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Chapter 6

Automatic detection of
anomalously emitting ships

Based on: Kurchaba, S., van Vliet, J., Verbeek, F.J., Veenman, C.J., 2023. Anoma-
lous NO2 emitting ship detection with TROPOMI satellite data and machine learning.
Remote Sensing of Environment 297, 113761. doi:10.1016/j.rse.2023.113761.
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6.0.

Abstract
In the previous chapter, we introduced the first method for a large-scale ship NO2

estimation – a supervised machine learning-based segmentation of ship plumes on
TROPOMI image patches. However, both challenging data annotation and insuffi-
ciently complex ship emission proxy used for the validation limit the applicability of
the model for ship compliance monitoring. In this Chapter, we present a methodology
for the automated and scalable selection of potentially non-compliant ships using a
combination of machine learning models on TROPOMI data. It is based on a proposed
regression model predicting the amount of NO2 that is expected to be produced by a
ship with certain properties operating in the given atmospheric conditions. The model
does not require manual labeling and is validated with TROPOMI data directly. The
differences between the predicted and actual amount of produced NO2 are integrated
over observations of the ship in time and are used as a measure of the inspection
worthiness of a ship. To add further evidence, we compare the obtained results with
the results of the previously developed segmentation-based method. Ships that are
also highly deviating in accordance with the segmentation method require further at-
tention. If no other explanations can be found by checking the TROPOMI data, the
respective ships are advised to be the candidates for inspection.
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Chapter 6. Automatic detection of anomalously emitting ships

6.1 Introduction

The current state-of-the-art of large-scale methods for NO2 ship plume modeling use
thresholding or supervised machine-learning-based segmentation of TROPOMI image
patches to attribute the measured NO2 to individual ships [62, 63]. We presented those
methods in Chapter 4 and Chapter 5 correspondingly. The latter methodology is an
automated procedure improving significantly upon previously used manual methods.
However, due to the low signal-to-noise ratio of TROPOMI measurements, ship plumes
are often hard to delineate, which makes the process of manual data annotation time-
consuming and potentially erroneous. The absence of ground truth for a given task
requires an alternative measure of validation. One possibility is the usage of theoretical
models for ship emission approximation – ship emission proxy [33, 41]. An example
of such a proxy is the one that was utilized by us in previous chapters (explained in
Section 2.4) in [41]. However, the proxies (and this one in particular) do not cover the
full list of factors that can potentially influence the levels of ship emissions (e.g. amount
of cargo on board, local meteorological conditions), which does not allow a proper
quantification of the effects of the errors coming from manual labeling. Consequently,
the possibilities of the application of this approach to the task of monitoring NO2

emissions from individual ships are limited.
In this Chapter, we propose a robust method for automated selection of anoma-

lously NO2 emitting seagoing ships, addressing the last research question of the thesis:

• RQ8: How to identify ships that are potential anomalous emitters using
TROPOMI data?

The presented approach does not require data labeling and is validated using
TROPOMI data directly. Moreover, our method is based on the integration of multi-
ple observations, which gives a more complete perspective on ship performance. This
is achieved by training a specifically designed regression model, which predicts the
amount of NO2 that is expected to be observed by the TROPOMI instrument for a
given ship operating in certain atmospheric conditions. The difference between the
predicted and actual amount of observed NO2 is integrated over the available number
of ship observations. The integrated difference we consider a measure of inspection
worthiness of the ship.

For the training of the regression model, we use the concept of ship Region of In-
terest (RoI) defined in Chapter 4. We apply Automated Machine Learning (AutoML)
(for the explanation of the concept, c.f. Section 2.3) to optimize the machine-learning-
based regression pipeline for the NO2 prediction. To assure the robustness of the
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6.2. Data

proposed method, we compare the results obtained with the regression model with
the method for ship plume segmentation [63] introduced in Chapter 5. Ships that
are also ranked as highly deviating in accordance with the ship plume segmentation
model are nominated as anomalous emitters and require further attention. We visually
check the TROPOMI data for objective explanations of anomalous results. If no other
explanations are found, the ships are advised to be candidates for further inspection.

The rest of this Chapter is organized as follows: In Section 6.2, we describe the data
sources used in this study. In Section 6.3, we introduce the developed methodology,
which is followed by the results presented in Section 6.4. In Sections 6.5 and 6.6, the
reader can find the discussion and final conclusions respectively.

6.2 Data

In this study, the variable of interest is NO2 tropospheric vertical column density
– VCDtrop [31]. As described in Chapter 2, the VCDtrop column is the result of
a transformation of SCD (slant column density) using the air mass factors (AMS)
calculated, among the others, on the basis of historical emission inventories [31]. This
results in the fact that the plumes located in the regions of historical shipping lanes will
be enhanced by the retrieval algorithm [30]. To minimize the impact of the potential
bias, such variables as background NO2 SCD, AMF, surface albedo, and sun/satellite
geometry will be used as model features for ship NO2 estimation.

In this Chapter, we analyze the same region1 in the eastern Mediterranean Sea
as in Chapter 5. The study period is 20 months, starting from 1 April 2019 until 31
December 2020. To obtain the image patches of regular size, we perform regridding2

of the original TROPOMI data into a grid of regular size 0.045◦ × 0.045◦, which for
the studied area translates to approximately 4.2 × 5 km2 [63]. The following quality
filers were applied on the TROPOMI data: only pixels flagged with qa_value > 0.5

[93] are taken into consideration. In addition, since the TROPOMI observations of
scenes covered with clouds should not be considered valid, we filtered out from the
data pixels with a cloud fraction higher than 0.05. With this level of cloud filtering,
we lost approximately 35% of ship observations.

In order to prevent the occurrence in our dataset of ships below the detection
limit, we focus our analysis on the seagoing ships that are longer than 150 meters

1The studied region is restricted by the following coordinates: long: [19.5◦; 29.5◦], lat: [31.5◦;
34.2◦].

2The regridding is performed using the Python package HARP v.1.13.
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Chapter 6. Automatic detection of anomalously emitting ships

Figure 6.1: High-level diagram of the proposed methodology.

and faster than 12 kt, which is slightly faster than the TROPOMI detection limit
established in Chapter 3. Another situation we want to prevent is when too many ships
contribute to the creation of the detected NO2 plume, as in this case, quantification of
individual contributions is extremely challenging. Thus, we remove the ships, whose
trajectories within 2 hours before the satellite overpass, intersect with more than 3
other neighboring ships. This is a trade-off between a sufficient size of the dataset and
the complexity of the problem of the quantification of individual contributions. Among
all ship types present in the dataset, for the detection of anomalously emitting ships,
we focus our attention on two ship types: containers and tankers. Other ship types
have not been represented in the dataset in a sufficient amount to obtain statistically
significant results.

6.3 Method

In this Section, we present the method for automated detection of ships that produce
anomalously high amounts of NO2. The method is composed of the following steps:
we train a regression model for the prediction of the amount of NO2 within the RoI
of the analyzed ship. We calculate the difference between the observed and predicted
amount of NO2 and integrate this value over all observations of the same ship within
the studied period. The integrated difference between the real and predicted value of
NO2 we consider as a measure of the inspection worthiness of the ship. We rank the
studied ships accordingly. To assure the robustness of the results, we apply the ship
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plume segmentation model [63] to the same dataset. We compare the results obtained
using the segmentation model with the value of the theoretical ship emission proxy. We
consider the results of the comparison to be a measure of the inspection worthiness
according to the segmentation model. The ships that are high on the inspection
worthiness list of both independently trained and validated machine-learning models
are considered to be potentially anomalously emitting. We evaluate the obtained
results by visual inspection of the corresponding TROPOMI observations. Figure
6.1 provides a high-level explanation of the proposed method for the detection of
anomalously emitting ships. Below, each step of the methodology is described in
detail.

6.3.1 Regression model

Here, we describe our proposed regression model as part of a method for the detection
of anomalously emitting ships. Firstly, we provide a formal definition of the proposed
way for ship NO2 estimation with the regression model. Then, we introduce the
details of training and optimization of the machine-learning methodology proposed in
this study.

Formalization of the problem

For a given ship s ∈ S on a given day d ∈ D, the real amount of NO2 observed by
TROPOMI is calculated as:

NO2;d,s =
∑

i∈RoId,s

V CDNO2;i
(6.1)

where VCDNO2
is the value of the retrieved TROPOMI pixel within the RoI of the

analyzed ship, where the RoI of the ship is a ship sector defined in accordance with the
description proposed in Chapter 4 (c.f. Section 4.2.2). We then use a machine-learning
model f that based on values of features X ∈ R predicts the expected amount of NO2:
N̂O2;d,s ∈ R.

N̂O2;d,s = f(Xd,s) (6.2)

The list of features X can be found in Table 6.1. In Figure 6.3, we provide
histograms of the features. As a next step, we calculate diffd,s[%] – a percentage
difference between the predicted and observed amount of NO2. Finally, assuming
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Figure 6.2: Histogram of occurrences of the same ship in the created dataset. The black
line indicates the set level of min_obs_nb. Only ships that have been observed more
than min_obs_nb = 4 days are taken into account for the detection of anomalously
emitting ships.
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Figure 6.3: Distribution of variables of the dataset.

97



6.3. Method

|Ds| is the number of days when the ship s was observed, min_obs_nb is the mini-
mum number of days we require the ship to be present in the dataset, for each ship
s ∈ S : |Ds| ≥ min_obs_nb, we integrate the obtained differences over the ob-
served number of days calculating arithmetic mean µ(diffd,s) and standard deviation
σ(diffd,s). To ensure that our ship profile is representative to make the decision about
being anomalously emitting and taking into consideration data availability (see Figure
6.2), we set the threshold as min_obs_nb = 4.

A high value of µ(diffd,s) represents a situation when the observed value of NO2

was repeatedly underestimated by the model. This means that the amount of NO2

observed was consistently higher than can be expected given the ship’s characteristics
and operational atmospheric conditions. In other words, µ(diffd,s) is a measure of
the inspection worthiness of the ship in accordance with the regression model IW regr

s .
The value σ(diffd,s) is a measure of the consistency of the obtained results. Since
the TROPOMI measurement results have a lower limit and do not have an upper
limit, a very high σ(diffd,s) can only occur from the fact that very high values of
NO2 were assigned to a ship that on a regular basis does not produce that much –
only high NO2 outliers can cause a high standard deviation. Such a situation is not
of our interest. Therefore, ships with outlying values of σ(diffd,s) will be removed
from the analysis. The value of σ(diffd,s) is considered to be outlying if σ(diffd,s) >
µ(σ(diffd,s)) + 2σ(σ(diffd,s)), which corresponds to 5% of the highest observations
of σ(diffd,s).

Model optimization

Similarly to the previous chapters, for the selection of the regression and optimization
of its hyperparameters, we use a 5-fold nested scheme of cross-validation. Within the
outer loop of cross-validation we create 5 "hold out" non-overlapping test sets and 5
training sets. Given the considered application, the test sets are used for:

1. Performance evaluation of the regression model.

2. Detection of anomalously emitting ships.

Within the inner loop of cross-validation, we split the training set into training and
validation, which are used for the optimization of the regression model performance.
The task of model optimization is tackled here with automated machine learning (Au-
toML) [49] by solving a so-called CASH problem (for an explanation of the concept and
benefits coming from its application see Section 2.3). Given the absence of available
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Chapter 6. Automatic detection of anomalously emitting ships

Feature type Feature name

Ship related Ship length
Ship speed

Ship heading
Gross tonnage

Ship type
State of the atmosphere Wind speed

Wind direction
Surface albedo

Solar zenith angle
Measurement month

Priors for background Average NO2 VCDtrop outside ship sector
Average NO2 SCD outside ship sector

AMF outside ship sector
Sensor zenith angle

Table 6.1: List of features used for the regression model. The area outside the ship
sector is restricted to the ship neighborhood defined as the ship plume image in ac-
cordance with Chapter 4.

benchmarks for our original dataset, such a technique allows for an efficient selection
of a regression model and feature preprocessor from among a wide variety of machine-
learning models and feature transformation techniques. As mentioned in Section 2.3,
we address the CASH problem using TPOT (Tree-based Pipeline Optimization Tool)
[77] – a Python package for automatic selection of machine-learning pipelines based
on genetic programming (GP) [58].

The results obtained using the TPOT AutoML library are benchmarked towards
the results obtained using the eXtreme Gradient Boosting (XGBoost) [22] regression
model with the default hyperparameters settings. The XGBoost model is considered
to be a good choice when it comes to tabular data [45], as well as showed the best
performance on the same type of data in Chapter 5.

6.3.2 Detection of anomalously emitting ships

In order to ensure the robustness of the proposed method for detecting anomalously
emitting ships, we compare the results obtained with the regression model with an-
other, independently trained and validated machine-learning model applied to the
same dataset. We intersect the results obtained with both considered models in order
to obtain a list of potentially anomalously emitting ships. Hereafter, we explain how
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6.3. Method

the model introduced in Chapter 5 is added to the presented regression model as a
decision support tool, and explain how the results of both models are used to make a
decision regarding the candidate selection of anomalously emitting ships.

Segmentation Model

As a support tool for the presented regression model, we use the ship plume segmen-
tation model prepared in accordance with the methodology introduced in Chapter 5.
Below, we provide a formal explanation of how we propose to use this method for the
detection of potentially anomalously emitting ships.

For a given ship s ∈ S on a given day d ∈ D, the estimated with the segmentation
model amount of NO2 can be expressed as:

N̂O2;d,s =
∑

i∈RoId,s

ŷi ·NO2,i, (6.3)

where ŷi ∈ {0, 1} and NO2,i are the output of the segmentation model for the pixel i
and the value of the pixel i of the ship s on day d.

To detect potential anomalous emitters, for each ship observation, we calculate
the value of the ship emission proxy Ed,s (for definition c.f. Section 2.4). For each
ship s ∈ S : |Ds| ≥ min_obs_nb, we aggregate the N̂O2;d,s and Ed,s over the days
of observation by calculating their arithmetic mean µ. We assume that µ(N̂O2;d,s) is
linearly proportional to µ(Ed,s). Therefore, we can express it as:

µ(N̂O2;d,s) = α · µ(Ed,s) + β + ϵs, (6.4)

where α and β are the parameters of the fitted linear equation. We consider ϵs the
measure of the inspection worthiness of the ship in accordance with the segmenta-
tion model IW segm

s . The measure of the consistency of the results is defined as the
standard deviation of the estimated values of NO2, σ(N̂O2;d,s). The ships for which
σ(N̂O2;d,s) > µ(σ(N̂O2;d,s)) + 2σ(σ(N̂O2;d,s)) are considered to be outlying and will
not be taken into consideration.

6.3.3 Merge of two models to identify anomalous ships

In order to identify anomalously emitting ships, we intersect the results obtained with
the two independently trained/validated machine-learning models: a newly developed
regression model for the prediction of ship’s NO2 within the assigned ship sector, and
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Chapter 6. Automatic detection of anomalously emitting ships

the ship plume segmentation model presented in Chapter 4. To assure the comparabil-
ity of the results, we perform a normalization of the inspection worthiness measures ob-
tained from both used methods, defining norm_IW regr

s , norm_IW segm
s ∈ [0, 1]. The

normalization is performed using min-max scaling applied on IWregrs and IWsegms

such that:

norm_IW regr
s =

IW regr
s −min(IW regr

s )

max(IW regr
s )−min(IW regr

s )
(6.5)

norm_IW segm
s =

IW segm
s −min(IW segm

s )

max(IW segm
s )−min(IW segm

s )
(6.6)

Providing a decision threshold t, the ship is assigned to the list of anomalously
emitting ships in accordance with the following rule:

norm_IW regr
s > t ∧ norm_IW segm

s > t ⇐⇒ s ∈ Anomalous_emitters, (6.7)

such that:

Anomalous_emitters = {s1, ..., sn} :

norm_IW regr
si · norm_IW segm

si < norm_IW regr
si+1

· norm_IW segm
si+1

(6.8)

The decision about the selection of the used threshold level t is left to the user. In
this study, the threshold was manually selected as t = 0.55.

6.4 Results

In this Section, we present the obtained results. We first present the results of the re-
gression model optimization. We then show the aggregated results of the application
of the regression and segmentation models and perform the selection of potentially
anomalously emitting ships. Finally, using a one-way ANOVA analysis of group dif-
ferences, we inspect the obtained results for the presence of a decision bias resulting
from the merge of regression and segmentation models.

6.4.1 Regression model optimization

In Table 6.2, we present the results of the regression model optimization. The appli-
cation of the TPOT pipeline optimization algorithm allowed us to improve the results
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6.4. Results

Method Pearson R2

TPOT 0.740 ± 0.058 0.538 ± 0.08
Default XGBoost 0.715 ± 0.057 0.497 ± 0.098

Table 6.2: Regression model results. Hyperparameters applied for AutoML optimiza-
tion: Maximum evaluation time: 10 min; Population size: 50; Number of generations:
50; Early stopping criteria: 10.

Feature processor Model

MaxAbs Scaler Gradient Boosting [39]
MaxAbs Scaler Gradient Boosting

Polynomial Features (2nd deg.) XGBoost [22]
Standard Scaler Gradient Boosting
Standard Scaler XGBoost

Table 6.3: A model and a feature pre-processor selected by TPOT as optimal at a
given iteration of cross-validation.

of both used quality metrics over our benchmark – default XGBoost. In Table 6.3, we
provide models and feature pre-processing methods selected as optimal (best perfor-
mance on validation set) at each cross-validation iteration. The XGBoost model was
still one of the most often selected optimal models. The advantage of the AutoML ap-
plication, in this case, was gained by the possibility of hyperparameters optimization
and selection of feature pre-processing method. Another well-performing model was
the related Gradient Boosting algorithm.

6.4.2 Detection of anomalously emitting ships

Here, we analyze the results of the application of the regression and plume segmen-
tation model with the aim of detecting anomalously emitting ships. First, for each
model, we calculated the measures of the consistency of the results, i.e. σ(diffd,s) and
σ(N̂O2;d,s), while removing the resulting outlying values from the analysis. Figure 6.4
presents the consistency measures for regression and segmentation models along with
the applied cut-off thresholds.

In Figure 6.5, we depict the integrated results of the regression model for each
studied ship (µ(diffs), σ(diffs)) and rank them in ascending order of inspection wor-
thiness, IW regr

s = µ(diffs). Ships for which the observed level of NO2 is substantially
higher than the predicted level are the most interesting for us. Figure 6.6 presents the
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Figure 6.6: Relation between the estimated amount of NO2 using the segmentation
model and ship emission proxy with a fitted linear trend. Gray dashed lines indicate
the measure of the ship inspection worthiness IW segm

s according to the plume seg-
mentation model.

resulting relationship between the averaged amounts of µ(N̂O2;s) for each ship and
averaged ship emission proxy µ(Es). The black line indicates the fitted linear trend.
The gray dashed lines indicate the ship inspection worthiness IW segm

s . The ships for
which the IW segm

s is the highest are of our main interest.

Next, we combine the errors obtained from the regression and the ship plume
segmentation models. Figure 6.7 shows the combined inspection worthiness for the two
studied ship types. Black scatter plot markers indicate the analyzed ships. The size of
the markers is scaled in accordance with the average value of the ship’s emission proxy.
Ships located in the green zone of the plots, we consider as weak emitters, because both
of the models overestimate the actual level of NO2. Two yellow zones indicate ships for
which one of the models overestimates the actual level of NO2, while the other model
underestimates it. This can be due to the low resistance of the particular machine-
learning model to certain types of difficult modeling conditions, or systematic errors.
To name a few, the combination with land-based NO2 sources, a plume accumulated
within one TROPOMI pixel, certain atmospheric conditions, etc. Finally, the red zone
of a plot indicates ships that are most inspection-worthy according to both models. We
call those ships potentially anomalously emitting since throughout twenty months of
analysis they were producing more than is expected based on their characteristics and
operational atmospheric conditions. Clearly, to make final conclusions, the detected
ships should be studied closer.
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Figure 6.7: Combination of results of segmentation and regression models. Values of
the inspection worthiness obtained from each model were normalized using a min-max
scaler.

6.4.3 Visual verification of potential anomalous emitters

In order to make final conclusions regarding the ships that were identified by the
proposed method as anomalously emitting, as a next step, we visually analyzed the
TROPOMI observations related to those ships. Figure 6.8a – c and Figure 6.9a – c
provide the TROPOMI image patches for the red-zone containers and tankers respec-
tively. On the image patches from the corresponding dates of TROPOMI observations,
we indicate the trajectory of the ship of interest, the other ships in the image patch,
and the pixels that were classified as a part of the plume of the ship by the segmen-
tation model.

First, we can see that for each ship, there are image patches where the segmented
plume was in fact produced by another ship. This underlines the earlier mentioned
constraint that intersecting ship plumes pose a challenge for this type of analysis.
Nonetheless, each container ship selected as a potential anomalous emitter has at
least two measurement days where there are no other candidates for producing the
observed/segmented NO2 plume. Comparing the values of results consistency (see
Table 6.4) for ships selected as anomalous emitters with the data distribution for the
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(a)

(b)

(c)

Figure 6.8: Ship type: Container. Lines represent shifted ship tracks. Magenta line
– ship of interest. Cyan line – other ships in the area. Grey lines – borders of the
ship sector. Dots indicate pixels classified by the segmentation model as a plume. a)
Outlying ship 1. Ship length: 398 m. Average ship speed: 19.6 kt. Year of built: 2008.
b) Outlying ship 2. Ship length: 363 m. Average ship speed: 17.5 kt. Year of built:
2011. c) Outlying ship 3. Ship length: 397 m. Average ship speed: 18.4 kt. Year of
built: 2006.
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(a)

(b)

(c)

Figure 6.9: Ship type: Tanker. Lines represent shifted ship tracks. Magenta line –
ship of interest. Cyan line – other ships in the area. Grey lines – borders of the
ship sector. Dots indicate pixels classified by the segmentation model as a plume. a)
Outlying ship 1. Ship length: 180 m. Average ship speed: 15.3 kt. Year of built: 2016.
b) Outlying ship 2. Ship length: 315 m. Average ship speed: 16.1 kt. Year of built:
2008. c) Outlying ship 3. Ship length: 179.5 m. Average ship speed: 13 kt. Year of
built: 2017.
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Ship type Ship Id σ(diff) σ(N̂O2)

Container 1 0.57 1.5 ·1016
2 0.17 0.99 ·1016
3 0.22 1.5 ·1016

Tanker 1 0.36 2.03 ·1016
2 0.33 1.4 ·1016
3 0.12 0.65 ·1016

Table 6.4: Measures of results consistency of regression (σ(diff)) and segmentation
(σ(N̂O2)) models, for ships identified as anomalous emitter. Ship Ids are in accordance
with the numbers assigned in Figure 6.7 for containers and tankers respectively.

whole set of studied ships (Figure 6.4), we can see that values of interest are located
in the middle of the data distribution. Therefore, we do not have reasons to remove
any of the selected ships from the list of anomalous emitters.

In the case of tankers, the situation is different. For a potential anomalous emitter
with Id 1 (c.f. Figure 6.9a), we can see that for two (2019-09-13, 2020-07-29) out of five
measurement days, the segmentation model did not segment any plumes. In addition,
for one measurement day (2020-05-13), the segmented plume was at least partially
produced by another ship. Finally, the obtained σ(N̂O2) is very high and close to
the applied cut-off threshold. Therefore, we conclude that the given ship should be
removed from the list of potential anomalous emitters.

For the tanker with Id 2, both σ(N̂O2) and σ(diff) are within the distributions.
However, from Figure 6.9b, we can see that at least two times (2019-06-11, 2020-04-
28) the segmented plumes were produced by more than one ship. In three other cases
(2020-04-11, 2019-07-19, 2020-08-29), the segmented pieces of plumes partially or fully
belong to other emitters. For the measurement day of 2020-06-22, the model did not
segment any plume. The one remaining measurement from the profile of a given ship
does not justify the addition of that ship to the list of anomalous emitters.

Finally, for the tanker with Id 3, there is one measurement day (2020-07-29) when
the segmented plume was at least partially produced by another ship. The rest of the
image patches, nevertheless, show visually distinguishable NO2 plumes that can be
attributed to the ship of our interest. Consequently, we do not have reasons to remove
a given ship from the list of potential anomalous emitters.
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Ship type Variable Strong emitters Weak Emitters

Tanker Year of built 2013 ± 5 2009 ± 4
Ship length [m] 224 ± 78 253 ± 66
Ship speed [kt] 14.8 ± 1.5 14.8 ± 1.6

Wind speed [m/s] 4.9 ± 0.4 5.0 ± 0.7
Average IoU 0.07 ± 0.1 0.05 ± 0.06

Container Year of built 2008 ± 2 2012 ± 5
Ship length [m] 386 ± 20 340 ± 70
Ship speed [kt] 18.5 ± 1. 17.1 ± 1.7

Wind speed [m/s] 4.8 ± 0.5 5.1 ± 0.8
Average IoU 0.07 ± 0.02 0.04 ± 0.04

Table 6.5: Statistical summary for important factors that influence levels of produced
NO2 for ships that by both models were identified as strong and weak emitters. IoU
stands for Intersection over Union.

Ship type Variable F statistic p-value

Tanker Year of built 2.3 0.13
Ship length 0.48 0.49
Ship speed 0.004 0.95
Wind Speed 0.12 0.72
Average IoU 0.4 0.53

Container Year of built 1.7 0.19
Ship length 0.24 0.27
Ship speed 1.95 0.16
Wind Speed 0.53 0.47
Average IoU 1.32 0.25

Table 6.6: One way ANOVA for the significance of the statistical difference between
samples of ships identified as strong and weak emitters. IoU stands for Intersection
over Union.
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6.4.4 Decision bias

To select the anomalously emitting ships, we combined the results of two independently
trained models: a regression model for ship NO2 estimation and a model of ship plume
segmentation. Taking this into account, as a final step of the analysis, we would
like to know if such a model fusion did not create any decision bias that would pre-
determine the attribution of a certain ship to a class of strong or weak emitters. For
this, we decided to study five variables that are interesting from the point of view of
result interpretability. Three of the selected variables (ship length, ship speed, and
wind speed) were features of both regression and segmentation models. Another two
variables (Year of built – stands for the ship built year, and Average IoU – stands for
an average score of Intersection over Union of the ship sector of the analyzed with the
ship sectors of other ships3) were not a part of any model4 but can have a potential
influence on the attribution of a ship to a class of weak or strong emitters.

To check the potential presence of decision bias, for each studied ship type, we
compared the averages of the above-mentioned features (see Table 6.5) and performed
a univariate one-way ANOVA test (Table 6.6), analyzing the statistical significance of
the differences between the values of the variables from two groups of ships – strong
or weak emitters. From the obtained results, we conclude that none of the analyzed
variables had a statistically significant influence on attributing a certain ship to a class
of strong or weak emitters. This implies the absence of decision bias related to these
variables.

6.5 Discussion

In this Chapter, we presented a method for detecting anomalously NO2 emitting ships
by applying a combination of machine-learning-based methods on TROPOMI instru-
ment data (RQ8). The provided methodology is an important step toward the au-
tomation of the procedures for the selection of ships that should undergo inspection.
The application of satellite data for such a task is a substantial advancement, as
satellite-based measurements are the only available tools that can access ship emis-
sions in the open sea.

Another advantage of satellite-based observations in contrast to all the other meth-

3Given two areas of interest, IoU is computed as the surface of their overlap divided by the surface
of their joint area.

4The variables were tested in the preliminary phase of our regression model experiments but were
removed due to the negative impact on model performance.
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ods currently used for ship emission monitoring is that satellite observations enable
us to observe the emissions over time regularly and remotely. The presented approach
exploits this property of satellite-based observations by making multi-day profiles of
ship observations. Such an approach allows us to make conclusions based on aggre-
gated statistics of several ship observations rather than based on a single observation
only. The disadvantage of such a statistics-based approach is that only systematic
high emitters can be captured.

In order to be able to use the proposed approach on a day-to-day basis some
technological advancements are needed. First of all, as we can see from Figures 6.8
and 6.9, the correct and complete segmentation of ship plumes remains a challenging
task. Additionally, it is challenging to attribute the detected plume to a certain ship.
Both challenges will become more feasible when satellite-based observations with an
even higher spatial resolution (for instance, TANGO instrument [67]) become available.
Moreover, it is still difficult to fully eliminate signal interference. This is mainly due to
the high irregularities of both atmospheric chemistry processes and ship trajectories.
Also, the problem will become less significant once the higher-resolution data are
available.

Another possible improvement is to account for the dynamics of the atmospheric
processes within the methodology. The dynamics of the atmospheric processes affects
how fast and how much NO2 will be created out of emitted NOx. In this study, we
implicitly addressed the atmospheric chemistry processes by using features such as the
month the observation took place (seasonability) and solar angle. Explicit modeling
such as through the introduction of ozone concentration or air temperature features
may provide additional insights.

Finally, at the moment, we do not have access to the ground truth data that would
allow us to validate the proposed selection of potentially anomalously emitting ships.
As we mentioned at the beginning of this Section, the TROPOMI observations are
currently the most complete available source of information regarding emissions of
ships in the open sea. Once the proposed approach is implemented into a production
environment, the feedback received from inspectors can be used for validation and for
further optimization of the method.

6.6 Conclusions

In this Chapter, we applied a combination of machine-learning-based methods on
TROPOMI instrument data and presented an approach for automatic identification
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of potentially anomalously NO2 emitting ships. Our approach allows the automatic
processing of a huge amount of satellite remote sensing data in order to select for
the inspection ships that consistently emit more than can be inferred based on their
properties and sailing conditions. With the proposed methodology, the selected cases
for inspection are based on multi-day observations of ship emissions. With this, we
harvest the main advantage of satellite-based observations over the existing approaches
for ship compliance monitoring, with which the decisions have to be made on the basis
of a single observation only. The proposed methodology provides a potential path
toward the development of a scalable recommendation system for ship inspectors that
is based on satellite-based observations.
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