1 (equivalently α2α∗2 < 1).

Substituting
∣∣α(σ)

〉
into the cost-functions (6.1a)-(6.1b) and using the expectation

values of {Pµ,Kµ,KµPν} (see Sec. 6.B), we find for the F1 cost function

F1

∆
=

∣∣∣∣∣ α̇ ·α∗− α̇∗ ·α+α2 (α̇∗ ·α∗)−α∗2(α̇ ·α)
A(α,α∗)

+ iγ̇R
D

∣∣∣∣∣ , (6.5)

while for the FS-metric we obtain

ds2
FS

dσ2 = 2∆

 α̇ · α̇∗−2|α̇ ·α|2
A(α,α∗)

+2

∣∣∣α̇ ·α∗−α∗2α · α̇
∣∣∣2

A(α,α∗)2

 . (6.6)

The FS-metric (6.6) is a positive-definite Einstein-Kähler metric on the complex
manifold of states with d complex coordinates α bounded inside the domain (6.4). It
satisfies ds2

FS = ∂α∂α∗K(α,α∗)dαdα∗, where the associated Kähler potential is defined
as K(α,α∗) = −∆ log A(α,α∗). Denoting collectively the indices of α and α∗ by capi-
tal Latin letters, one finds that RAB = − 2d

∆ gAB and R = − 4d2

∆ and that all sectional
curvatures are negative. This means that geodesics will deviate from each other.

In fact, (6.6) is a natural metric on the following quotient space of the conformal
group

M= SO(d,2)
SO(2)×SO(d)

, (6.7)

which can also be identified with the space of timelike geodesics in AdSd+1 [258,
259], see §6.6. This is similar to the relation between the metric on kinematic space
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and spacelike geodesics in AdSd+1, [260, 261, 262, 263] where the relevant orbit is
SO(d,2)/SO(1,1)×SO(1,d−1) [264]. While some of the above observations are well
known in the context of geometry of Lie groups [265, 266], here they find a novel role
in the context of circuit complexity.

Since the coset space (6.7) is a negatively curved symmetric space, its geodesics
passing through

∣∣ψR
〉

take the form [267]∣∣ψ(σ)
〉= exp

[
iσ(α̃Pµ+ α̃∗Kµ)

]∣∣ψR
〉

, (6.8)

and do not reconnect, i.e., (6.7) has no conjugate points [266]. Here, we parametrized our
geodesics in terms of the straight-line-trajectory-parameter α̃ rather than α. Explicitly,
in terms of the α parametrization, the complexity of a target state

∣∣α(σ= 1)
〉 ≡ |αT〉

is

C[α̃] =
p

2∆ α̃∗ · α̃ ,

2α̃ · α̃∗ =
[(

tanh−1ΩS
T

)2 +
(
tanh−1ΩA

T

)2
]

,
(6.9)

where Ω±
T ≡ ΩS

T ±ΩA
T ≡

√
2 αT ·α∗

T ±2|α2
T | (see Sec. 6.C and Sec. 6.D). Earlier, we

chose to parametrize the states with α(σ) rather than α̃ since this facilitates the
evaluation of correlation functions in the state and therefore provides its more natural
characterization. We will see later that the relation to holography is also done using
the parameter α. The complexity (6.9) can be bounded by employing the inequalities
around (6.4)

∆

ET +∆
√

(ET −∆)≤ C[αT ]≤
√

ET −∆ (6.10)

where ET ≡ 〈
αT

∣∣D∣∣αT
〉 =∆(1−α2

Tα
∗2
T )/A(αT ,α∗

T ) is the energy of the target state in
radial quantization (see Sec. 6.E).

A substantial difference between the F1 cost function and the FS metric is that
the former depends on γR

D which induces an overall phase in the states through which
our circuits pass. In fact, the F1 cost function (6.5) without absolute values vanishes on-
shell except for its part associated with the overall phase γR

D and is simply proportional
to the Berry gauge field, cf. [268, 269, 248].

We close by observing that the FS distance along time evolved states eiτD ∣∣α0
〉

satisfies a Lloyd-like bound [257]

dsFS

dτ
≤ Ep

∆
≤

√
2

d−2
E . (6.11)

where E ≡ 〈
α0

∣∣D∣∣α0
〉

is the energy,
∣∣α0

〉
an arbitrary initial state, and we used the

unitarity bound ∆≥ d/2−1 [270].

We compare our results to the existing literature for d = 2 CFTs in Sec. 6.F. In that
case, holomorphic factorization allows us to also treat spinning states (see Sec. 6.G).
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6.4 Geometric Action and Coadjoint Orbits

Our results for the cost functions (6.5)-(6.6) can be understood in terms of the
geometry of coadjoint orbits, see, e.g., [271, 272]. A similar connection was pointed out
in two dimensions in [247, 248].

Let us start by briefly describing the coadjoint orbit method in representation
theory. Consider a Lie group G with Lie algebra g, a dual space g∗ consisting of linear
maps on g, and a pairing 〈·, ·〉 between the Lie algebra and dual space. For matrix
groups, the adjoint action of u ∈G on X ∈ g is defined as Adu(X )= uX u−1. At the level
of the algebra, the adjoint action is simply the commutator adY (X ) = [Y , X ] where
X ,Y ∈ g. The Maurer-Cartan (MC) form on the full group is Θ≡ u−1du where u ∈ G
and it satisfies dΘ=−Θ∧Θ.

The coadjoint action on the dual space is defined implicitly by

〈Ad∗
uξ, X 〉 = 〈ξ,Adu−1 X 〉 , ξ ∈ g∗ , X ∈ g , u ∈G , (6.12)

from which one can build the coadjoint orbit Oλ ≡ {Ad∗
uλ|u ∈ G} ⊂ g∗ of a given dual

algebra element λ ∈ g∗. Oλ can be identified with the coset space G/Hλ, where the
subgroup Hλ = Stab(λ) ≡ {u ∈ G | Ad∗

uλ = λ} is the stabilizer and the corresponding
algebra is hλ ≡ stab(λ).

Each coadjoint orbit corresponds to a symplectic manifold with a local pre-
symplectic form Aλ and the Kirillov-Kostant symplectic form ωλ defined as

Aλ = 〈λ,Θ〉 , ωλ = 〈λ,dΘ〉 . (6.13)

The geometric action associated to the coadjoint orbit is Sλ =
∫ Aλ [273, 274].

The symplectic form ωλ is compatible with a complex structure Jλ satisfying
J2
λ
=−1 if ωλ(Jλx, Jλ y)=ωλ(x, y). In this case it is possible to define a Kähler metric

ds2
G/Hλ

(x, y)=ωλ(x, Jλ y) on the coadjoint orbit Oλ.

In Sec. 6.H, we apply the above definitions in the fundamental (matrix) representa-
tion of the conformal algebra so(d,2) with representative λ taken to be proportional to
the dilatation matrix with stabilizer group hλ = so(2)×so(d) and orbit corresponding to
the quotient space G/Hλ from Eq. (6.7). This yields an agreement with Eqs. (6.5)-(6.6),
i.e.,

F1 dσ= ∣∣Aλ

∣∣ , ds2
FS = ds2

G/Hλ
. (6.14)

As alluded to above, Aλ can also be interpreted as a Berry gauge field, and the Berry
curvature is simply the symplectic form ωλ. Circuits starting from spinning primary
states in d > 2 amount to a different choice of representative to match with the relevant
reduced stabilizer group.
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6.5 Coherent State Generalization

The equivalence of the FS-metric and the F1 cost function with their geometric
counterparts on the coadjoint orbit is also valid within infinite dimensional Hilbert
spaces obtained via geometric quantization of the orbits of arbitrary Lie groups [247,
251, 275]. This can be understood using a group theoretical generalization of the
notion of coherent states, see e.g., [276, 277, 278, 279]. The existence of these states
is intrinsically connected to the representation theory of the symmetry in question.
In this section we explain how the coadjoint orbit perspective leads to the complexity
functionals of (6.5)-(6.6) for general Lie groups.

As before, we consider some real Lie group G with Lie algebra g. The correspond-
ing complex algebra admits a decomposition gC = n++hC+n− with a real structure
(a dagger) which maps hC to itself and n+ to n−. For a detailed account of this decom-
position, see Sec. 6.I. The generators of the real Lie algebra are anti-Hermitian. We
denote the real subalgebra of hC by h and its associated Lie group H. We also assume
that [n+,n+]⊂ n+ and similarly for n− and that [hC,n±]⊂ n±. We take a basis of raising
operators Eα for n+ and lowering operators E−α for n− with E†

α = E−α and a basis hi
for h.

We consider a unitary highest weight representation generated by a one-
dimensional base state |ψR〉 satisfying D(Eα)|ψR〉 = 0 and D(hi)|ψR〉 = χi|ψR〉 with
χi constants and where D is the representation on the Hilbert space. In other words,
the base state is invariant up to a phase under the action of the stabilizer subgroup
H ⊂G. This includes the possibility of spinning highest weight representations, cf. [280,
281, 282, 283], in which case the stabilizer subgroup will be smaller compared to the
spinless case.

We act on our base state with a unitary transformation U = exp
(∑

α(λαEα −
λ∗
αE−α)+∑

i xihi

)
in order to produce generalized coherent states

|u〉 ≡U |ψR〉 =NH(z, z∗, x)exp
{
zαD(E−α)

}|ψR〉 , (6.15)

with NH a normalization factor (including possibly an overall phase). x are real co-
ordinates on the stabilizer and z, z∗ are holomorphic coordinates on the orbit. The
relation between the coordinates which appear in U and the coordinates z can be quite
complicated in general. Of course, multiplying U from the right by an element of H
does not modify |u〉 (up to an overall phase) and therefore U can be thought of as an
element of D(G/H).

Generalized coherent states can be understood in terms of coadjoint orbits. Con-
sider the dual element

λ(O)= iTr
[∣∣ψR〉〈ψR

∣∣D(O)
]

, (6.16)

where the trace is taken in the infinite dimensional representation space. The coad-
joint action (6.12) on λ is simply 〈Ad∗

Uλ,O〉 = iTr
(∣∣ψR〉〈ψR

∣∣U−1D(O)U
)
= i 〈u|D(O)|u〉,
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which indeed remains unmodified by the stabilizing elements U ∈D(H). Thus we can
view λ as a representative that selects the orbit G/H.

The MC form of the unitary U in Eq. (6.15) can be decomposed as Θ ≡U†dU ≡
Θ− +Θ(H) +Θ+ with Θ± ∈ n±, Θ(H) ∈ hC. When acting with it on the base state we
obtain

Θ|ψR〉 =U−1
[

dNH

NH
U +NH d

(
ezαD(E−α)

)]
|ψR〉 . (6.17)

SoΘ−|ψ〉 = (U−1NHdezαD(E−α))−|ψ〉 and this only depends on dzα and not on dz∗α. There-
fore Θ−|ψR〉 =Θ−

µdzµ|ψR〉 and by conjugation 〈ψR |Θ+ = 〈ψR |Θ+
µdz∗µ. Notice also that

Θ† =−Θ and therefore the FS-metric (6.1b) becomes ds2
FS =−〈ψR |Θ+

µΘ
−
ν |ψR〉dz∗µdzν.

The metric has a manifest complex structure J compatible with the dagger which
maps z to −iz and z∗ to iz∗. Together, the metric and the complex structure define a
closed 2-form according to ω(X ,Y )=−g(X , JY ), i.e.,

ω=−i〈ψR |Θ+
µΘ

−
ν |ψR〉dz∗µ∧dzν

=−i〈ψR |Θ∧Θ|ψR〉 = i〈ψR |dΘ|ψR〉 .
(6.18)

We recognize this as the Kirillov-Kostant symplectic form (6.13) through the represen-
tative (6.16).

Finally, the geometric action of the coadjoint orbit associated with the representa-
tive (6.16) relates to the F1 cost function (6.1a)

F1dσ= |〈ψR
∣∣U†dU

∣∣ψR〉 | = |〈λ,Θ〉 | = |Aλ| . (6.19)

For the specific case of the conformal algebra considered in §6.3, we can take
as base states the scalar primary states,

∣∣ψR
〉 = ∣∣∆〉. The stabilizing subalgebra is

h = so(2)× so(d), generated by D and Lµν. The raising operators n+ = {Kµ} annihi-
late highest weight states and the lowering operators are their conjugates n− = {Pµ}.
Together these parametrize the coset (6.7).

6.6 Holography

The symplectic geometry we found equally describes the space of timelike geodesics
in AdS, and this allows us to rigorously derive a bulk description of complexity. Explic-
itly, our circuits (6.3) starting from a scalar primary are mapped to the following particle
trajectory in embedding coordinates in AdSd+1 of curvature radius R (following [284]’s
conventions)

X0 = r(t)cos
(
t/R

)
, X0′ = r(t)sin

(
t/R

)
,

Xµ = E0 r(t)
E A(α,α∗)

(
αµB∗(t,α∗)+α∗

µB(t,α)
) (6.20)
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where

r(t)= R E
E0

√
A(α,α∗)
|B(t,α)| , E = E0

(1−α2α∗2)
A(α,α∗)

B(t,α)= eit/Rα2 − e−it/R .
(6.21)

Here, α parametrizes the phase space of the geodesics, and A(α,α∗)> 0 and α2α∗2 < 1.
E is the energy of the massive particle, which is minimal at rest and equal to E0 =
mR (1+O(1/mR)), with m the mass of the particle. The phase space is identical to that
of the CFTd with the identification ∆= E0. Time evolution eiτD |α〉 =

∣∣∣αeiτ
〉

amounts
to translating the geodesic in time in AdSd+1 and fixed radius geodesics correspond
to α2 = 0. The complexity (6.9) is expressed in terms of the energy E and the angular

momentum J of the massive particle through ΩS/A
T =

√
E± J−∆
E± J+∆ (see Sec. 6.J). For

a circuit of circular geodesics starting at the origin and ending at a radius rT = R2/δ
close to the boundary, the complexity diverges as C[δ]∼p

∆ log[2R/δ].

The FS-metric over the space of circuits receives a surprisingly simple interpre-
tation in terms of the maximal and minimal perpendicular distance between two
infinitesimally nearby geodesics (as illustrated in figure 6.1, see Sec. 6.J)

ds2
FS = ∆

2R2

(
δX2

perp,min +δX2
perp,max

)
. (6.22)

6.7 Summary and Outlook

We studied the circuit complexity of trajectories associated to unitary representa-
tions of the conformal group in general dimensions. We considered primary states as
reference states. Boundary states which are disentangled [285] could be an interesting
alternative. Our gates, consisting of global conformal transformations, are non-local
similarly to the gates relevant for holographic complexity [286]. We explained how
our results can be understood using the geometry of coadjoint orbits. We presented
general proofs relating the FS-metric and F1 cost function to a coadjoint orbit metric
and geometric action in the context of generalized coherent states. These proofs are
also applicable to circuits starting from spinning primaries and to other symmetry
groups.

Our complexity geometry does not provide a notion of distance between any two
states in the CFT Hilbert space. It is an important question for the future to describe
the complexity for circuits moving across different conformal families. Furthermore,
considering more general states formed by non-local insertions could reveal the role of
OPE coefficients in studying complexity.

Considering the complexity of mixed states in CFT, e.g., thermal states or sub-
regions of the vacuum is another important question. For example, coherent states
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Figure 6.1: Illustration of two nearby timelike geodesics in AdS3 (blue, red) corresponding to
two boundary circuits and the minimal (green) and maximal (brown) perpendicular distance
between them. The infinitesimal variation was exaggerated to improve the visualization.

can be used as a starting point for the ensemble approach to mixed state complexity
[287]. It is also interesting to explore the complexity of states with a conformal timelike
defect/boundary and compare to holography [253, 254, 288].

The path-integral approach to complexity [289, 290, 291, 292, 293, 294] involves
the two-dimensional Liouville action and central charge. Hence, it relates to circuits
going beyond the global conformal group. It is therefore compelling to study the d > 2
complexity of circuits constructed from general smearings of the stress tensor and tie
the result to a higher-dimensional Liouville action [289, 295].

Our complexity geometry is highly symmetric. It is interesting to break some of the
symmetry by adding penalty factors – effectively favoring certain directions through the
manifold of conformal unitaries. Our F1 cost function (6.1a) (also considered in [289])
vanishes along certain non-trivial trajectories and differs from the F1 norm used when
studying the complexity of Gaussian states (e.g., [240]). The difference is reminiscent
of exchanging the order of the absolute value in the complexity definition and the sum
over circuit generators. We intend to compare these two different definitions in the
future.

We rigorously derived a bulk description of our circuits as trajectories between
timelike geodesics in AdS. We could connect this picture to the holographic complexity
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proposals for instance by exploring the influence of massive particles on the action. It
is valuable to study generalizations of our circuit-geodesic duality in other spacetimes
and for more than one (possibly spinning) particle. Further, it is important to explore
the relation of our bulk picture to the phase space of Euclidean sources [296, 297, 298,
299] and hence possibly to the complexity=volume proposal (see also [300]). Another
compelling possibility is to connect our bulk picture to a parallel transport problem of
timelike geodesics similarly to what was done for spacelike geodesics [301, 302] in the
context of kinematic space [260, 261, 262, 263].

Complexity provides us with a new measure of entanglement in CFTs and it is
interesting to probe its potential in diagnosing phase transitions. Some inspiration can
be drawn from [303, 304, 305, 306, 307]. We hope to come back to this question in the
future.

6.A Relating the Euclidean and Lorentzian
Conformal Generators

The Euclidean conformal generators

[D,Pµ]= Pµ , [Lµν,Pρ]= δνρPµ−δµρPν ,

[D,Kµ]=−Kµ , [Lµν,Kρ]= δνρKµ−δµρKν ,

[Kµ,Pν]= 2
(
δµνD−Lµν

)
,

[Lµν,Lρσ]=−Lµρδνσ+Lµσδνρ − (µ↔ ν) ,

(6.23)

used in our analysis obey an SO(d+1,1) algebra. This might seem confusing since we
are interested in studying unitary circuits of the Lorentzian conformal group SO(d,2).
However, the choice of Hermiticity conditions (6.2) ensures that we are building unitary
circuits of the Lorentzian conformal group. We present below the explicit relation
between the Euclidean conformal generators on Rd and the Lorentzian conformal
generators on R1,d−1. The Euclidean generators are then used to construct unitary
representations of the Lorentzian conformal group and in fact play a role analogous
to that of the ladder operators J± in the quantum mechanical treatment of angular
momentum. Although this idea is very commonly used in defining the Hilbert space in
CFTs with respect to constant time slices on the Lorentzian cylinder, it is not always
explicitly addressed. We found that it was most clearly explained in [308, 309], see
also [310]. Since here the generators play an essential role in constructing the circuits
for defining complexity, we found it worthwhile to present some of the details of this
construction here for completeness.

The idea is to construct the Hilbert space with respect to constant time slices on
the Lorentzian cylinder, using the cylinder translation generator as the Hamiltonian
in quantizing the theory. This means that as a starting point for our circuits, we will
consider states which are eigenstates of this generator. Since we are constructing
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6 Complexity for conformal field theories

unitary Lorentzian representations, all the Lorentzian generators are taken to be
anti-Hermitian. The generator of time translations on the cylinder is mapped via a
hyperbolic map tan

(
tcyl

)
= 2t

1+|⃗x|2−t2 to the generator P0
L −K0

L on the Lorentzian plane,
which plays the role of the Hamiltonian when quantizing the theory on the Lorentzian
plane. The relevant time slices are illustrated in figure 6.2. Here and throughout the
following, we will use a subscript L to denote Lorentzian generators on R1,d−1 and E
to denote Euclidean generators on Rd . To go to the Euclidean picture one has to Wick
rotate with respect to the time direction on the Lorentzian cylinder τcyl = itcyl , in such
a way as to obtain a Euclidean cylinder, and finally map radially to the Euclidean plane
τcyl = log(r). The Hermiticity conditions of the Euclidean generators follow from this
mapping procedure and are as given in Eq. (6.2).

t

|�x|
Hyperbolic
Map

Lorentzian Plane Lorentzian Cylinder

Wick Rotation

Euclidean Cylinder

|�x|

Euclidean Plane

Radial Map

τ

ED

L
0K−L

0P

Figure 6.2: Illustration of the process of mapping the Lorentzian generators to the Euclidean
generators. We start with quantizing the theory with respect to constant P0 −K0 slices on the
Lorentzian plane. Those are mapped to constant time slices on the Lorentzian cylinder. The
Wick rotation maps those to constant time slices on the Euclidean cylinder. Finally we map the
Euclidean cylinder to the Euclidean plane via a radial map.

176
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The explicit relations between the generators are given by [309]:

LE
pq =


LL

pq 1≤ p ≤ d−1 and 1≤ q ≤ d−1 ,
− 1

2 (PL
p +KL

p ) q = d and 1≤ p ≤ d−1 ,
1
2 (PL

q +KL
q ) p = d and 1≤ q ≤ d−1 ,

0 p = d and q = d ,

(6.24a)

PE
p =

 1
2 (PL

p −KL
p )− iLL

p0 1≤ p ≤ d−1 ,
DL − i

2 (PL
0 +KL

0 ) p = d ,
(6.24b)

KE
p =

− 1
2 (PL

p −KL
p )− iLL

p0 1≤ p ≤ d−1 ,
−DL − i

2 (PL
0 +KL

0 ) p = d ,
(6.24c)

DE = i
2

(PL
0 −KL

0 ) , (6.24d)

where the index p takes values between 1 and d. The Lorentzian generators are the
usual anti-Hermitian ones. In terms of the differential representation for example:

LL
µν =xµ∂ν− xν∂µ ,

PL
µ = −∂µ ,

KL
µ =x2∂µ−2xµxν∂ν ,

DL = − xµ∂µ ,

(6.25)

where µ= 0 . . .d−1. It then follows straightforwardly that the Euclidean generators
satisfy the algebra (6.23) and the Hermiticity conditions (6.2).

6.B Expectation Values of the Conformal Generators
in d ≥ 2

Here, we present additional details about the derivation of the expectation values
of the symmetry generators in the state |α(σ)〉. We start by considering the following
conjugation relations

g(αM, N)≡ e−iαM NeiαM , (6.26)

where M and N are two generators of a given algebra. The conjugation functions obey
a system of differential equations

d
dα

g(αM, N)=−ie−iαM[M, N]eiαM , g(0, N)= N , (6.27)
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6 Complexity for conformal field theories

which can then be solved to obtain the conjugation relations for the generators of the
algebra. Specifying to the case of the conformal group (6.23) in d ≥ 2 we obtain

g(α ·P,D)= D+ iα ·P , (6.28a)

g(α ·K ,D)= D− iα ·K , (6.28b)

g(α ·P,Lµν)= Lµν− iαµPν+ iανPµ , (6.28c)

g(α ·K ,Lµν)= Lµν− iαµKν+ iανKµ , (6.28d)

g(α ·P,Kµ)= Kµ+2iαµD−2iαρLµρ −
(
2αµαρ −α2δ

ρ
µ

)
Pρ , (6.28e)

g(α ·K ,Pµ)= Pµ−2iαµD−2iαρLµρ − (2αµαρ −α2δ
ρ
µ)Kρ . (6.28f)

Next, we explain how to evaluate the expectation values required to get Eq. (6.5)-
(6.6). The one point functions are evaluated as follows:

〈α|Kµ|α〉 = 2iαµ∆−
(
2αµαρ −α2δ

ρ
µ

)
〈α|Pρ |α〉 , (6.29)

where we have used the conjugation (6.28e) to derive this equality. We further make
the ansatz 〈α|Kµ|α〉 = (〈α|Pµ|α〉)∗ = Aαµ+B∗α∗

µ with A and B two complex coefficients.
Solving for the coefficients leads to

〈α|Pµ|α〉 =
(
〈α|Kµ|α〉

)∗ =−2i∆
α∗
µ−α∗2αµ

A(α,α∗)
, (6.30)

where A(α,α∗) was defined in Eq. (6.4). Next, we evaluate the expectation value

〈α|KµPν|α〉 = 〈α|[Kµ,Pν]|α〉+ 〈α|PνKµ|α〉 = 2δµν 〈α|D|α〉−2〈α|Lµν|α〉+ 〈α|PνKµ|α〉 ,
(6.31)

where in the last equality, we have used the algebra (6.23). The expectation values
〈α|D|α〉 and 〈α|Lµν|α〉 can be related to those calculated in Eq. (6.30) by using the
conjugation relations (6.28a) and (6.28c), respectively. The conjugations (6.28e) and
(6.28f) can then be used to relate the expectation value 〈α|PνKµ|α〉 to the unknown
〈α|KµPν|α〉. Finally we solve the entire relation by using the ansatz 〈α|KµPν|α〉 =
Aδµν+Bαµαν+B∗α∗

µα
∗
ν +Cα∗

µαν+Dαµα∗
ν with A,C and D real coefficients and B a

complex coefficient. In making this ansatz we have taken into account that 〈α|KµPν|α〉
is invariant under complex conjugation and the exchange of its indices. Finally, solving
for the coefficients leads to

〈α|KµPν|α〉 = 2∆
A(α,α∗)2

[
δµνA(α,α∗)−2(∆+1)

(
α∗2αµαν+α2α∗

µα
∗
ν −αµα∗

ν

)
−2

(
1−2α ·α∗−∆α2α∗2

)
α∗
µαν

]
.

(6.32)

The expectation value of the dilatation generator is derived in a very similar manner

〈α|D|α〉 =∆1−α2α∗2

A(α,α∗)
. (6.33)
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Positivity of this expectation value together with the condition A(α,α∗) > 0 implies
α ·α∗ < 1 (or equivalently α2α∗2 < 1). Similarly, we derive the expectation value of Lµν

through

〈α|Lµν|α〉 = iαν 〈α|Pµ|α〉− iαµ 〈α|Pν|α〉 = 2∆
α∗
µαν−αµα∗

ν

A(α,α∗)
, (6.34)

such that its contraction yields

1
2
〈α|iLµν|α〉 〈α|iLµν|α〉 = 4∆2 (α ·α∗)2 −α2α∗2

A(α,α∗)2
. (6.35)

When we introduce the bulk picture, 〈α|D|α〉 and 1
2 〈α|iLµν|α〉 〈α|iLµν|α〉 will be the

energy and the squared angular momentum of the particle, respectively.

Constraints from unitarity: Using the above one- and two-point functions we can
now explain how the requirement that Eq. (6.3) encodes a unitary transformation leads
to the constraint

γI
D =−1

2
log A(α,α∗) , (6.36)

where A(α,α∗) was defined in Eq. (6.4). In our derivation below, we use similar tech-
niques to those often used in the context of coherent states, see, e.g., [311]. The require-
ment that U in Eq. (6.3) be unitary implies

1= 〈α|α〉 = e−2γI
D∆

〈
∆

∣∣e−iα∗·K eiα·P ∣∣∆〉≡ e−2γI
D∆ 〈α̂|α̂〉 , (6.37)

where in the last equality, we have defined the un-normalized coherent state

|α̂〉 ≡ eiα·P ∣∣∆〉
. (6.38)

In order to evaluate the overlap 〈α̂|α̂〉, let us apply successive derivatives to this
expression

∂α∗µ log〈α̂|α̂〉 = 〈α̂|−iKµ|α̂〉
〈α̂|α̂〉 = 〈α|−iKµ|α〉 ,

∂αµ log〈α̂|α̂〉 = 〈α̂|iPµ|α̂〉
〈α̂|α̂〉 = 〈α|iPµ|α〉 .

(6.39)

Using the explicit expectation values in Eq. (6.30) and integrating these equations, we
find

log〈α̂|α̂〉 =−∆ log A(α,α∗)+ c1 , (6.40)

with c1 an arbitrary constant. The trivial solution for α=α∗ = 0 can then be used to fix
c1 = 0. Finally, substituting the overlap 〈α̂|α̂〉 into Eq. (6.37), we obtain Eq. (6.36).

6.C Geodesic Trajectories in the Complexity Metric

As mentioned in §6.3, the geodesics on the coset space (6.7) take the form∣∣α(σ)
〉≡N (σ)eiα(σ)·P ∣∣∆〉≡ eiσ(α̃·P+α̃∗·K) ∣∣∆〉≡ eiσX ∣∣∆〉

, (6.41)
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where the relation between α(σ) and {α̃,σ} is yet to be determined. We choose a
convention in which the trajectory will reach its end point (the target state) at σ= 1
where α(σ = 1) ≡ αT . We will explain in Sec. 6.D how to relate αT and α̃. For the
moment, we will only need the relation

2 α̃ · α̃∗ =
(
tanh−1ΩS

T

)2 +
(
tanh−1ΩA

T

)2
(6.42)

where ΩS/A
T = (Ω+

T ±Ω−
T )/2 and Ω±

T = p
2
√
αT ·α∗

T ±
√
α2

Tα
∗
T

2. A useful simplification

is
(
ΩS/A

)2 =αT ·α∗
T ±

√
(αT ·α∗

T )2 −α2
Tα

∗2
T . The Fubini-Study metric associated to the

trajectory (6.41) is

ds2

dσ2 = 〈
∆

∣∣X †X
∣∣∆〉− ∣∣∣〈∆∣∣X ∣∣∆〉∣∣∣2 = α̃∗µα̃ν

〈
∆

∣∣KµPν

∣∣∆〉= 2∆ α̃ · α̃∗ , (6.43)

so the complexity of the state |αT〉 is given by

C[α̃]=
p

2∆ α̃∗ · α̃ , (6.44)

where it remains to substitute the relation (6.42). We can see from this result that
C admits no non-trivial null directions since C = 0 would require Ω+

T =Ω−
T = 0 which

in turn implies that αT ·α∗
T = α2

T = 0. Therefore, αT = 0. In the bulk of the paper we
insisted on parametrizing the state in terms of α(σ) rather than α̃ since, as we saw
in Sec. 6.B, this facilitates the evaluation of correlation functions in the state. We
therefore regard it as a more explicit characterization of the state throughout the paper.
We will also see later that the description in terms of α(σ) lends itself to a more natural
holographic interpretation.

As an example, let us consider the one-dimensional case for which we have∣∣α(σ)
〉= eiα(σ)P eiγ(σ)D eiβ(σ)K ∣∣∆〉= eiσ(α̃P+α̃∗K) ∣∣∆〉

. (6.45)

In this case the relation between α(σ) and {α̃,σ} is straightforward to derive and we
obtain

α(σ)= α̃

|α̃| tanh
(
σ|α̃|) (6.46)

(see, e.g., Sec. 11.3.3 of [312] or appendix C of [241] for this recombination formula).
It is possible to verify that this function solves the affinely parametrized geodesic
equations α′′(σ)= 2α∗(σ)α′(σ)2

α(σ)α∗(σ)−1 (and its complex conjugate) for the d = 1 metric ds2
FS =

2∆

 dαdα∗(
1−|α|2)2

 cf. Eq. (6.6). The target state obtained at σ= 1, i.e., α(1)=αT satisfies

tanh
(|α̃|)= |αT |. This leads to the complexity

C[αT ]=
p

2∆ tanh−1(|αT |) , (6.47)
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6.D Canonical Variables and Recombination Formula

which is indeed consistent with Eqs. (6.42), (6.44).

In two dimensions, we can use holomorphic factorization to decompose the met-
ric as ds2 = ds2

H + ds2
AH where H stands for holomorphic and AH stands for anti-

holomorphic, see Eq. (6.98) below. The geodesic trajectories take the form of a direct
product of two elements of the form (6.45) with parameters {ζ(σ), ζ̃} for the holomorphic
part and {ζ̄(σ), ˜̄ζ} for the anti-holomorphic part (cf. Eq. (6.83) below). The metric along
these (straight-line trajectories) reads

ds2 = 2dσ2
[
h|ζ̃|2 + h̄| ˜̄ζ|2

]
. (6.48)

Due to the holomorphic factorization we have that

ζ(σ)= ζ̃

|ζ̃| tanh
(
σ|ζ̃|

)
, ζ̄(σ)=

˜̄ζ

| ˜̄ζ|
tanh

(
σ| ˜̄ζ|

)
. (6.49)

Using the same logic as before, we can compute the complexity for the end state {ζT , ζ̄T }
and obtain

C[ζT , ζ̄T ]=
√

2h (tanh−1|ζT |)2 +2h̄
(
tanh−1|ζ̄T |

)2
. (6.50)

Note that this equation is consistent with the result Eqs. (6.42), (6.44) in general
dimensions (using the relation (6.100) below).

6.D Canonical Variables and Recombination Formula

In this part of the supplementary material, we will explain how to establish
the relation α(α̃) in general dimensions, see Sec. 6.C. This method will be based on
reference [313] which explains how to use the matrix representation of the algebra to
find the coset representative of an arbitrary group element.

We will work in the fundamental representation of the conformal group corre-
sponding to the matrix algebra so(d,2) spanned by

(MAB)C
D ≡ δA

C gBD −δB
C gAD , (6.51)

where g = Diag(−,−,+, . . . ,+) is the flat metric over Rd,2, δAB is the Kronecker delta,
and A,B,C,D ∈ {−1,0, . . . ,d−1,d}. These matrices obey the commutation relations

[MAB, MCD]=−gBD MAC + gBC MAD + gAD MBC − gAC MBD , (6.52)

and the orthogonality condition
gMT =−M g . (6.53)

The Euclidean conformal generators are given in the fundamental representation
(denoted by R) by

R(D)≡−iM−1,0 , R(Lµν)≡ Mµ,ν ,

R(Pµ)≡ M−1,µ− iM0,µ , R(Kµ)≡−(M−1,µ+ iM0,µ) ,
(6.54)
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where µ,ν ∈ {1, . . . ,d}. Note that this representation obeys the algebra (6.23), and is
consistent with the Hermiticity conditions (6.2) through

R(O†)= g−1R(O)† g (6.55)

for any operator O in the conformal algebra.

We can define a vacuum vector Ω ∈Rd,2 as

Ω= (1, i,0 . . . ) , R(D) ·Ω=−Ω , R(Kµ) ·Ω= 0 , R(Lµν) ·Ω= 0 . (6.56)

Note that the D eigenvalue for the vector Ω above is not generic. However, in the
following equation, the result of exponentiating D is absorbed in the normalization
constant N and hence changing it amounts to changing the overall phase of the
coherent state. This phase eventually cancels out in Eq. (6.58) and hence this choice
does not influence our results. The action of a coherent element on the vacuum vector
takes the form

N eiα·R(P) ·Ω=N


1−α2

i(1+α2)
2iα1

...
2iαd

 , (6.57)

which means that we can find the coset representative α associated to an arbitrary
group element g from the vector v = g ·Ω through

αµ =−i
vµ

v−1 − iv0
. (6.58)

Choosing now a geodesic path g(σ)= eiσ(α̃·R(P)+α̃∗·R(K)), we can use this method to find
its associated coherent state parametrization α(α̃,σ).

In d = 1, this method confirms the recombination formula (6.46). In that case, the
vector v associated with the group element g(σ) is

v =


cosh

(|α̃|σ)2 − α̃
α̃∗ sinh

(|α̃|σ)2

i
2

((
1+ α̃

α̃∗
)
cosh

(
2σ|α̃|)+1− α̃

α̃∗

)
i
√

α̃
α̃∗ sinh

(
2σ|α̃|)

 , (6.59)

and α(α̃,σ) is given by

α(α̃,σ)= α̃

|α̃| tanh
(|α̃|σ)

. (6.60)

This equation can be inverted as follows

α̃(α)= α

|α| tanh−1(|α|)/σ . (6.61)
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In d ≥ 2, we find that

αµ =
sinh

(
ω̃+σ

)
cosh

(
ω̃+σ

)+cosh
(
ω̃−σ

) α̃∗
µeiβ̃+ α̃µ
ω̃+

− sinh
(
ω̃−σ

)
cosh

(
ω̃+σ

)+cosh
(
ω̃−σ

) α̃∗
µeiβ̃− α̃µ
ω̃−

(6.62)

where ω̃± = p
2
√
α̃ · α̃∗±

p
α̃2 α̃∗2 and e2iβ̃ = α̃2/α̃∗2. This method is applicable for

any dimension d. As a consistency check, we note that in d = 2, the above formula
is consistent with holomorphic factorization, i.e., using it together with the relation
(6.100) below, we simply obtain a double copy of the relation (6.60)

ζ= ζ̃

|ζ̃| tanh
(
σ|ζ̃|

)
, ζ̄=

˜̄ζ

| ˜̄ζ|
tanh

(
σ| ˜̄ζ|

)
. (6.63)

The inversion (finding α̃ in terms of α) can be translated to the problem of solving
three equations (for α ·α, α∗ ·α∗ and α ·α∗) in terms of three variables (α̃ ·α̃, α̃∗ ·α̃∗ and
α̃ · α̃∗) using the above relations. This system of equations can be solved analytically.
To start, note that

α(σ)2 =
√

α̃2

α̃∗2

cosh
(
ω̃+σ

)−cosh
(
ω̃−σ

)
cosh

(
ω̃+σ

)+cosh
(
ω̃−σ

) , α(σ) ·α(σ)∗ = sinh
(
ω̃+σ

)2 +sinh
(
ω̃−σ

)2(
cosh

(
ω̃+σ

)+cosh
(
ω̃−σ

))2 ,

(6.64)
and α2/α∗2 = α̃2/α̃∗2. It is useful to consider the following combinations:

Ω±(σ)= 2sinh
(
ω̃±σ

)
cosh

(
ω̃+σ

)+cosh
(
ω̃−σ

) where Ω±(σ)≡
p

2
√
α(σ) ·α∗(σ)±

√
α(σ)2α∗(σ)2 ,

(6.65)
which can be inverted as

ω̃± = 1
σ

tanh−1

(
4Ω±(σ)

4± (Ω2+(σ)−Ω2−(σ))

)
= 1
σ

(
tanh−1

[
ΩS(σ)

]
± tanh−1

[
ΩA(σ)

])
(6.66)

where we have introduced the variables ΩS/A(σ)≡ (Ω+(σ)±Ω−(σ))/2 and used the iden-

tity tanh−1(x)= 1
2

log
[

1+ x
1− x

]
. Noting that α̃ · α̃∗ = (ω̃2++ ω̃2−)/4 and using the previous

formula leads to

α̃ · α̃∗ = 1
2σ2

[(
tanh−1ΩS(σ)

)2 +
(
tanh−1ΩA(σ)

)2
]

. (6.67)

This is true for all σ and so in particular for σ= 1 we find

2 α̃ · α̃∗ =
tanh−1

[
Ω+

T +Ω−
T

2

]2

+
tanh−1

[
Ω+

T −Ω−
T

2

]2

, (6.68)

183



6 Complexity for conformal field theories

with Ω±
T ≡ p

2
√
αT ·α∗

T ±
√
α2

Tα
∗
T

2 where we have defined α(σ = 1) ≡ αT . Similarly

using α̃2 =
p
α2/α∗2

(
ω̃2+− ω̃2−

)
/4 we obtain

α̃2 = 1
σ2

√
α2

α∗2 tanh−1[ΩA(σ)] tanh−1[ΩS(σ)] . (6.69)

Using the above, the full inversion of (6.62) is straightforwardly obtained

σα̃µ = tanh−1
(
ΩS(σ)

)ΩS(σ)αµ(σ)−ΩA(σ)
√

α2

α∗2α
∗
µ(σ)

Ω+(σ)Ω−(σ)

− tanh−1
(
ΩA(σ)

)ΩA(σ)αµ(σ)−ΩS(σ)
√

α2

α∗2α
∗
µ(σ)

Ω+(σ)Ω−(σ)
.

(6.70)

6.E Bounds on Complexity and its Time Evolution

Here, we derive bounds on the complexity and its rate of change.

6.E.1 Bounds on Complexity

We consider bounds on the complexity (6.9) of a final state αT with energy ET . We
will use the following bounds on log

y−1
y+1

≤ log
(
y
)≤ y−1py

, y≥ 1 , (6.71)

which lead to the following bounds on tanh−1(x)2

x2

4
≤ tanh−1(x)2 ≤ x2

1− x2 , −1< x < 1 . (6.72)

We therefore have
p
∆

2

√
(ΩS

T )2 + (ΩA
T )2 ≤ C[αT ]≤

p
∆

√√√√ (ΩS
T )2

1− (ΩS
T )2

+ (ΩA
T )2

1− (ΩA
T )2

i.e.,

√
∆

2
αT ·α∗

T ≤ C[αT ]≤
√

ET −∆

(6.73)

where we used
(
ΩS/A

)2 =αT ·α∗
T ±

√
(αT ·α∗

T )2 −α2
Tα

∗2
T = ET ± JT −∆

ET ± JT +∆ with the energy

ET and the angular momentum JT given by

ET ≡ 〈
αT

∣∣D∣∣αT
〉=∆(1−α2

Tα
∗2
T )/A(αT ,α∗

T ) ,

JT ≡
√
〈αT |iLµν|αT〉〈αT |iLµν|αT〉/2= 2∆

√
(αT ·α∗

T )2 −α2
Tα

∗2
T /A(α,α∗) .

(6.74)
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The lower bound can be expressed in terms of ET by using the inequalities

0≤ JT ≤ ET −∆ ⇒ αT ·α∗
T = E2

T − J2
T −∆2

(ET +∆)2 − J2
T
≥ 2∆(ET −∆)(

ET +∆)2 , (6.75)

leading to
∆

ET +∆
√

(ET −∆)≤ C[αT ]≤
√

ET −∆ . (6.76)

The above bound uses the inequality JT +∆ ≤ ET which can be proven using
the definitions of ET and JT above (these will actually have a nice interpretation in
holography, see (6.144) below). For this note that(

ET −∆)2 − J2
T = 4∆2α2α∗2

A(α,α∗)
> 0 . (6.77)

We then see indeed that JT +∆≤ ET when ∆≤ ET which in turn follows from positivity
of the spectrum, see comment below Eq. (6.4).

6.E.2 Complexity of Time Evolved States

Let us now consider the time evolution of a coherent state eiτD ∣∣α0
〉= ∣∣∣α0eiτ

〉
, for

which the FS-metric reduces to

ds2
FS = 2∆dτ2

(
α0 ·α∗

0

A(α0,α∗
0 )

+2
(α0 ·α∗

0 )2 −α2
0α

∗
0

2

A(α0,α∗
0 )2

)
. (6.78)

This can be simplified and bounded as follows

ds2
FS

dτ2 = 2∆
α0 ·α∗

0 + (α0 ·α∗
0 −2)α2

0α
∗2
0

A(α0,α∗
0 )2

,

=
〈
α0

∣∣D∣∣α0
〉2

∆

2α2
0α

∗2
0 (α0 ·α∗

0 −2)+2α0 ·α∗
0(

1−α2
0α

∗2
0

)2

=
〈
α0

∣∣D∣∣α0
〉2

∆

1− (1+α2
0α

∗2
0 )A(α0,α∗

0 )(
1−α2

0α
∗2
0

)2


≤

〈
α0

∣∣D∣∣α0
〉2

∆
≡ E2

∆
.

(6.79)

Unitarity further constrains ∆ for d ≥ 3 [270]

∆≥ d/2−1. (6.80)

Therefore, the rate of change of the FS-distance along this trajectory in the space of
states is bounded by

dsFS

dτ
≤ Ep

∆
≤ E

√
2

d−2
. (6.81)

185



6 Complexity for conformal field theories

6.F Comparison with Previous Results in d = 2

In this part of the supplementary material, we will focus on conformal circuits
in two dimensions. In this case, the global conformal group can be extended to (two
copies of) the full Virasoro group. The discussion is often phrased in terms of holo-
morphic and anti-holomorphic coordinates z = x+ iτ (z̄ = x− iτ). The global conformal
algebra so(2,2)≃ sl(2,R)×sl(2,R) is generated by holomorphic generators L−1,L0,L1
satisfying

[L±1,L0]=±L±1 , [L1,L−1]= 2L0 , (6.82)

and anti-holomorphic generators L̄−1, L̄0, L̄1 satisfying similar relations. In radial
quantization, the generators satisfy the Hermiticity conditions L†

1 = L−1 (and L̄†
1 = L̄−1).

Working in this language will allow us to compare our results with the previous
complexity literature in 2d CFTs [247, 248, 249, 250].

For the reference state we again select a spinless highest weight state
∣∣ψR

〉 =∣∣∣h, h̄ = h
〉
≡ |h〉, satisfying L̄0

∣∣h〉= L0
∣∣h〉= h

∣∣h〉
, L̄1

∣∣h〉= L1
∣∣h〉= 0. As expected, the

cost functions (6.1) factorize into holomorphic and anti-holomorphic parts, which can
be treated separately. We will focus on holomorphic unitary circuits within the 2d
global conformal group

U(σ)≡ eiζ(σ)L−1 eiγ(σ)L0 eiζ1(σ)L1 ,∣∣ζ〉≡U(σ)
∣∣h〉=N (σ)eiζ(σ)L−1

∣∣h〉
,

(6.83)

where γ ≡ γR + iγI is decomposed into its real and imaginary parts and unitarity
restricts γI =− log

(
1−|ζ|2

)
with |ζ|2 < 1 and ζ1 = ζ∗eiγR . These relations can be derived

using an explicit recombination formula, see Sec. 11.3.3 of [312]. Following the same
logic as in §6.3 (see the expectation values of the conformal generators below) we can
derive the F1 cost (6.1a)

F1

h
=

∣∣∣∣∣ ζ̇ζ∗− ζ̇∗ζ1−|ζ|2 + iγ̇R + (ζ↔ ζ̄)

∣∣∣∣∣ , (6.84)

and the Fubini-Study metric (6.1b)

ds2
FS = 2h

 dζdζ∗(
1−|ζ|2)2 + dζ̄dζ̄∗(

1−|ζ̄|2
)2

 , (6.85)

which corresponds to the hyperbolic geometry on (two copies of) the Poincaré unit disk.
These cost functions are obtained from those in the §6.3 by the substitutions αµ∂µ =(
ζ−ζ̄
2i

)
∂τ+

(
ζ+ζ̄

2

)
∂x and γR

D = (γR+γ̄R)/2. It is worth noting that holomorphic factorization

implies that in the case with spin s = h− h̄ ̸= 0 in 2d the result is straightforwardly
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6.F Comparison with Previous Results in d = 2

obtained by replacing the coefficient in front of the anti-holomorphic part of the metric
by h̄.

There are a number of existing results in the literature for the circuit complexity
of the Virasoro group on the cylinder [247, 248, 249, 250]. However, in those papers
the circuit complexity is given in terms of the diffeomorphism f (z = eiθ) ∈ Diff(S1)
associated to the holomorphic part of the circuit. We find it insightful to explicitly
relate our approach to the previous literature for d = 2. In addition to providing a
consistency check for our results, this also provides a clear interpretation of the circuits
and gates associated with the diffeomorphisms of [247, 248, 249, 250]. Restricting to
the holomorphic copy, [247] have shown that the F1 cost is given by

F1 =
∣∣∣∣∫ 2π

0

dθ
2π

∂σ f (σ,θ)
∂θ f (σ,θ)

[
−h̃+ c

12
{ f ,θ}

]∣∣∣∣ , (6.86)

where c is the central charge, h̃ ≡ h− c/24 is the shifted eigenvalue of the generator L0

on the cylinder and { f ,θ} is the Schwarzian derivative. Denoting εi = ∂σ f (σ,θi)
∂θi f (σ,θi)

, the

FS-metric is [249, 250]

ds2
FS

dσ2 =
∫ 2π

0

dθ1

2π
dθ2

2π
ε1ε2

[
c

32sin4 [
(θ1 −θ2)/2

] − h
2sin2 [

(θ1 −θ2)/2
]]

. (6.87)

As explained in section §3.3 of [250], this expression must be regularized and thus we
have

ds2
FS

dσ2 =
∫ 2π

0
dθ1dθ2 log

[
sin

(
θ1 −θ2

2

)2
][

− c
24
∂2
θ1
ε1∂

2
θ2
ε2 − h̃∂θ1ε1∂θ2ε2

]
. (6.88)

The diffeomorphism associated with the circuit (6.83) is a Möbius transformation
on the circle parametrized by the coordinate θ, i.e., z = eiθ

f (σ) : eiθ → A(σ)eiθ+B(σ)
B∗(σ)eiθ+ A∗(σ)

with |A|2 −|B|2 = 1 , (6.89)

which maps the unit circle in the complex plane to itself. Acting with our unitary (6.83)
expressed in terms of the differential generators Ln =−zn+1∂z (n = 0,±1) straightfor-
wardly leads to

f (σ) : eiθ →
eiθ

(
eiγ/2 +ζζ1e−iγ/2

)
+ iζe−iγ/2

−iζ1eiθe−iγ/2 + e−iγ/2 , (6.90)

where the flip in the signs of the parameters is due to the usual active/passive transfor-
mation conversion. Constraining this transformation to be Möbius yields

ζ1 = ζ∗eiγR , γI =− log
(
1−|ζ|2

)
. (6.91)
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6 Complexity for conformal field theories

Note that these are precisely the relations we obtained by requiring that the circuit
(6.83) is a unitary. Finally, substituting the relations (6.91) into the unitary (6.90) we
obtain

f (σ, eiθ)= eiγ∗/2eiθ+ iζ(σ)e−iγ/2

−iζ∗(σ)eiγ∗/2eiθ+ e−iγ/2 . (6.92)

As expected for a global transformation in d = 2 we have { f , z}= 0, while the mapping
to the cylinder creates a non-zero Schwarzian { f ,θ}= 1/2. Substituting this diffeomor-
phism into Eqs. (6.86) and (6.88), we immediately recover our results (6.84)-(6.85) upon
the addition of the second copy.

6.F.1 Expectation Values of the Conformal Generators in d = 2

We here derive the conjugation relations and expectation values of the conformal
generators in the special case of d = 2 required for the derivation of Eqs. (6.84)-(6.85).
For the conjugation relations (6.26) we obtain using the algebra (6.82)

g(ζL1,L0)= L0 − iζL1 , (6.93a)

g(ζL−1,L0)= L0 + iζL−1 , (6.93b)

g(ζL1,L−1)= L−1 −2iζL0 −ζ2L1 , (6.93c)

g(ζL−1,L1)= L1 +2iζL0 −ζ2L−1 . (6.93d)

Next, we explain how to evaluate the one- and two-point functions of the 2d
conformal generators in the states (6.83) along the circuit. The one point functions are
evaluated as follows: 〈

ζ
∣∣L1

∣∣ζ〉= 2iζh−ζ2 〈
ζ
∣∣L−1

∣∣ζ〉 , (6.94)

where in this equality we used the relation (6.93d). The Hermiticity relations for the
radial quantization further imply

〈
ζ
∣∣L1

∣∣ζ〉= (
〈
ζ
∣∣L−1

∣∣ζ〉)∗. This then allows us to solve
the relation (6.94) and obtain the one-point functions of the conformal generators〈

ζ
∣∣L−1

∣∣ζ〉= (
〈
ζ
∣∣L1

∣∣ζ〉 )∗ =−2ih
ζ∗

1−|ζ|2 . (6.95)

Finally, the two point function can be computed as follows〈
ζ
∣∣L1L−1

∣∣ζ〉= 〈
ζ
∣∣[L1,L−1]

∣∣ζ〉+ 〈
ζ
∣∣L−1L1

∣∣ζ〉= 2
〈
ζ
∣∣L0

∣∣ζ〉+ 〈
ζ
∣∣L−1L1

∣∣ζ〉 , (6.96)

where in the last equality, we have used the algebra (6.82). The expectation value〈
ζ
∣∣L0

∣∣ζ〉 can be related to those calculated in Eq. (6.95) by using the conjugation
relation (6.93b). The conjugations (6.93c) and (6.93d) can then be used to relate the
expectation value

〈
ζ
∣∣L−1L1

∣∣ζ〉 to the unknown
〈
ζ
∣∣L1L−1

∣∣ζ〉. Note that
〈
ζ
∣∣L1L−1

∣∣ζ〉
should be real due to the Hermiticity conditions. Finally we solve the entire relation,
which leads to 〈

ζ
∣∣L1L−1

∣∣ζ〉= 2h
1+2h|ζ|2
(1−|ζ|2)2

. (6.97)
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6.G Comments about Spinning States

In this part of the supplementary material we make use of holomorphic factoriza-
tion in 2d to present extensions of the results (6.84)-(6.85) for the case with non-zero
spin s = h− h̄. We translate these results to the higher dimensional language in terms
of the circuit parameter αµ in an attempt to reveal the structure of the result for the
case with spin. However, let us emphasize that the results of this section are only valid
in two dimensions and that this case is special in that spinning representations are
one dimensional (i.e., they consist of a single component state |h, h̄〉 ≡ |∆, s〉, with the
scaling dimension ∆= h+ h̄). We leave a detailed analysis of spinning states in general
dimensions for future work.

Let us begin with the generalized version of Eqs. (6.84)-(6.85) when h ̸= h̄

F1 =

∣∣∣∣∣∣∣h
(
ζ̇ζ∗− ζ̇∗ζ
1−|ζ|2 + iγ̇R

)
+ h̄

 ˙̄ζζ̄∗− ˙̄ζ∗ζ̄
1−|ζ̄|2 + i ˙̄γR


∣∣∣∣∣∣∣ ,

ds2
FS = 2h

 dζdζ∗(
1−|ζ|2)2

+2h̄

 dζ̄dζ̄∗(
1−|ζ̄|2

)2

 .

(6.98)

Using the relation between the conformal generators

L−1 = 1
2

(Px − iPτ) , L0 = 1
2

(D− iLτx) , L1 = 1
2

(Kx + iKτ) ,

L̄−1 = 1
2

(Px + iPτ) , L̄0 = 1
2

(D+ iLτx) , L̄1 = 1
2

(Kx − iKτ) ,
(6.99)

allows us to identify the relation between the circuit parameters in two-dimensions
(6.83) and those in higher dimensions (6.3). We obtain

αx = ζ+ ζ̄
2

, ατ = ζ− ζ̄
2i

, γD = γ+ γ̄
2

, λτx = γ− γ̄
2i

,

βx = ζ1 + ζ̄1

2
, βτ =−ζ1 − ζ̄1

2i
,

(6.100)

which yields for the various costs

F1 =
∣∣∣∣∆

(
α̇ ·α∗− α̇∗ ·α+α2(α̇∗ ·α∗)−α∗2(α̇ ·α)

A(α,α∗)
+ iγ̇R

D

)

+ is
α̇ ·M ·α∗−α ·M · α̇∗+α2 (α∗ ·M · α̇∗)−α∗2 (α̇ ·M ·α)

A(α,α∗)
− is λ̇I

τx

∣∣∣∣
(6.101)
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and

ds2
FS =2∆

 α̇ · α̇∗−2|α̇ ·α|2
A(α,α∗)

+2

∣∣∣α̇ ·α∗−α∗2α · α̇
∣∣∣2

A(α,α∗)2


+2is

2(1−|α|2)(α̇ · α̇∗)(α ·M ·α∗)+ α̇ ·M · α̇∗
[
2(1−|α|2)2 − A(α,α∗)

]
A(α,α∗)2

(6.102)

where A(α,α∗) was defined in Eq. (6.4), M ≡
(

0 1
−1 0

)
, α= (ατ,αx) and we have used

superscripts to denote the real part of γD and the imaginary part of λτx (which remain
unfixed by the unitarity constraint). Similar to the result in section 6.3, the curvature

of this metric is R =−16
∆

∆2 − s2 =− 4
h − 4

h̄
= Rh +Rh̄ where Rh,Rh̄ are the curvatures

of the holomorphic and anti-holomorphic parts, as expected from the holomorphic
factorization. Of course, setting s = 0 recovers Eqs. (6.5)-(6.6).

6.H Metric and Geometric Action in the Fundamental
Representation of the Conformal Group

Here we will evaluate various quantities related to coadjoint orbits in the funda-
mental representation of the conformal group (see Sec. 6.D for our conventions of the
fundamental representation of the conformal algebra so(d,2)). In this case, the Lie
algebra and the dual space are isomorphic since the algebra admits a non-degenerate

bilinear form (X ,Y ) ≡ 1
2

Tr
[
X ·Y ]

. Therefore each algebra element can be identified
with a dual algebra element according to 〈λ, ·〉 ≡ (λ, ·). It is then straightforward to
build R(U), the matrix representation associated to the unitary U in Eq. (6.3). The
field theory unitarity conditions is imposed by requiring that we have

R(U†)= g−1R(U)† g = R(U)−1 . (6.103)

This condition fixes the parameters {βµ,γI
D ,λR

µν} in the definition of U in Eq. (6.3) as a
function of the remaining parameters {α,γR

D ,λI
µν} where the superscripts R and I indi-

cate the real and imaginary parts, respectively. In particular, one of those constraints
γI

D =− 1
2 log

(
1−2α ·α∗+α2α∗2

)
should be familiar from the discussion in section 6.3.

We were able to solve the constraints explicitly for d = 1 and d = 2 and order by or-
der in a perturbative expansion in |α| in d > 2, however the explicit expressions are
cumbersome and not particularly illuminating, and so we do not include them here.
One can then compute the MC form associated to the trajectory implemented by the
unitary U in terms of the coordinates {α,γR

D ,λI
µν} by evaluating

R(Θ)≡ R(U)−1dR(U) . (6.104)
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Conformal Group

To make the connection to our previous results we consider a representative in the
dual space λ(O)≡ (i∆R(D),O)= 1

2 Tr
(
∆M−1,0 ·O

)
. This element of the dual algebra is

of course identified via the bilinear form with the algebra element λ= i∆R(D) (here we
slightly abuse the notation since we give the same name to the dual algebra element
and the corresponding algebra element, but since the bilinear form is non-degenerate
indeed the two can be identified). The stabilizer algebra is hλ = so(2)× so(d) and it
naturally leads to an orbit which can be identified with the coset space in Eq. (6.7).
In the d = 2 spinning case, where h̄ ̸= h (see Sec. 6.G), the relevant representative
is identified with the algebra element λ = i∆R(D)+ sR(Lτx) where ∆ = h+ h̄ and
s = h− h̄.

In order to evaluate the metric along the orbit associated with the representative
(6.16), we compute the symplectic form

ω= 1
2

Tr
[
λ ·dR(Θ)

]
(6.105)

and then obtain the components

ω=ωµ̄νdα∗µ̄∧dαν , (6.106)

where we have introduced barred indices to formally distinguish between α and α∗.
The wedge product is canonically identified with the tensor product through x∧ y ≡
1
2

(x⊗ y− y⊗ x) hence

ω= 1
2
ωµ̄ν

(
dα∗µ̄⊗dαν−dαν⊗dα∗µ̄

)
. (6.107)

The metric is then obtained by contracting with the complex structure J given by

Jµ
ρdαρ =−idαµ , Jν̄

ρ̄dα∗ρ̄ = idα∗ν̄ , (6.108)

such that
ds2

G/Hλ
= 1

2
ωµ̄ρdα∗µ̄⊗ Jρ

νdαν− 1
2
ωρ̄νdαν⊗ Jρ̄

µ̄dα∗µ̄ (6.109)

leading to
ds2

G/Hλ
=−iωµ̄νdα∗µ̄dαν . (6.110)

Finally, the pre-symplectic form (6.13) is given by

Aλ = 1
2

Tr
[
λ ·R(Θ)

]
. (6.111)

Our results for the metric on the coset space coincide with the Fubini-Study metric
in Eq. (6.6) and those for the pre-symplectic potential becomes the F1 cost function in
Eq. (6.5) up to an absolute value, i.e.,

F1 dσ= ∣∣Aλ

∣∣ , ds2
FS = ds2

G/Hλ
. (6.112)
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We have verified this analytically in d = 2 and in a perturbative expansion in d > 2.

Explicit Example – SO(2,1): Let us demonstrate how all this works for the simplest
example of the so(2,1) algebra. This algebra is locally isomorphic to sl(2,R), which rep-
resents (for example) the holomorphic copy in two dimensions. The relevant generators
are

P1 ≃ L−1 =

0 0 1
0 0 −i
1 −i 0

 D ≃ L0 =

 0 i 0
−i 0 0
0 0 0

 K1 ≃ L1 =

 0 0 −1
0 0 −i
−1 −i 0

 .

(6.113)
The unitary is given by

R(U)≡ eiζL−1 ei(γR+iγI )L0 eiζ1L1 . (6.114)

Requiring the unitarity condition (6.103) imposes

γI =− log
(
1−|ζ|2

)
, ζ1 = eiγRζ∗ . (6.115)

The MC form is

Θ= L−1

(
ie−iγR dζ

)
1−|ζ|2 +L0

(
ζ∗dζ−ζdζ∗

1−|ζ|2 + idγR

)
+L1

(
ieiγR dζ∗

)
1−|ζ|2 . (6.116)

The representative is λ= ihL0 whose stabilizer is spanned by the generator L0. The
exterior derivative of the MC form is given by

dΘ= i
(1−|ζ|2)2

[
ζ∗eiγR L1 −ζe−iγR L−1 +2iL0

]
dζ∧dζ∗

+ dγR

1−|ζ|2 ∧
[
e−iγR dζL−1 − eiγR dζ∗L1

]
.

(6.117)

The metric on the coset space (6.110) and the pre-symplectic form (6.111) read

ds2
G/Hλ

= 2h
dζdζ∗(

1−|ζ|2)2 , Aλ = ih

(
ζ∗dζ−ζdζ∗

1−|ζ|2 + idγR

)
, (6.118)

which matches our results in Eqs. (6.84)-(6.85) (up to an absolute value for F1) when
focusing on a single sl(2,R) copy.

6.I Root Space Decomposition

The assumptions used in section 6.5 to equate the Fubini-Study metric with
the metric compatible with the symplectic form on a coadjoint orbit follow naturally
from the structure of a root space decomposition (for a summary of how this works
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for other coherent state symmetry groups, which use a slightly different root space
decomposition, see [311]). For the conformal algebra, the relevant decomposition is
known as the minimal Bruhat decomposition [314], see [315, 316] for applications
to conformal field theory in the context of parabolic Verma modules. In this part of
the supplementary material we will both motivate the assumptions of the proof and
explain how to construct the representations of interest using a more mathematical
language.

Consider a unitarily represented semisimple group G with Lie algebra g, with D a
highest-weight representation on the Hilbert space. For our purposes we have in mind
the Euclidean conformal group, but for now we keep the group arbitrary. The group
theoretic generalization of a coherent state is often defined in terms of a base state∣∣ψR

〉
left invariant up to a phase by a subgroup H ⊂G, or equivalently one that is an

eigenstate of the corresponding subalgebra h,

x
∣∣ψR

〉= χ ∣∣ψR
〉

, ∀x ∈D(h) . (6.119)

In the case of vector coherent states [280, 281, 282, 283] (relevant to circuits constructed
from a spinning primary in the conformal algebra in d > 2), one often considers instead
a collection of base states that transform into each other under the action of a subgroup,
much like primaries with spin transform among each other under the action of the Lµν’s.
We will explain how the subalgebra h relates to a portion of a root space decomposition,
and also indicate how this works for the vector coherent states.

Any semisimple algebra admits some Cartan decomposition g= s+t where [s,s]⊂ s,
[s,t]⊂ t and [t,t]⊂ s. Let a⊂ t be a maximal Abelian subalgebra for t, and m⊂ s be the
centralizer of a in s, in other words the elements X ∈ s such that [X ,h]= 0 for all h ∈ a.
The adjoint action with respect to a can be diagonalized, with the eigenspaces known
as the restricted root spaces gα:

gα = {X ∈ g : [h, X ]=α(h)X ∀h ∈ a} . (6.120)

The linear functionals α(h) are the roots. A root is called positive with respect to a
given basis of the dual space if its coefficients in the expansion over this basis are
positive. We denote the set of all roots as Φ and the set of positive and negative roots
as Φ±. Unlike for the standard semisimple Lie algebra root space decomposition, these
roots are defined with respect to an Abelian algebra a that is not maximal.

The minimal Bruhat decomposition is the resulting root space decomposition:

g= n−⊕m⊕a⊕n+ , n± = ⊕
α∈Φ±

gα . (6.121)

Here g0 ≡ m⊕ a is the centralizer of a, since m is the centralizer of a in s and a is
maximal in t. n± are the positive and negative root spaces.

Pick a basis Eα,p ∈ gα. The label p here accounts for any root degeneracy, which is
possible given that the Abelian algebra a used in the root space decomposition (6.121)
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is not the full maximal Abelian algebra (the Cartan subalgebra) for g. By Eq. (6.120)
these satisfy

[hi,Eα,p]=αiEα,p , ∀hi ∈ a . (6.122)

For an inner product with h†
i = hi, applying the dagger to Eq. (6.122) gives E†

α,p =
E−α,p.

Using the Jacobi relation applied to Eq. (6.122), we can prove inclusions for the
commutation relations for the root spaces,

[gα,gβ]⊂ gα+β , α+β ∈Φ or α+β= 0 , (6.123)

and for the part of the centralizer not in the Abelian algebra a,

[m,gα]⊂ gα , [m,m]⊂m . (6.124)

For an ordinary root space decomposition, the commutator of a root vector with its
Hermitian conjugate would take values in the Cartan subalgebra. Notice that here,
it instead takes values in the centralizer g0 of the Abelian algebra a defining the root
decomposition.

Consider a highest-weight representation for this root decomposition. This consists
of states

∣∣λ〉
labelled by their eigenvalues λ under the hi,

hi
∣∣λ〉=λi

∣∣λ〉
, (6.125)

where a highest-weight state
∣∣λ0

〉
is annihilated by all the raising operators,

Eα,p
∣∣λ0

〉= 0 , ∀α, p . (6.126)

By Eq. (6.122), Eα,p raises the eigenvalue under hi by αi, thus it can be interpreted as a
ladder operator. Likewise, E†

α,p = E−α,p is a ladder operator that lowers the eigenvalue.
We build the representation by applying the lowering operators successively starting
from the highest weight state. Note that here, in order to match with the standard
CFT literature, we use opposite conventions to those used in the definition of coherent
states for the Heisenberg group in quantum mechanics where one typically starts with
a lowest weight state.

Now consider an element x ∈m (in the centralizer but not in a). Then [m,gα]⊂ gα
by Eq. (6.124), and acting the commutator on

∣∣λ0
〉

and applying the highest weight
condition (6.126) gives gαx

∣∣λ0
〉= 0. So x

∣∣λ0
〉

must be a highest-weight state. If there
is a single state satisfying Eq. (6.126), then x

∣∣λ0
〉

is proportional to
∣∣λ0

〉
. Thus the

eigenvalue condition (6.125) extends from a to g0,

x
∣∣λ0

〉= χ ∣∣λ0
〉

, ∀x ∈ g0 . (6.127)

Recalling Eq. (6.119), this means that the highest weight state of a root space repre-
sentation using the Bruhat decomposition is a natural candidate for our base state in
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6.I Root Space Decomposition

the coherent state construction, with an invariance group H ⊂G whose algebra h is
just the stabilizer g0 of a: ∣∣ψR

〉= ∣∣λ0
〉

, h= g0 . (6.128)

The orthogonal complements to h are n±. These consist of raising and lowering opera-
tors that are related by Hermitian conjugation and build the representation starting
from

∣∣λ0
〉
.

In the spinning case, a highest-weight representation can still be built from a
preferred highest weight state, with a highest weight condition (6.126) that includes
ladder operators in m. Thus,

∣∣λ0
〉

satisfying only Eq. (6.126) is not unique and x
∣∣λ0

〉
defines a subspace of states. This subset of states will participate in the generalization
of the eigenvalue condition (6.119) to vector coherent states. Imposing Eq. (6.127)
applied to the preferred highest weight state results in an invariance subalgebra that
is smaller than the centralizer.

We now return to consider how this structure ties to the proof in section 6.5. We
saw that we could identify g0 ⊇ h. In other words, the centralizer for a is either equal to
the stabilizing subalgebra in the spinless case, or contains it in the spinning case. Thus
the commutation relations (6.122), (6.123) and (6.124) are simply the assumptions that
[n±,n±] ⊂ n± and [h,n±] ⊂ n±. The Hermiticity condition E†

α,p = E−α,p is also natural
for the root space decomposition. These were the starting points for the proof in section
6.5.

Conformal algebra: Now we will be more explicit about how these abstract in-
gredients apply to the specific case of the conformal algebra as considered in sec-
tion 6.3. Recall that we are considering the real Euclidean conformal algebra, a
semisimple real algebra that can be expressed in terms of its complexification as
so(d+1,1)=

{
X ∈ so(d+2,C) | X real, X Tη+ηX = 0

}
, where η= diag(−1,1, ...,1) is the

flat metric on Rd+1,1. Note that the real matrices obeying these conditions differ from
our choice of complex generators in Eq. (6.54), however the algebras are isomorphic.
The starting point for the Bruhat decomposition is a Cartan decomposition of so(d+1,1),
which is not unique and can be specified by an involution. A natural choice is

θ(X )= ηXη . (6.129)

The Cartan splitting θ(X ) = X for X ∈ s, θ(X ) = −X for x ∈ t implies that s ={
Lµν,Pµ+Kµ

}
and t =

{
D,Pµ−Kµ

}
. The maximal Abelian subalgebra for t is a0 ={−D

}
, with centralizer m0 =

{
Lµν

}
in s. Note that we have chosen a0 to be generated

by −D instead of D to match with the usual conventions for CFT representations.

The positive and negative root spaces with respect to a0 are n− =
{
Pµ

}
, n+ =

{
Kµ

}
,

which are related through the involution as θ(n±)= n∓. The positive and negative roots
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are all degenerate with α = ±1. The minimal Bruhat decomposition (6.121) for the
Euclidean conformal group is

g= {Pµ}⊕ {Lµν}⊕ {D}⊕ {Kµ} . (6.130)

The usual highest-weight representation for the conformal algebra consists of a
conformal primary state

∣∣∆〉
annihilated by Kµ, with the remaining descendant states

built by acting with Pµ. Both the primary and its descendants are eigenstates of −D,
with Pµ acting as a lowering operator since it decreases the −D-eigenvalue. But this
is precisely a highest-weight representation for the Bruhat decomposition described
above. −D generates the Abelian algebra a. The condition (6.127) that the stabilizer
algebra for the highest weight state is the centralizer of a is just the statement that
the primary state is also an eigenstate under Lµν:

D
∣∣∆〉=∆ ∣∣∆〉

, Lµν

∣∣∆〉= 0 . (6.131)

We end by summarizing how our assumptions in section 6.5 apply to the case
of the conformal algebra. The condition [h,n±] ⊂ n± is satisfied by the algebra (6.23)
and [n±,n±] ⊂ n± is trivially satisfied since for the conformal algebra, the Pµ’s and
Kµ’s commute so n± is Abelian. With respect to the field theory dagger (6.103), the
generators of n± obey the Hermiticity conditions P†

µ = Kµ. These are just the conditions
E†
α,p = E−α,p taken above for the root space decomposition and used in the proof in

section 6.5.

6.J Holographic Interpretation

In this part of the supplemental material, we present further details on the relation
of our coherent states in CFTd and the trajectories of massive particles in AdSd+1. In
particular we explain the geometric interpretation of the Fubini-Study metric and the
complexity of states in terms of the bulk geometry and present an interesting example
of geodesics with fixed radius.

6.J.1 Background

Here, we review our conventions for the embedding space and trajectories of
massive particles in AdSd+1 following [284] (up to a modification of the signature).
Let us start with the action of a massive particle of mass m in an embedding space
description of AdSd+1 of radius R consisting of a hyperbola of radius R in flat space
Rd,2 with metric gAB = diag(−,−,+, . . . ,+). The coordinates of the flat space will be
denoted X A with A ∈ {0,0′,1, . . . ,d} and we will use Greek indices to denote the space
directions µ ∈ {1, . . . ,d}. The action for the massive particle reads

S =−
∫

dτ

[
− Ẋ (τ)2

2e(τ)
+ e(τ)m2

2
− µ(τ)

2

(
X (τ)2 +R2

)]
. (6.132)
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In this action, e(τ) is the einbein and µ(τ) is a Lagrange multiplier enforcing the
hyperbola condition X (τ)2 = −R2. The equations of motion derived from this action
fix

e(τ)2 =−Ẋ (τ)2/m2 , µ(τ)=− m
R2

√
−Ẋ (τ)2 . (6.133)

Solutions will be timelike geodesics in AdSd+1 with

X0(t)= r(t)cos
(
t/R

)
, X0′ (t)= r(t)sin

(
t/R

)
, (6.134)

where t is the AdSd+1 time coordinate and the restriction to the hyperbola fixes

−R2 = X2(t)=−r(t)2 + Xµ(t)Xµ(t) . (6.135)

The action (6.132) is SO(d,2) invariant and the associated conserved charges read

JAB = PB(t)XA(t)−PA(t)XB(t)= PB(0)XA(0)−PA(0)XB(0) , (6.136)

where PA(τ)≡ ẊA(τ)/e(τ)= mẊ A(τ)/
√
−Ẋ2(τ) is the canonical momentum associated

with XA(τ). The charges corresponding to the compact subgroup SO(2)×SO(d) are
the energy E ≡ J0,0′ and angular momentum Jµν, with J2 = JµνJµν/2 the squared
angular momentum of the trajectory. We selected our geodesics to be future oriented,
i.e., X0 Ẋ0′ − X0′ Ẋ0 > 0 and this simply tells us that the energy is positive E > 0. The
remaining conserved charges are J0,µ and J0′,µ which can be reorganized into a pair
of complex coordinates describing (without redundancy) the phase space of timelike
geodesics

zµ ≡ J0′,µ− iJ0,µ , z∗µ ≡ J0′,µ+ iJ0,µ . (6.137)

Using (6.136), we can write d equations for the coordinates Xµ

EXµ = J0,µX0′ − J0′,µX0 (6.138)

which yield

Xµ(t)=− r(t)
2E

(
z∗µeit/R + zµe−it/R

)
, with r(t)= 2ER√

4E2 − z∗2e2it/R − z2e−2it/R −2z · z∗
.

(6.139)
(z, z∗) are complex coordinates on the phase space of the particle which can be used to
evaluate its symplectic form

ωbulk = dPA ∧dX A . (6.140)

The energy is minimal when the particle is at rest and equal to E0 = mR. Quantizing
the classical system canonically by promoting the observables {E, Jµν, zµ, z∗µ} to opera-
tors leads to a unitary reducible representation of SO(d,2). We introduce the following
change of coordinates

zµ = 2E0
α∗
µ−α∗2αµ

A(α,α∗)
, z∗µ = 2E0

αµ−α2α∗
µ

A(α,α∗)
. (6.141)
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As shown by [284], an irreducible representation can be obtained upon imposing that α
is in the domain (6.4) together with the condition α ·α∗ < 1. Furthermore, we can find
that

ωbulk =ωCFTd , (6.142)

provided that we identify ∆= E0, where the symplectic form of the CFT can be easily
read from the metric (6.6) via the relations (6.107) and (6.110). Starting with the
action (6.132), the classical geodesic trajectory in the bulk is based on a saddle point
approximation with large mass. The mass of the dual quantum particle is related to
the field theory operator dimension as m2R2 =∆(∆−d) which can be inverted as

∆= mR


√

1+ d2

4m2R2 + d
2mR

 . (6.143)

In the limit of large mass we simply have mR =∆. Therefore, we have an exact duality
between CFTd states and timelike geodesics in AdSd+1. It is interesting to notice that
due to canonical quantization, the conserved charges associated with the isometries in
the bulk map to the expectation values of algebra elements in the CFTd . For example,
we find that zµ = 〈α|iPµ|α〉 and the energy and angular momentum of the particle are
given by

E =∆1−α2α∗2

A(α,α∗)
= 〈α|D|α〉 , J = 2∆

√
(α ·α∗)2 −α2α∗2

A(α,α∗)
=

√
1
2
〈α|iLµν|α〉 〈α|iLµν|α〉 ,

(6.144)
which can be inverted as

α ·α∗ = E2 − J2 −∆2

(E+∆)2 − J2 , α2α∗2 = (E−∆)2 − J2

(E+∆)2 − J2 . (6.145)

In this coordinate system, r(t) can be simplified into

r(t)= R E
∆

√
A(α,α∗)
|B(t,α)| , B(t,α)≡ eit/Rα2 − e−it/R . (6.146)

6.J.2 Complexity in Holography

We have established an explicit connection between states in the CFTd and
timelike geodesics in AdSd+1 (or particle states). We can now re-express the complexity
(6.42)-(6.44) of a target state

∣∣αT
〉

in the field theory in terms of the energy ET and
angular momentum JT of the associated target particle state in AdSd+1 as

C[ET , JT ]=
p
∆

√√√√√tanh−1

√
ET + JT −∆
ET + JT +∆

2

+
tanh−1

√
ET − JT −∆
ET − JT +∆

2

, (6.147)
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where we used that

ΩS
T =

√
ET + JT −∆
ET + JT +∆ , ΩA

T =
√

ET − JT −∆
ET − JT +∆ . (6.148)

6.J.3 Geometric Interpretation of the Fubini-Study Metric

We have argued that states |α〉 are related to timelike geodesics in AdSd+1 ac-
cording to (6.20)-(6.21). The question that remains to be answered is what is the
gravitational dual of the Fubini-Study line element between two infinitesimally close
states.

Consider two nearby geodesics Xµ(t) and Xµ(t)+δXµ(t) corresponding to two
nearby states |α〉 and

∣∣α+δα〉
, respectively. We can expand δXµ(t) as follows

δXµ(t)= dα ·∂αXµ(t)+dα∗ ·∂α∗ Xµ(t)+dtẊµ(t) . (6.149)

The relation (6.20) implies that both Xµ and Xµ+δXµ are geodesics in AdSd+1 corre-
sponding to the parameters α,α∗ and α+dα,α∗+dα∗. We further impose a requirement
that δX · Ẋ = 0 which can be used to solve for dt as follows

dt =− 1
Ẋ2(t)

(
Ẋµ(t)dαν

∂Xµ(t)
∂αν

+ Ẋµ(t)dα∗ν ∂Xµ(t)
∂α∗ν

)
. (6.150)

This requirement can be understood as looking at the hyperplane orthogonal to Ẋµ(t)
and finding the intersection of this hyperplane with the second geodesic at every time
t. We will measure the perpendicular distance between the two geodesics along this
hyperplane. The perpendicular distance δX2

perp(t) can be related to ds2
FS in (6.6) as

follows. We begin by separating δX2
perp(t) into three contributions

δX2
perp(t)= R2

∆
ds2

FS + gαα(t)dα2 + g∗
αα(t)dα∗2 , with gαα(t)= R2

A(α,α∗)
e2it/R −α∗2

1− e2it/Rα2 .

(6.151)
Note that only the last two terms in δX2

perp(t) are time dependent. Next, we look for
times at which δX2

perp(t) is extremal, i.e., ∂tδX2
perp(t)= 0. This leads to two solutions

t+ and t− corresponding to a maximum (with ∂2
t δX2

perp(t+)< 0) and a minimum (with
∂2

t δX2
perp(t−)> 0) perpendicular distance, respectively, which are given by

e2it±/R = α∗2pdα ·dα±p
dα∗ ·dα∗

p
dα ·dα±α2

p
dα∗ ·dα∗ , (6.152)

where

δX2
perp,max/min ≡ δX2(t±)= R2

∆
ds2

FS ±
2R2

p
dα2 dα∗2

A(α,α∗)
. (6.153)

Using the above relations, we finally recover the equivalence (6.22)

ds2
FS = ∆

2R2

(
δX2

perp,min +δX2
perp,max

)
. (6.154)
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6.J.4 Example: Timelike Geodesics with Fixed Radius

We will now work out an explicit case for which much of the previous calcula-
tions simplify. The goal of this presentation is to give an intuition of how to use our
holographic results. We will therefore focus on states for which we have α(σ)2 = 0.
The condition (6.4) then implies α(σ) ·α∗(σ)< 1/2 and for these values, we have, from
Eq. (6.20)-(6.21)

E(σ)= ∆

1−2α(σ) ·α∗(σ)
, r(t;σ)= Rp

1−2α(σ) ·α∗(σ)
≡ r0(σ) , (6.155)

where ρ(t)= R arccosh(r(t)/R) is the global AdS radial coordinate. The fact that r(t;σ)
does not depend on t means that the associated timelike geodesics have fixed radius
which we will define as circular geodesics. This choice of α(σ) leads to a path within
the subset of fixed radius geodesics for which (6.9) simplifies into

ΩS
T =

√
2 αT ·α∗

T , ΩA
T = 0 ,

C[αT ]=
p
∆ tanh−1

(√
2 αT ·α∗

T

)
.

(6.156)

In the holographic formulation, JT = ET −∆ for such states so the complexity can be
expressed using the energy of the particle

Ccircular[ET ]=
p
∆ tanh−1

√
1− ∆

ET

=
p
∆ tanh−1


√√√√1− R2

r2
T

 , (6.157)

where rT ≡ r0(σ= 1) is the radius of the outermost geodesic in the circuit. Considering

the AdS metric in a Fefferman-Graham expansion ds2 = 1
z2

(
dz2 +dxµdxµ

)
, we have

near the boundary (ρ→∞) the relation z ≃ R/sinh
(
ρ/R

)≃ R2

r
. Close to the boundary

z ∼ δ and this means rT ∼ R2/δ such that

Ccircular[δ]∼
p
∆ log

[
2R/δ

]
. (6.158)

This result captures the divergent behavior of complexity as we go to states (represented
by circular geodesics) which are very far from our reference state (very close to the
boundary in AdSd+1). Note that this is different from asking what is the vacuum
divergence of complexity evaluated using the holographic proposals as in, e.g., [317,
318].
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