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Chapter 5

Ship plume segmentation with
supervised machine learning

Based on: Kurchaba, S., van Vliet, J., Verbeek, F.J., Meulman, J.J., Veenman, C.J.,
2022. Supervised segmentation of NO2 plumes from individual ships using TROPOMI
satellite data. Remote Sensing 14. doi:10.3390/rs14225809.
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5.0.

Abstract To deploy a remote sensing-based global emission monitoring system,
an automated procedure for the estimation of NO2 emissions from individual ships
is needed. The extremely low signal-to-noise ratio of the available data as well as
the absence of ground truth makes the task very challenging. Here, we present a
methodology for the automated segmentation of NO2 plumes produced by seagoing
ships using supervised machine learning on TROPOMI/S5P data. We show that the
proposed approach leads to a more than a 20% increase in the average precision score
in comparison to the methods used in previous studies and results in a high correlation
of 0.834 with the theoretically derived ship emission proxy. This work is a crucial step
toward the development of an automated procedure for global ship emission monitoring
using remote sensing data.
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Chapter 5. Ship plume segmentation with supervised machine learning

5.1 Introduction

In the previous Chapter, we have introduced the method for efficient assignation of
a RoI to a studied ship. However, the segmentation of the ship plume within the
assigned RoI was performed on the basis of a local threshold. This simple method
provides the first baseline for the task but has a list of disadvantages. Namely, the
threshold was established on the basis of the only variable (NO2 concentration). It
also assumes the linear separability between the signal coming from the plume and the
background. All this results in insufficient flexibility of the method and consequent
low quality of ship-plume segmentation.

In this Chapter, focus our attention on the development of a method for efficient
segmentation of ship plumes. Among the main challenges of this task are low temporal
sample rate and spatial resolution resulting in an extremely low signal-to-noise ratio.
In addition, there is a high risk of interference of the ship plume with other NOx sources
and a high frequency of occurrence of plume-like objects that cannot be associated
with any ship. Finally, the ground truth for this task is not available. To increase
the number of potentially distinguishable plumes, we enhance the contrast between
the ship plumes and the background. In order to overcome the above-mentioned
challenges, we present a methodology that allows addressing the problem of automated
ship plume segmentation with supervised machine learning. The developed method of
feature engineering allows for the application of multivariate machine learning models.
This, in turn, allows us to account for multiple factors that help differentiate a plume
produced by a ship of interest from all the other plumes in the ship’s neighborhood,
circumventing the listed limitations.

With the aim to increase the number of potentially distinguishable plumes, we
enhance the contrast between the ship plumes and the background. The used en-
hancement technique allows for a differentiation between the ship plumes and random
co-occurring concentration peaks in the ships’ neighborhood. The application of the
image enhancement technique also allows for an improvement of the low signal-to-
noise ratio. Then, to focus the area of analysis on the region where the ship plume
is expected to be located, we use the presented in Chapter 4 concept of ship’s RoI
– the ship sector. Subsequently, we normalize the ship sector and divide it into sub-
regions. This way, we distinguish the plume of interest from all the other NO2 plumes
or land-origin outflows that potentially might be located within the ship sector. Based
on the ship sector division, we create a set of spatial features that characterize the
location of the NO2 plume within the ship sector. Due to the absence of other sources
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5.2. Materials and methods

of ground truth, each pixel of the ship sectors we manually label as a "plume" or "not
a plume". Trained on the manually labeled data, a machine learning model will enable
us to automatically segment plumes in unseen images. We study five robust machine
learning models of increasing complexity and compare their performance with the
threshold-based methods used in previous studies. To validate the developed pipeline,
we compare the estimated based on the result of segmentation amount of NO2 to the
theoretically derived ship emission proxy [41].

In this Chapter, we address the following research questions:

• RQ6: Can we improve the segmentation quality of NO2 plumes from individual
ships using supervised machine learning?

• RQ7: Does the machine learning-based segmentation allow for the detection of
NO2 plumes that cannot be recognized visually?

The rest of this Chapter is organized as follows: In Section 5.2.1, we start with an
explanation of data selection and data preparation steps. We then provide a descrip-
tion of the developed methodology in Section 5.2.2. In Section 5.3, the reader can
find the results of the study, which are followed by the conclusions in Section 5.4 and
discussion in Section 5.5.

5.2 Materials and methods

5.2.1 Data preparation

In this Section, we explain the steps of data selection and preparation that were
performed in the process of the preparation of the dataset used in this study. First,
to generate images of regular size, we regridded1 the original TROPOMI data into a
regular-size grid of size of 0.045◦ × 0.045◦, which for the pixel in the middle of the
analyzed area translates to approximately 4.2 × 5 km2. To assure the good quality
of the used TROPOMI measurements, we applied the following filtering criteria to
TROPOMI data: qa_value > 0.5, cloud fraction < 0.5. In Chapter 3, we showed
that such filtering criteria assure a good trade-off between data quality and data
availability.

In this study, we analyzed 68 days of TROPOMI measurements from the period
between 1 April 2019 and 31 December 2019. The analyzed days were mostly sunny –
the distribution of the variable cloud fraction for the scope of this study is provided in

1For the data regridding HARP v.1.13 Python package was used.
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Figure 5.1: Distribution of the variable cloud fraction for the dataset used in this
study.

Figure 5.1. The studied data product: tropospheric vertical column of nitrogen dioxide
[31]. Data version: 1.3.0. For the analysis, we chose an area in the Mediterranean
Sea, similar to the one studied in Chapter 4 (for an area outline c.f Figure 4.3). The
area is restricted by the Northern coasts of Libya and Egypt from the south and South
coast of Crete from the north2. Apart from the fact that it was already studied in the
previous studies, this region was selected because of the presence of a busy shipping
lane connecting Europe and Asia, the high frequency of occurrence of sunny days, and
relatively low levels of NO2 background concentrations, which are favorable conditions
for the analysis.

With the aim of reducing the number of images where the ship plume cannot be
visually detected, in our study, we only focus on ships with a speed that exceeds 14 kt.
If two ships move in immediate proximity to each other, only the ship with the highest
speed was taken into consideration. From the analysis were also excluded ships that
are not involved in global trade, such as Yachts, Leisure Vessels, or Research Vessels.
In Figure 5.2, the information about the dates used for this study as well as the number
of ships per day studied is depicted. The differences in the number of ships per studied
day can be caused by bad weather conditions on the measurement day.

2lon: [19.5◦; 29.5◦], lat: [31.5◦; 34.2◦].
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Figure 5.2: A list of days used for the dataset creation and the number of ships per
day studied.
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Chapter 5. Ship plume segmentation with supervised machine learning

(a)
Ship track

Ship track

(b)
Wind-shifted ship track

Ship track
Wind-shifted track

Figure 5.3: Both panels: ship plume image with indicated ship tracks. Panel a):
Ship track – estimated, based on AIS data records. The ship track is shown for the
time period starting from 2 hours before the satellite overpass until the moment of
the satellite overpass. Panel b): Wind-shifted ship track – a ship track shifted in
accordance with the speed and direction of the wind. The wind-shifted ship track
indicates the expected position of the ship plume. A black arrow indicates the wind
direction. For both presented images, the size of the pixel is equal to 4.2 × 5 km2

5.2.2 Method

In this Subsection, we present the developed methodology. Taking advantage of the
characteristics of the analyzed ship as well as wind conditions in the studied region,
our approach allows the segmentation of NO2 plume produced by the particular ship
of interest distinguishing it from all the other concentration peaks in the surrounding
area. The results produced by the proposed approach are easily interpretable and thus
can be used as a reliable source of information by ship inspectors.

The method is built upon the concepts introduced in Chapter 4. Therefore, with
the aim of not repeating ourselves, for some definitions, the reader will be referred
to the above-mentioned chapter. The method presented in this Chapter consists of
the following steps: definition and enhancement of a ship plume image, definition of
a ship sector that allows the further restriction of the analyzed area, normalization of
the defined ship sector, and split of the normalized sector into sub-regions that, finally,
give the possibility to retrieve the set of necessary features. These steps are described
below.
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5.2. Materials and methods

Ship plume image definition and enhancement

As a first step of our method, we define an area within the immediate proximity of
an analyzed ship. We call it a ship plume image. For this, we utilize the knowl-
edge of a ship’s position summarized in its ship track and wind-shifted ship track,
as defined in Chapter 4, Section 4.2.2. In Figure 5.3, an illustration of ship plume
image with indicated ship track and wind-shifted ship track is presented. Based
on wind-shifted ship track, the area of the ship plume image is determined as fol-
lows: the average coordinate of the studied wind-shifted ship track defines the center
(longitudecentr, latitudecentr) of the ship plume image, the borders of the image are
defined as longitudecentr, latitudecentr ± 0.4◦3. This particular size of a ship plume
image was determined in order to allow for optimal plume coverage for the most typi-
cal range of ship speeds (14kt - 20 kt)4. Given the size of the pixel grid, such an offset
results in an image of a maximum dimension of 18× 18 pixels.

To improve the quality of the TROPOMI data, in the data pre-processing step, on
each of the analyzed ship plume images we apply spatial auto-correlation statistic local
Moran’s I [5]. The formal introduction of the method the reader can find in Chapter
4. There we showed that the application of this technique substantially improves
separability between the ship plume and the background.

Ship sector

Parameter Value

Trace track duration 2 hours
Wind speed uncertainty 5 m/s

Wind direction uncertainty 40◦

Table 5.1: Parameters applied for ship sector definition.

A plume produced by a ship at a given moment will be displaced, over time, in
the direction of the wind in the analyzed area. Having the wind information available,
we restrict the analysis to the part of the ship plume image, where the probability
of finding the plume of the ship is the highest. We perform the area restriction by
defining the RoI of an analyzed ship – a ship sector, defined in accordance with the
description provided in Section 4.2.2, Chapter 4. By defining a ship sector, we assume

3For the area in Mediterranean Sea, in horizontal direction 0.4◦ ≈ 37.4 km, in vertical direction
0.4◦ ≈ 44.2 km.

4kt - knot, a unit of speed equal to a nautical mile per hour. 14 kt ≈ 26 km/h. 20 kt ≈ 37 km/h.
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Chapter 5. Ship plume segmentation with supervised machine learning

that the plume produced by a studied ship will lie within the ship sector boundaries.
Only pixels lying within the ship sector are taken into consideration in further analysis.
Parameters related to the ship sector definition can be found in Table 5.1.

Feature engineering

In order to obtain a multivariate description of the ship sector pixels, we encode the
spatial information into a set of generic features. First, we perform a ship sector nor-
malization to make spatial information in the sector comparable between the different
sectors. We define a normalized sector by standardization of the orientation and the
scale of the original ship sector. In this way, the position of the plume within the ship
sector becomes invariant to the heading (direction) and speed of the ship, as well as
to the direction and speed of the wind.

We standardize the orientation of a ship sector by rotating to 320◦ (This particular
value of sector rotation angle was chosen for the convenience of visualization and
has no influence on further modeling) so that the angle of the polar coordinate of
the corresponding wind-shifted ship track is the same for all ships (see Figure 5.4).
Assuming S is a set of ship sectors in the dataset, formally, the rotation coordinates
of a ship sector are defined in the following way:

∀s ∈ S, ∀i ∈ s : lon_rots,i = rs,i ·cos(αs,i+Θs), lat_rots,i = rs,i ·sin(αs,i+Θs),

(5.1)
where lon_roti and lat_roti are the polar coordinates of the pixel i within the rotated
ship sector, rs,i is the radial distance of the pixel i from the origin of the ship sector
s (in our case, sector origin corresponds to the position of the ship at the moment of
satellite overpass), αs,i is a counterclockwise rotation angle of the pixel i from the axis
x (longitude) of the ship sector s, Θs = β − αs is a counterclockwise rotation angle
that will be applied for the orientation change of each pixel i of the ship sector s, αs

is a rotation angle of a ship sector s that corresponds to the counterclockwise rotation
angle of the pixel is,max with the radial distance from the origin rs,max = max(rs),
β = 320◦ is a new rotation angle of each ship sector s after the rotation.

We standardize the ship sector’s scale so that the horizontal and vertical coordi-
nates of the rotated ship sector are rescaled into the range [0, 1] by applying a min-max
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Figure 5.4: Sector normalization. We rotate the ship sectors so that all resulting
sectors have the same orientation equal to 320◦ independently of the original direction
of the ship’s heading. We then rescale the image so that the range of both coordinates
is between 0 and 1. The gray area in each figure indicates a ship sector. The ship
sector origin indicator shows the position of the ship at the moment of the satellite
overpass. Two examples of original and rotated sectors are shown: one in the top row,
and one in the bottom row.

scaler on the horizontal and vertical coordinates of the pixel:

lon_norm =
lon_rot−min(lon_rot)

max(lon_rot)−min(lon_rot)
, (5.2)

lat_norm =
lat_rot−min(lat_rot)

max(lat_rot)−min(lat_rot)

The second step of the feature construction procedure is the division of the nor-
malized sector into a set of sub-regions that enable encoding spatial information of the
pixels within the normalized sector. First, we define levels of the normalized sector
by splitting it into six sub-regions on the basis of the radial distance of the pixel from
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Figure 5.5: Levels and sub-sectors. We perform a feature construction by dividing
the normalized sector into sub-regions: levels and sub-sectors. For the convenience of
visualization, data points from one day of analysis were used for the preparation of
the figure.

the origin of the sector. Then, we define sub-sectors by splitting the normalized sector
into four sub-regions on the basis of the pixel’s rotation angle. As a result, the position
of each pixel within the normalized sector image can be characterized in terms of two
values: a level and a sub-sector. An illustration of the normalized sector divided into
a set of levels and sub-sectors is presented in Figure 5.5.

5.2.3 Experiment design

Here, we describe the experimental setup used in this study: first, we describe the
dataset used for the training of the multivariate models. Then we explain the models
used for the benchmarking, provide a list of used multivariate classifiers, and describe
the methods used for hyperparameters optimization.

Dataset composition

Following the steps provided in the previous subsections, we created 754 images and
cropped them to an area of the ship sector. The ship sector images were enhanced
by Moran’s I operator and manually labeled so that they can be used for training
machine-learning models. Not all ship sector images contained a visually identifi-
able NO2 plume. Moreover, due to the dispersion and chemical transformation of
a ship plume, some parts of the plume will always be under the detection limit of
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Figure 5.6: Class-wise distribution of the two main features of the dataset: NO2 and
Moran’s I.

No plume Plume

Number of pixels 68646 6980
Number of images 208 535

Table 5.2: A number of measurement points per class in the dataset.

the TROPOMI instrument and therefore, indistinguishable. Thus, labeling errors are
possible. To minimize the chance of mistakes the labeler was supported with several
representations of the area of interest: the original not enhanced NO2 tropospheric
vertical columns for the area of a ship plume image, the enhanced with the Moran’s I

area of a ship plume image, and NO2 tropospheric vertical columns for the full studied
area in Mediterranean Sea with the positions of the neighboring ships. The descriptive
statistics of the resulting dataset are provided in Figure 5.6. In Table 5.2, the infor-
mation on the data distribution within the two classes of the dataset is shown. All
mentioned numbers correspond to the full dataset before the training/test set division.

Multivariate models

To exploit the potential of multivariate modeling, we used several classifiers of in-
creasing complexity: Logistic Regression, Support Vector Machines with linear kernel
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Chapter 5. Ship plume segmentation with supervised machine learning

[34], Support Vector Machines with radial basis kernel [21], Random Forest5[14], and
Extreme Gradient Boosting (XGBoost)6[22]. The above-mentioned models are multi-
variate and thus are able to benefit from the set of prepared features. Namely, the set
of spatial features developed with the method is described in Subsection 5.2.2, along
with ship and wind-related features. All models selected for the experiment are highly
robust. Therefore, the potential mistakes in human labeling, if present in reasonable
amounts, should still allow for models’ proper training.

The first feature of the model is enhanced by Moran’s I values of the pixels that
were translated into a one-dimensional feature vector. As can be inferred from the
definition of Moran’s I statistic (see Equation 4.1), the application of Moran’s I may
result in the creation of additional high-value pixels resulting from the enhancement
of clusters of low-value pixels. To mitigate the negative impact of this side effect,
apart from the Moran’s I, the feature set was composed of the corresponding value
of NO2. This way, a supervised learning model will be able to differentiate between
high and low-value enhanced NO2 clusters. Other features used by the model are
Wind Speed, Wind Direction7, Ship Speed, and Ship Length. Finally, the position of
an analyzed pixel within the normalized sector in terms of levels and sub-sectors was
translated into the feature vectors using one-hot encoding. The resulting feature set
was composed of 17 features in total. For the full feature list, see Figure 5.10. The
used binary label indicates whether the given pixel is a part of the ship plume or not.

For the model fine-tuning and model performance evaluation, a 5-fold nested cross-
validation [96, 18] with randomized search [10] was used. The average precision score
was used as a target function for optimization.

Benchmarks

To quantify the performance improvement gained by the usage of multivariate su-
pervised models, we performed ship plume segmentation by applying a thresholding
method on a single selected feature. First, we applied a thresholding method on the
tropospheric vertical column of NO2 TROPOMI product regridded in accordance to
the description in Section 5.2.1. No image enhancement technique was applied. This
simplest way of plume-background separation was used, among the others, in [85] for
the quantification of NO2 emission from the international shipping sector. In [41], the
separation of pixels related to NO2 plumes from individual ships was also performed

5All above-mentioned models were implemented in Scikit-learn v. 0.24.2 package [80].
6Implemented in xgboost Python package v. 1.3.3.
7Wind Direction feature vector was encoded into its sine and cosine components, in order to enable

a continuous feature space for various wind directions.
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(a)

NO2 threshold
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1e15

(b)

Moran's I threshold

0.0 0.5 1.0 1.5

(c)

Moran's I on high NO2

0.0 0.5 1.0 1.5

Figure 5.7: Input data example for univariate threshold-based benchmarks. a) Input
data for a benchmark method NO2 threshold. b) Input data for a benchmark method
Moran’s I threshold. At the top of the ship sector the reader can find an example
when a cluster of low value NO2 was mistakenly enhanced by Moran’s I. c) Input
data for a benchmark method Moran’s I on high NO2. For all presented images, the
size of the pixel is equal to 4.2 × 5 km2.
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based on solely TROPOMI NO2 data. In this Chapter, we will refer to this bench-
marking method NO2 threshold. Visualization of the input data for this thresholding
technique can be found in Figure 5.7(a).

As a second benchmarking method, following the suggestion made in Chapter 4,
we performed a ship plume segmentation based on images enhanced with Moran’s I

statistic. The TROPOMI image enhancement allows effective separation of a greater
amount of NO2 plumes. However, as it can be inferred from the definition of Moran’s I
statistic (c.f. 4.1), the application of Moran’s I statistic may result in the enhancement
of low-value clusters that are not part of a plume. Visualization of the input data for
this benchmarking technique is presented in Figure 5.7(b). In the rest of the article,
we call this method Moran’s I threshold.

To overcome the problem of enhancement of low-value clusters by Moran’s I, we
propose to assign the value 0 to all pixels of the image with intensity lower than the
median of the given ship sector picture, and afterward apply the Moran’s I enhance-
ment. This is the third benchmarking method used in this study. We call it Moran’s I
on high NO2. Visualization of the results of the application of Moran’s I only on high
NO2 values can be found in Figure 5.7(c). As presented in Figure 5.7, for all three
benchmarking methods only pixels that lie within the ship sector area were taken into
account for segmentation.

NO2 validation metrics

So far, we have been measuring models’ performance based on manually created labels.
To evaluate the uncertainty hidden in human labeling, a reference value is required.
Due to the fact that there are no on-site emission measurements available at the scale
of this analysis, it is therefore necessary to use a ship emission proxy to represent the
reference value. Similarly, as in previous chapters, we use a theoretically derived NOx

emission proxy Es as defined in 2.4.

The ship emission proxy is calculated for each ship of the test sets. We compare
the obtained values of emission proxy with the estimated on the basis of segmentation
results amount of produced NO2. We estimate the amount of produced NO2 by
summing up NO2 concentration within the pixels classified as a "plume" by each of
the studied models. For the comparison between the emission proxy and the estimated
amount of NO2, Pearson linear correlation was used.
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5.3. Results

Model AP ROC-AUC

Linear SVM 0.609±0.063 0.935±0.009
Logistic 0.610±0.064 0.936±0.010

RBF SVM 0.742±0.031 0.951±0.008
Random Forest 0.743±0.030 0.952±0.008

XGBoost 0.745±0.030 0.953±0.007
NO2 threshold 0.375±0.062 0.823±0.017

Moran’s I threshold 0.493±0.063 0.912±0.011
Moran’s I on high NO2 0.607±0.056 0.922±0.010

Table 5.3: Results on the test set with 5-fold cross-validation. Bold font indicates
the best-obtained result. Under the dashed line: results obtained from univariate
threshold-based methods that, in this study, we considered as benchmarks.

5.3 Results

In this Section, we present the results of our study. We begin with the presentation
of the results of the plume segmentation model in Subsection 5.3.1. Appropriate
segmentation quality is necessary for a correct estimation of NO2 produced by ships. In
Subsection 5.3.2, we validate the concept presented in this Chapter. In the Subsection,
we compare the obtained on the basis of segmentation model results of ship NO2

estimation with the theoretical ship emission proxy.

5.3.1 Plume segmentation

In Table 5.3, we report the results of the pixel classification based on a 5-fold cross-
validation for all models and benchmarks studied. Figure 5.8 provides the correspond-
ing precision-recall curves, obtained by averaging the scores over all cross-validation
test sets. In Figure 5.10, we visualize the model coefficients for the linear models stud-
ied, as well as the impurity-based feature importance coefficients for the tree-based
models (Random Forest and XGBoost). The obtained results can be summarized as
follows:

(i) From Table 5.3, Figure 5.8, as well as Figure 5.9 we can conclude that nonlin-
ear classifiers clearly outperform both linear classifiers and threshold-based univariate
benchmarks. Both used measures: AP score and ROC-AUC resulted in a similar rank
of the studied classifiers. With XGBoost, Random Forest, or RBF SVM models, a very
high level of precision can be achieved. For the task of ship plume segmentation, our
biggest interest lies in the correct segmentation of the most representative pixels of the

78



Chapter 5. Ship plume segmentation with supervised machine learning

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

Precision-Recall Curve

Linear SVM
Logistic
RBF SVM
Random Forest
XGBoost
NO2 threshold
Moran's I threshold
Moran's I high NO2

Figure 5.8: Precision-recall curve based on 5-fold cross-validation. Dashed lines indi-
cate the results obtained from univariate threshold-based methods that, in this study,
we considered as benchmarks.
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Figure 5.9: Receiver Operating Characteristics (ROC) curve based on 5-fold cross-
validation. Dashed lines indicate the results obtained from univariate threshold-based
methods that, in this study, we considered as benchmarks.
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Segmentation Method Pearson Correlation Number of detected plumes

XGBoost 0.834 371
Manual Labeling 0.781 334
Random Forest 0.775 436

NO2 0.774 334
Logistic 0.766 452

Linear SVM 0.765 452
RBF SVM 0.757 447

Moran’s I on high NO2 0.733 422
Moran’s I 0.681 448

Table 5.4: Results on the comparison between the estimated amount of NO2 and
theoretically derived NOx ship emission proxy. Sorted in accordance with the achieved
level of Pearson correlation. Italic font indicates baseline results.

ship plume. Thus, the obtained level of recall we consider as reasonably satisfactory.
From Table 5.3, we can also see that the level of the standard deviation of AP scores
for multivariate non-linear models is significantly lower than for linear or univariate
models. This suggests that the results obtained with the nonlinear classifiers are more
robust.

(ii) From Figure 5.10, we can see that Linear SVM, Logistic Regression, Random
Forest, and XGBoost multivariate models utilize the spatial information provided by
sub-sectors and levels. The complexity of the RBF SVM model does not allow the
direct calculation of the importance of the utilized features. Even though due to
the different nature of the models, the coefficients’ values depicted in Figure 5.10
cannot be compared directly, the relative differences between the models’ features go
along with our intuition on where the plume produced by an analyzed ship should
be located within a normalized sector. For instance, high negative coefficients for the
linear models that correspond to the features Level 4 and Level 5 suggest that even
if a high-value pixel does occur in those regions of the normalized sector, it was most
probably produced by a source other than the analyzed ship. On the other hand,
the high positive coefficients corresponding to a feature Sub-sector 2, tell us that if a
high-value pixel occurs in the middle of the sector, it is most probably a part of the
plume produced by the studied ship.
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Figure 5.11: Pearson correlations between estimated (based on classification results)
values of NO2 emitted by each ship on a given day and a theoretical ship emission
proxy. Black lines indicate a fitted linear trend. Grey lines show 30% deviations from
the fitted linear trend.
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Figure 5.12: XGBoost classifier allows for the segmentation of plumes that were not
recognized by the labeler. (a) TROPOMI NO2 tropospheric vertical column density.
Units: mol/m2. The variable was a part of the input to machine-learning models.
Ship plume is difficult to distinguish by the human eye. (b) TROPOMI NO2 image
enhanced by Moran’s I. The variable was a part of the input to machine-learning
models. After enhancement, the ship plume can be recognized better. At the top
of the ship sector can be found an example when a cluster of low value NO2 was
enhanced incorrectly. (c) Results of segmentation of XGBoost model. Black pixels
indicate pixels classified by the model as a "plume". (d) Human labels. The absence
of black pixels means that there were no pixels within the area labeled as a plume.
For all presented images, the size of the pixel is equal to 4.2 × 5 km2. Measurement
date: June 24th, 2019. Ship type: Tanker. Ship length: 230 m. Average speed within
the studied time scope: 14.27 kt.
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Figure 5.13: NO2-based thresholding allows for distinguishing plumes cumulated
within one pixel of the TROPOMI image. (a) TROPOMI NO2 tropospheric verti-
cal column density. Units: mol/m2. (b) TROPOMI NO2 image enhanced by Moran’s
I. At the top left of the ship sector can be found an example when a cluster of low
value NO2 was enhanced incorrectly. (c) Results of segmentation of NO2 threshold
method. A black pixel is a pixel that was identified by a model as a plume. (d) Human
labels. The absence of black pixels means that there were no pixels within the area
labeled as a plume. For all presented images, the size of the pixel is equal to 4.2 ×
5 km2. Measurement date: June 9th, 2019. Ship type: Tanker. Ship length: 285 m.
Average speed within the studied time scope: 15.4 kt.
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5.3.2 Validation with emission proxy

Figure 6.6 provides the correlation plots of NO2 values estimated for a given ship on
a given day based on the segmentation results of a given model and the theoretically
derived NOx ship emission proxy Es. Table 5.4 gives information on the achieved level
of Pearson correlation and the number of plumes that were segmented by a certain
model. Here, our baseline result is the level of Pearson correlation and the number
of plumes that were identified by Manual Labeling. We can see that the majority
of the models detected more plumes than the labeler. However, in all cases apart
from XGBoost, the higher number of segmented plumes caused the decrement in the
correlation score. The XGBoost model, on the other hand, was able to detect more
plumes than the manual labeler, while achieving the highest correlation score. Such
a result allows us to form a hypothesis that the developed machine-learning-based
methodology is able to segment plumes better than a human labeler. An example of
a case where the XGBoost classifier identifies a plume better than the human labeler
can be found in Figure 5.12. More experiments are, however, required in order to
make final conclusions.

The highest contrast between the scores of the performance metrics and the corre-
lation with the emission proxy can be noted for the NO2 threshold benchmark model.
This is due to the fact that the ship plumes composed out of one pixel in our dataset
were not labeled as plumes. The substantially high correlation with the emission proxy
suggests that the single-pixel plumes were, nevertheless, identified by the method cor-
rectly. An illustration of such an example is provided in Figure 5.13.

5.4 Conclusions

In this Chapter, we presented a new supervised-learning-based method for the auto-
matic evaluation of emission plumes produced by individual ships using TROPOMI
data. The experiments were performed using NO2 measurements from the TROPOMI
instrument. We started with the enhancement of the TROPOMI data in order to in-
crease the contrast between the ship plume and the background. The applied image
pre-processing technique enhances the intensity of high-value pixels located in a clus-
ter (plume) and suppresses random concentration peaks in the background. We then
automatically assigned a ship sector to each analyzed ship, which excludes from the
analysis parts of the image where the plume of the studied ship cannot be located
based on wind conditions and speed/direction of the ship. As a next step, we pre-
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sented a feature engineering method consisting of the normalization of the ship sector
and its division into smaller sub-regions. Each sub-region has a different probability
of containing a plume produced by the ship of interest. This way, we differentiate the
plume produced by the ship of interest from all the other plumes potentially located
within the ship sector. The set of newly created spatial ship sector -based features
allows us to perform ship plume segmentation using multivariate machine-learning
models. The application of the multivariate models gives the possibility to support
the ship plume segmentation process with a set of additional one-dimensional features
such as ship characteristics and speed.

We integrated several data sources into a multivariate dataset. We manually la-
beled the data, so that the problem of individual ship-plume segmentation can be
addressed with supervised learning. We trained a set of robust linear and nonlinear
multivariate classifiers and compared their performance with the segmentation results
of thresholding-based univariate benchmarks. All studied non-linear classifiers showed
superior results in comparison to both linear models and univariate benchmarks. With
the XGBoost model, we were able to achieve more than a 20% increase in the segmen-
tation average precision in comparison to the best benchmark univariate model. This
allows us to answer positively the RQ6 of this thesis.

We validated the proposed methodology using an independent measure, i.e. a
theoretically derived NOx ship emission proxy that we use as a reference value. For the
comparison, we estimated the amount of NO2 produced by each of the analyzed ships
and calculated the Pearson correlation of the obtained results with the ship emission
proxy. We compared the obtained correlations and the number of plumes segmented
by each of the studied models with the results obtained from manual segmentation.
We showed that with the XGBoost model, we are able to segment more plumes while
achieving a 6.8% higher correlation with the emission proxy than when the plumes
were segmented manually. That might suggest that the proposed method is able to
find plumes that are hardly or not detectable by the human eye (RQ7).

5.5 Discussion

The presented approach opens new perspectives for the application of remote sensing
in the domain of ship emission monitoring. However, there are several points on
the generalization of results, the methodology, and the TROPOMI detection limit we
would like to address here.

Firstly, we would like to discuss the possibility of the application of the proposed
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Figure 5.14: Distribution of the dataset features for the images, where there were
no visible ship plumes distinguished, and for the images, where there was a visually
distinguishable ship plume.

Variable Name No plume image Image with a plume

Wind speed [m/s] 5.47± 2.31 5.27±2.00
Ship speed [kt] 16.83± 2.01 17.41 ± 2.04
Ship length [m] 279.92±86.64 303.99 ± 82.79

Table 5.5: Average and standard deviation for the dataset features for the images,
where there were no visible ship plumes distinguished, and for the images, where there
was a visually distinguishable ship plume.
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methodology to other regions. In this study, we presented a general approach that
allows for the application of machine-learning models for more efficient, automated
segmentation of plumes from individual ships using TROPOMI data. All steps of
feature preparation can be performed on the data from any region of the globe. Nev-
ertheless, the machine-learning models will have to be retrained on the region-specific
datasets.

Secondly, not all regions will be equally suitable for the performance of ship emis-
sion monitoring with remote sensing. In particular, at the moment there is no scien-
tific evidence that under the thick layer of land-based emission outflow, it will still be
possible to differentiate plumes produced by ships. Therefore, areas that lie in close
proximity to big cities, ports, or industrial objects are currently challenging to analyze.

The next point is the validation approaches used in this study. For the training of
the machine-learning model, we used human labels. Human labeling is the basis of all
machine-learning methods and this study pioneers ship plume segmentation with more
efficient supervised learning based on human labeling. However, the dispersion and
chemical transformation of a ship plume, as well as its non-rigid structure mean that
there are always some parts of this plume that are at or beyond the visible detection
limit of the combination of the TROPOMI instrument and the retrieval algorithm.
This can cause errors in labeling as is demonstrated in Figure 5.12. Such mistakes if
present in reasonable amounts should not affect the performance of the model, but,
if the number of labeling errors is too high, the machine-learning model will not be
able to learn properly, and thus, the resulting performance will be very poor. The fact
that non-linear models were able to easily outperform thresholding-based benchmarks
suggests that the models were able to use the provided labels for training and thus,
the labeling error rate is low. Nevertheless, an independent measure of the method
evaluation is needed. Since the interest of our study centers around seagoing ships, the
in-situ measurements cannot be considered as a potential way of method validation.
The option of on-board measurement of fuel samples, cannot be performed at the scale
of the study. Therefore, a theoretical measure of ship emission potential which is ship
emission proxy turns out to be the only available option of a reference value for the
results of this study.

The usage of the ship emission proxy, however, has its limitations. Namely, the
used ship emission proxy does not take into account many factors that influence the
expected level of emission for a given ship. Nonetheless, the used proxy allows us to
rank the emission potential of the analyzed ships properly.

As a following, we would like to discuss the fact that even though only fast ships
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were taken into consideration in this study, the number of ships for which the plume
was possible to distinguish is higher than the number of ships for which the plume was
invisible for the labeler. This study focuses on observing emission sources at the edge
of the detection limits of the TROPOMI instrument. It is, therefore, likely that under
certain circumstances ship plumes remain undetected. We can only in part explain
under what circumstances plumes are not visible. With the data presented in Figure
5.14 and Table 5.5, we show that, as expected, smaller and slower ships are more often
not detected. Similarly, for high wind speeds – the detection is more challenging due to
the high dilution of the ships’ emissions and therefore low concentrations (the evidence
can also be found in Figure 5.14 and Table 5.5). Regarding the lower detectability at
lower wind speeds that can also be observed in Figure 5.14, we find some accordance
with the findings from [86], where it is described how the wind speed impacts the
reflectivity of the sea surface due to the shape of the waves, which in turn influences
the sensors’ sensitivity. However, this topic needs further study in the satellite retrieval
community.

To sum up, the method presented in this study is a big step towards automated
and global ship emission monitoring with remote sensing and should not be devalued
by the above-mentioned limitations. Firstly, one can train a machine-learning model
per region as commonly done in remote sensing. In addition, the region can serve as
a feature of the model itself to make it invariant to geographic locations. Moreover,
adding such variables as month, solar radiation, or temperature will make the model
invariant to the seasonal changes that might be more severe at northern latitudes.
Secondly, main ship routes go through both more and less suitable regions for the
satellite observations. Thus, a selection of the more convenient regions will still allow
us to use our approach for efficient monitoring of the emission levels produced by ships
that follow those routes. Moreover, the obtained good results both in terms of segmen-
tation quality and comparison with the emission proxy suggest that labeling has been
of substantial quality. The proposed methodology also opens new research directions.
For instance, human labeling can be replaced with chemical plume dispersion models,
which will further improve the labeling quality and make the proposed methodology
even more effective. Finally, the problem of visibility of ship plumes that have been
unrevealed with the presented study, once solved, will give us a great overview of the
capabilities of TROPOMI sensors.
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