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Chapter 3

Sensitivity analysis for the
detection of NO2 plumes from
seagoing ships using TROPOMI
data

Based on: Kurchaba, S., Sokolovsky, A., van Vliet, J., Verbeek, F.J., Veenman,
C.J., 2024. Sensitivity analysis for the detection of NO2 plumes from seago-
ing ships using TROPOMI data. Remote Sensing of Environment 304, 114041.
doi:10.1016/j.rse.2024.114041.
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3.0.

Abstract The marine shipping industry is among the strong emitters of nitrogen
oxides (NOx) – a substance harmful to ecology and human health. Monitoring of
emissions from shipping is a significant societal task. Currently, the only technical
possibility to observe NO2 emission from seagoing ships on a global scale is using
TROPOMI data. A range of studies reported that NO2 plumes from some individ-
ual ships can be visually distinguished on selected TROPOMI images. However, all
these studies applied subjectively established pre-determined thresholds to the min-
imal speed/length of the ship – variables that to a large extent define the emission
potential of a ship. In this Chapter, we investigate the sensitivity limits for ship plume
detection as a function of their speed and length using TROPOMI data. For this, we
train a classification model to distinguish TROPOMI image patches with a ship, from
the image patches, where there are no ships. This way, we exploit ground truth ship
location data to potentially exceed human visual distinguishability. To test for re-
gional differences, we study four regions: the Mediterranean Sea, Biscay Bay, Arabian
Sea, and Bengal Bay. For the Mediterranean and the Arabian Sea, we estimate the
sensitivity limit to lie around a minimum speed of 10 knots and a minimum length of
150 meters. For the Biscay Bay – around 8 knots and 100 meters. We further show
that when focusing the analysis on the biggest emitters (junctions of several ships in
the area), the detectability can be improved up to above 0.8 ROC-AUC. Finally, we
show that increasing the size of the dataset, beyond the dataset used in this study,
yields further improvements in the detectability of smaller/slower ships. The rate of
improvement in both experiments is dependent on the region studied.
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Chapter 3. Sensitivity analysis for the detection of NO2 plumes from
seagoing ships using TROPOMI data

3.1 Introduction

As it was mentioned in the Introduction of this thesis, the TROPOMI/S5P is the first
satellite-based instrument that gives the possibility to visually detect NO2 plumes from
some individual seagoing ships [41]. This is due to significantly higher than its prede-
cessor spatial resolution of the instrument. Such an improvement in the quality of the
remote-sensing-based atmospheric monitoring allows to consider the TROPOMI/S5P
instrument as a potential solution for the task of global and continuous monitoring of
the emissions produced by seagoing ships [90]. However, in order to fully understand
the potential of the TROPOMI for a given task, the first step is to estimate the limita-
tions in terms of the sensitivity of the detection system for NO2 plumes from seagoing
ships using TROPOMI data.

To tackle the problem, we prepare image patches – small, regular-sized sections of
the TROPOMI measurement (image). We use the created image patches to train a
machine-learning classification model. The task of the model is to distinguish image
patches with at least one ship from the image patches where there are no ships. The
labels of the model were created using AIS ship location data, and, therefore, are
independent of the distinctivity of ship plumes by a human. This way, we formulate
the research questions of the study as follows:

• RQ1: What is the minimum speed and length of a seagoing ship so that the
NO2 plume from it can be detected with the detection system using TROPOMI
data?

• RQ2: To what extent can the detectability of NO2 plumes be improved if only
the biggest emitters are taken into account? With the biggest emitters, we mean
the biggest ships operating at the highest speeds, or several smaller or slower
ships operating in proximity to each other.

• RQ3: Is there a potential for improvement of detectability of NO2 plumes from
the slow/small ships if more data were used to train the used classification model?

We conduct this study on four regions of interest: Mediterranean Sea, Biscay Bay,
Arabian Sea, and Bengal Bay (the coordinate scope see in Table 3.1 and Figure 3.1).
The study areas are directed towards the Europe – Middle East – Asia trade route,
with selected areas representing low background pollution and common occurrence of
clear skies.

The rest of the Chapter is organized as follows: In Section 3.2, we explain how
the data was pre-processed in order to obtain datasets used for machine learning
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3.2. Dataset

models. In Section 3.3, we introduce the experimental setup for each stage of the
study and present the obtained results. We discuss the obtained results in Section 3.4
and conclude in Section 3.5.
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Figure 3.1: Four studied regions (from left to right): Biscay Bay, Mediterranean Sea,
Arabian Sea, Bengal Bay.

Region Longitude [deg] Latitude [deg] Studied period

Mediterranean (14, 19.3) (33.2, 38) (31-03-20; 28-02-23)
Biscay Bay (-10, -6) (45, 47) (01-04-20; 28-02-23)
Arabian Sea (59, 68.5) (5, 18) (31-03-20; 30-11-22)
Bengal Bay (88, 92) (2, 8) (03-06-20; 31-12-22)

Table 3.1: Geographical coordinates and analyzed periods defining the study scope for
each region.

3.2 Dataset

The supervised learning task that is addressed in this study is to distinguish image
patches with a ship plume on them. In this Section, we describe the process of the
preparation of the dataset for the given supervised learning task. We first describe
the undertaken steps of data pre-processing. We then introduce the features used for
the model training and define the target variable.
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Chapter 3. Sensitivity analysis for the detection of NO2 plumes from
seagoing ships using TROPOMI data

Region Ship image No ship image

Mediterranean 16% 18%
Biscay Bay 48% 52%
Arabian Sea 49% 52%
Bengal Bay 54% 54%

Table 3.2: Percentage of data from the original dataset lost when a qa value of .75 is
applied for filtering.

Figure 3.2: An illustration of the set-up used for counting the number of ships per
image patch. White square – image patch. Grey square – a central part of the image
patch. Red dashed lines – an example of ship trajectory starting from 2 hours before
until the moment of the satellite overpass. Only ships, whose trajectories cross the
central part of the image patch are considered to be present in the area covered by a
patch.

3.2.1 Data preprocessing

The first step of data preparation is regridding1. This is done so that for each region
we have pixels with the same spatial coverage. The regridded pixel size for each region
is approximately equal to 4×5 km2. Following the set-up used in the previous studies
[63, 64], for the regridding, we only use pixels with cloud coverage below 0.5, wind
speed lower than 10 m/s, and qa value above 0.5 [93]. This level of qa value filtering
was shown to be sufficient for the identification of NO2 plumes from individual ships
and is a trade-off between a high standard of data quality, and an attempt to preserve
as many data points as possible. In Table 3.2, the reader can find an assessment of
the data loss in case qa value filtering was set to the level of 0.75 – the level suggested
in the TROPOMI manual [31].

As a next step, we split the studied area into non-overlapping patches of equal
size 80×80 km2. The selected size of the image corresponds to a distance that the
fastest ships in the dataset will cover in 2 hours. The observation period of 2 hours

1The regridding is performed using the Python package HARP v.1.13.
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Figure 3.3: Distribution of the number of ships per image patch for the studied regions.
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Chapter 3. Sensitivity analysis for the detection of NO2 plumes from
seagoing ships using TROPOMI data

Region Ship image No ship image

Mediterranean 6652 9693
Biscay Bay 2641 2812
Arabian Sea 4804 24594
Bengal Bay 2444 6848

Table 3.3: Class-wise distribution of image patches for each studied region. The rate
of imbalance depends on the traffic density in the region.

was motivated by the fact that due to the physical dispersion and limited lifetime of
NO2 within plumes, the detectability of ship plumes will fall sharply after 2 hours
[107]. For each image patch, we calculate how many ships were in the central area
of the patch within 2 hours before the overpass of the satellite. The central area of
the patch is defined as 60×60 km2 square. We do not take into account ships that
do not pass through the central area of the image patch, as the probability that their
plume will be located within the image patch is very low. An example is presented
in Figure 3.2. The resulting distribution of the number of ships per image patch for
each studied region can be found in Figure 3.3. Please note the regional differences in
the distribution of ships among patches. The Arab Sea typically has a high number
of patches with a single ship. The Biscay Bay, in comparison to other regions, has the
highest number of patches with a high number of ships on it. These patterns illustrate
the difference in shipping density among the studied regions.

3.2.2 Feature engineering

To study the sensitivity of the TROPOMI instrument with respect to the detection
of NO2 plumes from seagoing ships, we prepare a dataset for supervised machine
learning. The NO2 trace gas variable of our interest is Tropospheric Slant Column
Density – SCD trop [31]. As mentioned in Chapter 2, the SCD variable is suitable
for satellite sensitivity study [41] as its derivation is not based on airmass factor –
a variable estimated based on, among others, historical NO2 concentration within a
certain area.

The objective is to distinguish image patches that cover the area where there are
no ships, from image patches covering the area with at least one ship on it. Since this
is a binary problem, the value of the output label is 1, if there is at least one ship that
is faster than 6 kt, which is approximately 11.1 km/h and longer than 90 m in the
area covered by an image patch. The output label is 0, if there is no ship in the area,
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or the ship is shorter than 90 m or slower than 6 kt. The values of 90 m and 6 kt are
sufficiently low to be well below detectable limits as will also follow from this study.
Table 3.3 shows the resulting distribution of classes for studied regions. Examples of
image patches without (label 0) and with at least one ship on it (label 1) are presented
in Figure 3.4. We can see that not all image patches with a ship actually contain a
visually distinguishable plume. This is because the NO2 plumes produced by some
ships are below the sensitivity limit of the TROPOMI instrument, or we are not able
to distinguish it visually.

We address the classification problem with a multivariate classifier. Therefore,
we represent the TROPOMI image patches in terms of a set of features - a statisti-
cal representation of the image patch. More specifically, for the regridded pixels of
each image patch, we calculate the following statistics: min(SCD), mean(SCD), me-
dian(SCD), max(SCD), std(SCD), where SCD stands for NO2 slant column density.
To give information about the level of plume dispersion, we add wind-related variables
zonal wind velocity (wind zon), meridional wind velocity (wind med), which represent
the speed of the wind from the west to east and from south to north respectively. Fi-
nally, we add features sensor zenith angle, solar zenith angle and solar azimuth angle
to represent the viewing geometry of the satellite. Values for wind information and
satellite geometry are the average values of the pixels within the image patch. The
resulting feature set is presented in Table 3.4. In Figure 3.5, the reader can find his-
tograms of the dataset features for the studied regions. Clearly, the features related to
the properties of ships cannot be included in the feature space, because the presence
of a ship has to be established. Moreover, we deliberately do not include any features
in the feature set related to the geographic locations of a given patch. This is because
shipping lanes may bias the model. The dataset used in this study as well as the
code used for generating the presented in this study results are available publicly as
a reproducibility capsule [60]. Prior to the application of a machine learning model,
all features were standardized using a median-interquartile range scaling2 – a scaling
technique that allows to reduce a negative impact of the outliers in the dataset [32].

3.3 Experiments and results

In this Section, we describe the experiments and show the results obtained. We start
with the introduction of the classification model – we present model selection and
hyperparameter optimization results. For the selected model, we provide the explain-

2RobustScaler implemented in scikit-learn v.1.2.2.
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Figure 3.4: Examples of image patches without a ship and with at least one ship on it.
The presented image patches were randomly sampled from the dataset of the region
Biscay Bay.
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Figure 3.5: Histograms of the variables from the dataset.

Feature type Feature name

NO2 slant column density min(SCD)
mean(SCD)

median(SCD)
max(SCD)
std(SCD)

Wind information zonal wind velocity
meridional wind velocity

Satellite geometry sensor zenith angle
solar zenith angle

solar azimuth angle

Table 3.4: List of features used for classification model.
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Chapter 3. Sensitivity analysis for the detection of NO2 plumes from
seagoing ships using TROPOMI data

ability analysis. Next, in the consecutive subsections, we explain and provide the
results of the experiments addressing the three research questions of this study.

3.3.1 Classification model

Experimental setup

As a first step, we compared the performance of several multivariate classifiers and
selected the one that is going to be used in the remaining part of the Chapter for the
sensitivity analysis. We studied four machine learning classifiers of increasing complex-
ity: Logistic regression, Support Vector Machine (SVM) with the radial basis function
(rbf) kernel, Random Forest3, and Extreme Gradient Boosting4 (XGBoost) [22]. All
selected models are robust to noise and can be efficient even given the relatively small
size of datasets. To make sure that we exploit the maximum potential of a given ma-
chine learning model, we optimized the hyperparameters of each studied model. The
hyperparameters were optimized using a random search5 technique with the objective
metrics - average precision. The used search space of the hyperparameters for each of
the models studied as well as the results of the hyperparameters optimization can be
found in the original paper [61]. To be able to simultaneously perform the hyperpa-
rameter optimization and evaluation of the model performance, we use 5-fold nested
cross-validation [96, 18] (for the explanation of the concept and visual example see
Section 2.3). To maintain the same percentage of samples of a certain label in the
training and test set, the cross-validation was based on stratified K-fold splits [47, 42].

Results

The classification results are presented in Table 3.5. Comparing the performances
between different classifiers, we can see that the XGBoost classifier yielded the best
results for most of the regions – we used this classifier for the remaining experiments
of this study. Comparing the results between regions, we start with ROC-AUC. The
highest achievable score of ROC-AUC is equal to 1. While the ROC-AUC score that
will be obtained in case of random guessing is 0.5. The ROC-AUC score is calculated
based on the ROC curve. For the XGBoost classifier, it is presented in the right-hand
side plot of Figure 3.6. The scores for Biscay Bay and the Mediterranean Sea are
higher than for the Arabian Sea and Bengal Bay. One of the reasons for this difference

3All above-mentioned models are implemented in Python scikit-learn v.1.2.2.
4XGBoost v. 1.7.0
5Implemented in Python scikit-learn v.1.2.2.
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3.3. Experiments and results

Region Model Average Precision ROC-AUC

Mediterranean XGBoost 0.636 ± 0.013 0.712 ± 0.011
Random Forest 0.629 ± 0.018 0.706 ± 0.016

SVM (rbf) 0.615 ± 0.015 0.694 ± 0.013
Logistic 0.448 ± 0.008 0.546 ± 0.009

Biscay Bay XGBoost 0.704 ± 0.021 0.713 ± 0.015
Random Forest 0.620 ± 0.025 0.652 ± 0.022

SVM (rbf) 0.573 ± 0.020 0.589 ± 0.014
Logistic 0.523 ± 0.013 0.541 ± 0.018

Arabian Sea XGBoost 0.226 ± 0.007 0.610 ± 0.008
Random Forest 0.229 ± 0.006 0.618 ± 0.006

SVM (rbf) 0.195 ± 0.004 0.545 ± 0.007
Logistic 0.169 ± 0.003 0.498± 0.008

Bengal Bay XGBoost 0.379 ± 0.017 0.601 ± 0.01
Random Forest 0.364 ± 0.016 0.601 ± 0.010

SVM (rbf) 0.346 ± 0.006 0.560 ± 0.016
Logistic 0.289 ± 0.015 0.542 ± 0.016

Table 3.5: Results of the optimization of the classification models’ hyperparameter.
The reported results were obtained on the hold-out test sets based on nested 5-fold
cross-validation [96, 18]. The bold font indicates the performance of the best model
for a given region.

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

Precision-Recall Curve

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC Curve

BiscayBay
MedSea
ArabSea
BengalBay

Figure 3.6: Precision-recall and ROC curves for the studied regions. The black line in
the right panel – performance of a random guess classifier.
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might be that the regions Biscay Bay and the Mediterranean Sea have a higher overall
number of ships per image patch (and, therefore, a higher percentage of potentially
well-recognizable plumes) than the two remaining regions, c.f. Figure 3.3. Next, we
compare the scores of average precision. Also in the case of this metric, a perfect clas-
sifier would have a score of 1.0, while a random guess classifier would have an average
precision score equal to the ratio of positive samples in the dataset. The average preci-
sion score is calculated based on a precision-recall curve, which is presented in Figure
3.6, left-hand-side plot. Due to the different rates of class imbalance of datasets from
different regions, the average precision scores from the Table are difficult to compare
directly. However, analyzing the precision recall-curves, we can conclude the follow-
ing: the performance of the classifiers on Biscay Bay and Mediterranean Sea regions
are very close to each other and the difference between the obtained average precision
scores is mainly caused by a slightly different class imbalance. The lower average-
precision scores for the regions Bengal Bay and Arabian Sea are also to a big extent
a result of the fact that those datasets contain fewer image patches with a ship than
two other regions. However, in the case of Bengal Bay, for the lower rates of recall,
we can observe quite high values of precision. This signalizes the fact that there is a
set of images that the model can quite confidently correctly recognize. This is not the
case for the Arabian Sea, which implies better performance of the classification model
on the Bengal Bay region in comparison to the Arabian Sea. For all regions, it is
important to underline that the reported performances of the models were negatively
affected by the presence of ships whose size and speed are known to be too small or
slow to be detected by the TROPOMI instrument, which is a cause of the topic of this
research, that is the study of the detection limits.

Explainability analysis

As a next step, we would like to understand which of the used features are the strongest
indicators of the presence of a ship in the area for the XGBoost model. For this, we
perform the explainability analysis using the SHapley Additive exPlanations (SHAP)
[70] summary plots (see Figure 3.7). The plots indicate the strength of the impact
of a value of a certain model feature on the model outcome (positive or negative) for
individual samples from the test set. The red and blue colors show the effects of a
certain feature’s high and low values respectively.

We can see that for the Mediterranean Sea, and Biscay Bay, the feature having
the strongest impact on the decision of the model the most is scd std, representing
the standard deviation of stratospheric column density within the image patch. In the
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Figure 3.7: SHAP violin plots on concatenated test sets for each studied region.

0.0 0.5 1.0 1.5 2.0 2.5
SCD std 1e 5

0

100000

200000

300000

400000

D
en

si
ty

Distribution of the dataset feature

Mediterranean
Biscay Bay
Arabian Sea
Bengal Bay
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case of the Mediterranean Sea, scd max and solar zenith angle also play significant
roles. Interestingly, the direction of the meridional wind also has a strong influence
on the model’s decision in the Mediterranean Sea. From the plot, we see that the
negative meridional wind corresponds to strong negative model responses, potentially
due to land outflow from Europe affecting ship plume visibility. In the Arabian Sea
and Bengal Bay regions, the strongest impact on the model response is attributed to
the values of the feature scd mean. Notably, for the Arabian Sea, high values of scd
std do not necessarily indicate the presence of a plume, possibly because as we can see
from Figure 3.8, standard deviations of NO2 concentrations in this region are typically
lower compared to others. Low values of scd std, however, are used by the model as
a strong suggestion of the absence of a plume in the image patch. Finally, one can
notice that for Biscay Bay, the feature sensor zenith angle is of great importance.
However, since we do not see a clear split into high/low values for positive/negative
model outcomes, the influence of the feature on the model response will depend on the
values of other features [40, 47]. From this experiment, we can conclude that the same
machine learning models applied to different studied regions not only yield different
quality of results but are also driven by different sets of features.

3.3.2 Sensitivity limits estimation

In this Subsection, we address the first research question: What is the minimum speed
and length of a seagoing ship so that the NO2 plume from it can be detected with
the detection system based on TROPOMI data? With the detection system we mean
a sequence of steps needed to automatically detect an NO2 plume from a ship on a
TROPOMI image patch. The first step of this sequence is a measurement performed
by the TROPOMI sensor. The last step is the application of a trained machine-
learning model on the set of unseen image patches with the aim of distinguishing
patches covering the area with a ship. In [41], it was shown that the length and the
speed of the ship are the main factors determining the emission potential of the ship.
Following the considerations presented in [41], in order to decrease the level of problem
complexity, we represent the length/speed of the studied ship in terms of one variable
– the ship emission proxy Es [41], as defined in Section 2.4. For the purpose of this
study, we define the sensitivity limit of the detection system for NO2 plumes from
seagoing ships using TROPOMI data for a given region as the level of ship emission
proxy Es, starting from which the classification model can distinguish image patches
without a ship from image patches with a ship.
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Region Average Precision ROC-AUC

Mediterranean 0.538 ± 0.036 0.518 ± 0.038
Biscay Bay 0.539 ± 0.053 0.513 ± 0.067
Arabian Sea 0.563 ± 0.035 0.560 ± 0.031
Bengal Bay 0.564 ± 0.054 0.540 ± 0.060

Table 3.6: Model performance when only considering the one-ship patches with the
emission proxy below 10% quantile.

Given the provided definition of the sensitivity limit, our initial investigation eval-
uates the classification model’s performance using image patches with the lowest total
emission proxy. For this, we first exclusively chose patches covering a single ship.
Then, from the selected subset, we further narrowed our selection to those patches
with an emission proxy falling below the 10% quantile of all one-ship patches. To
ensure comparability of performance metrics between areas and samples with different
ship proxy values, we took a sample with an equal number of patches with and without
a ship covered by the patch. To make sure that all image patches with and without
ships that satisfy the above-provided criteria are used for the model training and eval-
uation, we repeated the sampling procedure 5 times. Subsequently, we conducted a
5-fold cross-validation for each set of sampled data points. The averaged results over
the five folds are presented in Table 3.6. The outcomes indicate that none of the
regions allowed for distinguishing patches with a ship, as the ROC-AUC/Average pre-
cision values obtained were not significantly higher than 0.5. Consequently, we infer
that the ships with the lowest emission proxies in our dataset fall below the sensitivity
limit of the detection system for NO2 plumes from seagoing ships using TROPOMI
data.

In the next experiment, we checked what the emission proxy threshold for the
ship plumes detectability is. Here, we again considered only image patches with one
ship on it. We then gradually removed ships with the lowest emission proxy from the
dataset, analyzing the changes in the model performance. The applied emission proxy
thresholds were determined as a range of quantiles starting from 10% and gradually
increasing by 10%, until it reaches 90%. If after reaching a certain level of threshold,
the number of patches with a ship (label 1) went below 300, the experiment was
terminated and the next thresholding levels were not tested6. The criterion of 300
patches was established based on the number of patches with a ship left after a 90%

6This way, the highest applied threshold for Biscay Bay was 70% and for Bengal Bay 80% quantile.

38



Chapter 3. Sensitivity analysis for the detection of NO2 plumes from
seagoing ships using TROPOMI data

0 2 4 6 8
Proxy threshold 1e7

0.475

0.500

0.525

0.550

0.575

0.600

0.625

0.650

Av
er

ag
e 

Pr
ec

is
io

n

0 2 4 6 8
Proxy threshold 1e7

0.450

0.475

0.500

0.525

0.550

0.575

0.600

0.625

0.650

R
O

C
-A

U
C

MedSea| Ships: 261; No ships: 261
BiscayBay| Ships: 291; No ships: 291

ArabianSea| Ships: 377; No ships: 377
BengalBay| Ships: 271; No ships: 271

Proxy thresholding experiment

Figure 3.9: Step-wise removal of the patches (containing one ship) with the lowest
emission proxy. Dashed lines indicate estimated levels of sensitivity limits for the
Biscay Bay, Mediterranean, and Arabian Seas. To assure the comparability of the
results, a similar size of training/test datasets was used at each threshold level.
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Figure 3.10: 2D histograms of speed and lengths for ships that are above (green) and
below (red) the estimated sensitivity limits for the Biscay Bay, Mediterranean, and
Arabian Seas.

threshold applied for the region with the highest number of one-ship patches available
(Arabian Sea). Clearly, by removing the image patches with the proxy values below
a certain threshold, we decreased the size of the dataset. To eliminate the potential
effect of the dataset size on the model performance, throughout the experiment, we
kept the dataset size constant. To achieve this, for each applied threshold, we sampled
the number of data points equal to the number of data points available for the highest
applied threshold. As in the previous experiment, we repeated the sampling procedure
5 times. For each set of sampled data points, we performed a 5-fold cross-validation.

The results of the experiment are presented in Figure 3.9. We can see that for the
lowest thresholds, for all four regions, the average performance quality did not change.
This means that the removed ships were still below the sensitivity level of the detection
system for NO2 plumes from seagoing ships using TROPOMI data. From a certain
threshold (indicated with dashed lines on the plot), however, the model performance
started to increase. The level of the ship emission proxy threshold starting from which
we observe the improvement of the performance of the model is the sensitivity limit
of the detection system for NO2 plumes from seagoing ships using TROPOMI data
for a given region. For the Mediterranean and the Arabian Sea, the sensitivity limit
in terms of ship emission proxy was established to be around 1 × 107m5/s3. For the
Biscay Bay, the sensitivity limit is lower and is around 3.8 × 106m5/s3. To get the
intuition around these numbers, we return to the values of speed and length of the
ship. To achieve this, for the regions of the Biscay Bay, Arabian, and Mediterranean
Seas, in Figure 3.10, we present 2D histograms of the speed and length of ships that
are above (green color) and below (red color) the estimated sensitivity limits. From
the histograms, we conclude that to distinguish NO2 plumes, the minimum speed of
the ship for the Arabian and Mediterranean Seas should range between 10 and 15
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kt depending on the length of the ship. Ships that are slower than 10 kt or shorter
than 150 m are below the sensitivity limit. For Biscay Bay, the limit lies around 8
kt and 100 m. For Bengal Bay, the sensitivity limit cannot be determined since the
available amount of data did not allow us to raise the proxy threshold high enough to
see the increase in the performance of the model. However, when comparing the curve
dynamics of the Bengal Bay with other regions, the obtained pattern suggests that
the sensitivity limit for this region is higher than for the Arabian and Mediterranean
Seas.

3.3.3 On detection of biggest emitters

Our second research question is how the detectability of NO2 plumes can be improved
if only the biggest emitters are taken into account. Our aim here is to understand the
potential of the detectability of NO2 plumes when the total emission proxy is very high.
The high emission proxy can result from a big ship operating at a high speed, or smaller
or slower ships operating in proximity to each other. Therefore, in this experiment,
we considered all image patches (without, with one, or with more than one ship on it).
This way, in some of the image patches, there will be more than one ship with a high
emission proxy present. As in the previous experiment, we gradually removed from
the dataset the image patches with the lowest total emission proxy. Once again we
studied how the removal of the low emitters affects the quality of classification. The
thresholds used for the proxy filtering were determined as quantiles of the proxy values
of the dataset of a given region. For the Mediterranean and Arabian Sea, the applied
quantiles ranged from 0 to 90%. For the Biscay and Bengal Bay, due to the smaller
sizes of the datasets, the applied quantiles ranged from 0 to 80%. In Figure 3.11, we
present the results of the experiment. For each of the studied regions, we can observe
an increase in the model performances. We can see that for the Mediterranean Sea,
for the patches with the highest total emission proxy, the ROC-AUC score can exceed
0.8. For the regions Arabian Sea and Bengal Bay, the level of the results is noticeably
lower. This pattern in the results is similar to what we observed in Subsection 3.3.1.

As a next step, we checked if the dependency between the applied proxy threshold
and classification performance is impacted by a certain hyperparameter configuration
of the XGBoost model. We would like to know to which extent we can improve the
quality of classification for the image patches with the highest total emission proxy.
For this, we studied two configurations of the dataset. In the first case, we applied the
highest proxy threshold for the given region (the last data point from the corresponding
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Figure 3.11: Illustration on how the step-wise removal of the image patches with the
lowest total emission proxy from the dataset affects the performance of the classifica-
tion model.

plots of Figure 3.11). In the second case, we did not apply any proxy threshold but
kept the dataset size equal to the case when the proxy threshold was applied (the
scenario corresponds to the first data point of the corresponding plots of Figure 3.11).
For each of the datasets, we performed optimization of the hyperparameters of the
classification model, in the same way as it is explained in 3.3.1. We then compared
the performance of the models for both scenarios. The results are presented in Figure
3.12. For all studied regions, we can see that the quality of detecting NO2 plumes from
ships can be improved if only the image patches with the highest total emission proxy
are considered. Based on this, we conclude that the dependencies shown in Figure
3.11 are not the results of a particular model configuration, but rather a property of
data. However, we can see that the optimization of the hyperparameters of the model
did not result in the improvement of the model performance.

3.3.4 Potential improvements in small ship detectability

In this Subsection, we address the third research question of the study. Namely,
we investigate whether there is a potential for improvement of detectability of NO2

plumes from the slow/small ships if more data would be used for the training of the
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Figure 3.12: Comparison of the performance of the model when all ship images are
in the dataset and when only images with the proxy above the predetermined proxy
threshold are used.
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Figure 3.13: Learning curves for different levels of the applied thresholds. The black
line indicates the dataset size that was used for the experiments reported in Figures
3.11, 3.12.
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Figure 3.14: Change of the ship proxy distribution after applying thresholds as in
Figure 3.13.
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classification model. For each region, we selected three proxy thresholding levels and
studied the change in the model performance with the growth of the size of the dataset
used for the model training. We focus here on the low thresholds. The used thresholds
were set as 10%, 30%, and 50% quantiles of the proxy value for the Mediterranean Sea
and Biscay Bay. For the Arab Sea and Bengal Bay, the applied thresholds were 10%,
40%, and 60% due to the fact that the model performances on the lowest quantiles
were indistinguishable. Similarly to the previous experiment, the maximum size of the
dataset was defined by the number of data points in the dataset with the proxy value
higher than the highest among the three applied thresholds.

The resulting learning curves for each of the studied regions are presented in Figure
3.13. We can see that for all studied regions, the results shown in Figure 3.11 can
be improved by using more data for model training. We also observe that for the
regions Biscay Bay and Mediterranean Sea, more data results in a more significant
increase in performance, than for the Arabian Sea and Bengal Bay. To explain this,
in Figure 3.14, we present the distribution of the variable ship emission Proxy for
each consecutive threshold applied. The histograms show that for the Biscay Bay
and the Mediterranean Sea, there are many more image patches with high values of
total emission proxy than for the Arabian Sea and Bengal Bay. As a result, even
after removing from the dataset the image patches with the lowest total emission
proxy, for such regions as the Arabian and Bengal Bay, the models are still trained on
significantly lower total emission proxies than the models for the Biscay Bay and the
Mediterranean Sea.

3.4 Discussion

The main objective of this study was to investigate the sensitivity limits of a detection
system for NO2 plumes from seagoing ships using TROPOMI data, considering the
speed and length of the ships that we expressed through the means of ship emission
proxy. By the detection system, we mean a sequence of steps starting from the signal
measurement by the sensor, followed by data retrieval, and finally the application of
the developed methodology of automated detection of ship plumes. Each of these steps
influences the numbers obtained in this study.

To be able to address the problem of sensitivity estimation, we build a method-
ology based on machine-learning classification models. This approach allowed us to
effectively exploit the TROPOMI signal and contextual information while automati-
cally separating the image patches into those, where the NO2 plumes can and cannot
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be detected. The choice of a multivariate model enabled us to take into account fea-
tures important for satellite sensitivity, such as wind and satellite/solar viewing angles.
Studying several machine learning classifiers of increasing complexity, we found that
the XGBoost model yielded the best performance across most regions. This shows
the importance of the application of complex machine-learning models for the effec-
tive identification of TROPOMI image patches with NO2 plumes from ships with a
relatively low number of features.

With the first research question (RQ1), we attempted to determine the minimum
speed and length of seagoing ships for which the TROPOMI data-based detection sys-
tem can detect NO2 plumes. We first showed that while the smallest ships considered
in our dataset are below the detection limit of the system, once reaching a certain level
of ship speed/size, the signal becomes detectable. Second, for the Mediterranean Sea
and the Arabian Sea, we estimated sensitivity limits of approximately 1× 107m5/s3.
For Biscay Bay, the obtained limit lies around 3.8 × 106m5/s3. Comparing the ob-
tained numbers with the ship emission estimation provided in [41], we can see that
our detection system allows us to correctly recognize some plumes with concentrations
close to the background concentrations estimated for the Mediterranean Sea. The
obtained values of emission proxy translate to the minimum detectable speed of 10
kt and minimum detectable length of 150 m for the Mediterranean and Arabian Seas
and 8 kt and 100 m for Biscay Bay. Unfortunately, due to the insufficient amount of
data, the sensitivity limits for the Bengal Bay region could not be determined.

With the second research question (RQ2), we examined the potential improve-
ment in NO2 plume detectability when considering only the biggest emitters. With
our results, we numerically confirmed that restricting the analysis to faster/larger ships
leads to enhanced detectability of NO2 plumes. For the Mediterranean Sea region, the
performance of the classification model can exceed 0.8 ROC-AUC and average pre-
cision scores. This finding suggests concentrating the focus on the larger emitters,
could potentially increase the efficiency of the application and accuracy of ship emis-
sion monitoring using the TROPOMI instrument. Our analysis also revealed distinct
differences in model performance quality between regions. Notably, the Mediterranean
Sea and Biscay Bay consistently show better performance compared to the Arabian
Sea and Bengal Bay. We can see that these variations could be attributed to variations
in ship traffic density between the regions. Additional factors that potentially can in-
fluence the performances of the models are measurement conditions (e.g., number of
cloudy days), differences in data quality between regions (c.f. Table 3.2), and different
scales of temperature fluctuations or concentration of ozone in the background. The
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last two factors affect the lifetime of NO2. However, an in-depth understanding of this
problem requires a separate study and we leave it as future work.

Our investigation into the third research question (RQ3), regarding the potential
for improving NO2 plume detectability from slow or small ships by utilizing more
training data, again showed the variability of the results across the regions. For the
Mediterranean Sea and Biscay Bay regions, an increase in data volume led to a notable
enhancement in model performance. While, for the Arabian Sea and Bengal Bay, the
impact of increased data, even though present, was less pronounced. One of the
established reasons was the fact that for European regions we had a higher ratio of
data points with a high value of emission proxy in the dataset than for the Bengal
Bay and Arabian Sea. Nevertheless, the obtained results indicate that the accuracy of
currently determined detection limits is perhaps constrained not by the methodology
or the sensor, but by data availability.

Implications and future work

The insights gained from this study have important implications for satellite-based
ship emission monitoring. By identifying sensitivity limits and optimal ship charac-
teristics for detectability, our findings guide the scope of future studies on ship’s NO2

estimation using TROPOMI data and give an overview of the potential application
of the TROPOMI instrument for ship emission monitoring. Moreover, the obtained
results can be used as a benchmark sensitivity level for future satellite missions, such
as, for instance, TANGO [67].

In future research, it would be valuable to explore factors beyond ship speed and
length that influence detectability, such as temperature regimes, clouds, background
ozone concentrations, effect of the sunglint or satellite viewing angle. Moreover, it
would be valuable to perform an in-depth study explaining the observed multi-regional
differences in ship plume detectability. Finally, studying different types of machine-
learning architectures or including more data features in the used datasets can provide
additional insights into understanding if the ship plume detectability limits can be
lowered further by means of potential improvement information extraction from image
patches. A possible candidate is Convolutional Neural Networks (CNN), as it was
done in [38] for the detection of visually distinguishable ship NO2 plumes. However,
[63, 64] provide indications that CNN architecture might not be a suitable option for
the detection of plumes that are poorly distinguishable on the TROPOMI data.
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3.5 Conclusions

In this study, we investigated the sensitivity limits of the TROPOMI data-based de-
tection system with respect to the detection of NO2 plumes from individual seagoing
ships. To the best of our knowledge, no previous research has examined this aspect,
making our findings novel and significant in understanding the capabilities of the
TROPOMI instrument. Our results are obtained through the analysis of four regions
of interest (the Mediterranean Sea, Biscay Bay, Arabian Sea, and Bengal Bay) and
can be summarized as follows:

1. We quantified the sensitivity limits of a detection system for NO2 plumes from
seagoing ships using TROPOMI data in terms of the length and speed of a ship
beyond which the NO2 plumes from individual ships cannot be distinguished
anymore.

2. We also numerically showed that, as expected, the ships with higher emissions
(through either greater length or speed) are more easily detected. We demon-
strated such an effect by analyzing model performances with the removal from
the dataset ships with the lowest emission proxy. This is agnostic to the model
or studied region.

3. Then, we demonstrated that the detection of the NO2 plumes from the ships
with lower emission proxy can be improved, once more training data are added.

4. Finally, we obtained different levels of results between the studied regions. We
showed that for different regions a machine learning model not only yields dif-
ferent levels of results but also uses different features as main indicators of the
presence of a plume in an image patch. A discrepancy is noticeable when com-
paring the Arabian Sea and Bengal Bay to the Mediterranean Sea and Biscay
Bay.

To sum up, our findings suggest that, while efficient monitoring of seagoing ships
from the TROPOMI satellite is possible, the quality of ship plume detectability de-
pends on many factors. We believe that our results provide guidelines for establishing
the research scope for future studies on NO2 ship plume detection as well as contribute
to the successful application of satellite-based instruments for the monitoring of NO2

emission from seagoing ships.
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