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Chapter

Emerging Fermi liquids from
regulated quantum electron stars

Attribution

This chapter was published as a journal article under the title “Emerging Fermi
liquids from regulated quantum electron stars” in the Journal of High Energy Physics
(JHEP), volume 2022, article number 222, together with Vladan Djuki¢, Mihailo
Cubrovi¢ and Koenraad Schalm.

5.1 Introduction

Strongly correlated electrons at finite density remain a deep and interesting puzzle,
encountered in various quantum-many body systems, from condensed matter to heavy
ion physics to astrophysics. Apart from some special cases, Fermi liquids are the only
interacting fermionic systems at finite density where we have good control. A break-
through was provided by the application of AdS/CFT to finite density large N-matrix
fermionic systems. This allowed new strongly coupled IR fixed points characterized
by an emergent Lifshitz scaling with dynamical critical exponent z to be discoveredE]
Though many of such results were found in bottom-up holographic models where only
bosonic operators are tracked, there is reason to believe that any holographic finite
density systems must also have microscopic fermionic degrees of freedom. Indeed a
number of these holographically discovered fixed points have now been independently
confirmed as Sachdev-Ye-Kitaev-like large N quantum spin-liquid fermionic ground

1At finite N these fixed points may be not be true IR fixed points but intermediate scale attractors in the
RG flow.



5 Emerging Fermi liquids from regulated quantum electron stars

states, where the additional microscopic description allows valuable extra insights into
the workings of these novel states of matter.

In holography these new ground states are qualitatively understood to arise as a
deconfined phase of an underlying microscopic theory with the confined phase corre-
sponding to a conventional Fermi liquid; see [213]]. A dozen years ago this was a hotly
debated topic and it was found that the prototypical deconfined state, characterized
by the AdSs, z = co near horizon dynamics of AdS Reissner-Nordstrom (RN) black
holes and an associated multitude N of non-Fermi-liquid Fermi surfaces [[214} [215]
32| in the Thomas-Fermi limit of N — co indeed transitions at low temperatures to a
charged Tolman-Oppenheimer-Volkov electron star [42, 216, 43| 44], 48]]. These states
are partially confined - partially deconfined in that they still have a finite z Lifshitz
horizon; for a review and the transport responses of these states, see |19, [1]l.

However, away from the Thomas-Fermi limit a holographic description of a di-
rect single Fermi-surface deconfined non-Fermi-liquid-to-confined Fermi-liquid 7' =0
quantum phase transition has so far not yet been found. In the bulk, this problem
corresponds to solving an Einstein-Maxwell-Dirac system in a self-consistent way,
accounting for the backreaction of fermions on geometry, but keeping the number of
Fermi surfaces finite or specifically keeping only one. The distinct puzzle here is that
the signal of the putative instability towards confinement at low temperature — a log-
oscillatory response in the single fermion spectral function [32] — occurs at a distinct
point in parameter space from the one where the first stable Fermi surface is located
(Fig.[5.1). In [46] an electron star model is introduced where N is finite but still very
large; this hinted at a first order rather than a continuous transition. Approaching the
question from the other side, a holographic description of confined single Fermi surface
Fermi-liquid was constructed in [47] by enforcing confinement through a hard wall IR
cut-off [47]]. This confirmed that confinement-deconfinement is the correct viewpoint of
the quantum phase transition, but did not yet include the gravitational backreaction.
The most comprehensive study to date is the attempt at quantum electron star model
of [[49, 50] which regulates the system by putting it on a sphere and then tries to
carefully remove this regularization procedure for a self-consistent solution of the
Einstein-Maxwell-Dirac equations in the asymptotic AdS background.

The simple hard-wall solution of [47] already illustrates the fundamental prob-
lem. In the presence of an occupied Fermi surface the gravitational backreaction is
uncontrolled, see [49, 50]. These subsequent papers then address this by a second
cut-off for the backreaction, and then attempt to remove both cut-offs in a precarious
balancing act. In the present paper we address this in a different way. We construct a
fully gravitationally backreacted single-Fermi surface solution confined through a soft
rather than a hard wall. From the gravitational point of view this soft wall determines
the deep interior boundary conditions of the fermionic wave functions instead of the
horizon geometry. As illustrated in detail in [49] 50] at the technical level the puzzle
is that with the vanishing of the horizon (signalling deconfinement) at the quantum
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Figure 5.1: A schematic representation of the phase diagram of holographic fermions, where ¢
and m are the charge and the mass (related to the scaling dimension in field theory A =3/2+m)
of the bulk fermion respectively. Along the line ¢ = m/v/2, determined by the Schwinger pair
production threshold, the quantum phase transition ought to happen between the Reissner-
Nordstréom black hole describing the strange metal phase and the quantum electron star solution
(no black hole) corresponding to a metallic phase. However, this line is not identical to boundary
of the regime where the Reissner-Nordstrom system supports stable Fermi surfaces as probed
through the Reissner-Nordstrom spectral functions. The electron star (fluid) model requires
taking the limit q,m — 0 where both critical lines become indistinguishable. To understand the
transition at finite g, m is the motivation for our approach. Adapted from [32].

phase transition, not only must one find a new self-consistent (confining) IR geome-
try, but also an associated set of self-consistent boundary conditions for the fermion
wave-function.

Because the confining boundary conditions suppress the fermion wave function
in the IR, there is also no associated backreaction in the deep IR, which remains
AdS. This confined regulated quantum electron star (rQES) is therefore the fermionic
analogue of the Horowitz-Roberts-Gubser-Rocha AdS4-to-AdS, groundstate/domain
wall for holographic superconductors [217,|218]. This solution (just like our soft wall
confining electron star solution) describes a system that flows from a conformal pure
AdS UV to an intermediate ordered holographic superconductor (Fermi liquid) state
with a gap in the sense that below that gap it returns to the renormalized conformal
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5 Emerging Fermi liquids from regulated quantum electron stars

theory and low energy excitations cannot disturb the ordered state. As is well-known
the generic holographic superconductor ground state is not AdS4-to-AdS4 but of the
Lifshitz type [41]. It is the technical difficulties described above that guided us to first
construct this Horowitz-Roberts-Gubser-Rocha type solution. We leave the full Lifshitz
quantum electron star for future work. One natural way to construct the latter is that,
rather than trying to remove the soft-wall regulator, one can also make it dynamical,
similar to the electron star study in [45].

We do confirm that within the class of non-dynamical soft-wall solutions this
gapped confined holographic Fermi liquid is the thermodynamically preferred state
over the deconfined Reissner-Nordstrém metallic state for appropriate charge and mass
of the fermion. Because we are not yet able to remove the regulator we do not yet solve
the puzzle of Fig.[5.1] directly.

The outline of the paper is the following. In Sec. [5.2] we present the gravity setup
and the regulated quantum electron star (rQES) solution. In Sec. we present the
properties of our rQES solution, i.e., the gapped confined Fermi liquid: we show it is the
thermodynamically preferred solution in a certain range of parameters, and demon-
strate the existence of the infinitely long-lived quasiparticle peaks in the spectrum of
the boundary theory. In Sec. we present some considerations about removing the
confining soft wall. Sec. sums up the conclusions together with some musings on
further directions of work and the physical meaning of our results.

5.2 A confined Quantum Electron Star: set-up

The minimal bottom-up gravity dual of a strongly correlated electron system is
the Einstein-Maxwell-Dirac system [214} 215|, |32]]. The new element of our setup is
the phenomenological soft-wall-like regulator inspired by bottom-up AdS/QCD [219].
The regulator is a fixed non-dynamic scalar field, which neither backreacts on the
metric itself nor does it feel the backreaction by the fermions. This is again in line with
AdS/QCD models. Therefore, the geometry starts as pure AdS in the UV, in the interior
it is influenced by the gauge and matter fields and deviates from AdS, and in far IR all
matter fields are exponentially damped by the confining potential. However, in contrast
to most hard/soft-wall models we will let the potential only damp the matter sector and
not the gravitational sector. The action of the system is:

L? L?
—— (R+6)- - +L3L, (Y, D]

W) (5.1)

s-[atv=g

where « is the gravitational coupling constant; and L is set to L = 1 in the remainder.
The Dirac Lagrangian is:

L=

1 .
ehT4 (au+zwﬁCFBc—iqu)—(m+MCD)] y (5.2)
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5.2 A confined Quantum Electron Star: set-up

where ¥ = i‘I’J’FO, ei is the vierbein, ['4 are the gamma matrices in four dimensions,
and wﬁB is the spin connection. The regulator is fully encoded in an effective mass
contribution M(z)®(z) for the Dirac field, with ®(z) a non-dynamical scalar field whose
profile we shall choose later. Inspired by [220]], we will consider two types of the
confining potential:

W= —e§F3 ,  the potential preserves chirality ,

(5.3)
z1y, the potential breaks chirality .

Here z, both as index and a variable, refers to the radial coordinate of the AdS space.
We will assume a radially symmetric metric which is asymptotically AdSy,1 with d =3,
parametrized as:

dx;dx? dz?

22 * 22f(2)
The radial coordinate is defined for z = 0, where z = 0 is the location of AdS boundary
(UV). Development of a horizon at finite z is in principle signified by the appearance of
a zero of the function f: f(zg) = 0. At zero temperature (the only case we consider), the
space extends to infinity, 0 <z < co.

f@h(z)

ds® = -—5—dt* + (5.4)

zZ

Our choice to let the wall only confine the fermion-matter sector (together with
the absence of backreaction by the confining scalar) implies that at finite chemical
potential but zero bulk fermion density, the thermodynamically preferred solution is
the regular charged (RN) black hole, though pure AdS with a constant electrostatic
potential is also a solution.

For a certain value of the charge g of the fermion, it will be thermodynamically
preferred to store all charge in an occupied bulk fermionic state, i.e., nonzero bulk
density n. = (¥7W), rather than a Reissner-Nordstrom black hole. Now the precise
radial profile of the scalar ®(z) becomes important. The original AdS/QCD papers used
a quadratic scalar, behaving in the IR as @ ~ z2 [221], which ensures confinement while
still being smooth. Another form found in the literature is a profile which flattens out
to a constant in the IR [222]. At the same time the UV completion of the scalar field
has to ensure that its contribution to the Dirac equation decays quickly enough for
small z to reproduce the equation of motion in pure AdS in the limit z — 0. The forms
that satisfy all the requirements and which we find numerically convenient are

D(z) = 122, quadratic scalar
@ (5.5)
D(z)=A az+ = flat scalar.
2i+z

The amplitude of the scalar (i.e., the measure of the "hardness" of the wall) is
parametrized by A, and zg is the scale at which the scalar begins to flatten (in the
second, flat scalar model). The choice of a is merely that of computational convenience
and we choose a = 4. Similarly, we will consistently choose z¢ = 2 throughout the rest
of this paper.
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5 Emerging Fermi liquids from regulated quantum electron stars

5.2.1 Einstein-Maxwell-Dirac equations

From the action we obtain the Maxwell equation and two convenient linear combi-
nations of the #¢ and zz components of the Einstein equations. With the ansatz that
only A; # 0, and that all functions only depend on z, compatible with homogeneity and
isotropy, they reduce to

h'(2)

ey / _
Alz) —Zh(z)At(z) Vh@E@)n(z),
2 4
Z iy - - % A2 (5.6)
L3l @10 = 50 P Tare@
B(z) = —zh(z)p(z)—%p(z).

Compatible with the symmetries the current vanishes J* = 0, the charge density J° is
denoted as J° = n(z)/\/=g = z*n(z)/v/h(z), and the stress tensor is parametrized as

(Tf)uv = diag(p(2),p 1(2), p 1 (2), p(2)), .7)

where p | (2) is the pressure in the transverse x,y directions.

The ii components of the Einstein equations are both equal to

2h(z) [—z3A;(z)2 +(32f"(2) — 4 (2)) h'(2) + 22 f(z)h”(z)] +

+2h(2)? [z (2f"(2) - Af'(2) - 2Bzp 1 (2)) + 6f(2) 6] —22f()h'(2)2 =0 .

They are not independent, however. Denoting the Einstein field equations as
E,y =Gy — Ty and the Maxwell equation as Ep =V, F* —J", one can show thatﬂ

. 1
Eu=L-E- -V, T", (5.8)

where L-E = A10,Ey; + A20,E . + A3Ey + Asf (2)Ey + E . (Asf'(2) + Agh'(2) + A7) is
a linear combination of both {E;,E ,,,E s} and their derivatives and T*" is the total
stress-energy tensor associated with the matter content of the theory. The stress-tensor
is covariantly conserved if the matter sector is on-shell, i.e., obeys its equations of
motion. Thus

Eonsbell g v = (5.9)

It is therefore sufficient to solve the three equations (5.6) together with the matter
sector.

The charge, energy and pressure densities n(z), p(z), p(z) are determined by the
occupied fermionic states in the AdS bulk space. Importantly, we will compute them

2This is essentially VuGHY =V, TH.
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5.2 A confined Quantum Electron Star: set-up

solely from microscopic considerations: we do not assume anything like a fluid limit or
a specific form of the equation of state. We compute them from the Dirac Lagrangian,
within the one-loop Hartree correction to the background. This is discussed in detail in
the next subsection.

We will now proceed to derive the equation of motion for the Dirac field. From
(5.2), the equation reads:

1 X
ehTA (6y+zwﬁcfgc—iqA”)‘P= (m+M20) v (5.10)

It is known that the spin connection in this type of metric can be eliminated by rescaling
the fermion [214, 223]:

1 h(z)\"1
Y= (—gzz detguv) fy= (%) ' ¥ =al2)y. (5.11)

In addition, it is convenient to eliminate any singular terms from the fermionic wave-
function. Since our solutions are smooth in the interior as we shall see, the only
singularity is the branch cut in the UV behaving as z™. We thus rescale one more
time

v=z"y=bR)y. (5.12)
In most cases we will use the rescaled form and write the equations for . So far this is
all independent of the gamma matrix representation. In order to simplify the equations
of motion, we now employ the representation

0o y* 3 (1 O
H: =
r (7“ 0), =l ) (5.13)
with p € {0,1,2}, yo = iaz,yl = al,yz = 03 and 01?3 are the usual Pauli matrices.

Homogeneity and isotropy along the ¢,x,y directions allow us to take the energy w and
momentum % = &, as good quantum numbers, so the Dirac bispinor is expressed as
—iwt+ikx( T. (514)

v=e 1(2), x1(2), —ix2(2), iy2(2))

As in [47,223], this yields two (equivalent) decoupled systems for the two independent
components, for w19 and y12, corresponding to the spin degeneracy of our system. We
will focus on the y; components for which the Dirac equation reads

d,+¢ q>+f(1— L\ yyeo)— |- @¥94e | =0
TR V)| T V@ fevee |
(5.15)
m 1 w+qA,5 k
0,+e_ O+ — |1+ (2)+ - (2)=0.
2 ( \/f(z_)) T rovEe Jie T
where €, = e = 1 corresponds to the chiral-preserving potential and €, = —¢_ =

—1/4/f(2) corresponds to the chiral-breaking potentials.
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5 Emerging Fermi liquids from regulated quantum electron stars

5.2.2 Fermion densities and backreaction

The fermionic densities and pressures are obtained microscopically, from the Dirac
Lagrangian (5.2):
(el I(-iw—igA)Y) ,
—~(viw) . (5.16)

i~}
Il

The components of the pressure p, ,p are likewise formally equal to

pr =(Vielk, I[1WP),
p  =(Peil?5,¥). (5.17)

The expectation value (...) in (5.16}5.17) is the quantum-mechanical expectation value,
i.e., one solves the Dirac equation with appropriate boundary conditions (see below)
and sums over the quantum numbers in the appropriate range. The quantum numbers
are the radial modes ¢, and momenta k., %, in the x, y-directions which determine the
on-shell energy in terms of a dispersion relation w = E (k). The role of the confining
potential is essential here: it quantizes the radial number ¢. Each discrete radial mode
corresponds to a separate Fermi surface [214}215|32}|44,|48,|47]. As emphasized in the
Introduction, we seek a state where only a single Fermi surface is occupied. This must
be the lowest radial mode. Note that despite occupying a single mode, this mode still
contains a thermodynamically large number of states counted by the x, y-momenta.
Each radial mode is thus a fluid of fermions.

We will ignore the subtleties of the zero-point energy and the Dirac sea; in principle
these are absorbed in a renormalization of the cosmological constant and the AdS
radius; see however [49] 50] for a more detailed treatment. Then, in terms of the
solutions to the Dirac equation, formally the expressions for the density are

2q
n(@) = —2— a(2)*b(z)* Y. © (~E (k) (wuk(Z)WlZk(2)+wzgk(2)1#’2!k(2))

22\/f(z) I,

p(2) = a(2)*b(2)%el(2) (~iw — iq As(2)) kz ~Eo®) (4], @)+ ¥, (e 1(2))

p(2) = a@)?b(2)%e 3 ZO(Eeh) (W0 40wtk = Why 10010 (5.18)

where the step-function O(x) selects the positive energy states. Note that due to
the antisymmetry of the two spin components, the derivatives of the scaling factors
a(z),b(z) cancel out in the expression for p.

The self-consistent Hartree calculation

We solve the system 5.15) in the one-loop Hartree approximation. As a
reminder, the Hartree correction is the local single-particle diagram (vacuum bubble),

146



5.2 A confined Quantum Electron Star: set-up

Choice of initial _ Solve the Dirac | Compute the Backreact on the

background equations Hartree densities background

Figure 5.2: Iteration algorithm used to compute the rQES solution.

ignoring anti-particles, i.e., ignoring the contribution from the Dirac sea. We do not take
into account the Fock correction. In flat space, the Hartree correction is trivial [224]: in
terms of the causal fermionic propagator G it equals lim;_¢- [ dwd?k Gr(w,k)e 10t =
10) pﬂ merely renormalizing the chemical potential. In curved space however, the local
chemical potential is pjc(2) = A¢(2)y/—g*(2), with a nontrivial radial profile, thus the
correction 6u(z) is also variable along z and therefore it can have nontrivial physical
effects.

The Hartree approximation then proceeds by computing this one-loop Hartree
correction self-consistently. One starts with an ansatz for the background, solves the
Dirac equation in this background, computes the one-loop Hartree densities in the
assumption that they are small, updates the background and iterates to convergence

as in Fig.

5.2.3 Boundary conditions on the Einstein-Maxwell sector

The Einstein-Maxwell equations require four boundary conditions in total
(two for A;(z) and one for each of the metric functions f(z),h(z)). The UV boundary
conditions are

Azuv)=pu, the chemical potential. (5.19)
flzuv)=h(zuy)=1, AdS, asymptotics. '

3The infinitesimal time separation ¢t — 0— is really the point-splitting regularization, as the integral of Gp
at coincident points in spacetime generally diverges; the sign of ¢ is dictated by the contour choice for the
retarded propagator [224].
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5 Emerging Fermi liquids from regulated quantum electron stars

The fourth boundary condition we impose is given by our demand that we seek a state
where all the charge is contained in occupied fermionic statesf_f] The confining potential
ensures that the fermionic wavefunctions are localized at a finite value in the radial
direction. Thus by construction the charge density will vanish in the deep AdS interior.
From this follows that the fourth boundary condition is 0,A;(z1g) = 0. Formally z1g = oo;
in our numerical computation it will be finite but large, and we have checked that our
results do not depend on its value.

In practice, we solve the boundary value problem by shooting from the IR. We
impose directly the condition 0,A;(z1r) = 0 as well as the condition 9, f(z1g) = 0. The
latter indirectly encodes our demand that we seek a T' = 0 solution; recall that for a
black hole solution 0, f (Zhorizon) ~ T- Then we use the free value A;(z1g) and A(z[R) to
shoot for A;(zyv) = i, h(zyy) =1 at the boundary. From the equation of motion for
f(z) one obtains automatically that f(zig) = 1 once we fall on the right branch; for the
same reason one can also use f(zig) =1 as an IR boundary condition if one demands in
addition that there is no energy density or electric field in the deep interior.

5.2.4 Boundary conditions for the fermions

The UV boundary conditions for the appropriate solutions to the Dirac equation
are straightforward. Near the AdS boundary the rescaled field behaves as

w_k_ﬂqzl—2m
2m -1

oz — 0) ~ Ap(w,k) 27 2™ + By(w, k)

vi(z —0)~A(w,k) +B/(w,R)+...,

0tk g (5.20)
— %

2m+1

+....

On-shell solutions are normalizable, i.e., A/(w,k) = 0. This agrees with the AdS/CFT
dictionary, where a finite A/(w,%k) would imply an external source for the fermions
for a specific band ¢ and energy w,%k. Demanding normalizability A /(w,k) =0 instead,
implicitly translates in a dispersion relation w(k) = E ;(k).

The IR boundary conditions for the fermions require a more detailed discussion.
Firstly, for the fermionic wavefunctions, the amplitude is set by normalization of each
wavefunction to unity. For each radial mode ¢ this implies

fdz\/—_glwi;z,k(z)lz < co. (5.21)

For finite temperature backgrounds this is usually not an issue as the horizon is
parametrically at finite distance and finite IR boundary conditions, together with the
UV-condition that the un-normalizable fall-off vanish, guarantees a finite integral.
For the T = 0 background we consider here, the interior is parametrically at infinite

4There could be interpolating solutions with both a charged horizon and a charge in occupied fermionic
states. We will not seek for those here as the presence of the charged Reissner-Nordstrom like horizons
should imply the continued presence of log-oscillatory instabilities.
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5.2 A confined Quantum Electron Star: set-up

distance and finiteness of the integral can only follow from bounded behavior of the
wavefunction. Since the spin components are not independent, it is sufficient to demand
¥1,0(z — 00) — 0, i.e., the leading component should vanish in the interior.

It is well known in AdS/CFT that it is then the simultaneous requirement of a UV
and an IR boundary condition that determines the spectrum of the small excitations.
This spectrum can still be continuous or discrete; we address this directly below.
Formally, however, the normalization together with two boundary conditions make the
system overconstrained and one must search for accidental solutions. We again do so
by shooting from the interior to search for parameters where the UV conditions are
also satisfied.

The shooting condition we use is the ratio yo/y1, which still leaves the freedom to
normalize the norm (5.21) to unity, and which we do after the solution is found.

Effective potentials and confinement

Pure T'=0 AdS — representing a deconfined phase of the strongly coupled bound-
ary theory — has a continuum spectrum of normal modes computed in the way de-
scribed above. The system must be considered in a different phase or have its IR
dynamics modified by a confining potential to discretize the spectrum; this spectrum
may still be ungapped or gapped. We will now demonstrate that the chiral-breaking
soft-confining potential supports a discrete Fermi surface, i.e., a tower of bound states
at discrete energies, for momenta up to some kg, the Fermi momentum. The spectrum
is also gapped. A convenient way to see the effect of this potential is to transform the
Dirac equation to the Schrodinger form [32], 48], {19]:

XSch(Z) = e%foz duP(u) ,
|02- V()] ksan(2) =0,

V(z)= %P'(z) + 373(2)2 -09(2), (5.22)

where the coupled equations (5.15) were decoupled into two second order equations,
each taking the form

'@+ P (2)+ Q2)w(z)=0, (5.23)

with the indices 1,2 on v, ygch(2), V omitted.

In principle, the Schriodinger potential is itself a function of the background
spacetime and electrostatic potential f(z),h(z),A:(z) and can be fully determined
only by calculating numerically the full solution. However, we can give a qualitative
estimate whether it is confining or not by studying its asymptotics. Since the bulk

remains asymptotically AdS4, we have V(z — 0) ~ —. In pure AdS4 the IR behavior
z
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Chiral-breaking flat
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Figure 5.3: Comparison of the Schrédinger potentials for y1(z) for the two types of confining
potential: chiral-breaking quadratic (green), chiral-breaking flat (red) and chiral-preserving
quadratic (blue). The dashed black line indicates the truncation of spacetime which happens in
the hard wall model of [47]] at z = 7. Only the chiral-breaking potential and the hard wall allow
for bound states. Parameters are {m, uq,%,w} ={0.1,1.05,0,—0.027}. The scalar parameters are
A =0.1 for the two quadratic scalars and A =1 for the flat scalar.

would be Vagsr(z — 00) = —(@ + 1q)? + k2 + m(m + 1)/2% + O(1/z®) (Fig. [5.3) | This now
gets modified by the confining potential due to the scalar ®(z). Making the ansatz that
the confining potential in the deep IR for z — co suppresses exponentially all sources
in the Einstein and Maxwell equations for large z, i.e., the geometry in the deep IR is
again an (emergent) AdS, geometry, the leading order IR behavior of the potential is
then schematically

¢ L PREm+2)+ (e~ £4)P(2)?

> e +|+0Wz%,
2z z

Vads-1r = V(z — 00) + (e~ —€4)
(5.24)

Note that the chiral-preserving solution €, = e_ =1 leads to a vanishing contri-
bution and therefore does not lead to fermionic bound states. In contrast the chiral-
breaking solution €, = —e_ = —1/\/f(2) = =1+ O(1/z) in an AdS4 IR does lead to a
potentially bounding potential depending on the choice of ®(z). For this reason, we will
work solely with the chiral-breaking scalar field.

Fig. shows the behavior of the Schrédinger potential for the various profiles of
the scalar field and regulation schemes. With a chiral-breaking regulator, we indeed
see that the infrared behavior of the potential is dominated by the large z behavior of

5We are interested in k2 < (w+uq)? since the potential is otherwise confining even in AdS4 with no regulator,
as discussed in [225]. We will discuss this later.
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5.2 A confined Quantum Electron Star: set-up

each profile. The final choice of which scalar field profile to use is determined by the
convergence of the iteration scheme. We numerically found the quadratic profile to be
unstable while the flat profile leads to an emergent AdS4 in the infrared. Specifically for
the chiral-breaking confining potential with flat asymptotics the Schrédinger potential
in the deep IR becomes

V(z — 21p)=— iy + A + kg + O(1/z) = Vig + O(1/z2), (5.25)

where we have used that f(z),h(z),A;(z) become constant in the emergent AdS, IR
w+qAs(z1R)

A
—  AMr=———and kjg= —.
f(zr)V/h(z1R) V() V)

In the IR limit, Schrodinger equation becomes

and we have defined wig =

|02 - Vir | xsen() =0, (5.26)
which is solved by
Xsch(2) = Yseh+ (e Y VIR 4 ygqn_(2)e”V VIR (5.27)

We see from that, for frequencies such that Vig > 0, the solutions have a growing
and a decaying branch. The decaying branch clearly confines the wavefunction. This
is the one we shall choose. This leads to the following IR form for our original Dirac
fermion components

Y1o2) = cry(@)e VVRe, (5.28)
where the ratio of the coefficients is fixed by the Dirac equation (5.15):

N6 B cp(z) B 1
viRGe) Rz) om+kr

(5.29)

m 1
— -1|+vVir+A
2 (\/fI_R ) IRt AR

and the normalization of the wavefunction to unity sets the remaining overall scale.
With these IR boundary conditions the equations (5.15) are solved by shooting from

21Rr to zyv.

The confinement imposed by both IR and UV boundary conditions leads to a
discrete and gapped spectrum which defines a band structure (see Fig. [5.6]later). The
fall-off of the wavefunction both at the AdS boundary and the interior also implies
an absence of any backreaction in those regions. Once backreaction is included the
resulting solutions will therefore be AdS4-to-AdS4 domain wall solutions, as we will
show in the next section.

As a last remark, equation gives us a simple way to view the effect of
the chiral-breaking flat potential. As has been pointed out in [32]225]], in AdS4 with
constant electrostatic potential where A = 0, the potential is deconfining for modes
with |wir| > |kr| and confining for modes such that |wir| < |kr|. The addition of a
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5 Emerging Fermi liquids from regulated quantum electron stars

flat profile means that now modes with |kgr| < lwir| < /%% + AZ;, which previously
were not bound states, also become confined. This allows the existence of a window
w_(k)<w<wi(k), with w. (k) = qA;(z1R) + 4 /k%R + )L%R where a discrete set of (gapped)
modes can be populated.

5.3 Regulated Quantum Electron Star:
thermodynamics and spectrum

Now that the problem is well-posed, we can follow the algorithm in Fig. and
construct a fully backreacted regulator-confined T' = 0 quantum electron star. Choosing
the chirality-breaking flat regulator the resulting solution is shown in Fig. This is
by construction an AdS4-to-AdS4 domain wall solution. Just like the analogous domain
wall solutions for the holographic superconductor [218, |41, |217]], it has a UV AdS4
and an IR AdS4 with the same radius but different effective speed of light. This can
be checked by considering the diffeomorphism-invariant ratios vir/vyv and Lir/Luyv
which are equal to

Lir = R(z = zyv) -1, R vz > 2in) = 7z = 2mr) < 1 in our solution
LUV R(z nd ZIR) ’ vuv B U(Z - ZUV) h(z - ZUV) )
(5.30)

d
Here R(z) is the Ricci scalar and v(z) = vA(z) is deduced from the null vector EX H(z)

where X*(z) = {t,0,v(z)t,0} is a x-directed trajectory. Therefore, our solution obeys the
c-theorem since the effective speed of light in the dual field theory is lower in the IR
than in the UV, as discussed in detail in [[218]].

In accordance with our discussion in the Introduction, the chemical potential is
chosen such that only the lowest radial mode of the fermionic wavefunction is occupied.
The associated matter content shows that a localized distribution of fermions in the
mid-infrared region is characterized by a stable finite density of fermions with total
charge @ = —A}(z — 0).

With the chirality-breaking flat potential the convergence is in fact quite fast at
low density. The Hartree algorithm provides a discrete sequence of fields (£, h(”),A(tn))
as we iterate from n =1,2,.... We can introduce a criterion for the convergence of the
solution using the IR parameters used for shooting

en =\ FMm? + AP ) + A wR)? (5.31)

n—oo

Convergence is obtained if (A€), = €, —€,-1 0. For a small occupation num-
ber/charge Fig. shows that the solution already stabilizes after three iterations;
for large occupation numbers the convergence rapidly becomes much slower. We
have checked that the solution is not sensitive to the choice of the numerical cut-
offs {ZUV’ZIR}-
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Figure 5.4: Iterative backreactions on the background fields (f(z), h(z),A(z)) and their associated
currents (n(z),p(z),P(z)) with the same parameters as in Fig. In total 5 iterations are
performed, denoted by the color scale from violet (first iteration) to red (last iteration). For
these values {m, g, A} ={0.1,0.9,1} only the first iteration differs significantly from the final
solution, and the other curves are visually barely distinguishable from each other; for higher ¢
convergence rapidly becomes slower.
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Figure 5.5: Convergence in terms of the logarithm of the difference in the IR between the n-th and
n + 1-st iteration (A¢), for a rQES with {m,uq, A} ={0.1,0.9,1}. he convergence is exponentially
fast and the agreement is very good already around the 34 jteration. The convergence is very
good already around the 34 jteration.

5.3.1 Thermodynamics

For a large g/m ratio we expect that the quantum electron star at a given chemical
potential u is the thermodynamically preferred solution over the extremal Reissner-
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5 Emerging Fermi liquids from regulated quantum electron stars

Nordstrom solution. In order to study the thermodynamics of the regulated quantum
electron star, we need to compute its free energy. It consists of two parts. There is a
direct saddle point contribution from the regularized Euclidean action:
1
R+6)—-F?
4

1
Sg = [ df —
E f TVEE | 92 (

+jf xvVh(-2K +2y) , (5.32)

where gg is the Euclidean metric, A is the induced metric on a hypersurface normal to
a radial (2) slice, pointing outwards, K is the trace of the extrinsic curvature and y = 2
is required to make the AdS free energy vanish. The imaginary time at temperature
T is compactified with the radius = 1/T', the integral in the x—y plane produces the
(infinite) volume Volg, and the radial integration is performed to some UV cutoff ¢,
yielding

Sg = BVoly f dzV2E % (R+6)- 3F2 + BVoly V/(e)(—2K () +27) . (5.33)

This accounts for the contribution of the bosonic fields. The Dirac action vanishes on-
shell and therefore does not contribute to this part. It does have a one-loop contribution
to the free energy density
Sg
ﬁVOlz

Here fpirac represents the fermionic contribution. Following [47, [226) 223, 227]], at
T =0 we can simply sum the energies along the filled band of fermions (above the
Dirac sea). This is the internal energy shifted by the chemical potential. For our normal
modes, this leads to the expression

f = + fDirac . (534)

kdk kdk
fDirac :Zf % 6(_E[(k))®(E[(k)_IJQ)Eg(k) 2‘/‘% O(-E1(R)E (k)
4

where in the last line we have made explicit that we choose our chemical potential such
that only states of the lowest electronic radial mode E ;-1 will be occupied. One must
first choose the potential strength A such that the Schrédinger potential supports at
least one normalizable mode. At the same time, it is only these normalizable modes that
can be populated. If there is only one band in the window of existence of normalizable
modes [w_(k),w(R)], i.e., Ey-1(k) < w+(k) < E/s—9(k), then increasing the chemical
potential beyond that upper limit will not populate further normalizable modes. Our
rQES is in this sense not plagued by the usual large-N Fermi surfaces artifact.

It is furthermore quite easy to show that both before and after accounting for
backreaction the band structure follows a similar form as in pure AdSy [47]]

E (k)=—-Eq+\/k2+kZ, (5.35)

where kr = \/Eg - k(z) and the parameters E(, k¢ are most easily found by fitting from
the numerical dispersion curves, as in Fig.
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-0.25

-0.75

Figure 5.6: First electronic band for {m, uq,A} ={0.1,0.9,1}, for the AdS4 background with con-
stant electrostatic potential (blue) and the backreacted solution (red). The lines are a fit to the

form (5.35).

Note that fpirac is negative semi-definite. This does not mean, however, that the
occupied state is automatically thermodynamically preferred. The backreaction also
changes the bosonic saddle point contribution compared to its original AdS, value
f(AdS4) = 0. Adding both contributions we compare to the RN free energy

2 2 3
FRN) = ipg, (5.36)
422 6v3

Because the regulator does not act on the background sector, the Reissner-Nordstréom
free energy is unaffected by it.

Fig. shows the free energy of the rQES as a function of the charge uq for a
fixed mass m and confining potential strength A. As ¢ increases, the rQES grows, so we
need to compute more and more modes. This becomes more and more time consuming.
By constructing an interpolating curve based on low g rQES solutions (using the
points until uq = 1.2), we can estimate where the solution becomes thermodynamically
preferred and verify this with a fewer number of large ¢ datapoints (uqg = 1.4 and
1q = 1.58). We see that at uq = ug. = 1.56, the rQES becomes thermodynamically
preferable over the RN background.

In Fig. we show that this transition point evolves linearly with the fermion
mass m for fixed ¢ and A. Based on this finding, we can sketch a thermodynamic phase
diagram for our model in Fig. The critical charge satisfies an approximate relation
qc(m;A) = co(A) + cl(ﬂt)% with ¢g and ¢; dependent on A. It is tempting to compare
this to the confounding phase diagram based on RN holography alone. For pure RN
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Figure 5.7: Plot of the free energy density for rQES at {u,m,1} ={0.75,0.1,1} as a function of the
fermionic charge pq (blue dots) and the reference RN black hole free energy (red dashed line);
the thin blue line and the red triangle are to guide the eye to the transition point. Since RN
has no fermions its free energy curve is flat, i.e., does not depend on the fermion charge. The
first-order phase transition from RN to rQES happens at the intersection of the two lines. Since
the calculations for larger g values are costly, we only compute two points for ug > 1.5 and
interpolate.

holography it is surmised [33] that the superradiant instability of the RN black hole
toward an electron star (seen in the spectrum as log-periodic oscillations) sets in at
g = V3m. This should correspond to the limit A — 0. As A decreases we therefore expect
the phase-boundary to pivot anti-clockwise. This comparison should be done with care,
because the smaller A becomes, the harder it is to observe bands that can be occupied
— see the section on removing the regulator below. Another way to see this is that the
effective Schrodinger potential in the extremal RN black hole for w = 2 = 0 (the onset of
instability) has no linear term in m: Vgx ~ —4¢2 + 2m?. Hence we cannot extrapolate
freely to A =0.

5.3.2 Spectrum of the rQES

To confirm our results, we consider the fermionic spectral function on rQES back-
grounds. As a reminder, the spectral function is defined as the trace of the imaginary
part of the retarded propagator: A(w,k) = ImTrGg(w,k). In holography the type of
propagator is defined by the boundary conditions in the interior. Therefore the only
difference with computing the normalizable Dirac solutions is the choice of appropriate
boundary conditions.

Considering that we have an emergent AdS4 geometry in the IR, we can use the
known prescription for infalling boundary conditions in pure AdS, i.e., the presence of
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Figure 5.8: @) Transition point pq. as a function of m and its linear fit, for 1 = 1. @) Sketch of
the phase diagram of the rQES. The black line indicates a first order transition between the
regulated Reissner-Nordstrom and the rQES, occuring when their free energies cross.

a Poincaré horizon [228]. Accounting for the confining potential, these are

. /2
e’ kIR, ifw%R<k%R+)L%R,

yi(z —o00)={ eV FiR i Re[wrr] > \ /b2 + A2, , (5.37)
—iz\/—k2
e PVTFR | if Relwr] < -y /B2, + 12, ,

where wir, k1R, A\iIr Were defined by (5.25), kir = (w1R, 4 /k%R + A% ,0) and kI2R = —w%R +

k%R + )L%R = Vir. As we saw with the normal modes, the IR boundary condition for 2
can be obtained using the Dirac equation and the boundary condition for ;. After
imposing these boundary conditions, the retarded propagator is then computed as

—om w1(2)

Va2’ (5.38)

Gr(w,k)=B/A = 1in(1)z
7

where A and B are the coefficients in the UV expansion of the spinor (5.20).

Inside the gap (w%R < k%R + A%R) the IR boundary conditions are the same for the
probe fermions as for the bulk normalizable modes — the wavefunction should fall off
for z — oo, which yields A = 0 for the normal mode frequencies w = E (k). Therefore,
the propagator will present a pole along the bands of the background. Moreover, since
the fermionic wavefunctions and thus also the Green’s functions are real inside the
domain where bound states exist, the spectral function will vanish there. Thus, we
expect to see ImGg(w,k) =0 for w € [w_ (k),w+ (k)], except when w = E (k) where a
pole should appear.

This general structure of the spectral function including the gap for w_ <w < w;
can be seen in Fig. The data here and in the remainder of this section is computed
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Im Gg(w, k)

0.5

Figure 5.9: Spectral function ImG g (w, k) for {m,ug,A} ={0.1,0.9,1}. The gap appears in white
and is well delimited by w4 (%) (red dashed lines). The normal mode bands have been superim-
posed to show the infinitely long-lived modes, see Fig. Outside the gap, there is no particle
(normal mode) but a continuum shaped by the remnant of the UV conformal branch cuts. Since
the regulator and the chemical potential explicitly break conformality, we do not reproduce the
pure AdS Lorentz-invariant spectrum for any finite value of w and %.

for {u,q,m,A} = {3/4,1.2,1/10,1}. Inside the gap (white area), the spectral weight of
excitations is indeed zero to numerical accuracy except at the positions of the normal
modes of the background fermions. The latter are computed directly from the solution
of the background Dirac equation (green lines in Fig. [5.9), as they cannot be seen
numerically in the spectral function because they are infinitely long-living modes
which show in the spectrum as Dirac delta peaks. Being infinitely narrow on the real
axis, they can only be detected in the complex-w plane. Representing schematically
the normal mode located at w, by ImG(w = Re(w)) = Z6(w — w4) where Z is the peak
weight (wavefunction renormalization), we have, for complex w:

Imw-Imws«

ImGgr(w,k)=-Z 5 5 - (5.39)
(Rew-Rewy)” + (Imw - Imwy)
When Rew = Rewy, this simplifies to
Z
ImGr(w,k)=——— . (5.40)

Imw-Imws«

We check this picture against the numerics first in Fig. (A), where the absolute
value of the spectral function in complex frequency plane shows the typical structure
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Figure 5.10: (A) Absolute value of the fermionic spectral function for different values of momen-
tum. The plot is cropped for values below 100 to highlight the quasiparticle peaks. (B and C)
Comparison of the poles in the spectrum (blue circles), identified in (A), to the first electron band
of the background (red triangles). The real parts (B) of both sets agree perfectly; the imaginary
parts (C) are both zero to high accuracy. All this data is computed for {m, ug,A} ={0.1,0.9,1}.
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of a string of poles (for various momentum values) lying on the real axis. The relation
(5.40) is then used to identify the dispersion relation of the pole w« (%) by fitting
ImGr(w,k). We find, with no big surprise, a perfect agreement with the normal mode
excitations E1(k) corresponding to the first electron band, as seen in Fig. ©)
and (D). A similar picture is found for the first hole band E_;(%k) and this yields the
spectrum inside the gap, plotted in Fig.

In Fig.[5.11]we compare the spectral function at finite y for our regulated quantum
electron star (blue data points) to the fermionic spectral function in a pure AdSy
background with finite chemical potential, either with (green line) and without (red
line) regulation by the confining scalar. The comparison is given at £ =0 (left) and 2 =1
(right). The Dirac spectrum in AdSy is well-known [228]]:

2m+1

2 r(1/z—m)[ 1( 2 k2)

_ ) w2-E2T(1/2+m)| 2

Gr(w,k)= 9 F(1/2—m)[l( 2 k2)
w2 —EZT(1/2+m)

w}fo—kyl] ifo>k,
(5.41)

O—kyl] ifw<—k.

It has a conformal branch-cut at w = % and a gap for w? < k2. For AdS, with finite
electrostatic potential, one merely needs to replace w — w + g in the previous expres-
sion. Adding confining potential by turning on the chirality-breaking flat scalar widens
the gap to (w + uq)? < k2 + A2; in particular the gap is open also at 2 = 0. The rQES
solution outside the gap exhibits qualitatively the same spectral function as that of
the confined Dirac spectrum in pure AdS4 but for renormalized IR values wir, k1R, AR
given in (5.25). It is important to emphasize that none of the modes in this continuum
are normalizable and thus do not contribute when building the bulk rQES, even when
uq is large enough that w, (%) < 0. This is guaranteed by our choice of UV boundary
conditions.

5.4 Towards a self-confining quantum electron star

5.4.1 Comparison to the holographic superconductor

By construction the confinement in our setup gives an AdS4-to-AdS, solution.
With the fully backreacted solution in hand we can also understand what the field
theory dual describes. The confining regulator scale 1 gaps the field theory fermion
spectral function. Considering then the RG flow from the IR emergent conformal field
theory towards the UV, this means that as one increases the energy scale it takes a
finite distance for occupiable fermion states to be encountered. This can also be seen in
the band structure of Fig. At this scale the theory deforms away from the strict
conformal theory up to the scale u beyond which it is no longer energetically favorable
to occupy more states. The flow up the RG then continues towards the UV AdS, fixed
point.
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Figure 5.11: (Confined) Dirac spectral function (blue points) in the rQES background for 2 =0
(left) and %2 = 1 (right), compared with the standard/unconfined (red dashed line) and regu-
lated/confined (green dashed line) Dirac spectral function in AdS with finite electrostatic poten-
tial.

In the more usual flow from the UV to the IR this is not a natural RG trajectory.
The generic IR will not be a non-trivial conformal field theory. Nevertheless, within
holography such AdS4-to-AdS4 domain walls are well-known. Especially in the search
for the holographic dual of the holographic superconductor ground state, Horowitz and
Roberts and independently Gubser and Rocha have found AdS4-to-AdS4 domain walls
(in some cases with logarithmic corrections) in a finite parameter range [217} 218];
the other solution found is the Lifshitz geometry. It was later understood that Lifshitz
rather than an AdSy IR is the generic holographic superconductor ground state [218]
41]l, but this is only seen with the inclusion of a stabilizing quartic potential.

In detail of course the solutions are different. The Horowitz-Roberts-Gubser-Rocha
holographic superconductor ground states do not need an additional confining scalar.
They can also be obtained classically without the need for a one-loop Hartree mean
field. This is due to the fact that the bosonic field already couples quadratically to the
electrostatic potential A;. A fermion only couples linearly, but its one-loop contribution
can couple at all orders. This is why for fermionic systems one needs to go to one-loop.

5.4.2 Confinement in the rQES solution

Given that the Horowitz-Roberts-Gubser-Rocha AdS4-to-AdS,4 solutions do not
need a confining potential, and that the more generic holographic superconductor
Lifshitz solutions are known, it is a natural question why we do not try to remove the
soft-confining regulator altogether. There was in fact a concerted effort to do so several
years ago [42| 48, |46], culminating in the QES model of [49, 50]. The latter two articles

161



5 Emerging Fermi liquids from regulated quantum electron stars

show in detail how the presence of the gap and the discretized spectrum are crucial
to construct any type of quantum fermionic backreacted solution, i.e., where one or a
small finite number of radial modes are occupied. Any attempt to remove the confining
potential results in a uncontrolled continuum spectrum.

It is precisely this insight that was the starting point for our confining potential.
What we have furthermore shown, is that even then there are several severe technical
hurdles to overcome to construct a converging fully backreacted confined quantum
electron star solution. At the same time the general insight still holds. Our infrared
boundary conditions crucially depend on the coupling to the scalar ®(z) to extend the
domain of existence of normalizable modes of AdS4 all the way to £ = 0. The parameter
A, as we previously noted, acts as a momentum shift in this domain such that a mode
at £ = 0 will behave as a mode at k. = A and therefore normalizable modes with
lw + ngl < A will be found. These can be populated and will condense in the bulk.
Turning off the potential, even slowly, will invariably lead to a lack of normalizable
modes at the lowest momenta and will bring us back to a situation similar to that of
AdSy.

One sliver of hope would be that the domain wall solution itself, after convergence,
can support a well in the Schrédinger potential such that a regulator is no longer
necessary. We have therefore looked at this (Fig. by comparing the Schrédinger
potential for a £ = 0, w = E1(0) mode in the confined quantum electron star AdSy-
to-AdS4 background with and without the confining potential. Without a potential,
however, the AdS4-to-AdS4 quantum electron star domain wall solution is not confining.
We do see that Viomainwall(z — 00) > Vags which means the wedge of existence of
normalizable modes is indeed wider in the domain wall solution than in the AdSy
solution. Yet, the modes with sufficiently small momenta (including % = 0) are always
outside the wedge.

This therefore leads us to believe a true QES would not remove the regulator but
must incorporate it into the model, i.e., make the scalar field a dynamical dilaton which
couples to the Dirac fermion and drives the geometry from one fixed point to another.

5.5 Discussion and conclusions

In this paper we have constructed a self-consistent model of a single band con-
fined holographic Fermi liquid. The crucial technical problem, the infrared divergence
brought about by the fermionic wavefunctions, is solved by controlling it by hand. We
control the far infrared by the means of a scalar regulator, equivalent to a soft-confining
potential. The confinement is drastic and 100%: our regulated quantum electron star
is dual to a gas of infinitely-long living particles with zero self-energy. In the limit
where we compute, it is a single-band Fermi-gas rather than a Fermi-liquidﬁ At higher

6This holds at zero temperature. At finite temperature a black hole horizon would form, causing inevitably
some dissipation even in the presence of the confinement.
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Figure 5.12: Comparison of the Schrodinger potential for the AdS4 (blue) and AdS4-to-AdSy
(red) solutions with (dashed) and without (solid) regulator, for {m, uq,%,w} ={0.1,1.05,0,-0.027}.

energies, the spectrum switches to the featureless continuum inherited from the UV
conformal field theory (though it is not conformally invariant due to the presence of
the confining potential).

The regulated quantum electron star is the thermodynamically preferred solution
over the Reissner-Nordstrom background for pg/m > (1g/m)epitical. The transition is
first order, which means that the there is no continuous exchange of charge from the RN
solution to the bulk Fermi sea. Instead all the charge is carried by the infinitesimally
small rQES. This is somewhat different from the conundrum that we mention in the
Introduction: the onset of a log-oscillatory signal in the spectral function signaling
a putative instability and the presence of normalizable solutions. The first order
transition is essentially unrelated to the RN horizon instability.

Although it is not yet clear how the rQES is related to the final state after the con-
jectured continuous quantum phase transition which destroys the Reissner-Nordstrom
black hole horizon signalled by the log-oscillatory instability, we nevertheless feel it is a
step in the right direction, bringing us closer to the full unregulated quantum electron
star. The reasons are the following:

1. It is now much clearer what a healthy Fermi liquid should do on the gravity
side: it should self-consistently form a geometry which yields such an effective
potential for the Dirac fermion that it is just confined enough not to diverge in
far IR but not so much that the bulk Fermi sea dies out in the far IR, failing to
influence the low-energy physics.

2. We have inspected in some detail the spectrum and the phenomenology of the
dual confined Fermi liquid. Although our confining bulk construction is some-
what more natural in holography — it just uses a non-dynamical rather than
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a dynamical scalar — than the hard-wall model [47], and it now allows us to
compute the backreaction, qualitatively the field-theory side description is only
marginally improved. Similar to the hard-wall model, the occupied fermions have
vanishing self-energy. The main effect of the backreaction is to understand how
this confined Fermi gas emerges in an RG flow from the UV conformal field
theory. In the likely event that an unregulated (confining) quantum electron star
— supported for instance by a dynamical rather than a non-dynamical scalar
(such as the fluid electron star in [45]) — has a Lifshitz IR rather than an AdS,
IR, possible decay into the Lifshitz horizon could provide a finite lifetime and an
honest Fermi liquid.

3. Unlike the global AdS radius regulator of [50] which cannot be easily be sent
to infinity, our scalar can at least in principle be made dynamical. That would
be a perfectly natural holographic model, given the ubiquity of non-minimally
coupled scalars in top-down holographic actions. Therefore, a very natural line
of further research is to turn this construction into a fully dynamical Einstein-
Maxwell-Dirac-scalar system, similar to the fluid approach of [45].

Apart from the natural next step — making the dilaton dynamic — a number of
other directions of work open up. It would be useful to understand the relation of our
work to the AdS/QCD studies, some of which employ a similar type of scalar (soft wall)
to impose confinement. The role of the Fock correction (the one-loop exchange diagram)
is also not clear yet, and may be important for a fully self-regulating solution and/or
a finite self-energy. Finally, the most characteristic property of rQES — the domain-
wall-type solution with an infrared AdSy, is analogous to the domain-wall holographic
superconductor solutions of Horowitz-Roberts-Gubser-Rocha [41}, 217, 229]. Based on
those results and the macroscopic electron star with dynamical dilaton studied in [45]],
it strongly suggests that Lifshitz IR quantum electron stars must also exist.
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