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Chapter 1
Introduction

1.1 Quantum critical points and strongly correlated
electrons

Within the last century, Condensed Matter Theory (CMT) has emerged as one of
the most successful areas of physics. The initial impetus behind it was the statistical
mechanics underpinning of thermodynamics which opened the door to understanding
the solid and liquid phases of matter made out of atoms and bound together through
the electromagnetic force. With the advent of quantum mechanics, modern solid state
physics was born, and the field grew to the more general study of quantum many-body
systems.

A key pillar of CMT is symmetries; within Landau’s framework, phases of matter
are categorized by their symmetries and described by a low energy effective functional
constrained by these symmetries. As an example, the effective quantum many-body
description of up-down spins can be done through the following free energy functional

F [ψ]= s(T)
2

ψ2 + u(T)
4

ψ4 + . . . , (1.1)

where ψ is a real scalar field modelling the average number of up (positive) and
down (negative) spins in some local area, also called the magnetization. A priori, the
coefficients s and u depend on the temperature T and other physical parameters of the
system. The symmetry under which the action (1.1) is invariant is Z2 inversion i.e.,
when all spins simultaneously flip their signs ψ→−ψ. When this symmetry is broken,
either explicitly by interactions or spontaneously by the state, the physical system
undergoes a phase transition. In our Ising example, the former can be done by coupling
to an external magnetic field Fexplicit[ψ]=F [ψ]+hψ, which explicitly breaks the Z2
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invariance. The case of spontaneous breaking can be understood as the deformation of
the energy functional when tuning temperature. When s(T)> 0 and u(T)> 0, F has a
single minimum at ψ= 0 (the state is called a paramagnet) while when s(T)< 0 and
u(T)> 0, two minima emerge at ψ=±

√
−s
u ̸= 0 (the state is then a ferromagnet).1 In

the last case, since ψ ̸= 0, the Z2 invariance is broken by the state while the functional
remains invariant under the symmetry.

This scenario of spontaneous symmetry breaking presents a continuous transition
where the system passes through a critical point at s(T = Tc) = sc (sc = 0 for our
Ising example). The self-induced change is driven by thermal fluctuations. At the
critical point, the correlation length ξ diverges and the correlation functions showcase
an emergent scale invariance — the system is then described by a conformal field
theory (CFT). If the system depends on other physical parameters (e.g., pressure,
chemical potential, etc.) collectively denoted by p, one can tune the transition at zero
temperature to a critical point located at s(p = pc,T = 0). The system is now driven by
quantum fluctuations instead of thermal fluctuations and the critical point is called a
quantum critical point (QCP). It is this type of quantum phase transition (QPT) where
the corresponding CFT exists at temperatures close to zero that will be of relevance to
this thesis.

Most systems one encounters in CMT are generally perturbative in nature; they
are usually related to a free system by a small deformation, an adiabatic deformation
(e.g., the Fermi liquid is adiabatically connected to the Fermi gas) or by some duality
(e.g., the bosonization of the Luttinger liquid). In these cases, the excitations of the sys-
tems are particle-like in nature and are called quasiparticles. For interacting systems,
these quasiparticles generally acquire a finite yet large enough lifetime such that the
quasiparticle manifests itself as a well-defined resonance peak in the spectrum of the
correlation functions. The dynamics of the system can then be understood in terms of
the collisions of these quasiparticles.

One of the most interesting properties of QCPs is that the excitations of the system
at that point are generically not quasiparticles. Consider the following Euclidean action
as a toy model [1]

SQCP(ψ)=
∫

d2xdτ
[
(∂τψ)2 + (∇ψ)2 + s

2
ψ2 + u

4
ψ4

]
, (1.2)

This action is a generalization of the Ising functional (1.1) and will describe the Ising
QPT between the previously described ferromagnetic and paramagnetic phases. Away
from the QCP, both of these phases have quasiparticle excitations called magnons.
How do we describe the theory at criticality, where there are no quasiparticles? In
dimensions d > 3, one can still get away with a quasiparticle description (in a free field
representation) even though formally there are no such excitations. In 2+1 dimensions,

1Note that the case of u(T)< 0 yields an unbounded energy functional as |ψ|→∞ and therefore signals an
unphysical instability.
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1.1 Quantum critical points and strongly correlated electrons

however, it is well-known that under Renormalization Group (RG) flow, the ψ4 theory
admits not only the trivial Gaussian fixed point u = s = 0 but also the Wilson-Fisher
fixed point characterized by (s⋆,u⋆) — in that case this non-trivial fixed point will be
the location of the Ising QCP. At this QCP, the two-point correlator for ψ will then
take the conformal form [1]

Gψψ(ω,k)∼ 1(
k2 −ω2

)(2−η)/2 (1.3)

where η ̸= 0 is some anomalous scaling exponent for ψ. Would η = 0 have been true,
then the propagator would have poles at ω=±k, and we would recover a quasiparticle
description of the system.2 However, for generic values of η, the propagator is not an
analytic function and exhibits branch cuts instead of well-defined poles — this is the
simplest example of ‘unparticle’ physics.

By definition, at the critical point, the correlation length ξ diverges as ξ∼ |s− sc|−ν,
defining the critical exponent ν. If we now add a small temperature, we still expect
the system to remember its critical origin and therefore the correlator should take the
scaling form

Gψψ(ω,k)∼ T
η−2

z F
(

k
T1/z ,

ξ−1

T1/z ,
ω

T

)
. (1.4)

In the previous equation, we have allowed for a dynamical critical exponent z
which accounts for a different scaling of time and space. Since the action (1.2) is
manifestly Lorentz invariant, then z= 1. However, other theories can a priori show a
non-trivial emergent z> 1.3 From the correlator (1.4), we can see that for temperatures
T > ξ−z, then the scaling ratio Tξz remains large (and even grows with increasing
T) and thus the physics of the system is controlled by the fluctuations of the QCP
ground state. This is a special phase of the system called the quantum critical regime,
which, remembering the scaling of ξ, is then defined at low temperatures by the region
T > |s− sc|zν. In Fig. 1.1, we draw a schematic phase diagram for the system described
by (1.2) where the quantum disordered phase is the paramagnet and the quantum
ordered phase is the ferromagnet (which eventually transitions back to a classical
paramagnet at high-enough temperature). A QCP without a quasiparticle description

2In this case, the poles have no imaginary part, so these quasiparticles do not decay.
3This is for instance the case for the Hertz-Millis model [2, 3] describing the coupling of a bosonic order

parameter ψ passing through a QCP and coupled to fermionic excitations. After integrating out the
fermions, we are left with an effective action for the critical boson of the form

S =
∫

dωdd q

[( |ω|
γ(q)

+ q2
)
|ψ|2 +m2|ψ|2 + . . .

]
(1.5)

where we ignored irrelevant terms for simplicity. If the critical boson describes a ferromagnetic order
parameter, then γ(q)∼ |q| and therefore the emergent dynamical critical exponent at this QCP is z= 3.
Note that while the Hertz-Millis model predicts generic mean-field exponents below the upper-critical
dimension dc = 1, there are subtleties in two- and three-dimensional systems which may invalidate this
simple Ginzburg-Landau description [4, 5, 6].
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Figure 1.1: Schematic phase diagram of a system in the presence of a quantum critical point. On
each side of the transition, there is a quantum ordered and disordered phase which can both be
described by quasiparticles. The quantum ordered phase admits a classical phase transition to a
thermal disordered phase. The shaded area indicates the area where fluctuations along the time
direction are frozen, and the behavior is purely classical. At finite temperature, there is a region
where the physics of the QCP remains dominant and the excitations of this region cannot be
described perturbatively as quasiparticles.

is possibly the best example of a ‘strongly interacting’ or ‘strongly coupled’ system, as
opposed to the perturbative systems mentioned at the beginning of this introduction
which are dominated by quasiparticles.4

The explorations of this thesis are motivated by a variety of strongly coupled
systems. Among them stands the mysterious ‘strange’ metallic phase of the copper
oxides high-Tc superconductors (or cuprates) discovered in the 1980s [8]. Such cuprates
are so-called Mott insulators. By tweaking their chemical composition, the number of
available charge carriers per ionic site (electron or holes) can be changed (this is called
electron or hole doping) and they can become conducting metals which superconduct
at low temperature, where the temperature of onset of the superconducting phase
changes with the doping parameter. The main characteristic of the cuprates is that for
some optimal value of doping p∗, the transition temperature shows an anomalously
high maximum, orders of magnitude larger than that predicted by the conventional
Bardeen–Cooper–Schrieffer (BCS) theory (where Tmax

c ≃ 35K, see Fig. 1.2). This, in
essence, shows that such cuprates do not reflect the physics of conventional Fermi

4Note that this widely used nomenclature is not entirely exact. Adiabatically deformed systems can be
strongly interacting and still have quasiparticle excitations. (see e.g., for the Fermi liquid [7]). In this
thesis we will follow this naming convention in spite of this technicality to match the rest of the literature.
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(a) Figure taken from [9]. (b) Figure taken from [10].

Figure 1.2: (a) Graph plotting the history of discovery of high-Tc superconductors. In green are
the conventional superconductors described by BCS theory while in red are the cuprates. (b)
Generic phase diagram of the cuprates parametrized by hole doping and temperature.

liquid quasiparticles.

The superconducting phase is not the only interesting part of these materials:
the phase diagram of cuprates shows a remarkable number of exotic phases, with a
pseudo-gap phase at low doping and a regular Fermi liquid phase at large doping. Yet
the phase where the non-quasiparticle nature is most manifest is the strange metal
phase at optimal doping, at temperatures above the superconducting transition. This
phase is characterized by a variety of properties, the most prominent of which is the
linear-in-T resistivity ρ — where a regular Fermi liquid metal would have ρ ∼ T2 at low
temperatures. This linear-in-T resistivity is valid not only at low temperatures but also
throughout a large range of temperatures where other interactions would usually take
dominance (e.g., the ρ ∼ T5 electron-phonon contribution in regular metals is absent in
strange metals). Moreover, at large enough temperature, the resistivity of a metal whose
transport is mediated via quasiparticles should saturate at the Mott-Ioffe-Regel (MIR)
bound [10]. Yet in strange metals, that bound is violated by the linear-in-T resistivity
(Fig. 1.3a, see also [11, 12]) indicating again that the quasiparticle description of
electronic transport should break down in those systems.

While early efforts were focused on attributing this behavior to the underlying
high-Tc physics in cuprates, it was demonstrated that such strange metals can be
found in more general strongly correlated electronic systems [14, 15]. It indicated that
more universal physics could be at the root. One clear candidate for non-quasiparticle
physics is the existence of a QCP, hidden by the superconducting dome, with the
strange metallic physics originating from the quantum critical regime [16, 10].

In strange metals, experiments have shown, however, that if quantum critical
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(a) Figure taken from [11]. (b) Figure taken from [13].

Figure 1.3: In-plane resistivity of the hole-doped La2−pSrpCuO4 (LSCO) cuprates. (a): We see
the resistivity violates the MIR bound (located between 200K and 300K) at large temperature
indicating transport is not mediated via quasiparticles. The hole-doping parameter is p = 0.19.
(b): Exponent n of the resistivity ρ ∼ Tn as a function of hole-doping. The red region indicates
the strange metallic phase where n ≃ 1. The data within the superconducting dome is obtained
via extrapolation of finite magnetic field data.

physics is at the origin of this phenomenon, it is not simply a QCP, but the even more
exotic case of a quantum critical phase (QCPh), a continuous set of QCPs connected by
a line. This is supported by measurements of the effective exponent n for the in-plane
resistivity in cuprates ρ ∼ Tn [13] (in the presence of a high magnetic field such that
the superconducting phase is suppressed and thus the hidden part of the resistivity
can be extrapolated). This is represented in Fig. 1.3b where we see indeed that the
strange metallic behavior does not seem to converge to a point but to a finite segment
at zero temperature. Another argument in support of a QCPh can be found in ARPES
measurements showing that the imaginary part of the electron-like non-quasiparticle
self-energy5 takes the form Σ(ω)−Σ(0) ∼

[
T2 +ω2

]α
with, crucially, α a non-integer

value that varies continuously with hole doping p [17]. The key difference between a
QCP and a QCPh is that in the latter case, some constraint must allow the emergent
critical boson to be gapless within a finite range of parameter space instead of at
a specific point.6 The coupling of this critical boson with a Fermi surface allows for
non-Fermi liquid behavior in the photoemitted electron self-energy. This persistent
gaplessness over a range of parameters is responsible for the continuous dependence
of critical exponents to the tuning parameter instead of a fixed value but remains a big
mystery from a theoretical point of view. A core objective of this thesis will be to show
that, surprisingly, quantum critical phases naturally arise in the so-called ‘holographic’

5In the language of our toy model, the self-energy is just the correction to the dispersion relation of the
quasiparticle pole due to interactions.

6We refer the reader to this excellent review for a more in-depth discussion of quantum critical phases [18].
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description of quantum critical states [18] — which makes it a fertile ground to look for
theories in the same universality class as observed strongly coupled non-quasiparticle
and/or QCP-type physics, and will be the subject of our focus starting from now.

1.2 The holographic AdS/CFT correspondence

One of the breakthroughs in describing non-quasiparticle-like physics has been
the discovery of the AdS/CFT correspondence, also known as holographic duality. Many
books and reviews have been written on the topic already and more details can be
found within those texts [19, 20, 1, 21]. Given the sizeable length such an in-depth
introduction requires, it is not the goal of this section to exhaustively review the
topic, but rather to introduce the main arguments and ideas behind applied holography
through canonical examples whose details will also serve to highlight common notations
and techniques.

The first example of the AdS/CFT duality was brought forth by Juan Maldacena
in 1997 within the framework of string theory [22]. This result connects the physics
of a very special quantum field theory (QFT) at strong coupling — a CFT which has
no quasiparticles — with that of weakly-coupled gravitational physics. While a full
derivation of the string theory background required to understand this specific example
in details might be too intricate for the scope of this section, we will nonetheless attempt
to extract the essential argument behind this matching.

To that end, let us first consider an O(N) vector theory (see [23] for a more in-
depth review). We consider a field φi in a vector representation of the symmetry group
O(N). Its dynamics are described by an action invariant under these transformations.
Interaction terms inside the action must therefore be O(N) scalars of the form φ2 ≡φ ·φ,
φ ·∂µφ, etc. to lowest orders in φ. We can thus build the following Euclidean action

S =
∫

dd x

[
1
2

(∂φ)2 + m2
0

2
φ2 + g

2N
(φ2)2

]
. (1.6)

Why the quartic coupling has an extra N factor will become evident in the follow-
ing derivation. The theory at g = 0 is a simple Gaussian free theory with partition
function

Z0 ≡
N∏

i=1

∫
Dφi e−

1
2

∫
dd x

[
(∂φi)2+m2

0φ
2
i

]
≡ e−NS0(m2

0) , (1.7)

where we defined the effective action S0(m2
0)=− 1

2 Trlog
(
−∂2 +m2

0

)
of a single scalar

field component φi. Keeping g finite, we apply a Hubbard-Stratanovitch transformation
to this model such that we can rewrite the partition function Z = ∫ Dφe−S[φ] into
Z′ =N ∫ DφDσe−S′[φ,σ], where N is an overall normalization term which has no effect
on the correlations, with the new action

S′ =
∫

dd x

[
1
2

(∂φ)2 + m2
0

2
φ2 − N

2g
σ2 +φ2σ

]
. (1.8)
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The action S′ is again Gaussian in φ, and therefore we can apply the computation
done previously at g = 0 with effective mass m2 = m2

0 +2σ such that, after integrating
out the vector φ, the partition function is Zeff. =N ∫ Dσe−NSeff.[σ] with the effective
action

Seff.[σ]= S0(m2
0 +2σ)− 1

2g

∫
dd xσ2 . (1.9)

Due to the normalization of the quartic coupling in the action (1.6), the path integral
now only depends parametrically on the number of vector components N through the
overall normalization of the action. In the large-N limit, the path integral will then be
dominated by the saddle-point σcl. defined through the condition δSeff.

δσ
(σcl.)= 0. This

condition is equivalent to the implicit (or gap) equation G0(x, x;m2)= σcl.
g where G0 is

the propagator of a free scalar field with mass m2 = m2
0 +2σcl..

So far, we have shown that for this class of theories, taking a large-N limit can
be an effective tool to achieve some semi-classical description where a saddle-point
dominates the path integral. However, we see that the vector model is also entirely
dominated by the Gaussian fixed point for any finite coupling g. A similar yet richer
model can be considered by promoting the field φi from the vector representation to
the adjoint representation of O(N) — Φi j is now a real symmetric matrix with N(N+1)

2
components and the action (1.6) will then be promoted to

S =
∫

dd x

[
1
2

Tr
(
∂Φ

)2 + m2
0

2
TrΦ2 + gp

N
TrΦ3

]
. (1.10)

In the new action (1.10), we only consider the relevant deformation TrΦ3 (in d = 4) for
simplicity, but there is a priori also a TrΦ4 interaction — as there was in the vector
model (the cubic interactions are not present in the vector model due to the O(N)
invariance condition). While in the vector model most loop diagrams get suppressed by
powers of 1/N such that the only leading order effect is to renormalize the scalar mass
(see Fig. 1.4), in the matrix model loop diagrams with increasingly high powers of the
coupling g remain at leading order in N (see Fig. 1.5). The matrix model can therefore
capture more non-trivial physics than the vector model [24]. It is then possible to take
the semi-classical limit N ≫ 1 while keeping the strongly coupled physics of the system.
This interplay of limits is controlled by the so-called ’t Hooft coupling λ= gN such that
λ≪ 1 is akin to a weak coupling limit (similar to the vector model) while λ≫ 1 is the
strong coupling limit.

We can now briefly explain Maldacena’s discovery. Within type-IIB string theory,
solitonic 3+1-dimensional defects (so-called D3-branes) have a zero-mode sector which
is essentially the supersymmetric extension of (1.10). There, the strings connecting
the branes are described by the matrix fields Φi j and the ’t Hooft coupling is given
by λ ∼ gsN with gs the string coupling constant. This is the low energy theory of a
supersymmetric N = 4 SU(N) gauge theory which is a CFT. Maldacena observed that
studying the system described by the supersymmetric extension of (1.10) at strong
coupling λ ≫ 1 and in the large-N limit N ≫ 1 has a window 1≪λ≪ N2 within

8
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b

a a

(a) The vertex brings a factor g/N while the
loop over the index b yields a factor N. The
overall order of this diagram is O(g).

a a a
b

b

(b) The vertices bring a factor (g/N)2 while the
loop over the index b yield a factor N. The
overall order of this diagram is O(g2/N).

Figure 1.4: One-loop and two-loop 1PI diagram contributions to the vector model two-point
function with equal input/output indices. We see that at two-loop order, the irreducible diagram
is subleading in N and thus the leading contribution at every loop order will be the components
of the geometric series associated with 1.4a.

perturbative string theory gs = λ
N ≪ 1 where the gravitational description is weakly

coupled, and the gauge description remains strongly coupled. In this limit, the branes
form an asymptotically hyperbolic geometry of 5-dimensional Anti-de Sitter (AdS)
spacetime times a 5-dimensional sphere. As string theory is a theory of quantum
gravity, the string coupling not only sets the coupling of the gauge theory g2

YM = λ
N , it

also controls the dimensionless gravitational constant GN
L8 = 1

N2 , where L is the radius
of curvature of the AdS spacetime. In this double limit, L is much larger than the
Planck and string lengths i.e., the curvature of the spacetime is weak. Thus, we have a
weakly coupled semi-classical gravitational description of the system, which is strongly
coupled from the brane perspective. This is the essence of the holographic principle: the
duality maps strongly coupled CFT systems to weakly coupled gravitational systems.

Following on Maldacena’s seminal paper, a plethora of similar mappings were
found within string theory (see e.g., this review [25]) — this is called the ‘top-down’
approach. In order for the correspondence to be a practical tool, it is also necessary to
find a mathematical formulation of the correspondence. This was put forward through
the Gubser-Klebanov-Polyakov-Witten (GKPW) formula [26, 27] which relates the
generating functional of a d+1-dimensional CFT to the gravitational partition function
in AdS in one dimension higher∫

DO eiSQFT[O]+i
∫

dd+1xhi(x)Oi(x) =
∫
φi(r=∞,x)=hi(x)

Dφ eiSgrav.[φ] . (1.11)

From this formula, we see that each operatorO of the CFT is dual to the asymptotic
boundary value of some bulk field φ in a gravitational AdS spacetime with one extra
dimension (named the radial direction and denoted by r). An AdS spacetime is different
from flat spacetime where one usually requires fields vanish infinitely far away. Instead,

9



1 Introduction

a

b

a

b

a

b

c

(a) The vertices bring a factor (g/
p

N)2 while
the loop over the index c yields a factor N.
The overall order of this diagram is O(g2).

a

b

a

b
c d

a a

b b

(b) The vertices bring a factor (g/
p

N)4 while
the loops over the indices c,d yield a factor
N2. The overall order of this diagram is
O(g4).

Figure 1.5: One-loop and two-loop irreducible diagram contributions to the matrix model two-
point function with equal input/output indices. We see that by dividing the loops, we can build
diagrams with arbitrarily large order in g but at leading order in N. This is how the matrix
model remains strongly coupled in the large-N limit.

AdS is topologically a cylinder whose boundary, while spatially infinitely far away, is
causally connected with any inertial observer inside the spacetime — signals travelling
at lightspeed can reach the boundary in finite time. This therefore means that we must
set meaningful boundary conditions on fields living inside AdS. Through the GKPW
formula, we see that these boundary conditions translate into sources for each operator
in the CFT. This is illustrated in Fig. 1.6. The GKPW formula (1.11) is most useful
in its saddle-point approximation. We have seen that the weakly coupled limit of the
gravitational description corresponds to the large-N limit of the gauge description.
Hence, on the CFT, the interesting saddle point is the large-N saddle-point of the path
integral — which at large ’t Hooft coupling remains a strongly coupled theory. On the
gravitational side in the weak coupling limit, we are interested in a bulk configuration
of fields which solves the Einstein field equations with boundary conditions set by the
sources hi(x). The variation of this gravitational action w.r.t. the boundary values of
the bulk fields will then yield the expectation values and various n-point correlators
of the CFT in the large-N limit. In this limit, we have seen before that diagrams can
get suppressed such that only a subset (which can be infinite in the strongly coupled
case) survives. This will mean that only the contribution of operators whose diagrams
survive at leading order will be accounted for and thus included in the gravitational
bulk description.

Importantly, the GKPW formula makes no reference to its string theoretic top-
down origin. This invites us to generalize it to a larger class of strongly coupled CFTs
and simply engineer ‘bottom-up’ models where we only consider a minimal set of fields
which are generally chosen by symmetries and phenomenological considerations and
which we expect to be dominant in the large-N limit. This is fully in the spirit of CMT
as we introduced in the first few pages of this introduction. It is this perspective we
take when attempting to model non-quasiparticle physics in a quantum critical regime
such as that of strange metals. One can study the strong coupling physics of scalar,

10
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Figure 1.6: Schematic description of the
AdS/CFT correspondence. We represent an
asymptotically hyperbolic spacetime with a
black hole event horizon in the interior in
anticipation of finite temperature holography
and with a bulk scalar field φ whose value
at the conformal boundary φ(r =∞, x) = h(x)
sources a scalar operator

〈
O

〉
.

fermionic, vector operators in such theories by simply looking at semi-classical scalar,
fermionic and vector fields in AdS. Throughout the various chapters of this thesis, we
will be making use of this bottom-up approach in order to distil some knowledge about
the low energy sector of strongly coupled CFTs.

Pushing the generalization further, one can deform any of these CFTs by a relevant
operator which translates into a deformation of the AdS spacetime due to some mat-
ter/energy content. Remarkably when doing so, one finds that such solutions often stay
within the weak gravity regime where the geometry from the boundary to the interior
can be interpreted as an RG flow to a new (but still strongly coupled) infrared (IR) fixed
point that can be computationally controlled. The working hypothesis of this thesis is
that the new IR of these deformed holographic theories is sufficiently universal such
that the theory can be used as an effective field theory for real-world systems with
similar low energy physics. By this we mean that we assume that the RG flow in real,
experimentally observed materials, starting at some microscopic ultraviolet (UV) fixed
point set by the material itself, ends at some unknown strongly coupled IR fixed point
characterized by some critical exponents (thermodynamical and dynamical). We then
attempt to find another flow from a different, controlled, theoretical holographic UV
fixed point which ends at a strongly coupled IR fixed point with the same exponents
and low energy properties. By RG universality of critical phenomena, it is reasonable
to conclude that those IR fixed points are the same low energy effective theories and
thus the two separate flows belong to the same universality class. If so, we can use the
theoretical model to explain experimental observations. This is illustrated in Fig. 1.7
where we draw a canonical example of universality — the Ising universality class
describing very different models such as spins or gas molecules on a lattice — as well
as the projected analogy for the strange metals.

1.3 Common holographic systems

In the previous sections, we have introduced the GKPW formula which relates
operators of a CFT with fields in a gravitational dual, and we have motivated what type

11
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Liquid-gas

Lattice spins 

Ising universality
class

Strongly-correlated

electrons Holography

Unknown

UV

IR

Figure 1.7: Left: Ising universality class describing the ferromagnet-paramagnet as well as the
liquid-gas transitions. Right: Projected RG flow from the lattice UV fixed point describing the
high-energy physics of strange metals (e.g., cuprates) to some unknown IR theory. A holographic
theory in the same universality class would flow to the same IR.

of CFTs should be studied with holography: CFTs deformed by a relevant operator that
flow to a new yet still computationally accessible RG fixed point. We are now interested
in detailing some common elements of bottom-up holographic models — these form a
‘dictionary’ of the duality (an excerpt of this dictionary can be found in Table 1.1).

The simplest AdS gravitational action one can write is the Einstein-Hilbert action
with a negative cosmological constant Λ

SEH = 1
2κ2

∫
dd+2x

p−g
[
R−2Λ

]
, Λ=−d(d+1)

2L2 , (1.12)

where we have made explicit the relation between the cosmological constant and the
AdS curvature scale L.7 The equations of motion for this action are solved by the AdS
spacetime given by the metric8

ds2 = gµνdxµdxν = L2

z2

(
dz2 −dt2 +dxidxi

)
, (1.13)

7In general, we rescale Λ to set L = 1.
8The Poincaré patch described by this solution does not cover the full AdS spacetime. It is however very

convenient to describe QFTs in infinite volume since its conformal boundary is R1,d . We will make
extensive use of this patch throughout the various chapters of this thesis

12



1.3 Common holographic systems

Boundary QFT Bulk semi-classical gravity

Global symmetry Local symmetry
Scalar operator O Bulk scalar field φ

Conformal dimension ∆ of O Mass of the field φ

Source h of O Value of the leading branch φ−(z = 0)
Expectation value

〈O〉
Value of sub-leading branch φ+(z = 0)

Correlator
〈OO〉

(ω,k) Ratio δφ+(z=0)
δφ−(z=0) for a linearized perturba-

tion δφe−iωt+ikx

CFT vacuum state AdS solution
Thermal state Black hole solution
Finite density state Charged solution with gauge field At

Temperature Hawking temperature
Entropy Bekenstein-Hawking entropy
Chemical potential Boundary value of At
Charge density Boundary radial derivative of At
Free energy On-shell regularized Euclidean action

Table 1.1: Excerpt of the holographic ‘dictionary’ prescriptions for bottom-up models.

where z = 1/r is the radial coordinate and the conformal boundary (also named the UV
boundary) is located at z = 0. The local isometry group of this spacetime is SO(d+1,2),
the conformal group in d+1 dimensions, which means that perturbations around this
background will need to transform under representations of this group. Moreover, the
AdS representations smoothly connect to conformal representations as one approaches
the conformal boundary. Therefore, the CFT correlation functions we can compute out
of this solution using the GKPW formula (1.11) transform covariantly under conformal
symmetries and the state on the CFT-side of the duality will be the vacuum of a
CFTd+1.

Let us give an explicit example how to compute such GKPW correlation functions
using a simple massive scalar field as a pedagogical model. In this example, we will
only focus on the dynamics of the scalar field and ignore the metric, but everything
we will show here is generally valid for all bulk fields, including the metric itself. The
action on our bulk AdSd+2 is

Sscalar =−
∫

M
dd+2x

p−g

[
1
2

(∇φ)2 + m2

2
φ2

]
. (1.14)

As we previously mentioned, we are interested in saddle-points of this action which
can be found by varying the action w.r.t. φ

δSscalar =
∫

M
dd+2x

p−gδφ
(
∇2 −m2

)
φ−

∮
∂M

dd+1x
p−γδφN z∂zφ . (1.15)
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1 Introduction

In this computation, we have integrated by parts the bulk integral yielding the first
term, proportional to the equation of motion. A saddle-point solution will therefore
solve the Klein-Gordon equation of motion i.e.,

(
∇2 −m2

)
φ(z) = 0 (from here on, we

assume that the scalar field only depends on the radial coordinate, which in pure AdS
is sufficient due to separation of variables). The second term is a remaining boundary
integral after integrating by parts. In this boundary term, γ is the induced metric on
the boundary and Nµ is an outward-pointing unit vector defining the boundary hyper-
surface9. Near the UV boundary, the Laplacian operator in the radial direction takes
the form ∇2φ∼ z2∂2

zφ−d z∂zφ such that the scalar field admits the follow expansion

φ(z)∼φ−(z)zd+1−∆+φ+(z)z∆+ . . . , (1.16)

where ∆ is the larger solution of ∆(∆−d−1)= m2 i.e.,

∆= d+1
2

+ 1
2

√
(d+1)2 +m2 > d+1

2
. (1.17)

The two independent branches φ± then yield two degrees of freedom φ(0)
± =φ±(z = 0)

whereas the higher order terms in their expansions are constrained by the equations
of motion. Near the boundary, we will also be using that N z ∼−√

gzz ∼−z such that
we can then compute the on-shell variation of the action (1.15)

δSscalar =
∮
∂M

dd+1xz−d
(
δφ(0)

− zd∆ +δφ(0)
+ z∆

)[
d∆φ(0)

− zd∆−1 +∆φ(0)
+ z∆−1

]
=

∮
∂M

dd+1x
[
d∆φ(0)

− δφ(0)
− zd∆−∆+

(
∆φ(0)

+ δφ(0)
− +d∆φ(0)

− δφ(0)
+

)
+ . . .

]
.

(1.18)

Here we defined d∆ = d +1−∆. Since ∆ > d+1
2 , then d∆ −∆ < 0 and the first term

diverges as z → 0. To quell this divergence, we can add an extra boundary term to
(1.14) which will not change the equations of motion and will only regularize the action
in the boundary — we will discuss this topic in further generality in chapter 4. The
extra boundary term10 we consider is then

Sbdy,scalar =
∮

dd+1x
p−γm2

0

2
φ2 , (1.19)

whose variation leads to an extra contribution

δSbdy,scalar = m2
0

∮
∂M

φ(0)
− δφ(0)

− zd∆−∆+φ(0)
+ δφ(0)

− +φ(0)
− δφ(0)

+ + . . . (1.20)

9In the coordinate system (1.13), the normal vector to the boundary hypersurface Nµ can be chosen such
that only the component Nz is non-zero.

10A priori we could consider other boundary terms which might simply not contribute at leading order
i.e., irrelevant deformations or, depending on the value of the mass m2, we can use a boundary term
which would reverse the roles of φ(0)− and φ(0)

+ i.e., a Legendre transformation. Chapter 4 has an in-depth
discussion of this point.
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1.3 Common holographic systems

By choosing m2
0 = −d∆, the leading divergent term vanishes and we are left with a

finite contribution proportional to φ(0)
+ δφ(0)− plus terms that vanish as z → 0. The total

finite variation becomes

δSscalar =
(
2∆−d−1

)∮
∂M

dd+1xφ(0)
+ δφ(0)

− . (1.21)

This term can be written as δS = ∮ 〈O〉
δh where we identify δh = δφ(0)− as the source

of the bulk scalar field following the GKPW description.11 Through the GKPW formula
(1.11) and in the saddle-point approximation, computing the variation of the action
Sscalar is the same as computing the expectation value of the associated QFT operator

δSscalar

δh
=−i

δ

δh
log ZQFT = 〈O〉

. (1.22)

So we deduce here that the expectation value of the QFT scalar operator associated
with the bulk field φ is

〈O〉= (
2∆−d−1

)
φ(0)
+ . This relation between the falloffs of the

bulk field and the boundary source and expectation value of the associated operator is
at the core of the AdS/CFT duality. Pushing this reasoning further, we can similarly
compute the n-point correlation functions of the QFT operator O. Taking the two-point
correlator as an example, we use that within linear response theory and in Fourier
space,

〈O(ω,k)
〉=GOO(ω,k)δh(ω,k). So to obtain the two-point function, one must sim-

ply add to the saddle-point solution φ a plane wave perturbation δφ(z)e−iωt+ikx, solve
the linearized equations of motion for this model with Dirichlet boundary conditions
and finally read off the Green’s function through the ratio

GOO(ω,k)= (
2∆−d−1

) δφ(0)
+

δφ(0)−
. (1.23)

We can now build on the knowledge of how to compute correlation functions in
the conformal vacuum to deduce how to generalize this computation to other states.
As we have just seen, the choice of sources of operators on the QFT fixes the boundary
conditions on the bulk fields in the UV region. The boundary conditions deep in the
interior can still be chosen freely. This allows for multiple solutions which we will
consider as different states of the theory. An intuitive way to see this is to remember
that the radial coordinate encodes for the RG flow such that the IR of the theory
corresponds to the low energy sector of the dual QFT where state specific aspects
become important. For instance, the Anti-de Sitter-Schwarzschild (AdS-Schw) black
hole solution can be obtained by allowing for a more general metric ansatz and requiring
that gtt vanishes for some value z = zh, which defines the black hole event horizon.

11In the initial section of this chapter, we have mentioned that the correspondence maps the source to the
boundary value of the bulk field, whereas we now show that it is actually given by the coefficient of the
term scaling as zd+1−∆. In practice, one often works with rescaled fields ϕ = z∆−d−1φ such that the
sourcing is done by imposing Dirichlet boundary conditions on ϕ.
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This solution takes the following form

ds2 = L2

z2

(
dz2

f (z)
− f (z)dt2 +dxidxi

)
, f (z)= 1−

(
z
zh

)d+1

. (1.24)

What states could this encode in the QFT? Black holes naturally introduce a notion of
thermodynamics in the system with their Hawking temperature T [28] and Bekenstein-
Hawking entropy S [29], and it is thus reasonable to conclude that the dual state to
this AdS-Schw solution is a CFT thermal state. The thermodynamic quantities can
be read off from the geometry near the horizon; the temperature is given by the slope
of the emblackening factor f at the horizon T = − f ′(zh)

4π while the entropy density is
given by the area density of the event horizon s = 4π

√∏
i g ii(zh) (where the product is

defined on the d spatial coordinates). Many subsequent tests have verified that this
identification is correct [30].

Two different solutions to the same equations of motion will yield two different
holographic states, yet in general we are interested in the thermodynamically preferred
state of a system. In this case, we select the solution which minimizes the free energy of
the system. By definition, the free energy is related to the Euclidean partition function
through F =−T log ZE

QFT which, when using the GKPW formula (1.11) and when the
collective bulk fields φ are taken on a saddle-point φ0, can be related to the Euclidean
on-shell gravitational action

F = TSE,reg.
grav. [φ=φ0] . (1.25)

This notion of thermodynamics is fully compatible with the black hole thermodynamics
of the AdS-Schw solution such that the integrated first law of thermodynamics is
obeyed F = E−TS (where E is the internal energy of the solution obtained by reading
the expectation value of the boundary quantity dual to the bulk metric field).12

To construct another state which we will use heavily, we need to introduce the
electromagnetic charge. These are associated with a local U(1) symmetry (this is
notably the case for the ordinary electric charge). In condensed matter applications
however, one can usually ignore the dynamics of the electromagnetic field and only think
of the symmetry as a global U(1) describing conserved particle flows. An important
feature of holography is that it maps global symmetries to local symmetries. The
argument behind this statement can be readily understood by considering some local
gauge symmetry in the bulk — the diffeomorphism invariance of general relativity

12In the expression (1.25), an extra regularization constraint was imposed on the Euclidean gravitational
action. The reason behind this is that bulk actions in holography are usually supplemented with two
kinds of boundary integrals — the first kind, which we previously discussed, is required to make the
variational problem on the boundary well-defined while the second kind consists of counterterms to
regularize UV divergences. These additions only have support on the boundary, and therefore they do not
affect the bulk equation of motions and their solutions. However, they play a vital role when varying the
action around a saddle-point as we will see shortly. These two types of contributions will be thoroughly
reviewed for a specific holographic model in chapter 4.
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for instance. Variations of the total action — meaning (1.12) and additional boundary
terms — can formally be written as13

δS =
∫

dd+2x
p−g

(
Rµν− 2Λ

d
gµν

)
δgµν+

∮
dd+1x

p−γTµνδgµν , (1.26)

where the bulk term is proportional to the equations of motion which vanishes on-shell
and γ is once again the induced metric determinant on the boundary. Applying the
same logic we previously used for the scalar field action, we can conclude that Tµν is the
boundary expectation value associated with the QFT source δgµν. Let us now consider
a diffeomorphism transformation on the metric variation δgµν→ δgµν+∇µξν+∇νξµ
for some vector ξ. Requiring that δS is invariant under such gauge transformation is
equivalent to the condition∮

dd+1x
p−γTµν∇µξν =−

∮ p−γξν∇µTµν = 0 . (1.27)

To obtain this equality, we used that
p−g∇µXν = ∂µ

(p−gXν

)
, and we integrated by

parts. The condition (1.27) must be valid for every vector ξ and thus is equivalent to
the conservation equation ∇µTµν = 0. A more detailed argument shows that T zµ can
also be set to zero and, noting that the AdS metric is flat at the conformal boundary,
we therefore have on the boundary theory ∂iT i j = 0 — thus indicating that Ti j is the
boundary stress-tensor.14

This feature tells us that in order to introduce a conserved U(1) current in the
boundary, we must add a local U(1) gauge field Aµ in the bulk. The minimal extension
to the Einstein-Hilbert action with such a gauge field is the Einstein-Maxwell action

SEM = SEH − 1
4e2

∫
dd+2x

p−gFµνFµν , Fµν ≡ ∂µAν−∂νAµ . (1.28)

The canonical black hole saddle-point for this action is the Reissner-Nordström (RN)
charged black hole solution which uses the same metric ansatz as (1.24) but with a
different emblackening factor as well as a non-trivial gauge field

f (z)=
(
1− z

zh

)1+ z
zh

+ z2

z2
h
− µ2z3

4zh

 , A =µ
(
1− z

zh

)
dt (in d = 2). (1.29)

This family of solutions is parametrized by (µ, zh) where now µ is the boundary value
of At and therefore the source of the charge density operator J t = n on the boundary
13Here we see immediately why boundary terms must be supplemented to (1.12). In this specific example,

we consider Dirichlet boundary conditions on the metric, and therefore we must eliminate any leftover
variations proportional to ∂zδgµν which naturally arise when varying the Ricci scalar. This can be done
using the Gibbons-Hawking-York term [31]. Counterterms are also needed to tame the divergences in the
volume element

p−g ∼ z−(d+2) near the boundary.
14An important consequence of this statement is that the bulk stress-energy tensor in the gravitational

system, defined as the r.h.s. of the Einstein equations Rµν− 1
2 (R −2Λ)gµν = κ2T̂µν, is fundamentally

different from the boundary stress-energy tensor.
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theory — µ can thus be identified as the chemical potential of the boundary theory. This
allows us to deduce that this solution encodes for a thermal finite density QFT whose
thermodynamics will now obey the first law of thermodynamics F = E−TS−µN, where
the free energy F can once again be obtained by the Euclidean on-shell regularized
gravitational action.

Such a solution, parametrized only by a temperature and a finite density, has
garnered a lot of interest over the years for condensed matter applications, as its near-
horizon geometry encoding for low energy physics shows a novel heretofore unknown
IR anchored on an emergent AdS2 ×R2 geometry [32, 33]. This was immediately
recognized as the dual of a quantum critical sector in the spectrum of the theory, with
curiously an infinite dynamical critical exponent z=∞.15

More generalized types of scaling can be found from the infrared geometry of
more complicated black hole solutions [32, 34, 35, 36]. The most general family of such
solutions are saddle-points of the Einstein-Maxwell-Dilaton (EMD) action

SEMD =
∫

dd+2x
p−g

[
1

2κ2 (R−2Λ)− Z(φ)
4e2 FµνFµν− 1

2
(∂φ)2 −V (φ)

]
, (1.30)

where V and Z are arbitrary functions of φ. These solutions will yield a near-horizon
geometry of the form

ds2 = r2θ/d

[
−dt2

r2z + dr2 +dxidxi

r2

]
(1.31)

where we have set L = 1 and the horizon is now located at r → 0. The exact choice of
scalar potentials V , Z will determine the value of the exponents θ,z. We have already
encountered z, identified as the dynamical critical exponent of a quantum critical
theory, and θ can be identified as the hyperscaling violation exponent.16 Since the
scalings control the IR geometry of the theory where the event horizon lies, they will
directly affect the low temperature thermodynamic scalings, with in particular the
entropy density obeying a scaling form s ∼ T

d−θ
z .

As we mentioned previously, the near-horizon geometry of the RN solution is
AdS2 ×R2. We can deduce from Eq. (1.31) that for the RN black hole, the two exponents
take the values (θ,z) = (d,∞). An immediate consequence of this scaling is that for
the RN solution, S(T → 0)= S0 > 0. This finite ground state entropy signals that the
RN solution is a fine-tuned point in the large-N limit and will carry artifacts of such
limit. By the usual arguments, it should be unstable. Let us set aside that matter
for a second and focus on the intriguing property of an infinite dynamical critical

15The existence of such a state has later been verified for SYK-type models, confirming that this feature is
not a holographic artifact.

16While the dynamical critical exponent relates scaling properties of space and time, the hyperscaling
violation exponent sets an effective dimensionality deff. = d−θ for the system at low energies. A typical
example of such property can be found in theories with a Fermi surface which are effectively one-
dimensional and whose physics is set by a non-decoupling dimensionful energy scale: the Fermi energy.
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exponent z=∞. Remembering the physics of QCPs of the previous section, an infinite
dynamical critical exponent means that the system remains in the quantum critical
regime throughout a large portion of parameter space (this is akin to having a flat
cone for the quantum critical regime). This suggests that the RN solution is closer to
describing a quantum critical phase rather than a quantum critical point. Moreover,
in that limit, lengths and spatial momenta do not scale away at low energies and
thus any momentum can contribute to low energy fluctuations. This seems to hint
that, in spite of its fine-tuning, the RN solution demonstrates relevant physics to that
of strange metals. Other solutions were later found which also displayed an infinite
critical dynamical exponent z=∞ while preserving the third law of thermodynamics.
This is made possible when the hyperscaling violation exponent also diverges while
keeping the ratio − θ

z ≡ η fixed. The near-horizon geometry is then conformal-to-AdS2
i.e., it is related to the near-horizon RN geometry by a conformal factor as [37]

ds2 = y−
2η
η+d

[
a2 −dt̃2 +dy2

y2 +dxidxi

]
, a = d

η+d
z−1 , (1.32)

where we used the coordinate transformation r → ya and t → at̃ on (1.31) and used that
a−1∼−1 as z→∞. Such near-horizon geometries will then lead to entropy scalings
S ∼ Tη which will vanish at low temperatures for η> 0. Among this family of solutions,
we will be interested in this thesis in the Gubser-Rocha (GR) model [38] which has η= 1
and therefore an entropy S ∼ T, the same scaling behavior observed in a Fermi liquid
(which has (z,θ)= (1,d−1)). Note that in practice, while these more refined solutions
provide a less artificial starting point to study z →∞ physics than the RN solution,
they are also generally more complicated. For that reason, it is still common to study
the RN solution as a simpler toy model and eventually consider a conformal-to-AdS2
model as a refinement — which is what we will do in chapter 2.

1.4 This thesis

In this introduction, we have presented a pedagogical review of the tools and
ideas behind the AdS/CFT correspondence with a strong emphasis on its application to
study strongly correlated quantum matter at novel QCPs and QCPh’s. In the following
chapters of this thesis, we will apply these methods to various holographic models built
in order to produce varied physics, showcasing the universal power of our holographic
methods for such cases, either in the direction of experimental strange metals or to
address more fundamental theoretical puzzles. These applications can be grouped in
three parts.

1.4.1 Chapters 2, 3, 4 — Metallic transport in an ionic lattice

We will follow this introduction with chapter 2 in which we will numerically
construct black hole solutions with modulated boundary charge densities in order to
simulate the effect of a lattice made of background ions on the holographic QCPh of
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the RN and GR models. Chapter 2 will further feature a detailed introduction of the
wider condensed matter context and will situate our findings within that context. Our
numerical data will allow us to measure electrical and thermal conductivities, thus
probing flows of charge and thermal carriers in such a modulated potential, both at
small i.e., perturbative, and at large lattice potential strength. These observables can
be directly compared with laboratory experiments and are thus of great interest.

The holographic data in the perturbative regime at small wavelength and fre-
quencies will then be thoroughly compared with the theoretical predictions of a purely
hydrodynamic flow of electric charges with perturbatively small spatial modulation
of their chemical potential. The general framework of the underlying hydrodynamic
theory will be developed in chapter 3 where we present a novel, standalone hydrody-
namic calculation. The benefit of such theories comes from the wide range of systems
they can describe. However, as effective theories, they lack predictive power without
microscopic model-specific input. We will thus further see in chapter 3 that holography
doubles as a great set of microscopic models to probe interesting hydrodynamic behav-
ior. Why hydrodynamics gives additional theoretical leverage to describe QCPh’s will
be explained.

The question of the quantization procedure on the QFT side of the duality for the
GR solution (with or without a lattice modulation) is a subtle but important detail of the
GKPW formula that we have so far not addressed and can often be ignored. However,
for the GR model which we considered for experimental reasons, one cannot ignore
this subtlety. In particular, one must carefully understand the role of the scalar field in
the action (1.30) under the flow of the Renormalization Group in order to interpret the
boundary theory, as well as to understand its influence on the choice of sources imposed
as boundary conditions when computing correlation functions. In chapter 4, we will
derive the various interpretations of the boundary theory and a posteriori justify the
choices of boundary conditions made in chapter 2.

1.4.2 Chapter 5 — Regulated Quantum Electron Star

An interesting feature of black holes in AdS is that they can be ‘hairy’ i.e., they
can be labelled by more than just their mass, charge and angular momentum. This was
rather unexpected and counter to much of the conventional flat space gravitational
wisdom at the time but proved to be an essential feature of the AdS/CFT correspondence.
It was shown that scalars readily condensate around a black hole. This is the dual to
some scalar order parameter condensating in the boundary QFT and indicating a phase
transition to some broken symmetry phase. When the scalar is charged under the
U(1) local gauge symmetry, the condensed state is similar to a superconducting state17

around a quantum critical metal; in other words, the holographic superconductor [39,
40, 41].

17Formally it is only a superfluid as the broken U(1) symmetry is a global symmetry of the boundary.
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Fermions proved more difficult. Due to the Pauli principle, they do not condensate
and thus initially, all that was observed was an instability of the black hole solution
under light fermionic perturbations. By considering the density of fermions to be high
enough, it was possible to treat them as an effective charged fluid — similar to a neutron
star but with charge — leading to an AdS electron star solution [42]. While it was
hoped that this solution would shed some light on the physics of strongly interacting
fermionic systems, it also displayed some artifacts of the holographic origin of this
theory, therefore failing the hypothesis of universal emergent low energy features.
In more detail, the electron star showed an infinite amount of Fermi surfaces in its
spectrum, a remnant of the large-N limit saddle-point approximation. Further attempts
were then made to study this question in more sophisticated ways in order to shield the
IR from purely holographic effects [43, 44, 45, 46] until eventually the assumption of
large density was found to be the cause of these spurious Fermi surfaces. New attempts
were made [47, 48, 49, 50] at reaching the other end of the spectrum, characterized
by a small density of fermions where quantum corrections might be required. These
new models were free of the holographic effects but lost the semiclassical gravitational
stability of the electron star. In chapter 5 of this thesis, we will provide a new model
attempting to bridge these two concepts — a model of a quantum electron star which
is both gravitationally and thermodynamically stable while only displaying a single
Fermi surface — at the price of introducing some external regulator in the form of a
non-dynamical scalar field.

1.4.3 Chapter 6 — Nielsen complexity of conformal field theories

The last chapter of this thesis will look at strongly coupled systems from a different
point of view. A crucial observation is that there seems to be a deep connection between
the notions of strong coupling in QFTs and long-range entanglement, see e.g., [51]. The
main idea behind this statement is that when interactions are weak, it is expected that
each part of the system only overlaps with its neighbors and the resulting entanglement
pattern should be short-range. However, with strong interactions, a small part of
the system can reach further away from its local support which leads to long-range
densely entangled states. The QCPs we have been discussing are themselves examples
of such states; since they are described by CFTs, the entanglement structure of a
given subregion will diverge logarithmically in the length of the subregion [52]. This
observation was the impetus behind the search for a holographic quantity encoding this
property of strongly interacting systems. The first result of this kind was the discovery
by Ryu and Takayanagi of a geometric quantity matching the entanglement entropy of
a CFT subregion [53]. This result was inspired by the Bekenstein-Hawking entropy
formula, yet instead of equating the entanglement entropy to the area of the event
horizon of a black hole, it is given by the area of an extremal surface anchored at the
UV boundary on the subregion.

However, the interior region of a black hole is never probed by such extremal
surfaces and therefore a priori not accounted by this subsystem entanglement entropy.
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It was then an affirmation that entanglement entropy (and the various analogous
proposals for mixed states of bipartite systems) is not enough to account for the entire
entanglement structure of a system [54, 55].

Recent efforts have been made to bridge that gap from the boundary side by
finding another quantity which would probe deeper into the entanglement pattern of
QFTs. One such attempt is called ‘Nielsen complexity’ [56, 57, 58]. This was inspired
by the field of quantum computing wherein the complexity of a given unitary operation
is measured by the minimal number of elementary operations required to build it.
In quantum systems and more generally QFTs, Nielsen proposed that this discrete
measure should generalize to a distance in the space of unitaries. While there is no
doubt that such a quantity can be a useful measure, many ambiguities in its definition
remain (such as the choice of gate set and cost functions). In chapter 6, we study one
such possible measure on CFTs in various dimensions, and, through the holographic
duality, directly and unambiguously connect it to the dynamics of massive semiclassical
particles in AdS.
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