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Chapter 2

General workflow

The aim of this study is to develop a methodology enabling the analysis of TROPOMI
satellite data for the task of ship emission monitoring. In each chapter of the thesis, we
address different aspects of this task. However, there is a sequence of steps that will be
performed repeatedly in each chapter. Those steps are the integration of several data
sources, feature engineering, selection of a machine learning model and optimization
of its hyperparameters, the application to a given problem, and comparison of the
estimated values of NOy with the theoretical measure of ship emission potential. We
call it the general workflow (c.f. Figure 2.1). Each step of this general workflow will be
introduced to the reader in this Chapter. The order, technical details, or methodology
applied in each step will depend on the problem at hand and will be described in each

chapter separately.
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Figure 2.1: Visualization of general workflow.
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2.1. Data integration

2.1 Data integration

The first step of the general workflow is data integration. Within this thesis, we

understand the process of data integration as follows:

Definition 2.1. Data integration is the process of combining data from several sources

into one unified dataset in a way that enables the solution of a particular task at hand.

The main data source of this study is the set of NOy measurements coming from the
TROPOMI instrument. These data contain among others information of our interest -
the amount of NOgy produced as a result of NO, emission of individual seagoing ships.
However, to enrich the TROPOMI data for our analyses, additional data sources are
needed. In this study, we integrate the following data sources: 1) the TROPOMI
NO; product, 2) data on ship positions and some properties of the ship, and 3) wind
information. In the following subsections, we introduce the sources of data used in the

study.

2.1.1 TROPOMI data

The Sentinel-5 Precursor (Sentinel-5P) satellite was launched in October 2017 and
started its operational phase in April 2018. TROPOMI is a spectrometer on board
the Sentinel-5P satellite mission — a sun-synchronous satellite with a local equatorial
overpass time at 13:30. The instrument measures the Top Of the Atmosphere (TOA)
solar radiation reflected by and radiated from the Earth covering ultra-violet up to
the part of the visible spectrum (270-500 nm), near-infrared (675-775 nm), shortwave
infrared (2305-2385 nm) spectral bands. The maximal ground pixel resolution of the
instrument reaches 3.5 x 5.5 km? at the nadir, while the actual size of the pixel will
vary depending on the true distance between the satellite and the captured part of
the Earth’s surface. We use Level 2 tropospheric NOg column data, publicly available
via https://dataspace.copernicus.eu/ (previously https://sbphub.copernicus.eu/). In
Chapter 3, the analysis is based on the TROPOMI data version 2.4.0. In Chapters
4, 5, the used data version is 1.3.0, and in Chapter 6 the study is conducted using
TROPOMI data version 2.3.1.

The retrieval of NOy columns is performed using a 3-step procedure described
in the Algorithm Theoretical Baseline Document [101]. A visual description of the
process is presented in Figure 2.2. As a first step, NOy slant column densities are
defined as the integrated amount of NO, along the average photon path from the Sun
through the atmosphere back to the sensor [11, 41]. Next, based on the output from the
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Chapter 2. General workflow
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Figure 2.2: Illustration of the retrieval algorithm of NOg vertical tropospheric column
density. S stands for Slant Column Density, V' — Vertical Column Density. Visualiza-
tion inspired by [105].

data assimilation system, the slant column is split into stratospheric and tropospheric
components [29]. As the last step, using a tropospheric air mass factor (AMF), the
tropospheric slant columns are transformed into tropospheric vertical column densities.
The AMF accounts for the path length that sunlight travels through the atmosphere
before reaching the satellite sensor, normalizing it by the amount of sunlight that
would reach the surface under direct overhead conditions. Calculation of AMF to a
large extent depends on the emission inventories and chemical transport models, which,
in turn, rely on information about historical concentrations of emissions, including
NO; [31]. Starting from Chapter 4, in all chapters of this thesis, we will base our
analysis on tropospheric vertical column densities, as this variable ensures the best
enhancement of NOy plumes. In Chapter 3, however, we study the sensitivity of the
TROPOMI data-based detection system with respect to the NO ship plume detection.
Therefore, the historical information contained in AMF, and, in the resulting vertical
column densities may cause information leakage. To prevent such a situation, the

study presented in Chapter 3 will be based on tropospheric slant column density data.

2.1.2 Ship-related data

The second data source used in this study is information on ship positions. To coincide
the detected NOs plumes with the emitting ships, the information on the positions of
the ships at the moment of the satellite overpass is compulsory for this study. The

used data on the positions of the ships comes from the Automatic Identification System
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2.2. Feature engineering

(AIS) transponders. Since 2002, all commercial sea-going vessels have the obligation
to carry on board an AIS transponder [76] which transmits information about the
position, speed, heading (direction), a unique identifier (MMSI), and the type of the
ship.

At the moment, there is no open-access AIS with the spatiotemporal coverage and
data quality required for this study. The data, however, can be accessed through
several commercial providers. For the scope of this study, the AIS data as well as
information about the dimensions of ships were provided by ILT, which has access to
commercial databases.

In Figure 2.3, we present an example of TROPOMI data with the indicated posi-
tions of ships in the area starting from 2 hours before, until the moment of the satellite
overpass. We can see that while the beginning of a ship’s trajectory often corresponds
with the origin of the plume, some significant deviations can be observed for the rest
of the trajectory line. This happens because after the plume has been emitted by the
ship, it is carried away in the direction of the prevailing winds. Therefore, for the
efficient allocation of the plume with the ship emitter, information about the speed

and the direction of the wind is required.

2.1.3 Wind data

Throughout the thesis, we use wind data from the European Center for Medium
range Weather Forecasts (ECMWTF). The wind fields (wind speed and wind direction)
are the results of operational model analyses at a spatial resolution of 0.25°!, the
temporal resolution of 6 hours and altitude of 10 meters. In [41], the wind data at
10 meters altitude was considered sufficient for ship-plume matching. Starting from
the TROPOMI product version upgrade from 1.2.2 to 1.3.0 on March 27, 2019, the
ECMWEF 10-meter wind data for coinciding time is available as a support product in
the TROPOMI data file [101].

2.2 Feature engineering

After data integration, the second step of the general workflow is feature engineering.

We define feature engineering as follows:

Definition 2.2. Feature engineering is the process of extracting features from raw
data.

1For the analyzed area the spatial resolution of 0.25° x 0.25° translates to &~ 23.4 x 27.6 km?.
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Figure 2.3: The NO; vertical tropospheric column density. Date: April 11th, 2020.
Region: the Arabian Sea. Magenta lines indicate ship tracks based on information
from AIS data. On the right-hand side of the map, an outflow effect from the variety
of land bases NO, sources can be noticed.
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2.3. Model selection and optimization

Definition 2.3. Features are the set of characteristics associated with the data [75].

Other names of features are variables or attributes.

The aim of feature engineering is to transform the integrated dataset to be used
by a machine-learning method for a particular task. Since in each chapter, we address
different tasks, the applied methods of feature engineering will differ as well. The ex-
amples of feature engineering techniques that were used throughout the thesis include
an assignation and further geometric transformation of the Region of Interest, data
aggregation (through calculation of various statistics), encoding of spatial information,

and categorical data encoding. They will be explained in the respective chapters.

2.3 Model selection and optimization

The next step of the workflow is the selection of a machine-learning model suitable for
a given problem. This process includes the selection of the best-performing algorithm

and the optimization of its hyperparameters. We define hyperparameters as follows:

Definition 2.4. Hyperparameters of a machine-learning algorithm are the parameters
that steer the behavior of the learning process. The hyperparameters cannot be learned
by the algorithm from its experience E (c.f. Definition 1.1) and need to be set by a

researcher [55].

In the next subsections, we explain how we perform model selection and optimiza-

tion in this thesis.

2.3.1 Machine-learning metrics

When performing model selection, we define beforehand evaluation metrics suited to
the problem at hand. Several machine-learning metrics are used in this thesis and are
defined below depending on whether we perform a binary classification or a regression
task.

Binary classification metrics

In the context of binary classification, each classification result is assigned to one of

the four categories:

e True positives (T'P): the output data points with a positive class label correctly
identified by the classifier.
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Chapter 2. General workflow

e True negatives (T'N): the output data points with a negative class label correctly
identified by the classifier.

e False positives (F'P): the output data points incorrectly identified by the classi-

fier as positive.

e False negatives (F'N): the output data points incorrectly identified by the clas-

sifier as negative.

The assignment to one category depends on the output of the model, that is the
computed probability and a probability threshold. For instance, if the model gives
a probability of 0.78 for a given data point and the threshold is set to 0.5, the data
point will be labeled as positive. If the original label of the data point was positive,
it is then correctly classified and is considered as T'P. Using these categories, we can
define performance metrics for a binary classifier.

First, we introduce a precision-recall curve — a graphical evaluation technique de-

picting precision as a function of recall where:

. TP
Precision = m (21)
TP
_ _ 2.2
Recall TPLFN (2.2)

Such a curve is obtained by using multiple probability thresholds to obtain multiple
precision and recall points. When comparing the precision-recall curves of two models,
if the precision and recall points of one curve are all above the points of the other,
then the corresponding model is considered better than the other.

In the case of intersecting curves, to rank the models, we calculate an area under
the precision-recall curve. We call this metric average precision. For a classifier that
classifies all the data points correctly, the value of the average precision will be equal to
1. For a random guess classifier, the value of the average precision is equal to the ratio
of positive samples in the dataset. Throughout the thesis, the average precision will
be used as an evaluation metric for performing model selection and hyperparameter
optimization.

The next method that we use in this thesis for the evaluation of the binary classifier
is the Receiver Operating Characteristic (ROC) curve [35, 36]. The ROC curve is
a graphical evaluation technique depicting all possible thresholds between the true
positive rate (T'PR), which is another name for Recall, and the false positive rate
(FPR) [109], which we define as follows:
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Figure 2.4: ROC curve - schematic example
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An example of the ROC curve is presented in Figure 2.4. The classification results
are perfect when TPR = 1 and FPR = 0. The classification results are completely
wrong when TPR =0 and FPR = 1. A diagonal line from the bottom left to the top
right (TPR = FPR) corresponds to the results of a random-guess classifier.

Based on the ROC curve, we can compute the Area Under the ROC Curve (ROC-
AUC) metric. The highest achievable score of ROC-AUC is equal to 1. In the case of
random guessing, the ROC-AUC score will be equal to 0.5.

Regression model

For the evaluation of regression model performances, we use two metrics: Pearson cor-
relation coefficient and coefficient of determination R?. Pearson correlation coefficient
p is defined as:
Cou(Y,Y
- (7) (2.5)
o(Y)o(Y)
where Cov is the covariance, o(Y), and o(Y) are standard deviations of real and
predicted values of a target variable respectively. The value p = 1 indicates a perfect

linear correlation, value p = —1 indicates perfect linear anti-correlation and p = 0 is
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Chapter 2. General workflow

the total absence of linear correlation. The second metric, R?, is defined as:

B2 W0 (2.6)

> (yi —9)?
R? € [0;1], and is a measure of the goodness of fit of a model and is interpreted as
the part of the variation of the predicted variable that is explained by the regression
model. The R? = 1 suggests that the predictions obtained with a regression model
fit the data perfectly well. We use R? as the quality metric for the process of model

selection and optimization.

2.3.2 Hyperparameter optimization strategies

There are two strategies of algorithm selection and optimization of its hyperparameters
used in this thesis. The first is a selection of the optimal algorithm among the list of
pre-selected candidates while performing a randomized search [10] for the hyperparam-
eters optimization. The benefit of this strategy is that we can explore the performance
of pre-selected candidates and quantify the gain achieved from the usage of more com-
plex techniques. The second strategy is to directly solve the so-called CASH problem
(Combined Algorithm Selection and Hyperparameter optimization [57]) using auto-
mated machine learning (AutoML) [49]. AutoML deals with the automation of the
application of machine learning to real-world problems [55]. The CASH problem is the
task of selecting a suitable machine-learning algorithm (which can be a combination of
several algorithms) for the analyzed dataset, together with the proper pre-processing
methods and set of hyperparameters of all components involved, without requiring
human intervention [55]. The advantage of using this strategy is that such a technique
enables an efficient selection of a machine-learning algorithm and feature preprocessor
from a more extensive list of candidates within a limited time frame. This is par-
ticularly useful when performance benchmarks are unavailable. The disadvantage of
such a technique, however, is that the comparison of the performance of several mod-
els cannot be done directly (as weaker candidates are discarded during the process
of optimization). In this thesis, we address the CASH problem using TPOT (Tree-
based Pipeline Optimization Tool) [77] — a Python package for automatic selection of
machine learning pipelines based on genetic programming (GP) [58].

In order to combine the process of model performance evaluation with the process
of algorithm selection and optimization of its hyperparameters, we apply a nested

cross-validation scheme [96, 18]. The general setup of nested cross-validation is as
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Figure 2.5: Schematic representation of nested cross-validation. In the inner loop, the
generated training and validation sets are used to find an optimal set of the hyperpa-
rameters of the model. In the outer loop, we generated a series of test sets that are
used for the model performance evaluation.

follows: In the outer loop of cross-validation, the entire dataset is split into K subsets
(folds). The model is trained on K-1 subsets, while the remaining subset is used for
the model evaluation. This procedure is repeated K times. Within each iteration of
the outer loop, an inner cross-validation loop is performed. The training data from the
outer loop is further split into K-1 subsets for training and one subset for validation.
Different model hyperparameters are tested using the training and validation sets in
the inner loop. The model with the best performance on the inner loop validation set
is selected. The selected model from the inner loop is then evaluated on the test set
from the outer loop. For a visual explanation, see Figure 2.5. Note that, in the field of
statistics, another naming convention for resulting splits of the data is used (validation
is then called test set, and vice-versa). The main advantage of the nested scheme of
cross-validation is the prevention of information leakage coming from using the same
data for the evaluation of model performance and tuning the hyperparameters, which

takes place in case straightforward cross-validation is applied [18].
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Chapter 2. General workflow

2.4 Results evaluation

The last step of the general workflow is a comparison of estimated values of NOs with
some kind of independent measurement. However, as mentioned earlier, for the task
of ship emission monitoring, TROPOMI is the only way of measurement above the
open sea. The "ground truth" data for this task is not available. To overcome this, we

will use a theoretical ship emission proxy E; as a reference value defined as follows:
E,=L%-U3, (2.7)

where L is the length of the ship in meters (m), and Uy is its speed in meters per
second (m/s). The details of the derivation of the given measure can be found in
[41], where the proxy was introduced. As it is noted in [41], the advantage of F; in
comparison to other ship emission proxies (e.g. [33]) is that it can be calculated based
on AIS data only, while other existing emission proxies require ship information that
is not in the AIS data and is not available publicly. This, however, will result in some
loss of the quality of emission approximation.

To sum up, in this Chapter, we described general process steps that will be used
throughout the thesis. We call it the general workflow. The applied methodological
details of each of the described steps may differ depending on the task at hand and

will be described in each chapter separately.
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Results evaluation
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