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Chapter 3
Relativistic hydrodynamics in a
periodic potential

Attribution

This chapter was published as a journal article under the title “Hydrodynamics
of a relativistic charged fluid in the presence of a periodically modulated chemical
potential” in the journal Scipost Physics, volume 16, issue 1 (2024), together with
Koenraad Schalm.

3.1 Introduction

In considering the quantum mechanical wave function of a single electron in a
lattice of atoms Bloch had the insight that one should expand the wavefunction in a
manner consistent with the discrete periodicity1

Ψ(x)=
∫ π

L

− π
L

dk eikxuk(x)=∑
n

∫ π
L

− π
L

dk ei(k+ 2nπ
L )xun(k) ,

uk(x+L)= uk(x). (3.1)

The novel part of Bloch was its application to quantum wavefunctions rather than waves
in general. How waves propagate in periodic structures was already considered by
Newton, and that waves in periodic structures exhibit peculiar interference phenomena

1The Fourier transform here is chosen with a different convention than the traditional physics conven-
tion f (x) = ∫ dk

2π f̂ (k)eikx. This prevents a proliferation of 2π-factors in non-linear terms in dynamical
fluctuation equations.



3 Relativistic hydrodynamics in a periodic potential

that we now know as level repulsion/Umklapp/gap opening at Brillouin zone boundaries
or Bragg reflection from point-like lattices was already recognized by Kelvin in the
1880s [176]. In electrical engineering the propagation of electromagnetic waves in
periodic structures was [177], and is an important topic, see e.g., [178].2 Also sound
waves in lattices were considered from the earliest days up to today, see e.g., [179].

Sound waves, however, are hydrodynamic fluctuations – a long-time long-
wavelength perturbation around thermodynamic equilibrium of a conserved charge
associated to a global symmetry – and in that sense differ from electromagnetic
waves or single particle wavefunctions in that the fundamental equations of motion,
i.e., the hydrodynamic conservation laws, are non-linear. The wave-like fluctuations
propagate on a background that is itself a full (equilibrium) solution to the non-linear
set of equations, and through the non-linearity the properties of the fluctuating waves
depend on this background solution. Though gradients are energetically disfavored,
through external forcing the equilibrium background can be imprinted with a spa-
tially varying temperature T(x), pressure P(x), or chemical potential µ(x). Due to the
non-linear coupling between fluctuations and the background in hydrodynamics, the
wave propagation properties can be self-consistently determined from the (spatially
varying) background. This was elucidated particularly clearly in recent years in the
context of electron hydrodynamics in systems with random charge impurities [180,
115]. Such charge disorder is encoded in a spatially varying chemical potential with
average E[µ(x)] = µ0 and variance E[µ(x)µ(y)]−E[µ(x)]E[µ(y)] = σ2

µδ(x− y). Quantum
mechanical single particle electron motion in the presence of random impurities is a
classic condensed matter problem. As Anderson showed, the random wavefunction
interference is essentially uniformly destructive; at low temperatures all motion is
inhibited and the system becomes an insulator. In the hydrodynamic regime, however,
i.e., , in a situation where many electrons collectivize to a classical fluid rather than a
quantum mechanical wave, the conductivity rather strikingly remains finite indicating
the existence of an “incoherent metal" state [115]. Observing this electron hydrody-
namics in sufficiently pure 2D systems is currently actively pursued, see e.g., [181] or
[182], references therein and the recent review [183].

Here we study not hydrodynamics with random spatial disorder but with strictly
periodic modulations of the background, i.e., a lattice. Moreover, we also consider
hydrodynamics of a charged rather than a neutral fluid with an eye towards condensed
matter systems. Compared to the many existing studies on sound waves in periodic
structures, the presence of electromagnetic charge as an additional conserved quantum
number changes the fluctuating wave response fundamentally. This is again due to
the non-linear nature of the hydrodynamic equations. At finite chemical potential
sound mixes with charge diffusion. In a companion article we focus on the significant
consequences of this cross-coupling of Bloch modes in a lattice for the measurable

2In the latter context Bloch’s theorem is known as Floquet’s theorem. This is not to be confused with
periodically driven Floquet systems, though the underlying mathematics of periodic structures is the
same after switching “space" and “time".
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3.2 Hydrodynamics: Set-up and brief review of homogeneous fluctuations

DC and AC conductivities in condensed matter systems where this hydrodynamics
approach may apply [184]. In this article we provide the deeper hydrodynamic analysis
of the full fluctuation spectrum of charged hydrodynamics in a periodic background.

3.2 Hydrodynamics: Set-up and brief review of
homogeneous fluctuations

The principal reason that linearized hydrodynamic fluctuations in a lattice back-
ground should also be expanded in Bloch modes has already been emphasized: the
essence is wave propagation in a periodic structure. Waves are described by coupled
first order differential equations of the form 3

(∂t +M(x))φ(x)= 0 . (3.3)

If M(x) is periodic M(x+ 2π
G )= M(x), then φ(x) can be decomposed in Bloch waves4 φ(x)=∑

n
∫ G/2
−G/2 dkφn(k)ei(k+nG)x. Taking M(x) = −M0∂

2
x + A cos

(
Gx

)
as canonical example,

one can solve Eq. (3.3) perturbatively in A. Diagonalizing M in terms of φn(k) =∑
p Apφ

(p)
n (k)/p!, the lowest eigenvector to first order in A is

φn(k)=φ(0)
n (k)− A

2G(G−2k)M0
φ(0)

n−1(k)− A
2G(G+2k)M0

φ(0)
n+1(k)+ . . . (3.5)

in terms of the unperturbed eigenmodes. This mixing between the different Bloch
waves is Umklapp. In this article we shall only focus on these perturbative solutions
for small lattice amplitudes.

We also already noted that what is special about hydrodynamics is that the
fluctuation equations are themselves a linearization expansion of the fundamental non-
linear equations. The principle behind the theory of hydrodynamics is local equilibrium
and encoded in the local conservation laws of macroscopic charges, i.e., , of a slowly
spatially varying energy-momentum tensor Tµν(x) and in the presence of a U(1) charge,

3The standard wave equation (∂2
t −M12M21)φ1 = 0 follows from(

∂t M12
M21 ∂t

)(
φ1
φ2

)
= 0 . (3.2)

4The Bloch theorem essentially states that the plane wave decomposition φ(x) = ∫ ∞
−∞dqφ(q)eiqx can be

segmented into unit cells qn ∈ [(n−1/2)G, (n+1/2)G] where n ∈Z labels each cell – or Brillouin zone –

as φ(x)=∑
n

∫ (n+ 1
2 )G

(n− 1
2 )G

dqnφ(qn)eiqn x. The wavevector in each Brillouin zone can be shifted qn = k+nG

with k ∈ [−G/2,G/2] such that

φ(x)=∑
n

∫ G/2

−G/2
dkφ(k+nG)ei(k+nG)x ≡∑

n

∫ G/2

−G/2
dkφn(k)ei(k+nG)x . (3.4)

The advantage of this decomposition is that discrete periodic shifts x → x+2mπ/G relate modes in
different Brillouin zones at the same Bloch momentum k ∈ {−G/2,G/2}.
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3 Relativistic hydrodynamics in a periodic potential

a current Jµ(x). In turn this implies that one can also describe fluid behavior in the
presence of a slowly spatially varying external potential whether temperature T(x),
pressure P(x), or chemical potential µ(x).

For simplicity — as well as for the experimental supposition that strongly cor-
related condensed matter systems can have an emergent Lorentz symmetry at low
energies — we shall use d = 2 relativistic charged hydrodynamics in this article. In
principle all we state also applies to arbitrary d non-relativistic charged hydrodynam-
ics, even if the precise expressions may be subtly different. In relativistic charged
hydrodynamics the dynamical equations are simply the conservation equation of the
energy-momentum tensor and the charge-current

∂µTµν = Fνρ

extJρ , ∂µJµ = 0 . (3.6)

Here we have allowed for an external electromagnetic field strength Fµν

ext = ∂µAν
ext −∂νAµ

ext
in terms of a local external vector potential. In this paper, we will be interested in
taking Aµ,ext = (µext(x),0,0) with µext(x) a periodic function. Though again, in principle
our results also hold for a spatially varying (external) pressure (see e.g., [185]), or a
spatially varying (external) temperature.5

The dynamical variables of the fluid are the temperature T, the unit timelike
velocity vector uµ = (1,vi)/

p
1−v2, and the chemical potential µ. Away from equilibrium,

the conserved currents in our theory – which we assumed to be parity-invariant, see
[186] for more general cases – are given by the constitutive relations at first order in
gradients in Landau frame

Tµν = ϵuµuν+P∆µν−η∆µρ∆νσ
(
∂ρuσ+∂σuρ

)
−∆µν (

ζ−2η/d
)
∂ρuρ , (3.7a)

Jµ = nuµ−σQ∆
µν

[
T∂ν

(
µ/T

)−Fνρ,extuρ
]

. (3.7b)

Here d = 2 is the number of spatial dimensions and the shear viscosity η, the bulk
viscosity ζ, and the microscopic conductivity σQ are hydrodynamic transport coefficients
— in principle set by the microscopic details of a given theory, see e.g., [187, 188], in
practice phenomenologically determined. ∆µν = ηµν+uµuν is a projector orthogonal to
the fluid velocity. The Landau frame choice is such that at any order in gradients, we
have J t = n and T tt = ϵ.

The above constitutive relations also hold in a static equilibrium background. In a
system with Galilean or relativistic Lorentz boost invariance — which we use in this
paper — it is convenient to choose the reference frame for which the equilibrium fluid
is at rest. In absence of contact to a spatially varying heat bath, the temperature must
then also be constant and independent of position. In the presence of a spatially varying

5A spatially varying temperature without forcing by contact with a spatially varying heat bath is difficult
to have in a static equilibrium configuration, however.
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3.2 Hydrodynamics: Set-up and brief review of homogeneous fluctuations

external chemical potential µext(x), the equilibrium solution to the hydrodynamic
equations Eqs. (3.6) is then parametrized as

vi = 0 , T(t, x)= T̄ = T0 , µ(t, x)= µ̄(x)=µext(x) ,

n(t, x)= n̄(x) , ϵ(t, x)= ϵ̄(x) , P(t, x)= P̄(x). (3.8)

In the grand canonical ensemble, the hydrostatic equilibrium yields moreover

∇xP̄ = n̄∇xµ̄ . (3.9)

Throughout this paper we will use the bar notation X̄ to denote such static background
quantities. For a homogeneous background, they will be spatially constant and we will
use a subscript 0 as X0 to denote them. For spatially varying quantities, we will use
superscripts Y (n) to describe higher order (Bloch wave) moments

Y (x)=∑
n

∫ G/2

−G/2
dkY (n)(k)ei(k+nG)x . (3.10)

The hydrodynamic equations need to be supplemented by an equilibrium equation
of state relating the energy density ϵ, the pressure P and the charge density n to
solve in terms of the equilibrium values of T and µ. In this paper, we will be consid-
ering a general fluid whose equation of state P(T,µ) determines the thermodynamic
equilibrium of the theory. In Sec. 3.4, we will specialize to conformal systems.

On top of this background, we now consider perturbations X (t, x)= X̄ (x)+δX (t, x).
The conservation equations (3.6) then take the form

∂tδϵ+σQ(∇xµ̄)2δλϵ =−σQ(∇xµ̄)
[∇xδλn +δEx

]−∇x(χ̄ππδvx)+ (∇xP̄)δvx , (3.11a)

∂tδn−σQ∇2
xδλn =σQ∇x

[
δλϵ∇xµ̄+δEx

]−∇x(n̄δvx), (3.11b)

∂tδπx − η̂∇2
xδvx = (∇xµ̄)δn−∇x(n̄δλn)−∇x(χ̄ππδλϵ)− n̄δEx , (3.11c)

∂tδπy −η∇2
xδvy = 0 , (3.11d)

which can further be simplified into

∂tδϵ+σQ(∇xµ̄)2δλϵ =−σQ(∇xµ̄)δEtot
x − χ̄ππ∇xδvx − (∇xϵ̄)δvx , (3.12a)

∂tδn−σQ∇xδEtot
x =σQ∇x

(
δλϵ∇xµ̄

)−∇x(n̄δvx), (3.12b)

∂tδπx − η̂∇2
xδvx =−n̄δEtot

x −∇x(χ̄ππδλϵ)+ (∇xϵ̄)δλϵ , (3.12c)

∂tδπy −η∇2
xδvy = 0 . (3.12d)

In the previous expression, we have defined a renormalized viscosity η̂≡ ζ+ 2(d−1)
d η.

We also introduced the “potential”-variations δλϵ ≡ δT
T0

and δλn ≡ δµ− µ̄
T0
δT conjugate

to the energy and charge densities. The velocity perturbations δvi are conjugate to the
momenta δπi. These are not independent due to the hydrodynamic local equilibrium
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3 Relativistic hydrodynamics in a periodic potential

condition. The momenta δπi are related to the velocity perturbations δvi through
the constitutive relations δπi = δT ti = χ̄ππδvi at this order.6 Similarly, the charge and
energy densities δn,δϵ are related to the sources δλn,δλϵ through the thermodynamic
susceptibilities derived in Appendix 3.A. Using that χ̄ππ = ϵ̄+ P̄, we can use the funda-
mental thermodynamic relation ϵ̄+ P̄ = T0 s̄+ µ̄n̄ and the first law of thermodynamics
to relate

δP = χ̄ππ− µ̄n̄
T0

δT + n̄δµ= χ̄ππδλϵ+ n̄δλn . (3.13)

Finally, we introduced an external electric field δEx ≡ ∂tδAx,ext and in (3.12) we intro-
duced the total electric field δEtot

x ≡ δEx+∇xδλn. In what follows, we will be interested
in the hydrodynamics response of the modes {δϵ,δn,δπx,δπy} obeying the equations
(3.12). In the following sections, we will use the static susceptibilities relating the
potentials {δλϵ,δλn,δvx,δvy} to the densities {δϵ,δn,δπx,δπy} to express the equations
in terms of the latter only, i.e., , we work in the microcanonical ensemble.

3.2.1 Hydrodynamic fluctuations in a homogeneous background

In this section, we first review the hydrodynamics of a long wavelength pertur-
bation above a homogeneous conformal charged fluid. Further details can be found in
[189, 119]. Since the background is homogeneous, this means every barred quantity
will be a constant X̄ = X0. The equations (3.12) decouple into the longitudinal and
transverse sectors. We will start by looking at the latter whose equation of motion is
simpler. Choosing the wavenumber kx along the x direction without loss of generality,
the transverse fluctuations δπy obey

∂tδπy(t,k)+D⊥k2δπy(t,k)= 0 , D⊥ ≡ η/χππ,0 . (3.14)

This is a simple diffusion equation with the shear diffusion constant D⊥. We can now
use the (Fourier-)Laplace transform7 such that the transverse equation of motion
becomes (

−iω+D⊥k2
)
δπ̂y(ω,k)= δπy(t = 0,k)= χππ,0δvy(t = 0,k) . (3.15)

6 Formally the susceptibility χ̄ππ(x1, t2; x2, t2)= ∂
∂vi (x1,t1)

∂
∂vi (x2,t2) Z(vi) denotes how a local charge density

πi(x1, t1) is influenced by a (chemical) potential vi(x2, t2) at a different space-time point. Here Z(vi) is the
partition function in the presence of a chemical potential (velocity) vi for the charge density (momentum)
πi . In the hydrodynamic limit, however, one assumes that all equilibrium (t1 + t2 = 0) static (t1 − t2 →∞)
charges depend only locally on the potentials πi(vi(x)). In a homogeneous equilibrium background where
χ̄static
ππ = χstatic(x1 − x2) this is equivalent to approximating the static susceptibility with its constant

part χ̄static
ππ (x1 − x2)= χππ,0 + (x1 − x2)∂xχ̄ππ(0)= χππ,0 + . . .. We discuss this in more detail below and in

Appendix 3.A.
7The Laplace transform is required to have a well-defined right-hand side to our linearized equations. One

could also just use a Fourier transform while setting external sources. More details can be found in [189,
119].
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3.2 Hydrodynamics: Set-up and brief review of homogeneous fluctuations

The solution is formally given in terms of the retarded correlator for the transverse
momentum which is defined as

δπy(t,k)=
∫ ∞

−∞
dt′GR

πyπy (t− t′,k)δvy(t′,k) . (3.16)

Using that ĜR
πyπy (ω= 0,k)= χππ,0 in the hydrodynamic long wavelength limit (i.e., , we

only keep the leading term in an expansion in k; see footnote 6.), we have

ĜR
πyπy (ω,k)= χππ,0

D⊥k2

D⊥k2 − iω
. (3.17)

The correlator exhibits a pole on the imaginary axis at ω = −iD⊥k2 indicative of a
purely diffusive mode.

We can now carry the same analysis in the longitudinal sector where the dynamical
equations are coupled. Denoting δφa(t,k)= (δϵ(t,k),δn(t,k),δπx(t,k)), the dynamical
equations can be written succinctly as

∂tδφa(t,k)+Mab(k)δφb(t,k)= 0 . (3.18)

We can once again use a (Fourier)-Laplace transform to rewrite this system of equations
as

K̂(ω,k) ·δφ(ω,k)= δφ(t = 0,k) (3.19)

with the dynamical matrix

K̂(ω,k)≡−iω113 +M(k)=


−iω 0 ik

−χnϵ,0
dχ

σQ k2 χϵϵ,0
dχ

σQ k2 − iω ik n0
χππ,0

ik χnn,0χππ,0−n0χnϵ,0
dχ

ik n0χϵϵ,0−χnϵ,0χππ,0
dχ

η̂
χππ,0

k2 − iω

 ,

(3.20)

where we defined dχ = χϵϵ,0χnn,0 − (χnϵ,0)2 the determinant of the susceptibility matrix
in the ϵ,n sector. The poles of the Green’s functions associated to this system are the
frequencies for which det K̂ = 0. The roots of this polynomial in the long wavelength
limit are a diffusion mode (originating in charge diffusion) and two propagating sound
modes

ωD =−iD0
ρk2 +O(k3) , ω± =±c0

s k− i
2

D0
s k2 +O(k3) , (3.21)

where the speed of sound and the two diffusion constants are defined as

D0
π ≡

η̂

χππ,0
, (c0

s )2 ≡ n2
0χϵϵ,0 +

(
χππ,0

)2
χnn,0 −2n0χππ,0χnϵ,0

χππ,0dχ
, (3.22a)

D0
ρ ≡

σQ
(
χππ,0

)2

n2
0χϵϵ,0 + (χππ,0)2χnn,0 −2n0χππ,0χnϵ,0

, D0
s ≡ D0

π−D0
ρ +σQ

χϵϵ,0

dχ
. (3.22b)
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3 Relativistic hydrodynamics in a periodic potential

Note that for n0 = 0 the speed of sound reduces to the familiar expression c2
s = δP/δϵ

(using Eq. (3.13) and the inverse susceptibility matrix). Similarly to what we did in
the transverse sector, we can compute the retarded Green’s functions by inverting the
dynamical system [119]

ĜR
L (ω,k)= K̂−1 · K̂(ω= 0) ·χL,0 = (113 + iωK̂−1) ·χL,0 , (3.23)

where the middle equation enforces the condition that the static ω= 0 part reduces
to the longitudinal part of the thermodynamic susceptibility matrix χL,0. The various
correlators can then be obtained

ĜR
ϵϵ(ω,k)= k2χππ,0

d(ω,k)

[
(c0

s )2χϵϵ,0
χππ,0

D0
ρk2 − iω

]
, (3.24a)

ĜR
nn(ω,k)= χππ,0

k2d(ω,k)

[
(c0

s )2D0
ρ

(
χππ,0χnn,0k2 −dχ iωD0

πk2 −dχω2
)
− iωn2

0

]
, (3.24b)

ĜR
πxπx (ω,k)= k2

d(ω,k)

[
(c0

s )2
(
χππ,0D0

ρk2 − iω(χππ,0 +D0
ρχϵϵ,0D0

πk2)
)
−χππ,0D0

πω
2
]

,

(3.24c)

ĜR
ϵn(ω,k)= k2

d(ω,k)

[
(c0

s )2χnϵ,0D0
ρk2 − iωn0

]
, (3.24d)

with the normalized determinant of the dynamical matrix d(ω,k)= i(ω−ωD)(ω−ω+)(ω−
ω−). The other correlators can be obtained via the Ward identities

ĜR
πxϵ =

ω

k
ĜR
ϵϵ , ĜR

πxn = ω

k
ĜR
ϵn , ĜR

ϵπx =
k
ω

ĜR
πxπx , (3.25)

as well as the Onsager reciprocal relations

GR
πxn(ω,k)=−GR

nπx (ω,−k) , GR
πxϵ(ω,k)=−GR

ϵπx (ω,−k) , GR
ϵn(ω,k)=GR

nϵ(ω,−k) .
(3.26)

3.3 Hydrodynamic fluctuations in a lattice
background

We shall now redo the fluctuation analysis in a lattice background. This lattice
will be sourced by a periodically modulated external chemical potential

µext(x)=µ0

(
1+ A cos

(
Gx

))
, (3.27)

such that the fluid is still at rest and in local equilibrium, but all its constituents will
now slowly vary in space. In particular, this last assumption of local equilibrium means
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3.3 Hydrodynamic fluctuations in a lattice background

that the scale of spatial fluctuations of µext and other local quantities must be larger
than the local equilibration scale. Therefore, we must have G ≲µ,T.8

This lattice background manifestly breaks translation invariance. Momentum is
therefore no longer a strictly conserved quantity. However, as the breaking is sourced
through a hydrodynamic variable and as we assume it is weakly broken, we can still
use hydrodynamic analysis [115, 180, 88, 125]. The spectral function of the associated
operator to this deformation — the charge density J t = n —, evaluated in the homo-
geneous background, can be used to compute the momentum relaxation rate. This is
known as the memory matrix formalism and was thoroughly detailed in e.g., [133, 180].
The momentum relaxation rate induced by an operator O sourced at wavenumber G
with strength g takes the form [87]

Γmem.(g,G)≡ g2G2

χ̄ππ
lim
ω→0

ImĜR
OO(ω,k =G)

ω
. (3.28)

For a cosine ionic lattice Eq. (3.27), g =µ0 A/2, and we have two deformation sources,
one copy each at ±G — noting that the expression (3.28) is parity invariant in G.
Therefore, the memory matrix relaxation rate for an ionic lattice is

Γionic,mem. =
µ2

0 A2

2

(
χnn,0 −n0χnϵ,0/χππ,0

)2

σQχππ,0
+D0

πG2

(
χnϵ,0

χππ,0

)2
 . (3.29)

It will prove useful to separate the terms according to their scaling with G in this
expression as Γionic,mem. =Γη+Γd with

Γη =
µ2

0 A2

2

(
χnϵ,0

χππ,0

)2

D0
πG2 , Γd = µ2

0 A2

2

(
χnn,0 −n0χnϵ,0/χππ,0

)2

σQχππ,0
. (3.30)

Using the Einstein relations Eq. (3.22a), together with χππ,0 = ϵ0 +P0, χπn,0 = n0 these
are a convective shear drag term Γη and an intrinsic diffusive term [87, 86, 115]

Γη =
µ2

0 A2

2
η̂G2

ϵ0 +P0

(
χnϵ,0

ϵ0 +P0

)2
, Γd = µ2

0 A2

2
1
σQ

(
(ϵ0 +P0)χnn,0 −n0χnϵ,0

)2

(ϵ0 +P0)3
. (3.31)

We will recover this same expression for the momentum relaxation time from our
Bloch wave analysis. This analysis improves on the memory matrix technique by
understanding how all the hydrodynamic fluctuations behave.

In a periodically modulated background, every background quantity in local ther-
mal equilibrium X̄ (x)= X̄ (µ̄(x),T0) now admits Fourier series expansions

X̄ (x)=∑
n

einGx X̄ (n) . (3.32)

8For this reason our analysis does not immediately apply to graphene or other sufficiently pure semimetals
as there, the scale where hydrodynamics applies is much larger than the atomic lattice scale. One would
need to have a periodically undulating graphene sheet or otherwise externally imposed periodicity for
this analysis to apply.
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3 Relativistic hydrodynamics in a periodic potential

In order to apply the same method as in the previous section, we must first know how
to relate perturbations of sources and responses in this new background. Because
the background is static, the susceptibilities will also be static. However, because
the thermodynamic quantities are position dependent and have non-vanishing Bloch
modes, the susceptibilities will now also be position/momentum dependent. In principle,
they depend on two Bloch momenta. However, in the slowly varying hydrodynamic
background we may approximate them as local functions χ(x) (see also footnote 6) that
follow the expansion (3.32).9 The relation between perturbations in the sources and
responses is then

δφA(t, x)= χ̄AB(x)δλB(t, x) . (3.33)

The breaking of isometry by the lattice means there is no longer a decoupling between
a longitudinal and transverse sector, i.e., , φA ,λA collectively denote the responses
{δϵ,δn,δπx,δπy} and the sources {δλϵ,δλn,δvx,δvy}. Both perturbations are likewise
expanded on Bloch modes matching the discrete lattice symmetry

δXA(t, x)=∑
n

∫ G
2

−G
2

dk ei(k+nG)xδX (n)
A (t,k) , (3.34)

for X ∈ {δφA ,δλA}. As a result of the spatial dependence in the background different
Bloch modes of the perturbations cross couple

δφ(n)
A (t,k)=∑

m
χ̄(m)

ABδλ
(n−m)
B (t,k) . (3.35)

The dynamical equation can then be written, after Laplace transform, as

K̂ (n,m)(ω,k) ·δφ̂(m)(ω,k)= δφ(n)(t = 0,k) . (3.36)

The indices n,m indicate the Brillouin zones while each block K (n,m) is a 4×4 matrix.
The diagonal blocks K̂ (n,n) correspond to the couplings between the responses in the
same Brillouin zone while the off-diagonal blocks will account for coupling between
different zones. These are due to the presence of the lattice and will vanish in the limit
where the lattice amplitude goes to zero A → 0. We will be interested in a weak lattice
where the lattice amplitude A is very small, and keep only terms up to order A2.10 The
coupling between two modes with momenta k+nG and k+mG for m > n will be of
order Am−n. Moreover, within perturbation theory, terms of order A in the off-diagonal

9 One can analyze the general behavior of two-point functions under lattice symmetries of the background
[117]. Given a two-point function G(x, y), one can pick a center of mass point x = r+δ, y= r−δ. Under the
lattice symmetry, r → r+L, but δ is unchanged. Then G(x, y)=G(r = x+y

2 ,δ)=G(r+L,δ) can be expanded
in Bloch modes G(r,δ)=∑

n
∫

dkG(n)(k,δ)ei(k+2nπ/L)r . For hydrodynamic susceptibilities χ=GJ t J t we
assume that they are local, i.e., , we can restrict to δ= 0 to leading order. In a strictly periodic background
there is no structure beyond the lattice scale and hence only the χ(n)(k = 0,δ= 0) modes are non-vanishing.

10For a strong lattice or strong isotropy breaking the transport coefficients become tensors and this requires
an independent analysis.
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3.3 Hydrodynamic fluctuations in a lattice background

blocks will contribute to the same order as terms of order A2 in the diagonal blocks;
we can therefore drop terms of order A2 and higher in the off-diagonal blocks. This
also means we can consider “nearest-neighbor” interactions only – by which we mean
off-diagonal terms with m = n±1. In the long wavelength approximation we therefore
can narrow our study to the three momenta k+nG with n ∈ {−1,0,1}, i.e., , the first
three Brillouin zones. It is important to note that the diagonal terms even in the n = 0
Brillouin zone can still have non-trivial higher order corrections in A. A similar setup
was already considered in [190].

We will discuss this momentarily. We shall, however, first make one more sim-
plification. It will prove more useful to use the equations in terms of the sources δλA
with

K̂(n,m)(ω,k) ·δλ̂(m)(ω,k)= δλ(n)(t = 0,k) , (3.37)

where we can relate the two matrices using the susceptibility matrix χ by K̂= K̂ ·χ. In
this language, the A = 0 dynamical matrix (3.20) takes the form

K̂=


−iωχϵϵ,0 −iωχϵn,0 ikχππ,0 0
−iωχnϵ,0 σQ k2 − iωχnn,0 ikn0 0
ikχππ,0 ikn0 η̂k2 − iωχππ,0 0

0 0 0 ηk2 − iω

 . (3.38)

This choice seems to a priori obfuscate the relationship between modes more than
(3.20) due to the off-diagonal frequency dependency. However, because χ is a static
matrix, the determinants of K̂ and K̂ have the same poles in the complex frequency
plane, and in the lattice case where the inverse susceptibilities present in (3.20) are
more complicated, this form will prove clearer.

In the next few sections, we will determine this matrix K̂ in a lattice background
with lattice vector G for both finite k momentum fluctuations and k = 0 momentum
fluctuations to order A2 in the lattice amplitude. As standard, the zeroes of its determi-
nants will indicate the position of the dynamical modes of this system. We will then
compute the conductivity as an example of how the various correlators are modified by
the presence of the lattice.

3.3.1 Finite momentum aligned fluctuation spectrum

For a generic fluctuation with momentum k, even in the long wavelength limit,
the fluctuation matrix truncated to nearest neighbor cross-coupling sufficient for the
leading order in A correction will be a 12×12 matrix. This is because there is no
decoupling into transverse and longitudinal sectors for a generic momentum. However,
if one chooses the fluctuation momentum k to align with the lattice wavevector, a
decoupling does occur. Choosing k along a lattice vector defined to be in the x-direction,
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a parity symmetry in the y-direction remains. The even and odd sectors decouple into
the longitudinal and transverse parts:

δYL =
{
δλ(−1)

ϵ ,δλ(−1)
n ,δv(−1)

x ,δλ(0)
ϵ ,δλ(0)

n ,δv(0)
x ,δλ(1)

ϵ ,δλ(1)
n ,δv(1)

x

}
, (3.39a)

δYT =
{
δv(−1)

y ,δv(0)
y ,δv(1)

y

}
. (3.39b)

The dynamical matrix is then diagonal in a 9×9 and a 3×3 block.

Transverse sector

Starting with the transverse sector, the associated dynamical matrix K̂T is

K̂T =

η(k−G)2 − iωχ(0)
ππ −iωχ(−1)

ππ 0
−iωχ(1)

ππ ηk2 − iωχ(0)
ππ −iωχ(−1)

ππ

0 −iωχ(1)
ππ η(k+G)2 − iωχ(0)

ππ

 . (3.40)

In the hydrodynamic approximation the local static susceptibility χ̄ππ(x)= ∂πx

∂vx (µ(x))
(see footnote 6 & 9) now also depends on the lattice amplitude as can be seen from its
Bloch components

χ(0)
ππ =

G
2π

∫ π
G

− π
G

dx χ̄ππ(µ̄(x)) (3.41a)

= G
2π

∫ π
G

− π
G

dx

[
χππ,0 +µ0 A cos

(
Gx

)∂χππ,0

∂µ0
+ µ2

0 A2

2
(cos

(
Gx

)
)2
∂2χππ,0

∂µ2
0

+ . . .

]
(3.41b)

= χππ,0 +
µ2

0 A2

4
∂2χππ,0

∂µ2
0

(3.41c)

≡ χππ,0 + A2χ(0)
ππ,2 , (3.41d)

χ(1)
ππ =

G
2π

∫ π
G

− π
G

dxe−iGxχ̄ππ(µ̄(x))= µ0 A
2

∂χππ,0

∂µ0
≡ Aχ(1)

ππ,1 = Aχ(−1)
ππ,1 , (3.41e)

χ(2)
ππ =

µ2
0 A2

8
∂2χππ,0

∂µ2
0

≡ A2χ(2)
ππ,2 = A2χ(−2)

ππ,2 =
1
2

A2χ(0)
ππ,2 . (3.41f)

In the previous expression, we have introduced the expansion for a given Bloch mode
X (n) =∑

m X (n)
m Am. Note that by definition, X (0)

0 = X0 which we will keep this way.

The poles of the transverse fluctuation matrix can now be found easily, and we
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3.3 Hydrodynamic fluctuations in a lattice background

have

ωT,−1 =−iD⊥(k−G)2

1− A2

χ(0)
ππ,2

χππ,0
−χ(1)

ππ,1χ
(−1)
ππ,1

(k−G)2

G(G−2k)


 , (3.42a)

ωT,0 =−iD⊥k2

1− A2

χ(0)
ππ,2

χππ,0
−χ(1)

ππ,1χ
(−1)
ππ,1

2k2

(G−2k)(G+2k)


 , (3.42b)

ωT,1 =−iD⊥(k+G)2

1− A2

χ(0)
ππ,2

χππ,0
−χ(1)

ππ,1χ
(−1)
ππ,1

(k+G)2

G(G+2k)


 . (3.42c)

The poles remain purely diffusive, and we see that the only effect of the lattice on the
transverse sector is to renormalize the shear diffusion constants D⊥ at order O(A2).
We do see an Umklapp-like pole in the dispersion relation at the edges of the Brillouin
zones k = ±G

2 . Formally, this value of k is outside of the regime of validity of the
expansion in small A. One has to resum the perturbative expansion and then one finds
level repulsion, as is well known; see also the discussion at the beginning of Sec. 3.3.2
and footnote 11. It is distinct from conventional Umklapp, however, in that it is not
level-repulsion in the dispersion (the real part of the pole in the complex frequency
plane), but in the width of the fluctuation. At the edge of the Brillouin zone the width
narrows and vanishes at exactly k =±G

2 .

Longitudinal sector

The longitudinal sector is characterized by a 9×9 dynamical matrix K̂L of the
form of 3×3 blocks

K̂L =


K̂(D)
L (ω,k−G) K̂(OD)

L (ω,k−G,k) 0

K̂(OD)
L (ω,k,k−G) K̂(D)

L (ω,k) K̂(OD)
L (ω,k,k+G)

0 K̂(OD)
L (ω,k+G,k) K̂(D)

L (ω,k+G)

 . (3.43)

The K(OD)
L (ω,k, p) block with k < p belongs to the Bloch sector n =−1, and the one with

k > p to the Bloch sector n = 1. In a cosine lattice, however, all background quantities
are parity-invariant X (−n) = X (n), and so from here on out, we will only use the n > 0
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expressions. The 3×3 blocks K(D)
L and K(OD)

L are then given by

K̂(D)
L (ω,k)=


µ2

0 A2

2 σQG2 − iωχ(0)
ϵϵ −iωχ(0)

nϵ ikχ(0)
ππ

−iωχ(0)
nϵ σQ k2 − iωχ(0)

nn ikn(0)

ikχ(0)
ππ ikn(0) η̂k2 − iωχ(0)

ππ

 , (3.44)

K̂(OD)
L (ω,k, p)= A


−iωχ(1)

ϵϵ,1
µ0σQ

2 p(p−k)− iωχ(1)
nϵ,1

µ0
2 (ipn0 + ikχnϵ,0)

µ0σQ
2 k(k− p)− iωχ(1)

nϵ,1 −iωχ(1)
nn,A

µ0
2 ikχnn,0

µ0
2 (ikn0 + ipχnϵ,0) µ0

2 ipχnn,0 −iωχ(1)
ππ,1

 .

To leading order in A2, the n = 0 Bloch momenta X (0) still have a dependency in A just
as in the previous section.

While difficult, it is possible to find the poles associated to this 9× 9 matrix
generically. For very small momentum k =O(ε2) and G =O(ε), they take the form

ωD,n =−iD0
ρ(nG)2 + i

2
Γd + . . . , (3.45a)

ωD,0 =−iDρk2 + . . . , (3.45b)

ωS,±,n =±c0
s (k+nG)− i

2
D0

sG2 + . . . , (3.45c)

ωS,±,0 =− i
2
Γionic,mem. ± c0

s k− i
2

D0
s k2 + . . . , (3.45d)

with n ∈ {−1,1} and “. . .” indicate corrections of order O(A2k) and higher. The relaxation
rates Γd ,Γionic,mem. are of order A2 and equal to the memory matrix expressions given
in Eqs. (3.31).

For large k the expressions are not easy to express. However, we can use the
mixing with Umklapped Bloch waves analysis to understand numerical simulations.
In the longitudinal sound sector we do observe genuine level repulsion in the modified
dispersion relation at the edges of the Brillouin zone. For a visualization in an explicit
example later, see Fig. 3.8. There is thus a true sound “band gap”. Sound modes with
frequencies ω=±csG/2 do not exist in this latticized medium. Or more precisely put,
sound with wavelengths λ= 2πk ≪G propagate normally with essentially unaltered
speed of sound cs = dω

dk = c0
s . As the wavelength approaches the edges of the Brillouin

zone, sound slows down, and right at the edge of Brillouin zone for λ = (2π)G
2 , they

cease to propagate as the group velocity cs = dω
dk |k=G/2 = 0. The medium is opaque to

sound at these wavelengths. Considering possible applications to condensed matter
physics, we note for completeness that all these results are of course derived assuming
a fixed infinitely stiff external lattice. Lattice vibrations/phonons are not taken into
account. Were one to include these in the analysis, this will likely make the level
repulsion and opaqueness to sound less sharp.
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3.3.2 The k = 0 zero momentum perturbation

The k = 0 zero momentum is special and asks for a separate discussion. This is for
three reasons. Again in the context of condensed matter physics, the k = 0 fluctuation
describes the homogeneous responses of the system to outside probes. These are the
observed macroscopic thermal and electrical conductivities, and warrant being singled
out. Secondly, we shall see that in the limit of k → 0 several modes becomes degenerate.
One must always be careful with accidental degeneracies. This is also the case here.
The degeneracy is lifted in the presence of the lattice deformation. However, since we
only consider the lattice perturbatively, this implicitly means we consider AVint ≪ k
where Vint is a characteristic scale denoting the strength of the interactions between
the Bloch modes. The degeneracy limit and the small lattice amplitude limit do not
commute. We shall illustrate this in more detail below. We can still do a perturbation
analysis in A, but this must be done from the k = 0 starting point separately.11 Finally,
mathematically, the k = 0 fluctuation is special in that at vanishing momentum, parity
in the x-direction (G ↔−G) is restored. In the 1D lattice we consider — with lattice
vector in the x-direction — the longitudinal and transverse fluctuations at k = 0
therefore break up into odd and even superselection sectors under G ↔−G

δYL− = {
δλ(1)

ϵ −δλ(−1)
ϵ

2i
,
δλ(1)

n −δλ(−1)
n

2i
,
δv(1)

x +δv(−1)
x

2
,δv(0)

x } , (3.47a)

δYL+ = {δλ(0)
n ,δλ(0)

ϵ ,
δλ(1)

ϵ +δλ(−1)
ϵ

2
,
δλ(1)

n +δλ(−1)
n

2
,
δv(1)

x −δv(−1)
x

2i
} , (3.47b)

δYT− = {
δv(1)

y −δv(−1)
y

2i
} , (3.47c)

δYT+ = {δv(0)
y ,

δv(1)
y +δv(−1)

y

2
} . (3.47d)

For the sake of brevity, as k = 0 we have suppressed all k arguments in the dynamical
expressions δX̂ (n)(ω,k = 0) = δX̂ (n)(ω). In this basis, the overall dynamical matrix
K̂′ =UK̂U−1 is diagonal by block and the dynamical equations take the form

K̂L−(ω) 0 0 0
0 K̂L+(ω) 0 0
0 0 K̂T−(ω) 0
0 0 0 K̂T+(ω)

 ·


δŶL−(ω)
δŶL+(ω)
δŶT−(ω)
δŶT+(ω)

=


δYL−(t = 0)
δYL+(t = 0)
δYT−(t = 0)
δYT+(t = 0)

 , (3.48)

11 A simple example that illustrates the point is the toy model fluctuation matrix

K̂toy =
(

E−k AVint
AVint E+k

)
(3.46)

This has poles at E =±
√

k2 + A2V 2
int signaling level repulsion at k = 0. Expanding these poles in A gives

E =±k(1+ 1
2

A2V2
int

k2 ), whereas expanding in k gives E =±AVint(1+ 1
2

k2

A2V2
int

).
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where U =
(
UL 0
0 UT

)
is the matrix that reorders the fields from the basis in Eq. (3.39)

to Eq. (3.47)

UL =



i
2 0 0 0 0 0 − i

2 0 0
0 i

2 0 0 0 0 0 − i
2 0

0 0 1
2 0 0 0 0 0 1

2
0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0
1
2 0 0 0 0 0 1

2 0 0
0 1

2 0 0 0 0 0 1
2 0

0 0 i
2 0 0 0 0 0 − i

2



, UT =

 i
2 0 − i

2
0 1 0
1
2 0 1

2

 . (3.49)

Transverse sector

Let us again consider the transverse sector first. The dynamical matrices K̂T−
and K̂T+ are

K̂T− =
(
ηG2 − iωχ(0)

ππ

)
, K̂T+ =

 −iωχ(0)
ππ −2iωAχ(1)

ππ,1
−iωAχ(1)

ππ,1 ηG2 − iωχ(0)
ππ

 , (3.50)

These have the following diffusive poles

ω(T−) =−iD⊥G2

1− A2
χ(0)
ππ,2

χππ,0

 , (3.51a)

ω(T+)
0 = 0 , (3.51b)

ω(T+)
1 =−iD⊥G2

1− A2
χ(0)
ππ,2

χππ,0
+2A2

χ(1)
ππ,1

χππ,0

2
 . (3.51c)

There are several aspects to note: firstly, as mentioned above these poles do not cor-
respond to the k → 0 limit of the finite k fluctuations in Eq. (3.42). The indicated
emergent degeneracy at k → 0 between ωT,−1 and ωT,1 is obvious in Eq. (3.42). The
lattice perturbation A lifts this degeneracy and therefore the limits k → 0 and A → 0
do not commute. Secondly, there is a zero mode in the T+-sector. This is the standard
transverse k = 0 excitation, that corresponds to a change of the static homogeneous
transverse pressure background and as a zero mode should not be considered in the
fluctuation spectrum.
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Longitudinal sector

Consider the G-parity odd longitudinal sector first. Its dynamical matrix K̂L− is
given by

K̂L− =



µ0 AG
2 χϵn,0

µ0 AG
2 χnn,0

−iωAχ(1)
ππ,1

−µ0 Aχnϵ,0G µ0 Aχnn,0G −2iωAχ(1)
ππ,1 −iωχ(0)

ππ

L−


, (3.52)

with

L− =


−iωχ(0)

ϵϵ + µ2
0 A2

2 σQG2 −iωχ(0)
ϵn χ(0)

ππG

−iωχ(0)
nϵ σQG2 − iωχ(0)

nn n(0)G

−χ(0)
ππG −n(0)G η̂G2 − iωχ(0)

ππ

 . (3.53)

The lines are there to highlight the coupling between two sub-sectors. The top-left block
is equivalent to the coupling matrix (3.20) in the homogeneous system at momentum
G encoding the G-parity odd part of two sound modes and a charge diffusion mode
(see Eq. (3.21)), while the lower-right block reflects the conservation of momentum
in the homogeneous case. In the presence of the lattice deformation the momentum
conservation mode now couples with the Umklapped finite G sound-, and charge
diffusion modes through the off-diagonal terms. We can find the modes of this dynamical
matrix in the same way we did before, and we find

ω(L−)
Drude =−i(Γd +Γη) , (3.54a)

ω(L−)
D =−i

(
D0
ρ + A2D(L−),2

ρ

)
G2 + iΓd , (3.54b)

ω(L−)
± =±

(
c0

s + A2c(L−),2
s

)
G− i

2

(
D0

s + A2D(L−),2
s

)
G2 . (3.54c)

We therefore see that the poles in (3.54) are those of the homogeneous system (3.21)
at momentum G with corrected diffusion constants due to the effects of the lattice.
The procedure to compute the explicit form of the corrections D(L−),2

ρ , c(L−),2
s , D(L−),2

s is
detailed in Appendix 3.C. For a generic relativistic fluid these are quite involved; in
the explicit case of a fluid with conformal invariance they simplify greatly and we give
the expressions below in Eq. (3.61).

The most noteworthy part is the Drude pole ωDrude. As previewed at the beginning
of this Sec. 3.3 the lattice breaks translational symmetry and this induces a momentum
decay rate. The more detailed Bloch wave analysis which gives us all fluctuations at
finite k,ω in the hydrodynamic regime beautifully recovers the finite ω memory matrix
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result (3.29), as it should. In the condensed matter context, it is this sector specifically
that governs the k = 0 thermoelectric conductivities, where the presence of the second
diffusive mode ωD (originating in Umklapped charge diffusion) in addition to the Drude
mode has significant observable consequences as expounded in [184].

For the G-parity even sector the dynamical matrix is given by

K̂L+ =



−iωχ(0)
nn −iωχ(0)

nϵ −2iωAχ(1)
nϵ,1 −2iωAχ(1)

nn,1 0

−iωχ(0)
nϵ −iωχ(0)

ϵϵ + µ2
0 A2

2 σQG2 −2iωAχ(1)
ϵϵ,1 A(µ0σQG2 −2iωχ(1)

nϵ,1) −µ0 AGn0

−iωAχ(1)
nϵ,1 −iωAχ(1)

ϵϵ,1

−iωAχ(1)
nn,1 A(µ0σQ

2 G2 − iωχ(1)
nϵ,1)

0 µ0 A
2 Gn0

L+


,

(3.55)

with

L+ =


µ2

0 A2

2 σQG2 − iωχ(0)
ϵϵ −iωχ(0)

nϵ −χ(0)
ππG

−iωχ(0)
nϵ σQG2 − iωχ(0)

nn −n(0)G
χ(0)
ππG n(0)G η̂G2 − iωχ(0)

ππ

 (3.56)

Once again, the lines show how the various sub-sectors couple through the off-diagonal
A-dependent terms. The L+ sector is again a pair of sound modes and a charge diffusion
mode, but now the part that is even under G-parity. The n = 0 charge and energy
conservation modes are reflected in the upper-left blocks. The modes of this system are

ω(L+)
c = 0 , (3.57a)

ω(L+)
d = 0 , (3.57b)

ω(L+)
D =−i

(
D0
ρ + A2D(L+),2

ρ

)
G2 , (3.57c)

ω(L+)
± =±

(
c0

s + A2c(L+),2
s

)
G− i

2

(
D0

s + A2D(L+),2
s

)
G2 , (3.57d)

We see again that the latter three poles in (3.57) are those of the homogeneous sys-
tem (3.21) at momentum G with corrected diffusion constants due to the effects of
the lattice. The shifts differ, however, from the L− sector. The explicit form of the
corrections D(L+),2

ρ , c(L+),2
s , D(L+),2

s can again be derived through the method detailed
in Appendix 3.C, and tractable expressions for the special case of a conformal fluid are
given in Eq. (3.61). The first two poles are the ones encoding charge conservation and
energy conservation; they remain unshifted at this order in perturbation theory. As
we explain in Appendix 3.C, one of these modes is an exact conservation mode and by
rotating the system back to K̂ instead of K̂, it is easy to see that this mode corresponds
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to overall charge conservation — associated here to δλ(0)
n . The other mode is merely

unshifted at this order in perturbation theory.

Having computed the corrections to the k = 0 modes, one clearly sees that
these are not equal to the limit k → 0 of (3.45). In that limit, at leading order,
ωD,±1 =−iD0

ρG2 + i
2Γd and ωS,±,0 =− i

2Γionic,mem., whereas the explicit k = 0 computa-
tion has ω(L−)

Drude = −Γionic,mem., and an additional (to leading order in A2) zero mode.
This difference is due to the non-commutativity of the k → 0 and A → 0 limits. In the
next section, where we illustrate the emergence of these hydrodynamic modes in an
explicitly computed example, we will show precisely how these poles are related in the
k → 0 limit.

3.4 Bloch wave hydrodynamics emerging from
holographic models: a comparison

We will now validate the understanding of charged (relativistic) hydrodynamics
in a periodic potential by comparing it with the low energy physics of holographic
models. Holographic models describe the strong coupling regime of quantum field
theories in a manifestly real time formalism. Uniquely so, this includes the emergence
of hydrodynamics at low frequencies and long wavelengths ω,k ≪ T,µ [77, 191, 19, 1].
This last part is also known as fluid-gravity duality [113]. By considering a strongly
coupled quantum field theory in a spatially periodic chemical potential background,
i.e., , an ionic lattice,12 described holographically in terms of its dual gravitational
description, we will see that the Bloch wave hydrodynamics described above emerges.
There is one simplifying feature in the two holographic models we choose here. Both
describe a conformally invariant system for which the equation of state takes the
scaling form

P(T,µ)= Td+1 f (T/µ) , (3.58)

which directly implies P = ϵ/d. Furthermore, due to the conformal symmetry such a
system must also have a vanishing bulk viscosity, i.e., , ζ= 0.

The two specific models we consider are the strongly coupled theories holographi-
cally dual to the RN black hole [192, 193, 194, 195, 132] as well as the GR black hole
[38]. We will solve the fluctuations in these systems modulated by a finite chemical
potential numerically and compare to the predictions from Bloch wave hydrodynamics
as presented in the previous sections. These two systems are chosen as their ground
states are possible candidates to explain the mysterious strange metal physics underly-
ing high Tc superconductors. There is reason to believe that this physics is indeed that
of strongly coupled electrons in an ionic lattice. The possible relevance of Bloch wave

12This mimics the charge distribution of a frozen atomic lattice, or more appropriately an ionic lattice with
valence electrons.
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3 Relativistic hydrodynamics in a periodic potential

hydrodynamics in the context of strange metal physics is described in a companion
article [184].

A brief description of the numerical holographic set-up is provided in ap-
pendix 3.D.2; more details can be found in [184]. The crucial aspect of relevance
here to the comparison of the numerics with our Bloch hydrodynamic analysis is the
equation of state of the two models. The 2+1-dimensional (finite temperature) field
theories dual to AdS4 RN and GR black holes are conformal charged fluids13 with
equation of state

PRN(T̂)
µ3 = T̂3

−1−8π2T̂2 +2πT̂
√

3+16π2T̂2

2T̂3(4πT̂ −
√

3+16π2T̂2)3

 , (3.59)

PGR(T̂)
µ3 = T̂3

(
(3+16π2T̂2)3/2

27T̂3

)
, (3.60)

where we have defined T̂ ≡ T/µ.

A direct consequence of this conformal equation of state is that χϵϵ,0 = dχππ,0 and
χnϵ,0 = d n0. As a consequence many previous expressions simplify. Specifically the
order A2 corrections to the poles for k = 0 are now given by the tractable expressions:

D(L−),2
ρ =− σQ

χππ,0

χ(0)
nn,2(χππ,0)3 −2χ(1)

nn,1(χππ,0)2µ0n0 +χnn,0χππ,0µ
2
0n2

0 +µ2
0n4

0

(dχ)2
, (3.61a)

D(L+),2
ρ = σQ

4χππ,0

(χππ,0)2
(
(χnn,0)2µ2

0 −4χ(0)
nn,2χππ,0

)
+8χ(1)

nn,1(χππ,0)2µ0n0 −12χnn,0χππ,0µ
2
0n2

0 +12µ2
0n4

0

(dχ)2
,

(3.61b)

c(L−),2
s = µ2

0n2
0

4
p

2(χππ,0)2
, D(L−),2

s = µ2
0

4χππ,0

σQ + 10n2
0 −3χnn,0χππ,0(
χππ,0

)2 η̂

 , (3.61c)

c(L+),2
s = µ2

0n2
0p

2(χππ,0)2
, D(L+),2

s = µ2
0

4χππ,0

σQ − 3χnn,0(
χππ,0

)2 η̂

 . (3.61d)

The explicit expressions for the thermodynamic quantities in the grand canonical
ensemble for the RN and GR black holes can be found in Appendix 3.D.1.

We will use the longitudinal optical conductivity σxx(ω,kx = k)= 1
iω 〈Jx(−ω,−kx)Jx(ω,kx)〉

as a probe. Generically this current will receive contributions from all hydrodynamic
fluctuations; these essentially determine the low frequency long-wavelength response.
At finite k, this means we should see all 9 modes described in (3.45). At k = 0, however,
13While this result is well-known for the RN black hole, it only applies in the GR black hole for a suitable

choice of quantization of the boundary scalar operator — the dilaton must be a marginal deformation.
One must therefore use mixed boundary conditions for the dilaton at the boundary [170].
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3.4 Bloch wave hydrodynamics emerging from holographic models: a comparison

Figure 3.1: Drawing of the expected position of the poles in the current-current correlator at finite
k (left) and at k = 0 (right) based on the hydrodynamical predictions in terms of Bloch waves in
Sec. 3.3. Generically there are 9 poles: the standard two sound modes plus a (charge) diffusive
mode of charged hydrodynamics cross coupled with the n = 1 and n =−1 Umklapp copies of each.
At k = 0, there is an emergent symmetry due to which the longitudinal current-current correlator
only probes the first sector K̂L− that contains the 4 modes that are odd under inverting the
lattice momentum G ↔−G.

the current is part of the L− sector and we will only see the first sector with its 4
modes. Fig. 3.1 gives a schematic sketch of what the spectrum of the current-current
correlator — and therefore the optical conductivity — should look like in the complex
frequency plane based on our hydrodynamic predictions.

Precisely this expectation is reproduced by the numerical results in holographic
duals to RN and GR black holes where hydrodynamics is emergent. Fig. 3.2 plots
the density of the absolute value and argument of the optical conductivity for small
values of the real part of the frequencies, i.e., , zoomed in near the imaginary frequency
axis. Each picture is at a different value of k/µ ∈ {0,0.001,0.005}. We see that for k = 0
there are only two purely diffusive poles, as predicted, that split into two propagating
and two diffusive poles at finite k. For finite k, there should also be a third diffusive
pole very close to the real axis. Its weight is very low, however, but it can be unveiled
by zooming in carefully. This was plotted in Fig. 3.3 for k/µ ∈ {0.006,0.008,0.01} (this
choice of momenta proved more convenient to display). In all cases the location of these
poles can be compared with the predictions from our hydrodynamical analysis after
substituting in the relevant equation of state. The match is perfect for both k = 0 and k
finite as denoted by the white circles in Fig. 3.2 and the triangles in Fig. 3.3. Similarly,
we plotted in Fig. 3.4 the argument of the optical conductivity near the sound poles at
momenta G±k. The weight of these poles is very small and they are therefore difficult
to identify in |σ|. The argument of σ, on the other hand, displays a jump at the poles. A
similar analysis holds for the conjugate pair of poles at −G±k. These sound poles give
rise to a characteristic peak in the real conductivity, first noted in [82, 118, 84].

To illustrate in more detail the hydrodynamical origin of all these poles and their
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3 Relativistic hydrodynamics in a periodic potential

Figure 3.2: Density plot of (the logarithm of) the GR longitudinal conductivity log
∣∣σ(ω)

∣∣ (top)
and its argument Argσ(ω) (bottom) in the complex frequency plane close to the imaginary axis
for T/µ = 0.1, A = 0.05 and G/µ = 0.1, for four values k/µ ∈ {0,0.001,0.005,0.01}. At k = 0, we
see the poles ω(L−)

Drude and ω(L−)
D while at k > 0, the Drude pole splits into the two sound modes

ωS,±,0 (denoted by a white ⋄) and the diffusion pole splits into ωD,±1 (denoted by a white ◦).
The markers indicate the analytical position of these poles prescribed by our hydrodynamical
derivation. A priori, a fifth pole ωD,0 at k > 0 also couples to the electrical current, but it is not
visible on the range plotted. A more refined computation, does reveal it (Fig. 3.3).

Figure 3.3: GR conductivity log
∣∣σ(ω)

∣∣ in the complex plane close to the imaginary axis for
T/µ = 0.1, A = 0.05 and G/µ = 0.1, varying k/µ ∈ {0.006,0.008,0.01}. We see a purely diffusive
pole on the imaginary axis which matches the hydrodynamic diffusion pole ωD,0 (denoted by △).
The area plotted is zoomed on the origin compared to Fig. 3.2. There the diffusive pole was too
small to be visible.
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full explanation in terms of thermodynamic quantities, one can track the location of the
poles as a function of temperature. Focusing only on the purely diffusive poles (two for
k = 0, and three for k ̸= 0), as they are more easily extracted numerically by scanning
carefully over the negative imaginary frequency axis, we also find here a perfect match
between numerics and hydrodynamic prediction, Eqs. (3.54) and (3.45) respectively,
but now as function of T/µ; see Fig. 3.5 and Fig. 3.6.

With our computational RN and GR examples we can also illustrate the subtle
nature of the k → 0 limit. As we saw in the previous section, the naive extrapolation to
k → 0 of the two n = 0 sound modes ωS,0,± =− i

2Γionic,mem. +O(k) does not correspond
with the physical k = 0 Drude pole ω(L−)

Drude =−iΓionic,mem. and its (L+) equivalent ω(L+)
d =

0. To emphasize this once more, the origin of this difference comes from the non-
commutativity of the k → 0 and A → 0 limits. In Fig. 3.7, we have carefully analyzed
the low k regime of the GR black hole. For k/µ= 10−4, the two diffusive poles are close
to their k = 0 values (3.54) and (3.57). As we increase k, they get closer and collide,
leading to the two sound modes of (3.45). This diffusion-to-sound crossover happens
when k

G ∼ A2 illustrating the non-commuting limits k → 0, A → 0 which means we can
estimate the characteristic length scale of the interactions to be Vint ∼ AG (see footnote
11).

Finally, to re-emphasize the underlying Bloch wave Umklapp physics, Fig. 3.8
shows the real part of the momentum-dependent optical conductivity σ(ω,k) in the
ω,k plane. The right-hand plot is a zoomed-in version of the left-hand plot near the
edge of the Brillouin zone k = G

2 . The gray dots are numerically obtained solutions
of detK̂L = 0 for the same parameters, showing that the hydrodynamic description of
the matrix (3.43) at order O(A2) matches the data over the entire Brillouin zone. At
low frequency, we see the expected sound mode ω∼ csk dominating the low frequency
regime, but we also can see its interaction with the sound mode ω∼ cs(G − k). They
meet at the edge of the Brillouin zone k = G

2 and in the right-hand plot, we see the
traditional level repulsion of Umklapp and the opening of a gap in the sound mode
spectrum.

3.5 Conclusion

The crucial message of this paper is that hydrodynamic fluctuations in a period-
ically modulated background should be understood based on a Bloch wave analysis
instead of simple plane waves. If the typical length scale of this modulation is suffi-
ciently large and the amplitude sufficiently small, we can still use hydrodynamics to
study the long-time response of the conserved charges. This is an old observation in
neutral hydrodynamics, but deserves restudy for charged hydrodynamics given the
novel experimental progress of observed hydrodynamic flow in electronic condensed
matter systems [181, 182, 183]. This is particularly so in the presence of a charged
fluid, which introduces an additional intrinsic diffusive mode. The presence of a spatial
periodic modulation introduces Brillouin zone copies, also for this additional mode, and
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3 Relativistic hydrodynamics in a periodic potential

Figure 3.4: Argument of the GR conductivity arg σ(ω) in the complex plane for T/µ= 0.1, A = 0.05
and G/µ= 0.1, varying k/µ ∈ {0,0.001,0.005,0.01}. At k = 0, we see the sound pole ω(L−)

+ . Its real
part is precisely at csG with cs = 1/

p
2 in a d = 2 conformal fluid. At k > 0, it splits into the two

sound modes ωS,±,1 (denoted by ▽). The markers indicate the analytical position of these poles
prescribed by our hydrodynamical derivation. These poles are more difficult to observe in |σ|
than those on the imaginary axis and are easier to see as jumps in the argument of the complex
function.
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Figure 3.5: Comparison between the position of the poles on the imaginary axis (points) and the
analytical hydrodynamical formula (3.54) at k = 0, as a function of T/µ, and for A = 0.05 and
G/µ= 0.1. This is done for GR on the left and RN on the right. The blue data is the Drude pole
ω(L−)

Drude and the red data corresponds to the Umklapped diffusion pole ω(L−)
D (Eqs. (3.54)). The

corrections to the diffusion constants are smaller than our numerical accuracy for our choice of
parameters, so we can simply ignore them here.
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Figure 3.6: Comparison between the position of the poles ωD,0 and ωD,±1 on the imaginary axis
(points) and the analytical hydrodynamical expressions (3.45) at k/µ = 0.01, as a function of
T/µ, and for A = 0.05 and G/µ= 0.1. This is done for GR on the left and RN on the right. The
corrections to the diffusion constants are smaller than our numerical accuracy for our choice of
parameters, so we can simply ignore them here.

Figure 3.7: (Logarithm of the) GR conductivity log
∣∣σ(ω)

∣∣ in the complex plane close to the
imaginary axis for T/µ= 0.1, A = 0.05 and G/µ= 0.1, varying k/µ ∈ {10−4,2×10−4,3×10−4,4×
10−4}. For k = 10−4, we see the poles ω(L−)

Drude and ω(L+)
d with small corrections. For k > 3×10−4,

the poles are now the two sound modes ωS,±,0 close to their k → 0 limit. The lines indicate

the positions ω(L−)
Drude =−iΓionic,mem. (solid) and ωS,0,±(k → 0) =− i

2Γionic,mem. (dashed). When

expressed in terms of k
G , the transition appears to happen at k

G ∼ A2.
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3 Relativistic hydrodynamics in a periodic potential

Figure 3.8: (Left) Re σ(ω,k) plotted in the (k/G,ω/µ) plane for A = 0.05, T/µ= 0.1 and G/µ= 0.1.
(Right) Zoom on the Brillouin zone boundary at k =G/2 (region indicated by a black frame from
on the left-hand plot) showing the level repulsion and the gapped sound mode at the edge of the
zone. The gray dots are the hydrodynamic prediction given by numerically finding the roots of
the determinant of Eq. (3.43).

due to Umklapp at the Brillouin zone boundary this higher Bloch mode mixes with the
long distance late time k = 0 sound modes.

We showed how one can compute the explicit pattern and strengths of these
mixings from the underlying hydrodynamics. As is standard but ever so useful in
hydrodynamics is that the behavior of both the patterns and the strengths can be ex-
pressed in underlying thermodynamic quantities, notably the susceptibilities, combined
with the transport coefficients.

An important feature of a periodic modulation — well known in the condensed
matter physics context — is that it breaks translational symmetry. For a perturbatively
small lattice the correction to the momentum pole can be interpreted as the momentum
relaxation rate and our result agrees with the relaxation rate obtained through the
memory matrix formalism, as it should. It is important to emphasize once more that
even though there is one relaxation rate, this relaxation rate has two contributions
Γd and Γη corresponding to the two longitudinal diffusive processes. A priori these
can have different scaling in temperature.14 They also exhibit different scaling in the
lattice wavevector G. Due to this, in systems with charge disorder parametrized as
an averaging over many independent lattices, one of these terms will dominate. It is
rather the other aspect of the periodic modulation — the presence of Bloch modes in
higher Brillouin zones that we wish to emphasize here. At finite density this includes
an Umklapped charge diffusion mode. As we analyzed in a companion paper, this mode

14This is the case in RN where Γη ∼ T0 and Γd ∼ T2 while in GR, they both scale with temperature with
Γη ∼Γd ∼ T.
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may be of relevance in condensed matter physics [184]. The strange metal phase of
high Tc superconductors shows the development of a mysterious mid-IR peak in the
optical conductivity at temperatures T ≃ 300K ; see e.g., [196, 67]. The phenomenology
of this peak is almost exactly reproduced by a collision between the Drude pole and
the Umklapped charge diffusion pole in a holographic model of the strange metal dual
to the Gubser-Rocha black hole [184]. If it can be experimentally verified that charge
transport in the strange metal is in fact hydrodynamical, this will be the explanation
of that phenomenon.

Finally, we verified our results by numerically computing response functions in
strongly coupled systems holographically dual to Reissner-Nordström and Gubser-
Rocha black holes. The important feature is that hydrodynamics emerges naturally in
holographic systems and is not an input. In the computed optical conductivities, we
found precisely the poles matching those predicted by our hydrodynamics computation.
As as function of varying parameters such as momentum and lattice strength, these
poles show complicated behavior including pole collisions and level repulsion denoting
various regime changes.

We conclude with emphasizing that the hydrodynamics description of those holo-
graphic systems remains valid throughout these collisions and level repulsions. This
contrasts with recent studies on the validity of hydrodynamics postulated as a pole
collision/level repulsion with a first UV (gapped) pole [126, 197, 198]. Our result here
shows that this identification has to be done with care. The Umklapped modes are also
a priori gapped modes in the zero momentum limit k → 0. However, they remain modes
of the conserved charges, can be fully captured in a hydrodynamic description and play
a different role from non-hydrodynamic UV modes.

The analysis carried in this paper crucially relied on a static background charge
distribution to mimic the effects of a frozen ionic lattice. This ignores the effect of
lattice vibrations. Including phonon modes would require a different setup. Moreover,
the assumption of local thermal equilibrium rather strongly constrains the hierarchy
of scales as ω,k ≪G ≪ T. While the results we have achieved are rather general and
only rely on the presence of global symmetries and periodicity – which would seem to
imply this is valid for a wide range of metallic systems – one must remain cautious as
to whether such hierarchy of scales is realized within physical systems.
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3.A Thermodynamics and susceptibilities

In this section of the supplementary material, we will briefly review some key
thermodynamic identities related to the static susceptibilities. We will be interested
in the conserved charges {δϵ,δn} and their associated sources {δλϵ,δλn}= {δT/T,δµ−
µ
T δT}. Since we will be focusing on thermodynamics, we will only be interested in
the equilibrium solution and therefore we will drop the X̄ notation for background
thermodynamics quantities. As a reminder, the susceptibility matrix in the (ϵ,n) sector
is defined as

(
δϵ

δn

)
= χ ·

(
δλϵ
δλn

)
, χ=

(
χϵϵ χϵn
χnϵ χnn

)
=


T

(
∂ϵ

∂T

)
µ/T

1
T

(
∂ϵ

∂µ/T

)
T

T
(
∂n
∂T

)
µ/T

1
T

(
∂n
∂µ/T

)
T

 , (3.62)

while the momentum susceptibility is χππ = ϵ+P. Furthermore, we have the thermody-
namic identity

TdX = T
(
∂X
∂T

)
µ/T

dT +T

(
∂X
∂µ/T

)
T

d
(
µ/T

)
, (3.63a)

=
T

(
∂X
∂T

)
µ/T

−µ
(
∂X
∂µ

)
T

dT +T

(
∂X
∂µ

)
T

dµ , (3.63b)

= T
(
∂X
∂T

)
µ

dT +T

(
∂X
∂µ

)
T

dµ , (3.63c)

such that T
(
∂X
∂T

)
µ/T

= T
(
∂X
∂T

)
µ

+µ
(
∂X
∂µ

)
T

. Using this relation and the first law dϵ=
Tds+µdn, we have

χϵn =
(
∂ϵ

∂µ

)
T

= T

(
∂s
∂µ

)
T

+µ
(
∂n
∂µ

)
T

(3.64a)

= T
d2P

dµdT
+µ

(
∂n
∂µ

)
T

= T
(
∂n
∂T

)
µ

+µ
(
∂n
∂µ

)
T

= T
(
∂n
∂T

)
µ/T

. (3.64b)

Looking back at (3.62), this means that χnϵ = χϵn.
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When considering conformal matter in Sec. 3.4, we used that P = ϵ/d which is
directly implied by the equation of state (3.58). In that particular case,

χnϵ = χϵn =
(
∂ϵ

∂µ

)
T

=
(
∂P
∂µ

)
T

d = nd , (3.65)

χϵϵ = T
(
∂ϵ

∂T

)
µ/T

= d

T
(
∂P
∂T

)
µ

+µ
(
∂P
∂µ

)
T

= d(sT +µn)= (ϵ+P)d . (3.66)

3.B Onsager relations

One of the important checks we must make that our dynamical system is well-
defined is that it respects Onsager’s relations. These can be derived by considering how
the system behaves under time-reversal invariance. Given the anti-unitary operator
T such that [H,T]= 0, we can classify each of the operators associated to our hydro-
dynamical variables by their representation under this operator. For a given operator
δXa, we will have TδXa(t, x)T−1 = ηaδXa(−t, x) with ηa =±1. Denoting the retarded
Green’s function associated to a dynamical matrix Kab by GR

ab, we have

GR
ab(t− t′, x, x′)=−iΘ(τ)tr

(
ρ[δXa(τ, x),δXb(0, x′)]

)
, with ρ = e−βH /Z . (3.67)

We can then see that, due to the anti-unitarity of T,

GR
ab(τ, x, x′)= ηaηbGR

ba(τ, x′, x) . (3.68)

In Fourier space, this means ĜR
ab(ω, p, p′)= ηaĜR

ba(ω,−p′,−p)ηb and specifically for our
periodic background, we can write the Green’s function as [117]

ĜR
ab(ω, p, p′)= ĜR(n,m)

ab (ω,k) , p = k+nG , p′ =−k+mG , (3.69)

where we have used that the discrete lattice symmetry GR
ab(τ, x, x′)=GR

ab(τ, x+ 2π
G , x′+

2π
G ) implies that p+ p′ ∈ZG. For this decomposition, the Onsager relation becomes

ĜR(n,m)
ab (ω,k)= ηaĜR(−m,−n)

ba (ω,−k)ηb (3.70a)

= ηa(Ĝ⊺)R(−n,−m)
ab (ω,−k)ηb (3.70b)

= S · (Ĝ⊺)R(−n,−m)(ω,−k) ·S , (3.70c)

ĜR(ω,k)= S · (Ĝ⊺)R(ω,k) ·S . (3.70d)

In the previous expression, we have introduced S the diagonal matrix of eigenvalues
η and the notation ĜR(n,m)(ω,k) ≡ ĜR(−n,−m)(ω,−k). It is easy to check that for our
background, χ= χ and therefore since χ= ĜR(ω= 0), we also have χ= S ·χ⊺ ·S−1. We
can write this relation in terms of the matrix of couplings

N(k)≡ M(k) ·χ= (iω+ K̂(ω,k)) ·χ= iωχ+ K̂(ω,k) , (3.71)
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The elements of N are simply the coefficients of the equations (3.6) written in terms of
the sources and expanded in the basis (3.34). By using that ĜR = (1+ iωK−1) ·χ, the
relation (3.70) can then be written as

N = S ·N⊺ ·S−1 . (3.72)

Let us apply this to the conservation equations (3.12) for an in-going momentum
p and an outgoing momentum p′

Nϵn(p, p′)=σQ

∫
dq (−pqµ̄(q))δ(p+ q− p′) , (3.73a)

Nnϵ(p, p′)=σQ

∫
dq (pqµ̄(q)+ q2µ̄(q))δ(p+ q− p′) , (3.73b)

Nϵπ(p, p′)=−
∫

dq (pχππ,0(q)+ qϵ̄(q))δ(p+ q− p′) , (3.73c)

Nπϵ(p, p′)=
∫

dq (−p′χππ,0(q)+ qϵ̄(q))δ(p+ q− p′) , (3.73d)

Nnπ(p, p′)=
∫

dq (−p′n̄(q))δ(p+ q− p′) , (3.73e)

Nπn(p, p′)=
∫

dq (−pn̄(q))δ(p+ q− p′) . (3.73f)

We now want to check the Onsager condition for N using that ηϵ = ηn =−ηπ = 1. This
can be done as follows for the (ϵ,n) sub-sector

Nnϵ(p′, p)=σQ

∫
dq (p′qµ̄(q)+ q2µ̄(q))δ(p′+ q− p) , (3.74a)

=σQ

∫
dq ((p− q)qµ̄(q)+ q2µ̄(q))δ(p′+ q− p) , (3.74b)

=σQ

∫
dq (pqµ̄(q))δ(p′+ q− p) , (3.74c)

ηϵηnNnϵ(p′, p)=−σQ

∫
dq (pqµ̄(q))δ(−p′+ q+ p)= Nϵn(p, p′) , (3.74d)

while for the momentum-charge sector, we have

Nnπ(p′, p)=
∫

dq (−pn̄(q))δ(p′+ q− p) , (3.75a)

ηnηπNnπ(p′, p)=−
∫

dq (pn̄(q))δ(−p′+ q+ p)= Nπn(p, p′) . (3.75b)

Finally, we only have to check the energy-momentum sector

Nϵπ(p′, p)=−
∫

dq (p′χππ,0(q)+ qϵ̄(q))δ(p′+ q− p) , (3.76a)

ηϵηπNϵπ(p′, p)=
∫

dq (−p′χππ,0(q)+ qϵ̄(q))δ(−p′+ q+ p)= Nπϵ(p, p′) . (3.76b)

We see therefore that the Onsager reciprocal relations are obeyed by our equations
(3.12).
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3.C Second order corrections in lattice strength

Let us consider here a dynamical matrix K̂ of size N×N. The modes of this matrix
are given by the solutions to the polynomial equation P(ω)≡ detK̂= 0, where we can
write

P(ω)=
N∑

n=0
anω

n . (3.77)

Suppose the coefficients an =∑
p an,p Ap have a power series expansion in a parameter

A. We are now interested in perturbative solutions ω = ω̄+ A2ω2, around a given
A = 0 solution P(ω̄)|A=0 = 0. To do so we can define auxiliary polynomials Pp(ω) =∑N

n=0 an,pω
n such that

P(ω)=∑
p

ApPp(ω) . (3.78)

We can now expand the equation P(ω)= 0 in A at leading and subleading orders, and
we find the following two conditions

P0(ω̄)= 0 , ω2 =−P2(ω̄)
P ′

0(ω̄)
. (3.79)

The first equation is simply the leading order of the mode when there is no lattice while
the second equation gives us the subleading correction. Finally, all the coefficients an,p
are themselves polynomials in G,k which can be further expanded in order to get the
corrections at higher order in momentum.15

So far, it was implicitly assumed that the modes have no degeneracy when A → 0
as that would imply that P ′

0(ω̄) = 0. When that happens, the correction is given by
higher order terms with

P0(ω̄)= 0 , P2(ω̄)= 0 , ω2 =
−P ′

2(ω̄)±
√(

P ′
2(ω̄)

)2 −4P4(ω̄)P ′′
0 (ω̄)

2P ′′
0 (ω̄)

. (3.80)

This is the case for K̂L+ with ω̄= 0. However, it turns out that for this matrix, P4(ω̄)=
0 and P ′

2(ω) = 0, so the two degenerate poles remain degenerate at this order in
perturbation theory, with ω2 = 0. A simpler way to see this is also to notice that the
first line of K̂L+ is proportional to iω and therefore so will be detK̂L+. Consequently,
this sector admits an exact conservation mode and we can use our non-degenerate
method on the 4×4 lower-right sub-block of this matrix where there is no degeneracy
left. We would then see that the other ω̄= 0 pole also remains unshifted ω2 = 0.

15Note that in this method, the order of limits is chosen such that at finite k, we would be getting the
k > AVint branch of solutions.
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All that is therefore needed to compute the corrections in (3.54) and (3.57) is to
know the coefficients an,p for a given matrix K̂. In the case of K̂L−, we have

a0,0 = 0 , a1,0 =−i
(
χππ,0

)3
σQG4 , a4,0 =

(
χππ,0

)2 dχ , (3.81a)

a2,0 =−χππ,0

[
χϵϵ,0n2

0 −2χnϵ,0χππ,0n0 +χnn,0
(
χππ,0

)2
]

G2 −χϵϵ,0χππ,0η̂σQG4 , (3.81b)

a3,0 = iχππ,0

(
dχη̂+χϵϵ,0χππ,0σQ

)
G2 , (3.81c)

a0,2 =
µ2

0

2
(
χnϵ,0n0 −χnn,0χππ,0

)2 G4 + µ2
0

2
(
χnϵ,0

)2
η̂σQG6 , (3.81d)

a1,2 =−i
1
2

G4

[
χnn,0η̂µ

2
0dχ+χππ,0σQ

(
2µ0(χ(1)

nϵ,1χππ,0 −2χnϵ,0χ
(1)
ππ,1)+µ2

0

(
χnϵ,0

2 +χnn,0χππ,0

)
(3.81e)

+2χ(0)
ππ,2χππ,0 +µ2

0n2
0

)]
− i

µ2
0

2
χππ,0η̂σ

2
QG6 , (3.81f)

a2,2 = 1
2

G2
[
−2n2

0(χ(0)
ϵϵ,2χππ,0 +χϵϵ,0χ(0)

ππ,2)+χππ,0n0(µ0(−2χϵϵ,0χ(1)
nn,1 +2χ(1)

nϵ,1χnϵ,0 +χnϵ,0χnn,0µ0)

(3.81g)

+4χ(0)
nϵ,2χππ,0 +4χnϵ,0χ

(0)
ππ,2)−χππ,0

(
χnn,0µ

2
0

(
χnn,0χππ,0 +dχ

)
(3.81h)

+2χππ,0µ0(χ(1)
nϵ,1χnn,0 −χnϵ,0χ

(1)
nn,1)+2χππ,0(χ(0)

nn,2χππ,0 +χnn,0χ
(0)
ππ,2)

)
+4χ(1)

ππ,1µ0n0dχ
]

(3.81i)

− σQ

2
G4

[
χππ,0

(
2χ(0)

ϵϵ,2η̂+χnn,0η̂µ
2
0 +χππ,0µ

2
0σQ

)
+2χϵϵ,0χ(0)

ππ,2η̂

]
, (3.81j)

a3,2 = 1
2

iG2
[
2η̂

(
χ(0)
ϵϵ,2χnn,0χππ,0 +χϵϵ,0χ(0)

nn,2χππ,0 +dχχ(0)
ππ,2 −2χ(0)

nϵ,2χnϵ,0χππ,0

)
(3.81k)

+χππ,0σQ

(
2χ(0)

ϵϵ,2χππ,0 +4χϵϵ,0χ(0)
ππ,2 +χnn,0χππ,0µ

2
0

)
−4χϵϵ,0(χ(1)

ππ,1)2σQ

]
, (3.81l)

a4,2 = χππ,0

[
χ(0)
ϵϵ,2χnn,0χππ,0 +χϵϵ,0χ(0)

nn,2χππ,0 +2dχχ(0)
ππ,2 −2χ(0)

nϵ,2χnϵ,0χππ,0

]
−2dχ(χ(1)

ππ,1)2 .

(3.81m)

On the other hand, for the 4×4 lower-right sub-block of the matrix K̂L+, we find the
following coefficients for the determinant

a0,0 = 0 , a1,0 =−iχϵϵ,0(χππ,0)2σQG4 , a4,0 = χππ,0χϵϵ,0dχ , (3.82a)

a2,0 =−χϵϵ,0
[
χϵϵ,0n2

0 −2χnϵ,0χππ,0n0 +χnn,0(χππ,0)2
]

G2 − (χϵϵ,0)2η̂σQG4 , (3.82b)

a3,0 = iχϵϵ,0G2
(
dχη̂+χϵϵ,0χππ,0σQ

)
, (3.82c)

a0,2 = 0 , (3.82d)
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a1,2 =−1
2

iG4σQ

[
χππ,0

(
2χ(0)

ϵϵ,2χππ,0 +2χ(1)
nϵ,1µ0(χϵϵ,0 −2χππ,0)+χnn,0µ

2
0(χϵϵ,0 +χππ,0)

)
(3.82e)

+χϵϵ,0µ2
0n2

0

]
− 1

2
iχϵϵ,0η̂G6µ2

0σ
2
Q , (3.82f)

a2,2 = 1
2

G2
[
n2

0

(
−4χ(0)

ϵϵ,2χϵϵ,0 +4(χ(1)
ϵϵ,1)2 +4µ0(χϵϵ,0χ(1)

nϵ,1 −χ(1)
ϵϵ,1χnϵ,0)−dχµ2

0

)
(3.82g)

+4χππ,0n0(χ(0)
ϵϵ,2χnϵ,0 −2χ(1)

ϵϵ,1χ
(1)
nϵ,1 +χ(1)

ϵϵ,1χnn,0µ0 +χϵϵ,0χ(0)
nϵ,2 −χ(1)

nϵ,1χnϵ,0µ0) (3.82h)

−χππ,0

(
2χππ,0

(
χ(0)
ϵϵ,2χnn,0 +χϵϵ,0χ(0)

nn,2 −2(χ(1)
nϵ,1)2

)
+2χϵϵ,0µ0(χ(1)

nϵ,1χnn,0 −χnϵ,0χ
(1)
nn,1)

(3.82i)

+χϵϵ,0(χnn,0)2µ2
0

)
+χϵϵ,0µ0n0(−2χϵϵ,0χ(1)

nn,1 +2χ(1)
nϵ,1χnϵ,0 +χnϵ,0χnn,0µ0)

]
(3.82j)

+ 1
2

G4σQ

[
η̂

(
−4χ(0)

ϵϵ,2χϵϵ,0 +4(χ(1)
ϵϵ,1)2 +4µ0(χϵϵ,0χ(1)

nϵ,1 −χ(1)
ϵϵ,1χnϵ,0) (3.82k)

+µ2
0

(
(χnϵ,0)2 −2χϵϵ,0χnn,0

))
−χϵϵ,0χππ,0µ

2
0σQ

]
, (3.82l)

a3,2 = 1
2

iG2

[
−2η̂

(
−χϵϵ,0

(
2χ(0)

ϵϵ,2χnn,0 +χϵϵ,0χ(0)
nn,2 −2(χ(1)

nϵ,1)2
)
+χ(0)

ϵϵ,2(χnϵ,0)2 (3.82m)

+2(χ(1)
ϵϵ,1)2χnn,0 +2χnϵ,0(χϵϵ,0χ(0)

nϵ,2 −2χ(1)
ϵϵ,1χ

(1)
nϵ,1)

)
(3.82n)

+χππ,0σQ

(
4χ(0)

ϵϵ,2χϵϵ,0 −4(χ(1)
ϵϵ,1)2 +µ0(4χ(1)

ϵϵ,1χnϵ,0 −4χϵϵ,0χ(1)
nϵ,1) (3.82o)

−µ2
0

(
χnϵ,0

2 −2χϵϵ,0χnn,0

))
+2(χϵϵ,0)2χ(0)

ππ,2σQ

]
, (3.82p)

a4,2 = χππ,0

[
2χ(0)

ϵϵ,2χϵϵ,0χnn,0 −χ(0)
ϵϵ,2(χnϵ,0)2 −2(χ(1)

ϵϵ,1)2χnn,0 +4χ(1)
ϵϵ,1χ

(1)
nϵ,1χnϵ,0 (3.82q)

+(χϵϵ,0)2χ(0)
nn,2 −2χϵϵ,0χ(0)

nϵ,2χnϵ,0 −2χϵϵ,0(χ(1)
nϵ,1)2

]
+χϵϵ,0χ(0)

ππ,2dχ (3.82r)

The coefficients for the determinant of the full longitudinal matrix (3.45) are too
involved to be written down here but can be obtained in the exact same way. All these
corrections were derived using Mathematica.
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3.D Numerical computations in strongly coupled
field theories dual to Reissner-Nordström and
Gubser-Rocha AdS black holes: set-up

3.D.1 Thermodynamics

In Sec. 3.4, we focused on the specific conformal hydrodynamics that emerges at
long wavelength and low frequencies from the holographic dynamics of the RN and
GR black holes. In equilibrium the thermodynamic equation of state of each is given
by (3.59) and (3.60) respectively. From these, we can determine the charge density

n0 =
(
∂P
∂µ

)
T

as well as the entropy density s0 =
(
∂P
∂T

)
µ

while the energy density just

follows from conformal invariance and is given by ϵ0 = 2P0. One can further compute
the various susceptibilities χ(n)

ab,m appearing in the hydrodynamics expressions of
Sec. 3.3. As a reminder from Appendix 3.A, the conformal equation of state also imposes
χϵϵ,0 = 2χππ,0 and χnϵ,0 = χϵn,0 = 2n0. For the RN black hole, the various susceptibilities
and thermodynamic quantities are

n0 = µ0

6

√
3µ2

0 +16π2T2
0 +

2πµ0T0

3
= χnϵ,0

2
= χϵn,0

2
, (3.83a)

s0 = 8π2

9
T0

√
3µ2

0 +16π2T2
0 +

π

9

(
3µ2

0 +32π2T2
0

)
, (3.83b)

χnn,0 = 1
6

 2
(
3µ2

0 +8π2T2
0

)
√

3µ2
0 +16π2T2

0

+4πT0

 , (3.83c)

χππ,0 =
3µ4

0

(
2πT0

(
4πT0 −

√
3µ2

0 +16π2T2
0

)
+µ2

0

)

2
(√

3µ2
0 +16π2T2

0 −4πT0

)3 = χϵϵ,0

2
, (3.83d)

χ(1)
nn,1 =

3µ2
0

(
µ2

0 +8π2T2
0

)
2

(
3µ2

0 +16π2T2
0

)3/2 , χ(1)
nϵ,1 =

µ0

6

 2
(
3µ2

0 +8π2T2
0

)
√

3µ2
0 +16π2T2

0

+4πT0

 , (3.83e)

χ(1)
ππ,1 =

µ2
0

4

√
3µ2

0 +16π2T2
0 +πµ2

0T0 =
χ(1)
ϵϵ,1

2
, (3.83f)

χ(0)
nn,2 =

96π4µ2
0T4

0(
3µ2

0 +16π2T2
0

)5/2 , χ(0)
nϵ,2 =

3µ3
0

(
µ2

0 +8π2T2
0

)
2

(
3µ2

0 +16π2T2
0

)3/2 , (3.83g)
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χ(0)
ππ,2 =

3µ4
0 +2πµ2

0T0

(√
3µ2

0 +16π2T2
0 +4πT0

)
4
√

3µ2
0 +16π2T2

0

=
χ(0)
ϵϵ,2

2
, (3.83h)

while for the GR black hole we have

n0 = µ0

3

√
3µ2

0 +16π2T2
0 = χϵn,0

2
, s0 = 16π2

9
T0

√
3µ2

0 +16π2T2
0 , (3.84a)

χnn,0 =
2

(
3µ2

0 +8π2T2
0

)
3
√

3µ2
0 +16π2T2

0

, χππ,0 = 1
9

(
3µ2

0 +16π2T2
0

)3/2 = χϵϵ,0

2
, (3.84b)

χ(1)
nn,1 =

3µ2
0

(
µ2

0 +8π2T2
0

)
(
3µ2

0 +16π2T2
0

)3/2 , χ(1)
nϵ,1 =

2µ0

(
3µ2

0 +8π2T2
0

)
3
√

3µ2
0 +16π2T2

0

, (3.84c)

χ(1)
ππ,1 =

µ2
0

2

√
3µ2

0 +16π2T2
0 =

χ(1)
ϵϵ,1

2
, χ(0)

nn,2 =
192π4µ2

0T4
0(

3µ2
0 +16π2T2

0

)5/2 , (3.84d)

χ(0)
nϵ,2 =

3µ3
0

(
µ2

0 +8π2T2
0

)
(
3µ2

0 +16π2T2
0

)3/2 , χ(0)
ππ,2 =

µ2
0

(
3µ2

0 +8π2T2
0

)
2
√

3µ2
0 +16π2T2

0

=
χ(0)
ϵϵ,2

2
. (3.84e)

Lastly, we need to know some information on the transport coefficients η and σQ
to compute the hydrodynamic response. These can be determined in the momentum-
dependent homogeneous systems through η = limω→0

1
ω

ImGTxyTxy (ω,k = 0) and
σQ = limω→0

1
ω

ImGJx Jx (ω,k = 0). In the case of conformal-to-AdS2 solutions like
the RN and GR black holes, these expressions can be solved analytically for the two
transport coefficients. The shear viscosity η saturates the minimal viscosity bound
η = s0

4π [199] while σQ was computed for a wide class of scaling black hole solutions
[175] and here is given by

σQ = 4π2T2
0

9


√

3µ2
0 +16π2T2

0 −4πT0

µ2
0 −2πT0

√
3µ2

0 +16π2T2
0 +8π2T2

0


2

for RN, (3.85a)

σQ =
(
1+ 3µ2

0

16π2T2
0

)−3/2

for GR. (3.85b)

3.D.2 Numerics

We briefly review here how we compute the optical conductivity in the 2+1 di-
mensional strongly coupled conformal field theory holographically dual to the RN and
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GR black holes in the presence of a lattice. More details about the numerical methods
used to compute these backgrounds and fluctuations can be found in the companion
article [184]. The homogeneous RN black hole is a saddle point of the Einstein-Maxwell
action

S =
∫

d4x
p−g

[(
R−2Λ

)− 1
4

FµνFµν

]
, (3.86)

with metric

ds2 = gµνdxµdxν = 1
z2

[
− f (z)dt2 + dz2

f (z)
+dx2 +dy2

]
, A = At(z)dt , (3.87)

where f (z)= (1− z)
(
1+ z+ z2 − µ2 z3

4

)
is the emblackening factor and At(z)=µ(1− z) a

U(1) gauge field. In the above expressions, z is the radial coordinate ranging from the
AdS boundary at z = 0 to the horizon of the black hole at z = 1. The temperature of this
black hole is T = 12−µ2

16π .16

The GR black hole is similarly obtained by extremizing the Einstein-Maxwell-
Dilaton action

S = 1
2κ2

∫
d4x

p−g
[
R− Z(φ)

4
FµνFµν− 1

2

(
∂µφ

)2 +V (φ)
]

, (3.88)

with the potentials Z(φ)= eφ/
p

3 and V (φ)= 6cosh
(
φ/
p

3
)

Its metric is

ds2 = gµνdxµdxν = 1
z2

[
−h(z)dt2 + 1

h(z)
dz2 + g(z)(dx2 +dy2)

]
, (3.89a)

A =
√

3Q(1+Q)
(1− z)
1+Qz

dt , φ=
p

3
2

log
(
1+Qz

)
. (3.89b)

The functions h(z) and g(z) are given by

h(z)= (1− z)
g(z)

[
1+ (1+3Q)z+ (

1+3Q(1+Q)
)
z2

]
, g(z)= (1+Qz)3/2. (3.90)

This model is similar to the Einstein-Maxwell model with the addition of a neutral
scalar field φ which controls the strength of the U(1) charge through the potential
Z(φ). A consequence of this is the ability to discharge some of the black hole charge
near the horizon such that the extremal T = 0 solution of this GR black hole will have
a vanishing horizon and therefore vanishing entropy ST=0 = 0. The distance from
extremality is controlled by the parameter Q: it is related to the chemical potential

16A priori, if we allowed the black hole horizon to be arbitrarily located at z = zh, the temperature and
chemical potential would be two independent parameters. However, when using the freedom to rescale
the radial coordinate such that zh = 1, we have implicitly fixed the temperature as a function of the
chemical potential such that the only thermodynamic degree of freedom here is T/µ.
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through µ=√
3Q(1+Q) and the temperature of the non-extremal black hole is given

by T = 3
p

1+Q
4π .

To obtain backgrounds with an explicit lattice, we will allow for a more general
ansatz

ds2 = 1
z2

(
−Qtt f (z)η2

t +Qxxη
2
x +Q yyη

2
y +

Qzz

f (z)
η2

z

)
, (3.91a)

ηt = dt, ηy = dy, ηz = dz, ηx = dx+Qxzdz, (3.91b)

A =µ(1− z)atdt, (3.91c)

for RN with f (z) unchanged from (3.87) and

ds2 = 1
z2

(
−Qtth(z)η2

t + g(z)
(
Qxxη

2
x +Q yyη

2
y

)
+ Qzz

h(z)
η2

z

)
, (3.92a)

ηt = dt, ηy = dy, ηz = dz, ηx = dx+Qxzdz, (3.92b)

A = µ(1− z)
1+Qz

atdt, φ= 3
2

log
(
1+ϕ(z)Qz

)
. (3.92c)

for GR with h(z) and g(z) unchanged from (3.89), but every field Q i j,at,ϕ is now a
priori a function of x and z. We require these fields to be regular near the horizon17 and
that their UV behavior at z = 0 recovers AdS asymptotics.18 Moreover, to encode the
modulation of the chemical potential, we must impose the following boundary condition
on the gauge field

at(z = 0)= 1+ A cos
(
Gx

)
. (3.93)

The system is then solved numerically for the unknown functions Q i j,at,ϕ.

To compute the optical conductivity in the holographically dual field theory, we
must consider small fluctuations on top of this spatially modulated background. We
linearize the Einstein equations around our lattice background

gµν = ḡµν+δhµνe−iωt+ikx , (3.94a)

Aµ = Āµ+δbµe−iωt+ikx , (3.94b)

ϕ= ϕ̄+δψe−iωt+ikx , (3.94c)

and solve for these fluctuations with infalling boundary conditions, corresponding to
choosing the response sourced through the retarded Green’s function. The response

17One of the regularity conditions near the horizon is that Qtt(z = 1)=Qzz(z = 1). This choice has the direct
consequence that the temperature of the black hole remains constant and given by the homogeneous
value for each model.

18 In the case of the dilaton φ, the UV boundary condition chosen is a multi-trace deformation chosen such
that the deformation is marginal and the boundary remains conformal. For more details, see [170].
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in the radial electric field Fzx in answer to an oscillating source in the potential
δ∂t Ax(ω)≡ δbx keeping the other components sourceless19 evaluated in the limit z → 0
then translates through the holographic AdS/CFT correspondence into the longitudinal
optical conductivity σ = limz→0

Fzx
∂t Ax

= δJx
δEx

. In the language of our hydrodynamic
setup in Sec. 3.2, this is akin to simply turning on an external electric field δEx with
momentum k and frequency ω. This response is also solved for numerically.

The numerical solutions to these equations were obtained using a publicly avail-
able custom package [173] and computed on the Dutch national Cartesius and Snellius
supercomputers with the support of SURF Cooperative.

19Note that the condition for the dilaton to be sourceless is non-trivial and inherited from the mixed boundary
condition of the background dilaton (see footnote 18).
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