
Machine learning-based NO2 estimation from seagoing ships
using TROPOMI/S5P satellite data
Kurchaba, S.

Citation
Kurchaba, S. (2024, June 11). Machine learning-based NO2 estimation from
seagoing ships using TROPOMI/S5P satellite data. Retrieved from
https://hdl.handle.net/1887/3762166
 
Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis
in the Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/3762166
 
Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3762166


Chapter 1

Introduction

Air pollution ranks among the most pressing challenges in our society. Decades of
research have proven a strong adversarial effect of air pollution on human health, the
vitality of ecosystems, the state of the atmosphere, and climate change [16, 54, 83, 84].
At the same time, according to the World Health Organization (WHO), 9 out of 10
people currently breathe polluted air. Moreover, due to the continuous urbanization
[98], industrialization, and economic development, the number of potential sources of
air pollution is dramatically increasing [3, 87, 83, 111].

One of the most harmful components of air pollution are nitrogen oxides gases
(NOx ≈ NO + NO2). These gases play an important role in the destruction of the at-
mospheric ozone [25]. In addition, anthropogenic NOx is known to be one of the main
precursors of photochemical smog [46, 82], whose harmful effects include aggravation
of asthmatic attacks, irritation of eyes and throats of humans and animals, reduction
of visibility, damage of the structure of plants and materials [100, 66]. Anthropogenic
sources of NOx include industrial emissions, biomass burning, and emissions from ve-
hicle transport. One of the strongest sources of anthropogenic emission of NOx is the
industry of international shipping. The NOx is produced in a ship engine through the
combustion process, where nitrogen in the air reacts with oxygen, forming nitrogen ox-
ides, primarily in the form of nitric oxide (NO). Subsequently, atmospheric conditions
and chemical reactions transform NO into nitrogen dioxide (NO2), a more reactive
and harmful component of NOx emissions. The global contribution of the shipping
industry to the emissions of NOx is estimated to vary between 15% − 35% [24, 52],
causing approximately 60,000 premature deaths annually [23]. For the Netherlands,
the contribution of the shipping industry is estimated to be around 10% [48]. While
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Ship emission monitoring

Figure 1.1: Map of ECA’s restrictions. Source: [113].

over the last 20 years, the pollution produced by power plants, the industry sector,
and cars has been constantly decreasing, the impact of maritime transport continues
to grow [12]. This causes a big societal pressure, which calls for a collective effort
for efficient regulation and monitoring of emissions from ships towards reducing the
negative impact of the industry.

1.1 Ship emission monitoring

In 1997, aiming at the reduction of the negative impact on human health, the In-
ternational Maritime Organisation (IMO) amended Annex VI to the International
Convention for the Prevention of Pollution from Ships (MARPOL). This annex sets
standards on sulfur dioxide and nitrogen oxides emissions from ship exhausts [50]. The
amendments include the installation of emission control areas (ECAs) within which
the emission constraints for ships operating in these areas are established and then
tightened step-by-step. The map of currently established and considered ECAs is
depicted in Figure 1.1. Within ECA regions, we distinguish nitrogen and sulfur emis-
sion control areas (NECA and SECA respectively). The latest step that was turned
into force as a part of IMO directives is an 80% reduction of NOx emission for diesel
engines of newly-built ships operating in the Baltic and North Sea [51]. Compliance
with these regulations requires shipowners and operators to invest in cleaner, more ex-
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pensive technologies (e.g. installation of a selective catalytic reduction (SCR) system,
which converts harmful gases into inert nitrogen and water vapor). The responsibil-
ity for the enforcement of IMO regulations is shared between the country where a
given ship is registered and the authorities of the port where the ship operates. In the
Netherlands, this is the Human Environment and Transport Inspectorate (ILT). Given
the legislation, the responsibilities of the inspectorate are as follows: 1) Monitoring of
emissions coming from ships to assess the effects of the legislation; 2) Verification of
compliance of individual ships. The performance of neither of the above-mentioned is
possible without efficient measurements of real-world emissions. Hence the support of
ILT of the research presented here.

However, monitoring of ship emissions on a large scale is a challenging task. For in-
stance, the methods currently used by port state authorities are checks on engine room
logs and bunker delivery notes, or chemical analysis of fuel samples. Such practices,
however, can be applied to only a limited number of ships. Other applied methods are
on-board measurements at exhaust pipes [4], land- or ship-based downwind measure-
ments using sniffer techniques [66, 81], and the DOAS (differential optical absorption
spectroscopy) approach [73, 88, 59]. Alternatively, ship plume measurements are per-
formed from airborne platforms like helicopters, small aircraft, and drones [102, 103].
Mobile platforms often measure pollutant ratios during plume transects [7] or use the
DOAS technique for remote optical sensing [9]. All these methods require proximity to
the ships under surveillance, are applied sporadically, and are too costly for monitor-
ing the entire shipping fleet. Moreover, since such measurement stations are usually
located at the entrance of the ports, the data collected with such methods provide
limited information on how much the selected ships emit outside ports. As a result,
there is currently no effective method for comprehensive and cost-efficient large-scale
ship emission monitoring.

1.2 Satellite observations

A potential solution efficient for ship emission monitoring on a global scale is the appli-
cation of satellite observations [90]. For more than a decade scientists have been using
the available satellite data to quantify the NOx emission produced by the shipping
industry. For instance, using the measurements from the Global Ozone Monitoring
Experiment (GOME) [17] instrument onboard the second European Remote Sensing
satellite (ERS-2), the authors estimated the NO2 emission levels above the shipping
lane between Sri Lanka and Indonesia [8]. With the images from the SCanning Imaging
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Figure 1.2: Sentinel-5 Precursor satellite. Credit image ESA 2017.

Absorption spectroMeter for Atmospheric CartograpHY (SCIAMACHY) [13] onboard
the ENVIronmental SATellite (Envisat) mission, traces from the shipping industry over
the Red Sea were quantified [85]. Finally, data from the Ozone Monitoring Instrument
(OMI) [69] aboard the NASA Aura spacecraft was used to visualize the NOx emission
inventory of shipping in the Baltic Sea [106]. The obtained results were further asso-
ciated with the temporal patterns of global economic activity [26, 12]. Nevertheless,
all the above-mentioned studies were based on multi-month data averaging, which was
necessary to perform in order to reduce the signal-to-noise ratio of the satellite mea-
surements and enable distinguishability of NOx traces along the shipping lanes. The
low spatial resolution of the satellites did not allow for the distinction of ship plumes
from individual ships on a daily basis.

The game changer in high-resolution atmospheric measurements is the TROPO-
spheric Monitoring Instrument (TROPOMI) onboard the Copernicus Sentinel-5 Pre-
cursor (TROPOMI/S5P) satellite (illustration: Figure 1.2). Launched in 2017, the
TROPOMI/S5P creates daily global maps of atmospheric substances relevant to air
quality and climate monitoring [1]. More importantly, the instrument has a signif-
icantly higher spatial resolution than all its predecessors (GOME: 40 × 320 km2,
SCIAMACHY: 30 × 60 km2, OMI: 13 × 25 km2, TROPOMI: 3.5 × 5.5 km2). The
TROPOMI instrument measures an extensive list of trace gases, including NO2. Since
the NO2 gas is the product of photo-chemical reactions of NOx emitted by ships, it
can be utilized for ship emission monitoring. As reported in [41], the spatial resolution
of the TROPOMI instrument is high enough to distinguish some of the NO2 plumes
produced by individual ships. This study, however, focused on the largest ships in
the area, as the NO2 traces of most of the ships seemed not sufficiently stronger than
the background concentrations. In addition, the presented approach involves multiple
manual steps, which prevents its application on a large scale [41].
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1.3 Machine learning

In order to increase the sensitivity of ship plume detection, in this thesis, we propose to
address the problem with machine learning techniques that have proven very valuable
in many domains. Machine learning is a computational paradigm that enables the
automatic extraction of complex patterns and relationships in data, not only signifi-
cantly reducing the human effort required, but also facilitating finding patterns that
are otherwise unnoticeable to a human eye. A general definition of machine learning
was proposed by Tom Mitchell in 1997 [74]. It goes as follows:

Definition 1.1. Machine learning is the study of computer algorithms that improve
automatically through experience. An algorithm is said to learn from experience E
with respect to task T and performance measure P, if its performance at tasks in T,
as measured by P, improves with experience E.

Today, machine learning algorithms have demonstrated their efficiency in various
fields of everyday life and science. The list of application domains that were revolu-
tionized by machine learning includes health care (disease diagnosis [6], drug discovery
[99]), finance (algorithmic trading [79], fraud detection [71]), computer vision (facial
recognition [108], autonomous vehicles [65]), education (adaptive learning systems [56],
automated feedback [28]), space exploration (spacecraft control and navigation [95],
data processing for remote sensing missions [112]), and many more. In the domain of
Earth observation, the list of tasks to which machine learning algorithms have made
ground-breaking contributions includes (non-exhaustively) land cover classification,
identification of crop diseases, algorithms for the optimization of the retrieval of satel-
lite measurements, flood prediction, and optimization of computer code performance
[92, 97, 68, 15, 91].

Different applications and tasks require different types of machine learning algo-
rithms, such as supervised, semi-supervised, unsupervised, or reinforcement learning.
In the domain of Earth observation, one of the most often used types of machine
learning algorithm is supervised learning [37]. In supervised learning, we aim to learn
a function to predict the output Y for a feature vector X. The learning process uses
pairs of feature vectors and the corresponding outputs that are given as a training set
(the Experience). Depending on the type of output variable, the supervised learning
task can further be split into classification (categorical output variable) and regression
(continuous output variable).

Emerging studies show the potential of supervised learning techniques for the anal-
ysis and information extraction from TROPOMI data. For instance, researchers ap-
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plied a multivariate regression model to estimate the NO2 emission rate over Germany
[20], and O3 concentrations in California [110]. Furthermore, classification models
were used to automatically detect images containing NO2 [38] or CH4 [89] plumes
from super-emitters, scanning the TROPOMI data around the globe. Analyzing the
above-mentioned studies, we see two ways of representing TROPOMI measurements
to a machine-learning algorithm, depending on the problem addressed. That is, in
terms of a two-dimensional grid (an image), or a set of one-dimensional data fea-
tures, calculated based on the measurement values for a specific area of interest. The
former enables the application of techniques originating from the fields of computer
vision or image processing (i.e. kernel-based filters, convolution neural networks, etc.),
while the latter is more suited for the usage of multivariate techniques, combining the
TROPOMI measurements with other data sources.

In this thesis, we explore the possibilities of estimation of the NO2 emissions from
individual ships using TROPOMI data. The emissions produced by a ship, if strong
enough, will be registered by a TROPOMI sensor as an image of a plume. However, to
estimate emissions produced by a certain individual ship, the information contained in
the TROPOMI measurement is not sufficient. Other pieces of necessary information
are the position of the ship, the speed, and dimensions of the ship, and the direction
and speed of the wind. To efficiently exploit all the necessary sources of data, we will
mostly focus on the application of multivariate supervised machine learning, while the
spatial characteristics of the data will be utilized for image enhancement.

1.4 Research questions

The objective of this thesis is to pave the way toward the application of the TROPOMI
instrument data for the monitoring of ship compliance with the regulations of IMO.
The overarching research question addressed in this thesis can be formulated as follows:

Is it possible to use TROPOMI/S5P instrument data to monitor NO2 emissions from
individual seagoing ships?

We address this overall question step by step by answering the following list of
intermediate research questions:

RQ1: What is the minimum speed and length of a seagoing ship so that the NO2

plume from it can be detected with a detection system using TROPOMI data?
To understand the potential of the TROPOMI instrument for ship emission moni-
toring, it is crucial to estimate the required strength of the emitter (in this case, a
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ship) for the detection of its NO2 plumes. With the detection system, we refer to a
sequence of steps needed for the automatic identification of NO2 plumes from a ship on
a TROPOMI image patch. The first step of this sequence is a measurement performed
by the TROPOMI sensor. The last step is an automated detection of a plume on an
image patch using machine learning models. We propose to estimate the detection
capabilities of the TROPOMI data-based detection system using parameters such as
speed and length of the ship, known to be reliable indicators of ship emission potential.

RQ2: To what extent can the detectability of NO2 plumes be improved if only the
biggest emitters are taken into account?
It is not possible to monitor all ships with a detection system based on TROPOMI
data – there is a system sensitivity limit. There also will be a set of ships for which
detection is possible, although difficult. Finally, there will be a set of the biggest
emitters, from which the plumes are clearly the easiest to detect. Another example
of the biggest emitters is when several ships are sailing in proximity to each other.
To establish the baseline for the current possibilities of the application of a detection
system using the data from the TROPOMI instrument for ship emission monitoring,
the potential quality of detection of plumes produced by those biggest emitters should
be evaluated separately.

RQ3: Is there a potential for improvement of detectability of NO2 plumes from the
slow/small ships if more data were used to train the used classification model?
Since the application of machine learning is an important part of the studied detection
system of ship NO2 plumes, the factor of data availability plays an important role in
establishing the sensitivity limits of this system. The noisier the pattern we would like
to detect, the more data are required for the training of a machine learning model.
This will be especially relevant for ships that are just above the sensitivity limit of the
detection system. Therefore, we would like to understand to which extent the addition
of training data can help with the detection of the noisiest patterns.

RQ4: How to assign a TROPOMI signal associated with a certain plume to a
potential emitting ship?
A characteristic feature of a ship as an emitter is the fact that it moves continuously.
In addition to the movement of a ship, the plume emitted by it at a certain moment
will gradually move in accordance with the direction and speed of the wind. These
factors make the process of association of the detected plume with a ship emitter a
non-trivial task. The task, however, is a necessary step in order to be able to use the
TROPOMI data for the performance of the monitoring of emissions from individual
ships.
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RQ5: To what extent can the NO2 plumes be segmented in the TROPOMI data
using a simple thresholding method?
Segmentation of NO2 plumes from individual ships using data from satellite-based
sensors has not been performed before (because of the too-low spatial resolution of
the previous satellite-based instruments). Therefore, to set up a proper baseline for
a given task, it is reasonable to start with the application of the simplest potentially
suitable approach. The thresholding approach can be considered as a good starting
point due to the following reasons: ship plumes in a simplified setting can be considered
as a blob of pixels with a concentration higher than the surrounding environment; the
thresholding method does not require human labeling (unsupervised learning) and
could be directly applied on the data.

RQ6: Can we improve the segmentation quality of NO2 plumes from individual
ships using supervised machine learning?
Once the simplest baseline is established, we would like to understand how the quality
of ship plume segmentation can be improved once a more complex methodology is
applied. With supervised machine learning, we provide the model with the human
labels of the position of the NO2 plume of interest. With this, the model could pick
up the nonlinear dependencies that differentiate a pixel that belongs to a plume from
a pixel that is part of the background.

RQ7: Does the machine learning-based segmentation allow for the detection of
NO2 plumes that cannot be recognized visually?
The fact that some of the NO2 plumes cannot be recognized when visually studying
the data, does not mean that the signal has not been registered by TROPOMI. Among
other reasons, there can be an insufficiently detailed color scheme selected when visu-
alizing the data, or insufficient capabilities of the human eye. Such a signal could still
potentially be recognized by a machine-learning model.

RQ8: How to identify ships that are potential anomalous emitters using
TROPOMI data?
Another characteristic of the problem of ship emission monitoring is the fact that the
ground truth data are not available. Potential bias of the TROPOMI measurements
above the open sea on a global scale is unknown (there are no stationary in-situ mea-
surement points). Moreover, due to the nonrigid structure of the ship plume, and the
fact that some of the signal related to the plume can be below the detection capabili-
ties of the human eye, the human-made labels used for the training of the ship-plume
segmentation model may contain errors.
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1.5 Outline

This thesis is based on a series of publications. The chapters present articles that
have been peer-reviewed and published. The exceptions are this chapter and Chapter
2, which serve as background. Each following chapter of the thesis builds upon the
findings of its predecessor, as a whole representing state-of-art knowledge in the appli-
cation of TROPOMI satellite data for the monitoring of NO2 emission from individual
seagoing ships. The structure of the thesis is as follows:

In Chapter 2, we explain the general workflow that will be used in the thesis and
introduce data sources that are necessary to combine in order to perform a ship NO2

emission monitoring using TROPOMI data.
In Chapter 3, using the developed machine learning-based methodology, we ex-

amine the sensitivity limits of the detection system using TROPOMI data with respect
to the detection of NO2 plumes from individual seagoing ships. With this, we set up
the research scope for further study. The chapter is based on the paper:

• Kurchaba, S., Sokolovsky, A., van Vliet, J., Verbeek, F.J., Veenman, C.J.,
2024. Sensitivity analysis for the detection of NO2 plumes from seagoing
ships using TROPOMI data. Remote Sensing of Environment 304, 114041.
doi:10.1016/j.rse.2024.114041.

After the limits of the satellite capabilities are established, we focus our attention
on the evaluation of ship NO2 emission. To focus the area of analysis on the region
where the ship plume is expected to be located, in Chapter 4, we present a method
that enables the automated assignation of a region of interest (RoI) to a studied ship.
The RoI of a ship is established based on information about the position of the ship
as well as the speed and the direction of the prevailing winds so that the plume of the
studied ship is located within the designated area. Using the RoI of the ship, we can
show the first attempts of automatic segmentation of a ship’s plume. The chapter is
based on the conference paper:

• Kurchaba, S., van Vliet, J., Meulman, J.J., Verbeek, F.J., Veenman, C.J., 2021.
Improving evaluation of NO2 emission from ships using spatial association on
TROPOMI satellite data, in: 29th International Conference on Advances in
Geographic Information Systems, pp. 454–457. doi:10.1145/3474717.3484213.

In Chapter 5, we study the possibilities of improving the quality of ship plume
segmentation. To address the problem, we use supervised machine learning. Based
on the previously defined RoI of a ship, we construct a set of features for training a

9



1.5. Outline

classification model to distinguish pixels that are part of a plume of a studied ship
from those that are not. The chapter is based on the paper:

• Kurchaba, S., van Vliet, J., Verbeek, F.J., Meulman, J.J., Veenman, C.J., 2022.
Supervised segmentation of NO2 plumes from individual ships using TROPOMI
satellite data. Remote Sensing 14. doi:10.3390/rs14225809.

In Chapter 6, we focus on developing a methodology for the automated detection
of anomalously emitting ships. We leverage the methodology presented in the previous
chapter, combining the RoI of a ship and a supervised method of ship plume segmen-
tation, with a proposed machine-learning-based regression model for estimating NO2

from ships. The chapter is based on the paper:

• Kurchaba, S., van Vliet, J., Verbeek, F.J., Veenman, C.J., 2023. Anomalous NO2

emitting ship detection with TROPOMI satellite data and machine learning.
Remote Sensing of Environment 297, 113761. doi:10.1016/j.rse.2023.113761.

Lastly, in Chapter 7, we present the main conclusions of the dissertation and
possible directions for future work.
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