

Applications of AdS/CFT to strongly correlated matter: from numerics to experiments

Chagnet, N.

Citation

Chagnet, N. (2024, June 11). *Applications of AdS/CFT to strongly correlated matter: from numerics to experiments*. Retrieved from https://hdl.handle.net/1887/3762182

Version:	Publisher's Version
License:	<u>Licence agreement concerning inclusion of doctoral</u> <u>thesis in the Institutional Repository of the University</u> <u>of Leiden</u>
Downloaded from:	https://hdl.handle.net/1887/3762182

Note: To cite this publication please use the final published version (if applicable).

Applications of AdS/CFT to strongly correlated matter: from numerics to experiments

Proefschrift

ter verkrijging van de graad van doctor aan de Universiteit Leiden, op gezag van rector magnificus prof.dr.ir. H. Bijl, volgens besluit van het college voor promoties te verdedigen op dinsdag 11 juni 2024 klokke 12:30 uur

door

Nicolas Chagnet geboren te Beaumont-Sur-Oise, France in 1996

Promotor:	Prof.dr. K.E. Schalm
Copromotor:	Prof.dr. J. Zaanen
Promotiecommissie:	Prof.dr. J. Aarts
	Prof.dr. C.W.J. Beenakker
	Dr. S. Cremonini (Lehigh University)
	Prof.dr. B. Goutéraux (École Polytechnique)
	Prof.dr.ir. H.T.C. Stoof (Universiteit Utrecht)

This thesis can be found electronically at https://openaccess.leidenuniv.nl/. Cover art based on an original photo by Marek Piwnicki. Cover font: Eudoxus Sans. To my wonderful wife, Martina.

Contents

C	onter	tents		
Fo	Foreword		v	
1	Intr	roduction	1	
Co Fo 1	1.1	Quantum critical points and strongly correlated electrons	1	
	1.2	The holographic AdS/CFT correspondence	7	
	1.3	Common holographic systems	11	
	1.4	This thesis	19	
		1.4.1 Chapters 2, 3, 4 — Metallic transport in an ionic lattice	19	
		1.4.2 Chapter 5 — Regulated Quantum Electron Star	20	
		1.4.3 Chapter 6 — Nielsen complexity of conformal field theories	21	
2	Holographic lattices as local quantum critical metals		23	
2	2.1	The Planckian dissipation mystery versus computational holography	23	
		2.1.1 Main observations and summary of the results	25	
	2.2	2.2 Holographic strange metals, transport and translational symmetr breaking		
	2.3	Umklapp hydrodynamics for weak lattice potentials.	23 25 33 37 42	
	2.4	The applicability of hydrodynamics and the imprint of local quantum	pp hydrodynamics for weak lattice potentials	
criticality		criticality	42	
	2.5	DC vs Optical conductivities in explicit lattice (holographic) strange		
		metals from Umklapp	45	
		2.5.1 Low temperatures: Drude transport	46	
		2.5.2 Intermediate temperatures: a mid-IR-peak in the optical response	50	
		2.5.3 Intermediate lattice strength: towards an incoherent metal	52	
		2.5.4 On the applicability of Umklapp hydrodynamics	53	

	2.6	2.6 Observations at strong lattice potentials: Planckian dissipation an		
		incoherent metals		
		2.6.1 The remarkable ubiquity of Planckian dissipation		
		2.6.2 An incoherent metal explained with microscopic scrambling 57		
		2.6.3 Saturating behavior and Planckian dissipation		
	2.7	Discussion: is it relevant for condensed matter physics? 62		
	2.A	AdS RN and GR black holes 66		
		2.A.1 Reissner-Nordström		
		2.A.2 Einstein-Maxwell-Dilaton		
		2.A.3 Lattice Backgrounds		
		2.A.4 DC Conductivity		
	2.B	Semi-local criticality and an induced IR length scale		
	2.C	Four pole fitting formula		
	2.D	Memory matrix formalism		
	2.E	Scaling of hydrodynamical relaxation rates		
	2.F	Lorentz oscillator decoupling		
3	Rela	ativistic hydrodynamics in a periodic potential 79		
	3.1	Introduction		
	3.2	Hydrodynamics: Set-up and brief review of homogeneous fluctuations 81		
		3.2.1 Hydrodynamic fluctuations in a homogeneous background 84		
	3.3	Hydrodynamic fluctuations in a lattice background		
		3.3.1 Finite momentum aligned fluctuation spectrum		
		3.3.2 The $k = 0$ zero momentum perturbation		
	3.4	Bloch wave hydrodynamics emerging from holographic models: a com-		
		parison		
	3.5	Conclusion		
	3.A	Thermodynamics and susceptibilities		
3.B		Onsager relations		
	$3.\mathrm{C}$	Second order corrections in lattice strength		
	3.D	Numerical computations in strongly coupled field theories dual to		
		Reissner-Nordström and Gubser-Rocha AdS black holes: set-up 112		
		3.D.1 Thermodynamics		
		3.D.2 Numerics		
4	Qua	antization and thermodynamics of the Gubser-Rocha black hole		
	solu	ition 117		
	4.1	Introduction		
	4.2	Setup		
	4.3	Regularization, boundary terms and choice of quantization 120		
		4.3.1 Boundary action		
		4.3.2 Choice of quantization and thermodynamics		
	4.4	Deformed Gubser-Rocha black holes		
		4.4.1 Numerically constructed solutions		

		4.4.2 The holographic dual of the one-parameter family of solutions in	
		different quantization choices	130
	4.5	Conclusion	133
	4.A	Validity of the boundary action	134
	4.B	Matching of metric gauge choices	137
5	Eme	erging Fermi liquids from regulated quantum electron stars	139
	5.1	Introduction	139
	5.2	A confined Quantum Electron Star: set-up	142
		5.2.1 Einstein-Maxwell-Dirac equations	144
		5.2.2 Fermion densities and backreaction	146
		5.2.3 Boundary conditions on the Einstein-Maxwell sector	147
		5.2.4 Boundary conditions for the fermions	148
	5.3	Regulated Quantum Electron Star: thermodynamics and spectrum	152
		5.3.1 Thermodynamics	153
		5.3.2 Spectrum of the rQES	156
	5.4	Towards a self-confining quantum electron star	160
		5.4.1 Comparison to the holographic superconductor	160
		5.4.2 Confinement in the rQES solution	161
	5.5	Discussion and conclusions	162
6	Con	aplexity for conformal field theories	165
	6.1	Introduction	165
	6.2	Preliminaries	167
	6.3	Complexity in General Dimensions	167
	6.4	Geometric Action and Coadjoint Orbits	170
	6.5	Coherent State Generalization	171
	6.6	Holography	172
	6.7 Summary and Outlook		173
	6.A	Relating the Euclidean and Lorentzian Conformal Generators	175
	6.B	Expectation Values of the Conformal Generators in $d \ge 2$	177
	6.C	Geodesic Trajectories in the Complexity Metric	179
	6.D	Canonical Variables and Recombination Formula	181
	6.E	Bounds on Complexity and its Time Evolution	184
		6.E.1 Bounds on Complexity	184
		6.E.2 Complexity of Time Evolved States	185
	6.F	Comparison with Previous Results in $d = 2$	186
		6.F.1 Expectation Values of the Conformal Generators in $d = 2$	188
	6.G	Comments about Spinning States	189
	6.H	Metric and Geometric Action in the Fundamental Representation of the	
		Conformal Group	190
	6.I	Root Space Decomposition	192
	6.J	Holographic Interpretation	196
		6.J.1 Background	196

	6.J.2 6.J.3 6.J.4	Complexity in Holography	198 199 200
Bibliog	raphy		201
Summa	ry		223
Samenvatting		225	
Résumé		227	
Curriculum Vitae		229	
Acknow	ledge	ements	231
List of p	oublic	ations	233

Foreword

This thesis will deal with the practical use of the AdS/CFT correspondence to shed some light on the properties of quantum matter. The first chapter will provide an introduction to the wider context in which this thesis is placed. This chapter will also introduce the key concepts required throughout the various later chapters. Chapters 2 to 6 consist of published papers I was an author on and are therefore rather self-contained. Due to their nature as publications, these chapters will each re-introduce the necessary notations and context although with a narrower focus.