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Chapter 1

Introduction

Air pollution ranks among the most pressing challenges in our society. Decades of
research have proven a strong adversarial effect of air pollution on human health, the
vitality of ecosystems, the state of the atmosphere, and climate change [16, 54, 83, 84].
At the same time, according to the World Health Organization (WHO), 9 out of 10
people currently breathe polluted air. Moreover, due to the continuous urbanization
[98], industrialization, and economic development, the number of potential sources of
air pollution is dramatically increasing [3, 87, 83, 111].

One of the most harmful components of air pollution are nitrogen oxides gases
(NOx ≈ NO + NO2). These gases play an important role in the destruction of the at-
mospheric ozone [25]. In addition, anthropogenic NOx is known to be one of the main
precursors of photochemical smog [46, 82], whose harmful effects include aggravation
of asthmatic attacks, irritation of eyes and throats of humans and animals, reduction
of visibility, damage of the structure of plants and materials [100, 66]. Anthropogenic
sources of NOx include industrial emissions, biomass burning, and emissions from ve-
hicle transport. One of the strongest sources of anthropogenic emission of NOx is the
industry of international shipping. The NOx is produced in a ship engine through the
combustion process, where nitrogen in the air reacts with oxygen, forming nitrogen ox-
ides, primarily in the form of nitric oxide (NO). Subsequently, atmospheric conditions
and chemical reactions transform NO into nitrogen dioxide (NO2), a more reactive
and harmful component of NOx emissions. The global contribution of the shipping
industry to the emissions of NOx is estimated to vary between 15% − 35% [24, 52],
causing approximately 60,000 premature deaths annually [23]. For the Netherlands,
the contribution of the shipping industry is estimated to be around 10% [48]. While
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Ship emission monitoring

Figure 1.1: Map of ECA’s restrictions. Source: [113].

over the last 20 years, the pollution produced by power plants, the industry sector,
and cars has been constantly decreasing, the impact of maritime transport continues
to grow [12]. This causes a big societal pressure, which calls for a collective effort
for efficient regulation and monitoring of emissions from ships towards reducing the
negative impact of the industry.

1.1 Ship emission monitoring

In 1997, aiming at the reduction of the negative impact on human health, the In-
ternational Maritime Organisation (IMO) amended Annex VI to the International
Convention for the Prevention of Pollution from Ships (MARPOL). This annex sets
standards on sulfur dioxide and nitrogen oxides emissions from ship exhausts [50]. The
amendments include the installation of emission control areas (ECAs) within which
the emission constraints for ships operating in these areas are established and then
tightened step-by-step. The map of currently established and considered ECAs is
depicted in Figure 1.1. Within ECA regions, we distinguish nitrogen and sulfur emis-
sion control areas (NECA and SECA respectively). The latest step that was turned
into force as a part of IMO directives is an 80% reduction of NOx emission for diesel
engines of newly-built ships operating in the Baltic and North Sea [51]. Compliance
with these regulations requires shipowners and operators to invest in cleaner, more ex-
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pensive technologies (e.g. installation of a selective catalytic reduction (SCR) system,
which converts harmful gases into inert nitrogen and water vapor). The responsibil-
ity for the enforcement of IMO regulations is shared between the country where a
given ship is registered and the authorities of the port where the ship operates. In the
Netherlands, this is the Human Environment and Transport Inspectorate (ILT). Given
the legislation, the responsibilities of the inspectorate are as follows: 1) Monitoring of
emissions coming from ships to assess the effects of the legislation; 2) Verification of
compliance of individual ships. The performance of neither of the above-mentioned is
possible without efficient measurements of real-world emissions. Hence the support of
ILT of the research presented here.

However, monitoring of ship emissions on a large scale is a challenging task. For in-
stance, the methods currently used by port state authorities are checks on engine room
logs and bunker delivery notes, or chemical analysis of fuel samples. Such practices,
however, can be applied to only a limited number of ships. Other applied methods are
on-board measurements at exhaust pipes [4], land- or ship-based downwind measure-
ments using sniffer techniques [66, 81], and the DOAS (differential optical absorption
spectroscopy) approach [73, 88, 59]. Alternatively, ship plume measurements are per-
formed from airborne platforms like helicopters, small aircraft, and drones [102, 103].
Mobile platforms often measure pollutant ratios during plume transects [7] or use the
DOAS technique for remote optical sensing [9]. All these methods require proximity to
the ships under surveillance, are applied sporadically, and are too costly for monitor-
ing the entire shipping fleet. Moreover, since such measurement stations are usually
located at the entrance of the ports, the data collected with such methods provide
limited information on how much the selected ships emit outside ports. As a result,
there is currently no effective method for comprehensive and cost-efficient large-scale
ship emission monitoring.

1.2 Satellite observations

A potential solution efficient for ship emission monitoring on a global scale is the appli-
cation of satellite observations [90]. For more than a decade scientists have been using
the available satellite data to quantify the NOx emission produced by the shipping
industry. For instance, using the measurements from the Global Ozone Monitoring
Experiment (GOME) [17] instrument onboard the second European Remote Sensing
satellite (ERS-2), the authors estimated the NO2 emission levels above the shipping
lane between Sri Lanka and Indonesia [8]. With the images from the SCanning Imaging
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Figure 1.2: Sentinel-5 Precursor satellite. Credit image ESA 2017.

Absorption spectroMeter for Atmospheric CartograpHY (SCIAMACHY) [13] onboard
the ENVIronmental SATellite (Envisat) mission, traces from the shipping industry over
the Red Sea were quantified [85]. Finally, data from the Ozone Monitoring Instrument
(OMI) [69] aboard the NASA Aura spacecraft was used to visualize the NOx emission
inventory of shipping in the Baltic Sea [106]. The obtained results were further asso-
ciated with the temporal patterns of global economic activity [26, 12]. Nevertheless,
all the above-mentioned studies were based on multi-month data averaging, which was
necessary to perform in order to reduce the signal-to-noise ratio of the satellite mea-
surements and enable distinguishability of NOx traces along the shipping lanes. The
low spatial resolution of the satellites did not allow for the distinction of ship plumes
from individual ships on a daily basis.

The game changer in high-resolution atmospheric measurements is the TROPO-
spheric Monitoring Instrument (TROPOMI) onboard the Copernicus Sentinel-5 Pre-
cursor (TROPOMI/S5P) satellite (illustration: Figure 1.2). Launched in 2017, the
TROPOMI/S5P creates daily global maps of atmospheric substances relevant to air
quality and climate monitoring [1]. More importantly, the instrument has a signif-
icantly higher spatial resolution than all its predecessors (GOME: 40 × 320 km2,
SCIAMACHY: 30 × 60 km2, OMI: 13 × 25 km2, TROPOMI: 3.5 × 5.5 km2). The
TROPOMI instrument measures an extensive list of trace gases, including NO2. Since
the NO2 gas is the product of photo-chemical reactions of NOx emitted by ships, it
can be utilized for ship emission monitoring. As reported in [41], the spatial resolution
of the TROPOMI instrument is high enough to distinguish some of the NO2 plumes
produced by individual ships. This study, however, focused on the largest ships in
the area, as the NO2 traces of most of the ships seemed not sufficiently stronger than
the background concentrations. In addition, the presented approach involves multiple
manual steps, which prevents its application on a large scale [41].
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1.3 Machine learning

In order to increase the sensitivity of ship plume detection, in this thesis, we propose to
address the problem with machine learning techniques that have proven very valuable
in many domains. Machine learning is a computational paradigm that enables the
automatic extraction of complex patterns and relationships in data, not only signifi-
cantly reducing the human effort required, but also facilitating finding patterns that
are otherwise unnoticeable to a human eye. A general definition of machine learning
was proposed by Tom Mitchell in 1997 [74]. It goes as follows:

Definition 1.1. Machine learning is the study of computer algorithms that improve
automatically through experience. An algorithm is said to learn from experience E
with respect to task T and performance measure P, if its performance at tasks in T,
as measured by P, improves with experience E.

Today, machine learning algorithms have demonstrated their efficiency in various
fields of everyday life and science. The list of application domains that were revolu-
tionized by machine learning includes health care (disease diagnosis [6], drug discovery
[99]), finance (algorithmic trading [79], fraud detection [71]), computer vision (facial
recognition [108], autonomous vehicles [65]), education (adaptive learning systems [56],
automated feedback [28]), space exploration (spacecraft control and navigation [95],
data processing for remote sensing missions [112]), and many more. In the domain of
Earth observation, the list of tasks to which machine learning algorithms have made
ground-breaking contributions includes (non-exhaustively) land cover classification,
identification of crop diseases, algorithms for the optimization of the retrieval of satel-
lite measurements, flood prediction, and optimization of computer code performance
[92, 97, 68, 15, 91].

Different applications and tasks require different types of machine learning algo-
rithms, such as supervised, semi-supervised, unsupervised, or reinforcement learning.
In the domain of Earth observation, one of the most often used types of machine
learning algorithm is supervised learning [37]. In supervised learning, we aim to learn
a function to predict the output Y for a feature vector X. The learning process uses
pairs of feature vectors and the corresponding outputs that are given as a training set
(the Experience). Depending on the type of output variable, the supervised learning
task can further be split into classification (categorical output variable) and regression
(continuous output variable).

Emerging studies show the potential of supervised learning techniques for the anal-
ysis and information extraction from TROPOMI data. For instance, researchers ap-
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plied a multivariate regression model to estimate the NO2 emission rate over Germany
[20], and O3 concentrations in California [110]. Furthermore, classification models
were used to automatically detect images containing NO2 [38] or CH4 [89] plumes
from super-emitters, scanning the TROPOMI data around the globe. Analyzing the
above-mentioned studies, we see two ways of representing TROPOMI measurements
to a machine-learning algorithm, depending on the problem addressed. That is, in
terms of a two-dimensional grid (an image), or a set of one-dimensional data fea-
tures, calculated based on the measurement values for a specific area of interest. The
former enables the application of techniques originating from the fields of computer
vision or image processing (i.e. kernel-based filters, convolution neural networks, etc.),
while the latter is more suited for the usage of multivariate techniques, combining the
TROPOMI measurements with other data sources.

In this thesis, we explore the possibilities of estimation of the NO2 emissions from
individual ships using TROPOMI data. The emissions produced by a ship, if strong
enough, will be registered by a TROPOMI sensor as an image of a plume. However, to
estimate emissions produced by a certain individual ship, the information contained in
the TROPOMI measurement is not sufficient. Other pieces of necessary information
are the position of the ship, the speed, and dimensions of the ship, and the direction
and speed of the wind. To efficiently exploit all the necessary sources of data, we will
mostly focus on the application of multivariate supervised machine learning, while the
spatial characteristics of the data will be utilized for image enhancement.

1.4 Research questions

The objective of this thesis is to pave the way toward the application of the TROPOMI
instrument data for the monitoring of ship compliance with the regulations of IMO.
The overarching research question addressed in this thesis can be formulated as follows:

Is it possible to use TROPOMI/S5P instrument data to monitor NO2 emissions from
individual seagoing ships?

We address this overall question step by step by answering the following list of
intermediate research questions:

RQ1: What is the minimum speed and length of a seagoing ship so that the NO2

plume from it can be detected with a detection system using TROPOMI data?
To understand the potential of the TROPOMI instrument for ship emission moni-
toring, it is crucial to estimate the required strength of the emitter (in this case, a
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ship) for the detection of its NO2 plumes. With the detection system, we refer to a
sequence of steps needed for the automatic identification of NO2 plumes from a ship on
a TROPOMI image patch. The first step of this sequence is a measurement performed
by the TROPOMI sensor. The last step is an automated detection of a plume on an
image patch using machine learning models. We propose to estimate the detection
capabilities of the TROPOMI data-based detection system using parameters such as
speed and length of the ship, known to be reliable indicators of ship emission potential.

RQ2: To what extent can the detectability of NO2 plumes be improved if only the
biggest emitters are taken into account?
It is not possible to monitor all ships with a detection system based on TROPOMI
data – there is a system sensitivity limit. There also will be a set of ships for which
detection is possible, although difficult. Finally, there will be a set of the biggest
emitters, from which the plumes are clearly the easiest to detect. Another example
of the biggest emitters is when several ships are sailing in proximity to each other.
To establish the baseline for the current possibilities of the application of a detection
system using the data from the TROPOMI instrument for ship emission monitoring,
the potential quality of detection of plumes produced by those biggest emitters should
be evaluated separately.

RQ3: Is there a potential for improvement of detectability of NO2 plumes from the
slow/small ships if more data were used to train the used classification model?
Since the application of machine learning is an important part of the studied detection
system of ship NO2 plumes, the factor of data availability plays an important role in
establishing the sensitivity limits of this system. The noisier the pattern we would like
to detect, the more data are required for the training of a machine learning model.
This will be especially relevant for ships that are just above the sensitivity limit of the
detection system. Therefore, we would like to understand to which extent the addition
of training data can help with the detection of the noisiest patterns.

RQ4: How to assign a TROPOMI signal associated with a certain plume to a
potential emitting ship?
A characteristic feature of a ship as an emitter is the fact that it moves continuously.
In addition to the movement of a ship, the plume emitted by it at a certain moment
will gradually move in accordance with the direction and speed of the wind. These
factors make the process of association of the detected plume with a ship emitter a
non-trivial task. The task, however, is a necessary step in order to be able to use the
TROPOMI data for the performance of the monitoring of emissions from individual
ships.
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RQ5: To what extent can the NO2 plumes be segmented in the TROPOMI data
using a simple thresholding method?
Segmentation of NO2 plumes from individual ships using data from satellite-based
sensors has not been performed before (because of the too-low spatial resolution of
the previous satellite-based instruments). Therefore, to set up a proper baseline for
a given task, it is reasonable to start with the application of the simplest potentially
suitable approach. The thresholding approach can be considered as a good starting
point due to the following reasons: ship plumes in a simplified setting can be considered
as a blob of pixels with a concentration higher than the surrounding environment; the
thresholding method does not require human labeling (unsupervised learning) and
could be directly applied on the data.

RQ6: Can we improve the segmentation quality of NO2 plumes from individual
ships using supervised machine learning?
Once the simplest baseline is established, we would like to understand how the quality
of ship plume segmentation can be improved once a more complex methodology is
applied. With supervised machine learning, we provide the model with the human
labels of the position of the NO2 plume of interest. With this, the model could pick
up the nonlinear dependencies that differentiate a pixel that belongs to a plume from
a pixel that is part of the background.

RQ7: Does the machine learning-based segmentation allow for the detection of
NO2 plumes that cannot be recognized visually?
The fact that some of the NO2 plumes cannot be recognized when visually studying
the data, does not mean that the signal has not been registered by TROPOMI. Among
other reasons, there can be an insufficiently detailed color scheme selected when visu-
alizing the data, or insufficient capabilities of the human eye. Such a signal could still
potentially be recognized by a machine-learning model.

RQ8: How to identify ships that are potential anomalous emitters using
TROPOMI data?
Another characteristic of the problem of ship emission monitoring is the fact that the
ground truth data are not available. Potential bias of the TROPOMI measurements
above the open sea on a global scale is unknown (there are no stationary in-situ mea-
surement points). Moreover, due to the nonrigid structure of the ship plume, and the
fact that some of the signal related to the plume can be below the detection capabili-
ties of the human eye, the human-made labels used for the training of the ship-plume
segmentation model may contain errors.
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1.5 Outline

This thesis is based on a series of publications. The chapters present articles that
have been peer-reviewed and published. The exceptions are this chapter and Chapter
2, which serve as background. Each following chapter of the thesis builds upon the
findings of its predecessor, as a whole representing state-of-art knowledge in the appli-
cation of TROPOMI satellite data for the monitoring of NO2 emission from individual
seagoing ships. The structure of the thesis is as follows:

In Chapter 2, we explain the general workflow that will be used in the thesis and
introduce data sources that are necessary to combine in order to perform a ship NO2

emission monitoring using TROPOMI data.
In Chapter 3, using the developed machine learning-based methodology, we ex-

amine the sensitivity limits of the detection system using TROPOMI data with respect
to the detection of NO2 plumes from individual seagoing ships. With this, we set up
the research scope for further study. The chapter is based on the paper:

• Kurchaba, S., Sokolovsky, A., van Vliet, J., Verbeek, F.J., Veenman, C.J.,
2024. Sensitivity analysis for the detection of NO2 plumes from seagoing
ships using TROPOMI data. Remote Sensing of Environment 304, 114041.
doi:10.1016/j.rse.2024.114041.

After the limits of the satellite capabilities are established, we focus our attention
on the evaluation of ship NO2 emission. To focus the area of analysis on the region
where the ship plume is expected to be located, in Chapter 4, we present a method
that enables the automated assignation of a region of interest (RoI) to a studied ship.
The RoI of a ship is established based on information about the position of the ship
as well as the speed and the direction of the prevailing winds so that the plume of the
studied ship is located within the designated area. Using the RoI of the ship, we can
show the first attempts of automatic segmentation of a ship’s plume. The chapter is
based on the conference paper:

• Kurchaba, S., van Vliet, J., Meulman, J.J., Verbeek, F.J., Veenman, C.J., 2021.
Improving evaluation of NO2 emission from ships using spatial association on
TROPOMI satellite data, in: 29th International Conference on Advances in
Geographic Information Systems, pp. 454–457. doi:10.1145/3474717.3484213.

In Chapter 5, we study the possibilities of improving the quality of ship plume
segmentation. To address the problem, we use supervised machine learning. Based
on the previously defined RoI of a ship, we construct a set of features for training a
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classification model to distinguish pixels that are part of a plume of a studied ship
from those that are not. The chapter is based on the paper:

• Kurchaba, S., van Vliet, J., Verbeek, F.J., Meulman, J.J., Veenman, C.J., 2022.
Supervised segmentation of NO2 plumes from individual ships using TROPOMI
satellite data. Remote Sensing 14. doi:10.3390/rs14225809.

In Chapter 6, we focus on developing a methodology for the automated detection
of anomalously emitting ships. We leverage the methodology presented in the previous
chapter, combining the RoI of a ship and a supervised method of ship plume segmen-
tation, with a proposed machine-learning-based regression model for estimating NO2

from ships. The chapter is based on the paper:

• Kurchaba, S., van Vliet, J., Verbeek, F.J., Veenman, C.J., 2023. Anomalous NO2

emitting ship detection with TROPOMI satellite data and machine learning.
Remote Sensing of Environment 297, 113761. doi:10.1016/j.rse.2023.113761.

Lastly, in Chapter 7, we present the main conclusions of the dissertation and
possible directions for future work.
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Chapter 2

General workflow

The aim of this study is to develop a methodology enabling the analysis of TROPOMI
satellite data for the task of ship emission monitoring. In each chapter of the thesis, we
address different aspects of this task. However, there is a sequence of steps that will be
performed repeatedly in each chapter. Those steps are the integration of several data
sources, feature engineering, selection of a machine learning model and optimization
of its hyperparameters, the application to a given problem, and comparison of the
estimated values of NO2 with the theoretical measure of ship emission potential. We
call it the general workflow (c.f. Figure 2.1). Each step of this general workflow will be
introduced to the reader in this Chapter. The order, technical details, or methodology
applied in each step will depend on the problem at hand and will be described in each
chapter separately.

Figure 2.1: Visualization of general workflow.
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2.1. Data integration

2.1 Data integration

The first step of the general workflow is data integration. Within this thesis, we
understand the process of data integration as follows:

Definition 2.1. Data integration is the process of combining data from several sources
into one unified dataset in a way that enables the solution of a particular task at hand.

The main data source of this study is the set of NO2 measurements coming from the
TROPOMI instrument. These data contain among others information of our interest -
the amount of NO2 produced as a result of NOx emission of individual seagoing ships.
However, to enrich the TROPOMI data for our analyses, additional data sources are
needed. In this study, we integrate the following data sources: 1) the TROPOMI
NO2 product, 2) data on ship positions and some properties of the ship, and 3) wind
information. In the following subsections, we introduce the sources of data used in the
study.

2.1.1 TROPOMI data

The Sentinel-5 Precursor (Sentinel-5P) satellite was launched in October 2017 and
started its operational phase in April 2018. TROPOMI is a spectrometer on board
the Sentinel-5P satellite mission – a sun-synchronous satellite with a local equatorial
overpass time at 13:30. The instrument measures the Top Of the Atmosphere (TOA)
solar radiation reflected by and radiated from the Earth covering ultra-violet up to
the part of the visible spectrum (270-500 nm), near-infrared (675-775 nm), shortwave
infrared (2305–2385 nm) spectral bands. The maximal ground pixel resolution of the
instrument reaches 3.5 × 5.5 km2 at the nadir, while the actual size of the pixel will
vary depending on the true distance between the satellite and the captured part of
the Earth’s surface. We use Level 2 tropospheric NO2 column data, publicly available
via https://dataspace.copernicus.eu/ (previously https://s5phub.copernicus.eu/). In
Chapter 3, the analysis is based on the TROPOMI data version 2.4.0. In Chapters
4, 5, the used data version is 1.3.0, and in Chapter 6 the study is conducted using
TROPOMI data version 2.3.1.

The retrieval of NO2 columns is performed using a 3-step procedure described
in the Algorithm Theoretical Baseline Document [101]. A visual description of the
process is presented in Figure 2.2. As a first step, NO2 slant column densities are
defined as the integrated amount of NO2 along the average photon path from the Sun
through the atmosphere back to the sensor [11, 41]. Next, based on the output from the
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Figure 2.2: Illustration of the retrieval algorithm of NO2 vertical tropospheric column
density. S stands for Slant Column Density, V – Vertical Column Density. Visualiza-
tion inspired by [105].

data assimilation system, the slant column is split into stratospheric and tropospheric
components [29]. As the last step, using a tropospheric air mass factor (AMF), the
tropospheric slant columns are transformed into tropospheric vertical column densities.
The AMF accounts for the path length that sunlight travels through the atmosphere
before reaching the satellite sensor, normalizing it by the amount of sunlight that
would reach the surface under direct overhead conditions. Calculation of AMF to a
large extent depends on the emission inventories and chemical transport models, which,
in turn, rely on information about historical concentrations of emissions, including
NO2 [31]. Starting from Chapter 4, in all chapters of this thesis, we will base our
analysis on tropospheric vertical column densities, as this variable ensures the best
enhancement of NO2 plumes. In Chapter 3, however, we study the sensitivity of the
TROPOMI data-based detection system with respect to the NO2 ship plume detection.
Therefore, the historical information contained in AMF, and, in the resulting vertical
column densities may cause information leakage. To prevent such a situation, the
study presented in Chapter 3 will be based on tropospheric slant column density data.

2.1.2 Ship-related data

The second data source used in this study is information on ship positions. To coincide
the detected NO2 plumes with the emitting ships, the information on the positions of
the ships at the moment of the satellite overpass is compulsory for this study. The
used data on the positions of the ships comes from the Automatic Identification System
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(AIS) transponders. Since 2002, all commercial sea-going vessels have the obligation
to carry on board an AIS transponder [76] which transmits information about the
position, speed, heading (direction), a unique identifier (MMSI), and the type of the
ship.

At the moment, there is no open-access AIS with the spatiotemporal coverage and
data quality required for this study. The data, however, can be accessed through
several commercial providers. For the scope of this study, the AIS data as well as
information about the dimensions of ships were provided by ILT, which has access to
commercial databases.

In Figure 2.3, we present an example of TROPOMI data with the indicated posi-
tions of ships in the area starting from 2 hours before, until the moment of the satellite
overpass. We can see that while the beginning of a ship’s trajectory often corresponds
with the origin of the plume, some significant deviations can be observed for the rest
of the trajectory line. This happens because after the plume has been emitted by the
ship, it is carried away in the direction of the prevailing winds. Therefore, for the
efficient allocation of the plume with the ship emitter, information about the speed
and the direction of the wind is required.

2.1.3 Wind data

Throughout the thesis, we use wind data from the European Center for Medium
range Weather Forecasts (ECMWF). The wind fields (wind speed and wind direction)
are the results of operational model analyses at a spatial resolution of 0.25◦1, the
temporal resolution of 6 hours and altitude of 10 meters. In [41], the wind data at
10 meters altitude was considered sufficient for ship-plume matching. Starting from
the TROPOMI product version upgrade from 1.2.2 to 1.3.0 on March 27, 2019, the
ECMWF 10-meter wind data for coinciding time is available as a support product in
the TROPOMI data file [101].

2.2 Feature engineering

After data integration, the second step of the general workflow is feature engineering.
We define feature engineering as follows:

Definition 2.2. Feature engineering is the process of extracting features from raw
data.

1For the analyzed area the spatial resolution of 0.25◦ × 0.25◦ translates to ≈ 23.4× 27.6 km2.
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Figure 2.3: The NO2 vertical tropospheric column density. Date: April 11th, 2020.
Region: the Arabian Sea. Magenta lines indicate ship tracks based on information
from AIS data. On the right-hand side of the map, an outflow effect from the variety
of land bases NO2 sources can be noticed.
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Definition 2.3. Features are the set of characteristics associated with the data [75].
Other names of features are variables or attributes.

The aim of feature engineering is to transform the integrated dataset to be used
by a machine-learning method for a particular task. Since in each chapter, we address
different tasks, the applied methods of feature engineering will differ as well. The ex-
amples of feature engineering techniques that were used throughout the thesis include
an assignation and further geometric transformation of the Region of Interest, data
aggregation (through calculation of various statistics), encoding of spatial information,
and categorical data encoding. They will be explained in the respective chapters.

2.3 Model selection and optimization

The next step of the workflow is the selection of a machine-learning model suitable for
a given problem. This process includes the selection of the best-performing algorithm
and the optimization of its hyperparameters. We define hyperparameters as follows:

Definition 2.4. Hyperparameters of a machine-learning algorithm are the parameters
that steer the behavior of the learning process. The hyperparameters cannot be learned
by the algorithm from its experience E (c.f. Definition 1.1) and need to be set by a
researcher [55].

In the next subsections, we explain how we perform model selection and optimiza-
tion in this thesis.

2.3.1 Machine-learning metrics

When performing model selection, we define beforehand evaluation metrics suited to
the problem at hand. Several machine-learning metrics are used in this thesis and are
defined below depending on whether we perform a binary classification or a regression
task.

Binary classification metrics

In the context of binary classification, each classification result is assigned to one of
the four categories:

• True positives (TP ): the output data points with a positive class label correctly
identified by the classifier.
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• True negatives (TN): the output data points with a negative class label correctly
identified by the classifier.

• False positives (FP ): the output data points incorrectly identified by the classi-
fier as positive.

• False negatives (FN): the output data points incorrectly identified by the clas-
sifier as negative.

The assignment to one category depends on the output of the model, that is the
computed probability and a probability threshold. For instance, if the model gives
a probability of 0.78 for a given data point and the threshold is set to 0.5, the data
point will be labeled as positive. If the original label of the data point was positive,
it is then correctly classified and is considered as TP . Using these categories, we can
define performance metrics for a binary classifier.

First, we introduce a precision-recall curve – a graphical evaluation technique de-
picting precision as a function of recall where:

Precision =
TP

TP + FP
(2.1)

Recall =
TP

TP + FN
, (2.2)

Such a curve is obtained by using multiple probability thresholds to obtain multiple
precision and recall points. When comparing the precision-recall curves of two models,
if the precision and recall points of one curve are all above the points of the other,
then the corresponding model is considered better than the other.

In the case of intersecting curves, to rank the models, we calculate an area under
the precision-recall curve. We call this metric average precision. For a classifier that
classifies all the data points correctly, the value of the average precision will be equal to
1. For a random guess classifier, the value of the average precision is equal to the ratio
of positive samples in the dataset. Throughout the thesis, the average precision will
be used as an evaluation metric for performing model selection and hyperparameter
optimization.

The next method that we use in this thesis for the evaluation of the binary classifier
is the Receiver Operating Characteristic (ROC) curve [35, 36]. The ROC curve is
a graphical evaluation technique depicting all possible thresholds between the true
positive rate (TPR), which is another name for Recall, and the false positive rate
(FPR) [109], which we define as follows:
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Figure 2.4: ROC curve - schematic example

TPR =
TP

TP + FN
, (2.3)

FPR =
FP

FP + TN
, (2.4)

An example of the ROC curve is presented in Figure 2.4. The classification results
are perfect when TPR = 1 and FPR = 0. The classification results are completely
wrong when TPR = 0 and FPR = 1. A diagonal line from the bottom left to the top
right (TPR = FPR) corresponds to the results of a random-guess classifier.

Based on the ROC curve, we can compute the Area Under the ROC Curve (ROC-
AUC) metric. The highest achievable score of ROC-AUC is equal to 1. In the case of
random guessing, the ROC-AUC score will be equal to 0.5.

Regression model

For the evaluation of regression model performances, we use two metrics: Pearson cor-
relation coefficient and coefficient of determination R2. Pearson correlation coefficient
ρ is defined as:

ρ =
Cov(Y, Ŷ )

σ(Y )σ(Ŷ )
(2.5)

where Cov is the covariance, σ(Y ), and σ(Ŷ ) are standard deviations of real and
predicted values of a target variable respectively. The value ρ = 1 indicates a perfect
linear correlation, value ρ = −1 indicates perfect linear anti-correlation and ρ = 0 is
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the total absence of linear correlation. The second metric, R2, is defined as:

R2 = 1−
∑

(yi − ŷi)
2∑

(yi − ȳ)2
(2.6)

R2 ∈ [0; 1], and is a measure of the goodness of fit of a model and is interpreted as
the part of the variation of the predicted variable that is explained by the regression
model. The R2 = 1 suggests that the predictions obtained with a regression model
fit the data perfectly well. We use R2 as the quality metric for the process of model
selection and optimization.

2.3.2 Hyperparameter optimization strategies

There are two strategies of algorithm selection and optimization of its hyperparameters
used in this thesis. The first is a selection of the optimal algorithm among the list of
pre-selected candidates while performing a randomized search [10] for the hyperparam-
eters optimization. The benefit of this strategy is that we can explore the performance
of pre-selected candidates and quantify the gain achieved from the usage of more com-
plex techniques. The second strategy is to directly solve the so-called CASH problem
(Combined Algorithm Selection and Hyperparameter optimization [57]) using auto-
mated machine learning (AutoML) [49]. AutoML deals with the automation of the
application of machine learning to real-world problems [55]. The CASH problem is the
task of selecting a suitable machine-learning algorithm (which can be a combination of
several algorithms) for the analyzed dataset, together with the proper pre-processing
methods and set of hyperparameters of all components involved, without requiring
human intervention [55]. The advantage of using this strategy is that such a technique
enables an efficient selection of a machine-learning algorithm and feature preprocessor
from a more extensive list of candidates within a limited time frame. This is par-
ticularly useful when performance benchmarks are unavailable. The disadvantage of
such a technique, however, is that the comparison of the performance of several mod-
els cannot be done directly (as weaker candidates are discarded during the process
of optimization). In this thesis, we address the CASH problem using TPOT (Tree-
based Pipeline Optimization Tool) [77] – a Python package for automatic selection of
machine learning pipelines based on genetic programming (GP) [58].

In order to combine the process of model performance evaluation with the process
of algorithm selection and optimization of its hyperparameters, we apply a nested
cross-validation scheme [96, 18]. The general setup of nested cross-validation is as
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Figure 2.5: Schematic representation of nested cross-validation. In the inner loop, the
generated training and validation sets are used to find an optimal set of the hyperpa-
rameters of the model. In the outer loop, we generated a series of test sets that are
used for the model performance evaluation.

follows: In the outer loop of cross-validation, the entire dataset is split into K subsets
(folds). The model is trained on K-1 subsets, while the remaining subset is used for
the model evaluation. This procedure is repeated K times. Within each iteration of
the outer loop, an inner cross-validation loop is performed. The training data from the
outer loop is further split into K-1 subsets for training and one subset for validation.
Different model hyperparameters are tested using the training and validation sets in
the inner loop. The model with the best performance on the inner loop validation set
is selected. The selected model from the inner loop is then evaluated on the test set
from the outer loop. For a visual explanation, see Figure 2.5. Note that, in the field of
statistics, another naming convention for resulting splits of the data is used (validation
is then called test set, and vice-versa). The main advantage of the nested scheme of
cross-validation is the prevention of information leakage coming from using the same
data for the evaluation of model performance and tuning the hyperparameters, which
takes place in case straightforward cross-validation is applied [18].
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2.4 Results evaluation

The last step of the general workflow is a comparison of estimated values of NO2 with
some kind of independent measurement. However, as mentioned earlier, for the task
of ship emission monitoring, TROPOMI is the only way of measurement above the
open sea. The "ground truth" data for this task is not available. To overcome this, we
will use a theoretical ship emission proxy Es as a reference value defined as follows:

Es = L2
s · U3

s , (2.7)

where Ls is the length of the ship in meters (m), and Us is its speed in meters per
second (m/s). The details of the derivation of the given measure can be found in
[41], where the proxy was introduced. As it is noted in [41], the advantage of Es in
comparison to other ship emission proxies (e.g. [33]) is that it can be calculated based
on AIS data only, while other existing emission proxies require ship information that
is not in the AIS data and is not available publicly. This, however, will result in some
loss of the quality of emission approximation.

To sum up, in this Chapter, we described general process steps that will be used
throughout the thesis. We call it the general workflow. The applied methodological
details of each of the described steps may differ depending on the task at hand and
will be described in each chapter separately.
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Chapter 3

Sensitivity analysis for the
detection of NO2 plumes from
seagoing ships using TROPOMI
data

Based on: Kurchaba, S., Sokolovsky, A., van Vliet, J., Verbeek, F.J., Veenman,
C.J., 2024. Sensitivity analysis for the detection of NO2 plumes from seago-
ing ships using TROPOMI data. Remote Sensing of Environment 304, 114041.
doi:10.1016/j.rse.2024.114041.
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3.0.

Abstract The marine shipping industry is among the strong emitters of nitrogen
oxides (NOx) – a substance harmful to ecology and human health. Monitoring of
emissions from shipping is a significant societal task. Currently, the only technical
possibility to observe NO2 emission from seagoing ships on a global scale is using
TROPOMI data. A range of studies reported that NO2 plumes from some individ-
ual ships can be visually distinguished on selected TROPOMI images. However, all
these studies applied subjectively established pre-determined thresholds to the min-
imal speed/length of the ship – variables that to a large extent define the emission
potential of a ship. In this Chapter, we investigate the sensitivity limits for ship plume
detection as a function of their speed and length using TROPOMI data. For this, we
train a classification model to distinguish TROPOMI image patches with a ship, from
the image patches, where there are no ships. This way, we exploit ground truth ship
location data to potentially exceed human visual distinguishability. To test for re-
gional differences, we study four regions: the Mediterranean Sea, Biscay Bay, Arabian
Sea, and Bengal Bay. For the Mediterranean and the Arabian Sea, we estimate the
sensitivity limit to lie around a minimum speed of 10 knots and a minimum length of
150 meters. For the Biscay Bay – around 8 knots and 100 meters. We further show
that when focusing the analysis on the biggest emitters (junctions of several ships in
the area), the detectability can be improved up to above 0.8 ROC-AUC. Finally, we
show that increasing the size of the dataset, beyond the dataset used in this study,
yields further improvements in the detectability of smaller/slower ships. The rate of
improvement in both experiments is dependent on the region studied.
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Chapter 3. Sensitivity analysis for the detection of NO2 plumes from
seagoing ships using TROPOMI data

3.1 Introduction

As it was mentioned in the Introduction of this thesis, the TROPOMI/S5P is the first
satellite-based instrument that gives the possibility to visually detect NO2 plumes from
some individual seagoing ships [41]. This is due to significantly higher than its prede-
cessor spatial resolution of the instrument. Such an improvement in the quality of the
remote-sensing-based atmospheric monitoring allows to consider the TROPOMI/S5P
instrument as a potential solution for the task of global and continuous monitoring of
the emissions produced by seagoing ships [90]. However, in order to fully understand
the potential of the TROPOMI for a given task, the first step is to estimate the limita-
tions in terms of the sensitivity of the detection system for NO2 plumes from seagoing
ships using TROPOMI data.

To tackle the problem, we prepare image patches – small, regular-sized sections of
the TROPOMI measurement (image). We use the created image patches to train a
machine-learning classification model. The task of the model is to distinguish image
patches with at least one ship from the image patches where there are no ships. The
labels of the model were created using AIS ship location data, and, therefore, are
independent of the distinctivity of ship plumes by a human. This way, we formulate
the research questions of the study as follows:

• RQ1: What is the minimum speed and length of a seagoing ship so that the
NO2 plume from it can be detected with the detection system using TROPOMI
data?

• RQ2: To what extent can the detectability of NO2 plumes be improved if only
the biggest emitters are taken into account? With the biggest emitters, we mean
the biggest ships operating at the highest speeds, or several smaller or slower
ships operating in proximity to each other.

• RQ3: Is there a potential for improvement of detectability of NO2 plumes from
the slow/small ships if more data were used to train the used classification model?

We conduct this study on four regions of interest: Mediterranean Sea, Biscay Bay,
Arabian Sea, and Bengal Bay (the coordinate scope see in Table 3.1 and Figure 3.1).
The study areas are directed towards the Europe – Middle East – Asia trade route,
with selected areas representing low background pollution and common occurrence of
clear skies.

The rest of the Chapter is organized as follows: In Section 3.2, we explain how
the data was pre-processed in order to obtain datasets used for machine learning
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models. In Section 3.3, we introduce the experimental setup for each stage of the
study and present the obtained results. We discuss the obtained results in Section 3.4
and conclude in Section 3.5.
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Figure 3.1: Four studied regions (from left to right): Biscay Bay, Mediterranean Sea,
Arabian Sea, Bengal Bay.

Region Longitude [deg] Latitude [deg] Studied period

Mediterranean (14, 19.3) (33.2, 38) (31-03-20; 28-02-23)
Biscay Bay (-10, -6) (45, 47) (01-04-20; 28-02-23)
Arabian Sea (59, 68.5) (5, 18) (31-03-20; 30-11-22)
Bengal Bay (88, 92) (2, 8) (03-06-20; 31-12-22)

Table 3.1: Geographical coordinates and analyzed periods defining the study scope for
each region.

3.2 Dataset

The supervised learning task that is addressed in this study is to distinguish image
patches with a ship plume on them. In this Section, we describe the process of the
preparation of the dataset for the given supervised learning task. We first describe
the undertaken steps of data pre-processing. We then introduce the features used for
the model training and define the target variable.
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Region Ship image No ship image

Mediterranean 16% 18%
Biscay Bay 48% 52%
Arabian Sea 49% 52%
Bengal Bay 54% 54%

Table 3.2: Percentage of data from the original dataset lost when a qa value of .75 is
applied for filtering.

Figure 3.2: An illustration of the set-up used for counting the number of ships per
image patch. White square – image patch. Grey square – a central part of the image
patch. Red dashed lines – an example of ship trajectory starting from 2 hours before
until the moment of the satellite overpass. Only ships, whose trajectories cross the
central part of the image patch are considered to be present in the area covered by a
patch.

3.2.1 Data preprocessing

The first step of data preparation is regridding1. This is done so that for each region
we have pixels with the same spatial coverage. The regridded pixel size for each region
is approximately equal to 4×5 km2. Following the set-up used in the previous studies
[63, 64], for the regridding, we only use pixels with cloud coverage below 0.5, wind
speed lower than 10 m/s, and qa value above 0.5 [93]. This level of qa value filtering
was shown to be sufficient for the identification of NO2 plumes from individual ships
and is a trade-off between a high standard of data quality, and an attempt to preserve
as many data points as possible. In Table 3.2, the reader can find an assessment of
the data loss in case qa value filtering was set to the level of 0.75 – the level suggested
in the TROPOMI manual [31].

As a next step, we split the studied area into non-overlapping patches of equal
size 80×80 km2. The selected size of the image corresponds to a distance that the
fastest ships in the dataset will cover in 2 hours. The observation period of 2 hours

1The regridding is performed using the Python package HARP v.1.13.
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Figure 3.3: Distribution of the number of ships per image patch for the studied regions.
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Region Ship image No ship image

Mediterranean 6652 9693
Biscay Bay 2641 2812
Arabian Sea 4804 24594
Bengal Bay 2444 6848

Table 3.3: Class-wise distribution of image patches for each studied region. The rate
of imbalance depends on the traffic density in the region.

was motivated by the fact that due to the physical dispersion and limited lifetime of
NO2 within plumes, the detectability of ship plumes will fall sharply after 2 hours
[107]. For each image patch, we calculate how many ships were in the central area
of the patch within 2 hours before the overpass of the satellite. The central area of
the patch is defined as 60×60 km2 square. We do not take into account ships that
do not pass through the central area of the image patch, as the probability that their
plume will be located within the image patch is very low. An example is presented
in Figure 3.2. The resulting distribution of the number of ships per image patch for
each studied region can be found in Figure 3.3. Please note the regional differences in
the distribution of ships among patches. The Arab Sea typically has a high number
of patches with a single ship. The Biscay Bay, in comparison to other regions, has the
highest number of patches with a high number of ships on it. These patterns illustrate
the difference in shipping density among the studied regions.

3.2.2 Feature engineering

To study the sensitivity of the TROPOMI instrument with respect to the detection
of NO2 plumes from seagoing ships, we prepare a dataset for supervised machine
learning. The NO2 trace gas variable of our interest is Tropospheric Slant Column
Density – SCD trop [31]. As mentioned in Chapter 2, the SCD variable is suitable
for satellite sensitivity study [41] as its derivation is not based on airmass factor –
a variable estimated based on, among others, historical NO2 concentration within a
certain area.

The objective is to distinguish image patches that cover the area where there are
no ships, from image patches covering the area with at least one ship on it. Since this
is a binary problem, the value of the output label is 1, if there is at least one ship that
is faster than 6 kt, which is approximately 11.1 km/h and longer than 90 m in the
area covered by an image patch. The output label is 0, if there is no ship in the area,
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or the ship is shorter than 90 m or slower than 6 kt. The values of 90 m and 6 kt are
sufficiently low to be well below detectable limits as will also follow from this study.
Table 3.3 shows the resulting distribution of classes for studied regions. Examples of
image patches without (label 0) and with at least one ship on it (label 1) are presented
in Figure 3.4. We can see that not all image patches with a ship actually contain a
visually distinguishable plume. This is because the NO2 plumes produced by some
ships are below the sensitivity limit of the TROPOMI instrument, or we are not able
to distinguish it visually.

We address the classification problem with a multivariate classifier. Therefore,
we represent the TROPOMI image patches in terms of a set of features - a statisti-
cal representation of the image patch. More specifically, for the regridded pixels of
each image patch, we calculate the following statistics: min(SCD), mean(SCD), me-
dian(SCD), max(SCD), std(SCD), where SCD stands for NO2 slant column density.
To give information about the level of plume dispersion, we add wind-related variables
zonal wind velocity (wind zon), meridional wind velocity (wind med), which represent
the speed of the wind from the west to east and from south to north respectively. Fi-
nally, we add features sensor zenith angle, solar zenith angle and solar azimuth angle
to represent the viewing geometry of the satellite. Values for wind information and
satellite geometry are the average values of the pixels within the image patch. The
resulting feature set is presented in Table 3.4. In Figure 3.5, the reader can find his-
tograms of the dataset features for the studied regions. Clearly, the features related to
the properties of ships cannot be included in the feature space, because the presence
of a ship has to be established. Moreover, we deliberately do not include any features
in the feature set related to the geographic locations of a given patch. This is because
shipping lanes may bias the model. The dataset used in this study as well as the
code used for generating the presented in this study results are available publicly as
a reproducibility capsule [60]. Prior to the application of a machine learning model,
all features were standardized using a median-interquartile range scaling2 – a scaling
technique that allows to reduce a negative impact of the outliers in the dataset [32].

3.3 Experiments and results

In this Section, we describe the experiments and show the results obtained. We start
with the introduction of the classification model – we present model selection and
hyperparameter optimization results. For the selected model, we provide the explain-

2RobustScaler implemented in scikit-learn v.1.2.2.
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Figure 3.4: Examples of image patches without a ship and with at least one ship on it.
The presented image patches were randomly sampled from the dataset of the region
Biscay Bay.
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Figure 3.5: Histograms of the variables from the dataset.

Feature type Feature name

NO2 slant column density min(SCD)
mean(SCD)

median(SCD)
max(SCD)
std(SCD)

Wind information zonal wind velocity
meridional wind velocity

Satellite geometry sensor zenith angle
solar zenith angle

solar azimuth angle

Table 3.4: List of features used for classification model.
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ability analysis. Next, in the consecutive subsections, we explain and provide the
results of the experiments addressing the three research questions of this study.

3.3.1 Classification model

Experimental setup

As a first step, we compared the performance of several multivariate classifiers and
selected the one that is going to be used in the remaining part of the Chapter for the
sensitivity analysis. We studied four machine learning classifiers of increasing complex-
ity: Logistic regression, Support Vector Machine (SVM) with the radial basis function
(rbf) kernel, Random Forest3, and Extreme Gradient Boosting4 (XGBoost) [22]. All
selected models are robust to noise and can be efficient even given the relatively small
size of datasets. To make sure that we exploit the maximum potential of a given ma-
chine learning model, we optimized the hyperparameters of each studied model. The
hyperparameters were optimized using a random search5 technique with the objective
metrics - average precision. The used search space of the hyperparameters for each of
the models studied as well as the results of the hyperparameters optimization can be
found in the original paper [61]. To be able to simultaneously perform the hyperpa-
rameter optimization and evaluation of the model performance, we use 5-fold nested
cross-validation [96, 18] (for the explanation of the concept and visual example see
Section 2.3). To maintain the same percentage of samples of a certain label in the
training and test set, the cross-validation was based on stratified K-fold splits [47, 42].

Results

The classification results are presented in Table 3.5. Comparing the performances
between different classifiers, we can see that the XGBoost classifier yielded the best
results for most of the regions – we used this classifier for the remaining experiments
of this study. Comparing the results between regions, we start with ROC-AUC. The
highest achievable score of ROC-AUC is equal to 1. While the ROC-AUC score that
will be obtained in case of random guessing is 0.5. The ROC-AUC score is calculated
based on the ROC curve. For the XGBoost classifier, it is presented in the right-hand
side plot of Figure 3.6. The scores for Biscay Bay and the Mediterranean Sea are
higher than for the Arabian Sea and Bengal Bay. One of the reasons for this difference

3All above-mentioned models are implemented in Python scikit-learn v.1.2.2.
4XGBoost v. 1.7.0
5Implemented in Python scikit-learn v.1.2.2.
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Region Model Average Precision ROC-AUC

Mediterranean XGBoost 0.636 ± 0.013 0.712 ± 0.011
Random Forest 0.629 ± 0.018 0.706 ± 0.016

SVM (rbf) 0.615 ± 0.015 0.694 ± 0.013
Logistic 0.448 ± 0.008 0.546 ± 0.009

Biscay Bay XGBoost 0.704 ± 0.021 0.713 ± 0.015
Random Forest 0.620 ± 0.025 0.652 ± 0.022

SVM (rbf) 0.573 ± 0.020 0.589 ± 0.014
Logistic 0.523 ± 0.013 0.541 ± 0.018

Arabian Sea XGBoost 0.226 ± 0.007 0.610 ± 0.008
Random Forest 0.229 ± 0.006 0.618 ± 0.006

SVM (rbf) 0.195 ± 0.004 0.545 ± 0.007
Logistic 0.169 ± 0.003 0.498± 0.008

Bengal Bay XGBoost 0.379 ± 0.017 0.601 ± 0.01
Random Forest 0.364 ± 0.016 0.601 ± 0.010

SVM (rbf) 0.346 ± 0.006 0.560 ± 0.016
Logistic 0.289 ± 0.015 0.542 ± 0.016

Table 3.5: Results of the optimization of the classification models’ hyperparameter.
The reported results were obtained on the hold-out test sets based on nested 5-fold
cross-validation [96, 18]. The bold font indicates the performance of the best model
for a given region.
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Figure 3.6: Precision-recall and ROC curves for the studied regions. The black line in
the right panel – performance of a random guess classifier.
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might be that the regions Biscay Bay and the Mediterranean Sea have a higher overall
number of ships per image patch (and, therefore, a higher percentage of potentially
well-recognizable plumes) than the two remaining regions, c.f. Figure 3.3. Next, we
compare the scores of average precision. Also in the case of this metric, a perfect clas-
sifier would have a score of 1.0, while a random guess classifier would have an average
precision score equal to the ratio of positive samples in the dataset. The average preci-
sion score is calculated based on a precision-recall curve, which is presented in Figure
3.6, left-hand-side plot. Due to the different rates of class imbalance of datasets from
different regions, the average precision scores from the Table are difficult to compare
directly. However, analyzing the precision recall-curves, we can conclude the follow-
ing: the performance of the classifiers on Biscay Bay and Mediterranean Sea regions
are very close to each other and the difference between the obtained average precision
scores is mainly caused by a slightly different class imbalance. The lower average-
precision scores for the regions Bengal Bay and Arabian Sea are also to a big extent
a result of the fact that those datasets contain fewer image patches with a ship than
two other regions. However, in the case of Bengal Bay, for the lower rates of recall,
we can observe quite high values of precision. This signalizes the fact that there is a
set of images that the model can quite confidently correctly recognize. This is not the
case for the Arabian Sea, which implies better performance of the classification model
on the Bengal Bay region in comparison to the Arabian Sea. For all regions, it is
important to underline that the reported performances of the models were negatively
affected by the presence of ships whose size and speed are known to be too small or
slow to be detected by the TROPOMI instrument, which is a cause of the topic of this
research, that is the study of the detection limits.

Explainability analysis

As a next step, we would like to understand which of the used features are the strongest
indicators of the presence of a ship in the area for the XGBoost model. For this, we
perform the explainability analysis using the SHapley Additive exPlanations (SHAP)
[70] summary plots (see Figure 3.7). The plots indicate the strength of the impact
of a value of a certain model feature on the model outcome (positive or negative) for
individual samples from the test set. The red and blue colors show the effects of a
certain feature’s high and low values respectively.

We can see that for the Mediterranean Sea, and Biscay Bay, the feature having
the strongest impact on the decision of the model the most is scd std, representing
the standard deviation of stratospheric column density within the image patch. In the
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Figure 3.7: SHAP violin plots on concatenated test sets for each studied region.
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Figure 3.8: Distribution of the variable scd std for four studied regions. For the
Arabian Sea, the distribution is noticeably more narrow than for other regions.
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case of the Mediterranean Sea, scd max and solar zenith angle also play significant
roles. Interestingly, the direction of the meridional wind also has a strong influence
on the model’s decision in the Mediterranean Sea. From the plot, we see that the
negative meridional wind corresponds to strong negative model responses, potentially
due to land outflow from Europe affecting ship plume visibility. In the Arabian Sea
and Bengal Bay regions, the strongest impact on the model response is attributed to
the values of the feature scd mean. Notably, for the Arabian Sea, high values of scd
std do not necessarily indicate the presence of a plume, possibly because as we can see
from Figure 3.8, standard deviations of NO2 concentrations in this region are typically
lower compared to others. Low values of scd std, however, are used by the model as
a strong suggestion of the absence of a plume in the image patch. Finally, one can
notice that for Biscay Bay, the feature sensor zenith angle is of great importance.
However, since we do not see a clear split into high/low values for positive/negative
model outcomes, the influence of the feature on the model response will depend on the
values of other features [40, 47]. From this experiment, we can conclude that the same
machine learning models applied to different studied regions not only yield different
quality of results but are also driven by different sets of features.

3.3.2 Sensitivity limits estimation

In this Subsection, we address the first research question: What is the minimum speed
and length of a seagoing ship so that the NO2 plume from it can be detected with
the detection system based on TROPOMI data? With the detection system we mean
a sequence of steps needed to automatically detect an NO2 plume from a ship on a
TROPOMI image patch. The first step of this sequence is a measurement performed
by the TROPOMI sensor. The last step is the application of a trained machine-
learning model on the set of unseen image patches with the aim of distinguishing
patches covering the area with a ship. In [41], it was shown that the length and the
speed of the ship are the main factors determining the emission potential of the ship.
Following the considerations presented in [41], in order to decrease the level of problem
complexity, we represent the length/speed of the studied ship in terms of one variable
– the ship emission proxy Es [41], as defined in Section 2.4. For the purpose of this
study, we define the sensitivity limit of the detection system for NO2 plumes from
seagoing ships using TROPOMI data for a given region as the level of ship emission
proxy Es, starting from which the classification model can distinguish image patches
without a ship from image patches with a ship.
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Region Average Precision ROC-AUC

Mediterranean 0.538 ± 0.036 0.518 ± 0.038
Biscay Bay 0.539 ± 0.053 0.513 ± 0.067
Arabian Sea 0.563 ± 0.035 0.560 ± 0.031
Bengal Bay 0.564 ± 0.054 0.540 ± 0.060

Table 3.6: Model performance when only considering the one-ship patches with the
emission proxy below 10% quantile.

Given the provided definition of the sensitivity limit, our initial investigation eval-
uates the classification model’s performance using image patches with the lowest total
emission proxy. For this, we first exclusively chose patches covering a single ship.
Then, from the selected subset, we further narrowed our selection to those patches
with an emission proxy falling below the 10% quantile of all one-ship patches. To
ensure comparability of performance metrics between areas and samples with different
ship proxy values, we took a sample with an equal number of patches with and without
a ship covered by the patch. To make sure that all image patches with and without
ships that satisfy the above-provided criteria are used for the model training and eval-
uation, we repeated the sampling procedure 5 times. Subsequently, we conducted a
5-fold cross-validation for each set of sampled data points. The averaged results over
the five folds are presented in Table 3.6. The outcomes indicate that none of the
regions allowed for distinguishing patches with a ship, as the ROC-AUC/Average pre-
cision values obtained were not significantly higher than 0.5. Consequently, we infer
that the ships with the lowest emission proxies in our dataset fall below the sensitivity
limit of the detection system for NO2 plumes from seagoing ships using TROPOMI
data.

In the next experiment, we checked what the emission proxy threshold for the
ship plumes detectability is. Here, we again considered only image patches with one
ship on it. We then gradually removed ships with the lowest emission proxy from the
dataset, analyzing the changes in the model performance. The applied emission proxy
thresholds were determined as a range of quantiles starting from 10% and gradually
increasing by 10%, until it reaches 90%. If after reaching a certain level of threshold,
the number of patches with a ship (label 1) went below 300, the experiment was
terminated and the next thresholding levels were not tested6. The criterion of 300
patches was established based on the number of patches with a ship left after a 90%

6This way, the highest applied threshold for Biscay Bay was 70% and for Bengal Bay 80% quantile.
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Figure 3.9: Step-wise removal of the patches (containing one ship) with the lowest
emission proxy. Dashed lines indicate estimated levels of sensitivity limits for the
Biscay Bay, Mediterranean, and Arabian Seas. To assure the comparability of the
results, a similar size of training/test datasets was used at each threshold level.
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Figure 3.10: 2D histograms of speed and lengths for ships that are above (green) and
below (red) the estimated sensitivity limits for the Biscay Bay, Mediterranean, and
Arabian Seas.

threshold applied for the region with the highest number of one-ship patches available
(Arabian Sea). Clearly, by removing the image patches with the proxy values below
a certain threshold, we decreased the size of the dataset. To eliminate the potential
effect of the dataset size on the model performance, throughout the experiment, we
kept the dataset size constant. To achieve this, for each applied threshold, we sampled
the number of data points equal to the number of data points available for the highest
applied threshold. As in the previous experiment, we repeated the sampling procedure
5 times. For each set of sampled data points, we performed a 5-fold cross-validation.

The results of the experiment are presented in Figure 3.9. We can see that for the
lowest thresholds, for all four regions, the average performance quality did not change.
This means that the removed ships were still below the sensitivity level of the detection
system for NO2 plumes from seagoing ships using TROPOMI data. From a certain
threshold (indicated with dashed lines on the plot), however, the model performance
started to increase. The level of the ship emission proxy threshold starting from which
we observe the improvement of the performance of the model is the sensitivity limit
of the detection system for NO2 plumes from seagoing ships using TROPOMI data
for a given region. For the Mediterranean and the Arabian Sea, the sensitivity limit
in terms of ship emission proxy was established to be around 1 × 107m5/s3. For the
Biscay Bay, the sensitivity limit is lower and is around 3.8 × 106m5/s3. To get the
intuition around these numbers, we return to the values of speed and length of the
ship. To achieve this, for the regions of the Biscay Bay, Arabian, and Mediterranean
Seas, in Figure 3.10, we present 2D histograms of the speed and length of ships that
are above (green color) and below (red color) the estimated sensitivity limits. From
the histograms, we conclude that to distinguish NO2 plumes, the minimum speed of
the ship for the Arabian and Mediterranean Seas should range between 10 and 15
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kt depending on the length of the ship. Ships that are slower than 10 kt or shorter
than 150 m are below the sensitivity limit. For Biscay Bay, the limit lies around 8
kt and 100 m. For Bengal Bay, the sensitivity limit cannot be determined since the
available amount of data did not allow us to raise the proxy threshold high enough to
see the increase in the performance of the model. However, when comparing the curve
dynamics of the Bengal Bay with other regions, the obtained pattern suggests that
the sensitivity limit for this region is higher than for the Arabian and Mediterranean
Seas.

3.3.3 On detection of biggest emitters

Our second research question is how the detectability of NO2 plumes can be improved
if only the biggest emitters are taken into account. Our aim here is to understand the
potential of the detectability of NO2 plumes when the total emission proxy is very high.
The high emission proxy can result from a big ship operating at a high speed, or smaller
or slower ships operating in proximity to each other. Therefore, in this experiment,
we considered all image patches (without, with one, or with more than one ship on it).
This way, in some of the image patches, there will be more than one ship with a high
emission proxy present. As in the previous experiment, we gradually removed from
the dataset the image patches with the lowest total emission proxy. Once again we
studied how the removal of the low emitters affects the quality of classification. The
thresholds used for the proxy filtering were determined as quantiles of the proxy values
of the dataset of a given region. For the Mediterranean and Arabian Sea, the applied
quantiles ranged from 0 to 90%. For the Biscay and Bengal Bay, due to the smaller
sizes of the datasets, the applied quantiles ranged from 0 to 80%. In Figure 3.11, we
present the results of the experiment. For each of the studied regions, we can observe
an increase in the model performances. We can see that for the Mediterranean Sea,
for the patches with the highest total emission proxy, the ROC-AUC score can exceed
0.8. For the regions Arabian Sea and Bengal Bay, the level of the results is noticeably
lower. This pattern in the results is similar to what we observed in Subsection 3.3.1.

As a next step, we checked if the dependency between the applied proxy threshold
and classification performance is impacted by a certain hyperparameter configuration
of the XGBoost model. We would like to know to which extent we can improve the
quality of classification for the image patches with the highest total emission proxy.
For this, we studied two configurations of the dataset. In the first case, we applied the
highest proxy threshold for the given region (the last data point from the corresponding
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Figure 3.11: Illustration on how the step-wise removal of the image patches with the
lowest total emission proxy from the dataset affects the performance of the classifica-
tion model.

plots of Figure 3.11). In the second case, we did not apply any proxy threshold but
kept the dataset size equal to the case when the proxy threshold was applied (the
scenario corresponds to the first data point of the corresponding plots of Figure 3.11).
For each of the datasets, we performed optimization of the hyperparameters of the
classification model, in the same way as it is explained in 3.3.1. We then compared
the performance of the models for both scenarios. The results are presented in Figure
3.12. For all studied regions, we can see that the quality of detecting NO2 plumes from
ships can be improved if only the image patches with the highest total emission proxy
are considered. Based on this, we conclude that the dependencies shown in Figure
3.11 are not the results of a particular model configuration, but rather a property of
data. However, we can see that the optimization of the hyperparameters of the model
did not result in the improvement of the model performance.

3.3.4 Potential improvements in small ship detectability

In this Subsection, we address the third research question of the study. Namely,
we investigate whether there is a potential for improvement of detectability of NO2

plumes from the slow/small ships if more data would be used for the training of the
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Figure 3.12: Comparison of the performance of the model when all ship images are
in the dataset and when only images with the proxy above the predetermined proxy
threshold are used.
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Figure 3.13: Learning curves for different levels of the applied thresholds. The black
line indicates the dataset size that was used for the experiments reported in Figures
3.11, 3.12.

44



Chapter 3. Sensitivity analysis for the detection of NO2 plumes from
seagoing ships using TROPOMI data

0 1 2 3 4 5 6
Proxy 1e8

0

250

500

750

1000

1250

1500

1750

2000

C
ou

nt
s

Mediterranean Sea

3.9E+06
1.2E+07
2.7E+07

0 1 2 3 4 5 6
Proxy 1e8

0

250

500

750

1000

1250

1500

1750

2000

C
ou

nt
s

Biscay Bay

3.1E+06
1.2E+07
3.2E+07

0 1 2 3 4 5 6
Proxy 1e8

0

250

500

750

1000

1250

1500

1750

2000

C
ou

nt
s

Arabian Sea

6.2E+06
1.3E+07
2.3E+07

0 1 2 3 4 5 6
Proxy 1e8

0

250

500

750

1000

1250

1500

1750

2000

C
ou

nt
s

Bengal Bay

7.7E+06
2.2E+07
3.7E+07

Figure 3.14: Change of the ship proxy distribution after applying thresholds as in
Figure 3.13.
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classification model. For each region, we selected three proxy thresholding levels and
studied the change in the model performance with the growth of the size of the dataset
used for the model training. We focus here on the low thresholds. The used thresholds
were set as 10%, 30%, and 50% quantiles of the proxy value for the Mediterranean Sea
and Biscay Bay. For the Arab Sea and Bengal Bay, the applied thresholds were 10%,
40%, and 60% due to the fact that the model performances on the lowest quantiles
were indistinguishable. Similarly to the previous experiment, the maximum size of the
dataset was defined by the number of data points in the dataset with the proxy value
higher than the highest among the three applied thresholds.

The resulting learning curves for each of the studied regions are presented in Figure
3.13. We can see that for all studied regions, the results shown in Figure 3.11 can
be improved by using more data for model training. We also observe that for the
regions Biscay Bay and Mediterranean Sea, more data results in a more significant
increase in performance, than for the Arabian Sea and Bengal Bay. To explain this,
in Figure 3.14, we present the distribution of the variable ship emission Proxy for
each consecutive threshold applied. The histograms show that for the Biscay Bay
and the Mediterranean Sea, there are many more image patches with high values of
total emission proxy than for the Arabian Sea and Bengal Bay. As a result, even
after removing from the dataset the image patches with the lowest total emission
proxy, for such regions as the Arabian and Bengal Bay, the models are still trained on
significantly lower total emission proxies than the models for the Biscay Bay and the
Mediterranean Sea.

3.4 Discussion

The main objective of this study was to investigate the sensitivity limits of a detection
system for NO2 plumes from seagoing ships using TROPOMI data, considering the
speed and length of the ships that we expressed through the means of ship emission
proxy. By the detection system, we mean a sequence of steps starting from the signal
measurement by the sensor, followed by data retrieval, and finally the application of
the developed methodology of automated detection of ship plumes. Each of these steps
influences the numbers obtained in this study.

To be able to address the problem of sensitivity estimation, we build a method-
ology based on machine-learning classification models. This approach allowed us to
effectively exploit the TROPOMI signal and contextual information while automati-
cally separating the image patches into those, where the NO2 plumes can and cannot
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be detected. The choice of a multivariate model enabled us to take into account fea-
tures important for satellite sensitivity, such as wind and satellite/solar viewing angles.
Studying several machine learning classifiers of increasing complexity, we found that
the XGBoost model yielded the best performance across most regions. This shows
the importance of the application of complex machine-learning models for the effec-
tive identification of TROPOMI image patches with NO2 plumes from ships with a
relatively low number of features.

With the first research question (RQ1), we attempted to determine the minimum
speed and length of seagoing ships for which the TROPOMI data-based detection sys-
tem can detect NO2 plumes. We first showed that while the smallest ships considered
in our dataset are below the detection limit of the system, once reaching a certain level
of ship speed/size, the signal becomes detectable. Second, for the Mediterranean Sea
and the Arabian Sea, we estimated sensitivity limits of approximately 1× 107m5/s3.
For Biscay Bay, the obtained limit lies around 3.8 × 106m5/s3. Comparing the ob-
tained numbers with the ship emission estimation provided in [41], we can see that
our detection system allows us to correctly recognize some plumes with concentrations
close to the background concentrations estimated for the Mediterranean Sea. The
obtained values of emission proxy translate to the minimum detectable speed of 10
kt and minimum detectable length of 150 m for the Mediterranean and Arabian Seas
and 8 kt and 100 m for Biscay Bay. Unfortunately, due to the insufficient amount of
data, the sensitivity limits for the Bengal Bay region could not be determined.

With the second research question (RQ2), we examined the potential improve-
ment in NO2 plume detectability when considering only the biggest emitters. With
our results, we numerically confirmed that restricting the analysis to faster/larger ships
leads to enhanced detectability of NO2 plumes. For the Mediterranean Sea region, the
performance of the classification model can exceed 0.8 ROC-AUC and average pre-
cision scores. This finding suggests concentrating the focus on the larger emitters,
could potentially increase the efficiency of the application and accuracy of ship emis-
sion monitoring using the TROPOMI instrument. Our analysis also revealed distinct
differences in model performance quality between regions. Notably, the Mediterranean
Sea and Biscay Bay consistently show better performance compared to the Arabian
Sea and Bengal Bay. We can see that these variations could be attributed to variations
in ship traffic density between the regions. Additional factors that potentially can in-
fluence the performances of the models are measurement conditions (e.g., number of
cloudy days), differences in data quality between regions (c.f. Table 3.2), and different
scales of temperature fluctuations or concentration of ozone in the background. The
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last two factors affect the lifetime of NO2. However, an in-depth understanding of this
problem requires a separate study and we leave it as future work.

Our investigation into the third research question (RQ3), regarding the potential
for improving NO2 plume detectability from slow or small ships by utilizing more
training data, again showed the variability of the results across the regions. For the
Mediterranean Sea and Biscay Bay regions, an increase in data volume led to a notable
enhancement in model performance. While, for the Arabian Sea and Bengal Bay, the
impact of increased data, even though present, was less pronounced. One of the
established reasons was the fact that for European regions we had a higher ratio of
data points with a high value of emission proxy in the dataset than for the Bengal
Bay and Arabian Sea. Nevertheless, the obtained results indicate that the accuracy of
currently determined detection limits is perhaps constrained not by the methodology
or the sensor, but by data availability.

Implications and future work

The insights gained from this study have important implications for satellite-based
ship emission monitoring. By identifying sensitivity limits and optimal ship charac-
teristics for detectability, our findings guide the scope of future studies on ship’s NO2

estimation using TROPOMI data and give an overview of the potential application
of the TROPOMI instrument for ship emission monitoring. Moreover, the obtained
results can be used as a benchmark sensitivity level for future satellite missions, such
as, for instance, TANGO [67].

In future research, it would be valuable to explore factors beyond ship speed and
length that influence detectability, such as temperature regimes, clouds, background
ozone concentrations, effect of the sunglint or satellite viewing angle. Moreover, it
would be valuable to perform an in-depth study explaining the observed multi-regional
differences in ship plume detectability. Finally, studying different types of machine-
learning architectures or including more data features in the used datasets can provide
additional insights into understanding if the ship plume detectability limits can be
lowered further by means of potential improvement information extraction from image
patches. A possible candidate is Convolutional Neural Networks (CNN), as it was
done in [38] for the detection of visually distinguishable ship NO2 plumes. However,
[63, 64] provide indications that CNN architecture might not be a suitable option for
the detection of plumes that are poorly distinguishable on the TROPOMI data.
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3.5 Conclusions

In this study, we investigated the sensitivity limits of the TROPOMI data-based de-
tection system with respect to the detection of NO2 plumes from individual seagoing
ships. To the best of our knowledge, no previous research has examined this aspect,
making our findings novel and significant in understanding the capabilities of the
TROPOMI instrument. Our results are obtained through the analysis of four regions
of interest (the Mediterranean Sea, Biscay Bay, Arabian Sea, and Bengal Bay) and
can be summarized as follows:

1. We quantified the sensitivity limits of a detection system for NO2 plumes from
seagoing ships using TROPOMI data in terms of the length and speed of a ship
beyond which the NO2 plumes from individual ships cannot be distinguished
anymore.

2. We also numerically showed that, as expected, the ships with higher emissions
(through either greater length or speed) are more easily detected. We demon-
strated such an effect by analyzing model performances with the removal from
the dataset ships with the lowest emission proxy. This is agnostic to the model
or studied region.

3. Then, we demonstrated that the detection of the NO2 plumes from the ships
with lower emission proxy can be improved, once more training data are added.

4. Finally, we obtained different levels of results between the studied regions. We
showed that for different regions a machine learning model not only yields dif-
ferent levels of results but also uses different features as main indicators of the
presence of a plume in an image patch. A discrepancy is noticeable when com-
paring the Arabian Sea and Bengal Bay to the Mediterranean Sea and Biscay
Bay.

To sum up, our findings suggest that, while efficient monitoring of seagoing ships
from the TROPOMI satellite is possible, the quality of ship plume detectability de-
pends on many factors. We believe that our results provide guidelines for establishing
the research scope for future studies on NO2 ship plume detection as well as contribute
to the successful application of satellite-based instruments for the monitoring of NO2

emission from seagoing ships.
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Chapter 4

Automated assignation of a ship
Region of Interest for estimation
of NO2 emission from individual
ships using satellite data

Extended from: Kurchaba, S., van Vliet, J., Meulman, J.J., Verbeek, F.J., Veenman,
C.J., 2021. Improving evaluation of NO2 emission from ships using spatial associa-
tion on TROPOMI satellite data, in: 29th International Conference on Advances in
Geographic Information Systems, pp. 454–457. doi:10.1145/3474717.3484213.
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Abstract As of 2021, more demanding NOx emission requirements entered into
force for newly built ships operating on the North and Baltic Sea. Even though
various methods are used to assess the emission from ships in ports and off the coastal
areas, monitoring over the open sea has been infeasible until now. In this Chapter,
we present an automated method for the evaluation of NO2 emissions produced by
individual seagoing ships. We use the spatial association statistic local Moran’s I in
order to improve the distinguishability between the plume and the background. Using
the Automatic Identification Signal (AIS) data of ship locations as well as incorporated
uncertainties in wind speed and wind direction, we present a method for automatic
association of the detected plumes with individual ships. We evaluate the quality of
ship-plume matching by calculating the Pearson correlation coefficient between the
values of a model-based emission proxy and the estimated NO2 concentrations. For
five of the six analyzed areas, our method yields improved results against the baseline
approach used in a previous study.
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4.1 Introduction

Once the sensitivity limits of the detection system using TROPOMI data are esti-
mated, we focus our attention on using the TROPOMI data for the quantification of
NO2 emission from individual ships. In [41], the authors introduced the first attempt to
quantify isolated ship plumes that can be identified by visual inspection of daily data.
However, the NO2 traces from the majority of the ships in the area are not sufficiently
stronger than the NO2 background concentration. As a result, only plumes of larger
ships were assessed in that study. In addition, the authors acknowledged that their
approach requires multiple manual steps. In order to be able to apply the TROPOMI
instrument data for the global and continuous monitoring of the NO2 emissions from
seagoing ships, an automated method for ships’ NO2 estimation is needed.

In this Chapter, we present a heuristic for automated evaluation of NO2 concentra-
tions resulting from NOx emissions produced by individual seagoing ships. We start
with the enhancement of the contrast between NO2 plumes and the background. We
then introduce a method for automated assignation of the Region of Interest (RoI)
to a studied ship. Finally, we apply a thresholding method for the separation of ship
plumes from the background and estimation of ships’ NO2. The presented approach
allows the quantification of the ships’ emission, even if the produced plume cannot
be distinguished visually so that the performance of more and smaller ships can be
assessed in a single satellite overpass. The obtained results are benchmarked against
the method proposed in [41].

With this study, we address the following research questions:

• RQ4: How to assign a TROPOMI signal associated with a certain plume to a
potential emitting ship?

• RQ5: To what extent can the NO2 plumes be segmented in the TROPOMI data
using a simple thresholding method?

The rest of the Chapter is organized as follows: In Section 4.2, we present our
methodology. We start with the introduction of the applied image enhancement
method in Section 4.2.1. We then present a developed approach to ship-plume assign-
ment in Section 4.2.2. We further explain how we estimate and evaluate the quality
of estimation of ship’s NO2 in Section 4.2.3. The results of the study are presented in
Section 4.3, and conclusions can be found in Section 4.4.
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4.2 Method

In this Section, we describe all steps of the proposed approach for automated evalu-
ation of NO2 emission from individual ships. We start with the introduction of the
technique used for the enhancement of the TROPOMI data. We then present a pro-
posed approach for the delineation of the region of interest of the studied ship. Finally,
we explain how we evaluate the obtained results of ship NO2 estimation.

4.2.1 Image enhancement

Figure 4.1: Reduction of the background noise as a result of application of the local
Moran’s I. Orange circles indicate ship plumes that can be distinguished on the plot.
NO2 is in [molec/cm2].

The first step is an enhancement of the TROPOMI data. To increase the contrast
between the ships’ plumes and the background, we used spatial association statistic
local Moran’s I [5] — one of the most often used methods for hot spot detection
[78]. The local Moran’s I spatial auto-correlation statistic allows the enhancement
of the intensity of high-value pixels located in a cluster while suppressing isolated
concentration peaks randomly occurring in the background. We characterize a ship
plume as a cluster of pixels adjacent to each other with a concentration higher than the
background average. This way, calculating the spatial auto-correlation on TROPOMI
image, we combine image denoising with the enhancement of the relevant part of
the image. Figure 4.1 illustrates an example where the applied image enhancement
procedure notably reduced the background noise and increased the contrast between
the plume and the background, improving the detectability of the ships’ traces.
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Formally, the local Moran’s I spatial auto-correlation statistic is defined as follows:

Ii =
(xi − µ)

σ2

N∑
j=1,j ̸=i

wij(xj − µ), (4.1)

where i is the pixel of an image, xi is the value of the respective pixel, N is the number
of analyzed pixels of a ship plume image (in our case 18 × 18), µ is a mean value of
all N pixels, σ2 their variance, and wij is the value of an element in a binary spatial
contiguity weight matrix W at location j with regards to the analyzed pixel i. The
value of an element of the binary spatial contiguity matrix wij is 1 for pixels that
are considered to be the neighbors of the analyzed pixel i, and 0 otherwise. For the
study, the queen spatial contiguity [43], which is the 3× 3 8-connected neighborhood
of the analyzed (central) pixel was applied. The value Ii becomes the value of the
corresponding pixel of the resulting enhanced image.

4.2.2 Ship-plume assignment

Determining the spatial correspondence between the TROPOMI signal and the loca-
tion of the ships is a challenging task. The emitted plume is displaced by the prevailing
winds so that observed NO2 concentrations no longer coincide with the tracks of the
ships. At the same time, linear transformation of the ship trajectory that is solely
based on available wind data (e.g. [41]) might be inaccurate due to the wind-related
uncertainties (see Figure 4.2b). Such a method is further used for the benchmarking of
our approach. We refer to it as ship track shift. To overcome the problem of inaccurate
ship-plume matching, we propose to assign to each ship a Region of Interest (RoI),
the so-called ship sector (Figure 4.2d). The RoI of a ship defines the region within
which the produced NO2 is expected based on ship speed, wind speed, direction, and
uncertainties.

To define a ship sector, we start with estimating the trajectory of the ship – a ship
track – using AIS ship data, from some time before, until the moment of the satellite
overpass (c.f. Figure 4.2a). For each of the analyzed regions, we experimentally
determined the optimal time prior to the satellite overpass during which the AIS
data was used for plume trace localizing. For the Mediterranean Sea area, this time
was equal to 1 hour, and for the Arabian Sea to 40 minutes. The difference in the
considered time can be explained by the fact that the time needed for NOx → NO2

transformation is mostly determined by the atmospheric conditions [94], which in the
area of the Arabian and Mediterranean Sea are different.
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We now move to the introduction of the second step of ship sector definition.
Following [41], we assume that the plume emitted by a ship has moved in accordance
with wind direction by a distance d = v × |∆t|, where v is the local wind speed for a
coinciding time, and |∆t| is a time difference between the time of the satellite overpass
and the time of a given AIS ship position. In this way, we obtain a trajectory that we
call a wind-shifted ship track. An illustration of a wind-shifted ship track is depicted
in Figure 4.2b. Both wind speed and wind direction are assumed to be constant for
the whole time during which we study the plume.

The assumption of constant speed and direction of the wind may create uncertain-
ties in the expected position of the plume of the ship. Therefore, in the third step,
we calculate the extreme wind-shifted tracks, by adding the margin of wind-related
uncertainty to each side of the wind-shifted ship track – c.f. Figure 4.2c. The applied
values of wind speed and wind direction uncertainties are sub-optimal and are equal
to 2 m/s and 20◦ respectively. The extreme wind-shifted tracks define the borders of
the RoI of the analyzed ship that we refer to as a ship sector.

The radius of the ship sector is determined as a maximum distance from the po-
sition of the ship at the moment of the satellite overpass to the position of the ship
at the earliest moment of the observation (1 hour for Mediterranean Sea, 40 min-
utes for Arabian Sea) in accordance to ship track, wind-shifted ship track, or extreme
wind-shifted tracks (the furthest point is taken into consideration). The ship sector
delineates the area within which we study the plume produced by the analyzed ship.
In Figure 4.2d an example of a resulting RoI that we call a ship sector is presented.

4.2.3 NO2 estimation and model performance evaluation

Within each ship sector, we separated pixels that were determined as a plume by
thresholding the enhanced image. The applied threshold is equal to the 25th percentile
of the values of the pixels lying inside the sector. The average value of NO2 pixels
determined as a plume held as the evaluation value of NO2 for the corresponding ship
and was used for the comparison with the emission proxy defined in Section 2.4.

The quality of ship-plume assignment was reported in terms of the Pearson correla-
tion between the assigned value of NO2 and the emission proxy Es (see Chapter 2) for
all ships in an analyzed area. Note that the used simple model of emission proxy does
not reflect all factors that are needed for a precise estimation of ship emission poten-
tial; as a result, it is not expected to lead to a perfect correlation with experimentally
determined values of NO2.
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(a)

Ship track

Ship track

(b)

Wind-shifted ship track

Ship track
Wind-shifted track

(c)

Extreme wind-shifted tracks

Wind-shifted track
Extreme tracks

(d)

Ship sector

Extreme tracks

Figure 4.2: Ship sector definition pipeline. Background – the TROPOMI NO2 signal
around the analyzed ship. Two ship plumes can be distinguished at the central part
of the image, and one, less intense – in the bottom right of the image. Only one is of
interest here. (a) Ship track – estimated, based on AIS data records. (b) Wind-shifted
ship track – a ship track shifted in accordance with the speed and direction of the
wind. It indicates the expected position of the ship plume. A black arrow indicates
the wind direction. (c) Extreme wind-shifted ship tracks – calculated, based on wind
information with assumed uncertainties; define the borders of the ship sector. (d) A
resulting ship sector – an ROI of an analyzed ship.
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Figure 4.3: The NO2 tropospheric vertical column density. Region: Mediterranean
Sea, restricted by the Northern coasts of Libya and Egypt from the south and the South
coast of Crete from the north. Date: April 2nd, 2019. Magenta lines indicate ships’
tracks based on information from AIS data. The native local size of the TROPOMI
pixels is presented in the Figure.
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Date Region Long min Long max Lat min Lat max

02-04-19 Mediterranean 21.5 29.5 32 34.5
07-08-19 Mediterranean 19.5 27 33 35
27-09-19 Mediterranean 20 24.74 32.5 35
11-04-20 Arabian 64 69 14 18
01-05-20 Arabian 64 71 14 18
03-05-20 Arabian 64 70 12 18

Table 4.1: The boundaries and dates of observation of six analyzed scenes in the
Mediterranean and the Arabian Sea.

4.2.4 Data selection

For the experiments, we chose six days with suitable weather conditions (wind < 6

m/s, low level of background pollution) in the Arabian and Mediterranean Sea (see
Table 4.2). An example of an analyzed area can be found in Figure 4.3. The boundaries
of the analyzed areas are provided in Table 4.1. The differences in the coordinates
of the boundary boxes can be explained by shifts in the TROPOMI orbit coverages.
To ensure the high quality of the satellite signal, the following filtering criteria were
applied to TROPOMI data: qa_value > 0.5, cloud fraction < 0.5. For a detailed
description of the variables see [93]. Some pre-processing steps were applied to the AIS
ship data. First, only ships with an overall length exceeding 150 m and speed above
12 kt1 were taken into account. As was shown in the previous Chapter, the emission
levels of smaller or slower ships are expected to be below the detection level of the
satellite. Second, ships of which the location was known for less than 25 minutes prior
to the TROPOMI overpass were excluded from the study. Finally, if the plume of a
ship undergoes intersection with any other plume of sufficient concentration, the ship
was excluded from the study.

4.3 Results

The results of the experiments are summarized in Table 4.2. We compared the results
obtained with our approach with the baseline method of ship track shift [41]. For
five out of the six analyzed regions, the method proposed in this study led to an
improvement in the quality of the linear correlation between the estimated NO2 values
and the emission proxy of the corresponding ship. The weighted mean value of the

1kt - knot, a unit of speed equal to a nautical mile per hour. 12 kt ≈ 6.2 m/s.
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Figure 4.4: Aggregated correlation between the assigned NO2 values and the corre-
sponding values of the emission proxy for the method proposed in this study (top) and
the baseline approach (bottom). Markers indicate the types of ships.
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Date Region Ship sector Ship track shift Detected Undetected

02-04-19 Med.Sea 0.81 0.24 8 1
07-08-19 Med.Sea 0.61 0.60 17 1
27-09-19 Med.Sea 0.78 0.77 9 1
11-04-20 Arabian 0.83 0.67 15 1
01-05-20 Arabian 0.65 0.71 20 0
03-05-20 Arabian 0.80 0.63 16 2

AVG/SUM: 0.73 0.63 85 6
STD: 0.09 0.13

Table 4.2: The Pearson correlation coefficients of estimated NO2 with the correspond-
ing value of the ship’s emission proxy for each of the analyzed scenes. The ship sector
column presents the results achieved with the method introduced in this study. The
ship track shift column shows the results obtained with the baseline method [41].

Pearson coefficient (the weights are the number of ships analyzed within each area)
increased from 0.63 to 0.73, whereas the weighted standard deviation decreased from
0.13 to 0.09. Finally, we calculated an aggregated correlation of NO2 estimations for
all six days analyzed with the associated emission proxies. The results are presented
in Figure 4.4. This experiment allowed us to assess the generalization properties of
the proposed approach. We can see that the level of achieved correlation decreased
for both methods. This was expected due to the presence of smaller ships, whose
detectability is highly dependent on the instrument’s sensitivity at a given moment of
time. Nevertheless, the approach proposed in our study still assures higher quality of
the results.

4.4 Conclusions

In this Chapter, we introduced the first approach for the automated evaluation of
NOx emissions of individual seagoing ships with TROPOMI data. We applied a spa-
tial association statistic, local Moran’s I, to enhance the separability between the
ships’ plumes and the background of comparable concentration. We then proposed
our method for automated assignation of the RoI to the analyzed ship. We call the
proposed RoI a ship sector. It is defined based on the uncertainties in the speed and
direction of the wind data. We assume that the emission plume produced by a studied
ship will be located within the assigned ship sector. With this, we addressed the RQ4
of the thesis: How to assign a TROPOMI signal associated with a certain plume to a
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potential emitting ship? We then performed a separation of plume-related pixels from
the background and estimated the amount of NO2 associated with a given ship. Since
this is the first attempt of NO2 estimation from individual ships using satellite data,
the plume of the ship within the ship sector was segmented using the local threshold
(RQ5). To validate the proposed approach, we used a theoretically derived ship emis-
sion proxy. We compared the results obtained using our method with the approach
proposed in a previous study. The comparison showed that our method leads to the
increment of the linear correlation between estimated values of NO2 and model-based
emission proxy for five of the six analyzed areas, as well as for an aggregated experi-
ment, where the Pearson correlation was calculated for all six analyzed areas at once.
We, however, see that the achieved levels of Pearson correlations cannot be character-
ized as very high. Partially, this can be explained by the fact that the emission proxy
used for the validation of the approach does not account for all factors influencing the
emission level of the ship. Nevertheless, this also suggests the need for a more complex
method of ship plume segmentation.

To conclude, the proposed approach assures more precise quantification of local
NO2 concentrations caused by NOx emissions of individual ships than the previous
(and the only existing study). Moreover, the method introduced in this study does
not require any manual steps which is a significant improvement over the current state-
of-the-art. As a future research direction, we would like to propose the application of
more complex techniques (e.g. machine learning) for the task of ship plume segmen-
tation within the presented here ship’s RoI – ship sector. Such a methodology will be
discussed in the next chapter.
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Ship plume segmentation with
supervised machine learning

Based on: Kurchaba, S., van Vliet, J., Verbeek, F.J., Meulman, J.J., Veenman, C.J.,
2022. Supervised segmentation of NO2 plumes from individual ships using TROPOMI
satellite data. Remote Sensing 14. doi:10.3390/rs14225809.
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Abstract To deploy a remote sensing-based global emission monitoring system,
an automated procedure for the estimation of NO2 emissions from individual ships
is needed. The extremely low signal-to-noise ratio of the available data as well as
the absence of ground truth makes the task very challenging. Here, we present a
methodology for the automated segmentation of NO2 plumes produced by seagoing
ships using supervised machine learning on TROPOMI/S5P data. We show that the
proposed approach leads to a more than a 20% increase in the average precision score
in comparison to the methods used in previous studies and results in a high correlation
of 0.834 with the theoretically derived ship emission proxy. This work is a crucial step
toward the development of an automated procedure for global ship emission monitoring
using remote sensing data.
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5.1 Introduction

In the previous Chapter, we have introduced the method for efficient assignation of
a RoI to a studied ship. However, the segmentation of the ship plume within the
assigned RoI was performed on the basis of a local threshold. This simple method
provides the first baseline for the task but has a list of disadvantages. Namely, the
threshold was established on the basis of the only variable (NO2 concentration). It
also assumes the linear separability between the signal coming from the plume and the
background. All this results in insufficient flexibility of the method and consequent
low quality of ship-plume segmentation.

In this Chapter, focus our attention on the development of a method for efficient
segmentation of ship plumes. Among the main challenges of this task are low temporal
sample rate and spatial resolution resulting in an extremely low signal-to-noise ratio.
In addition, there is a high risk of interference of the ship plume with other NOx sources
and a high frequency of occurrence of plume-like objects that cannot be associated
with any ship. Finally, the ground truth for this task is not available. To increase
the number of potentially distinguishable plumes, we enhance the contrast between
the ship plumes and the background. In order to overcome the above-mentioned
challenges, we present a methodology that allows addressing the problem of automated
ship plume segmentation with supervised machine learning. The developed method of
feature engineering allows for the application of multivariate machine learning models.
This, in turn, allows us to account for multiple factors that help differentiate a plume
produced by a ship of interest from all the other plumes in the ship’s neighborhood,
circumventing the listed limitations.

With the aim to increase the number of potentially distinguishable plumes, we
enhance the contrast between the ship plumes and the background. The used en-
hancement technique allows for a differentiation between the ship plumes and random
co-occurring concentration peaks in the ships’ neighborhood. The application of the
image enhancement technique also allows for an improvement of the low signal-to-
noise ratio. Then, to focus the area of analysis on the region where the ship plume
is expected to be located, we use the presented in Chapter 4 concept of ship’s RoI
– the ship sector. Subsequently, we normalize the ship sector and divide it into sub-
regions. This way, we distinguish the plume of interest from all the other NO2 plumes
or land-origin outflows that potentially might be located within the ship sector. Based
on the ship sector division, we create a set of spatial features that characterize the
location of the NO2 plume within the ship sector. Due to the absence of other sources
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of ground truth, each pixel of the ship sectors we manually label as a "plume" or "not
a plume". Trained on the manually labeled data, a machine learning model will enable
us to automatically segment plumes in unseen images. We study five robust machine
learning models of increasing complexity and compare their performance with the
threshold-based methods used in previous studies. To validate the developed pipeline,
we compare the estimated based on the result of segmentation amount of NO2 to the
theoretically derived ship emission proxy [41].

In this Chapter, we address the following research questions:

• RQ6: Can we improve the segmentation quality of NO2 plumes from individual
ships using supervised machine learning?

• RQ7: Does the machine learning-based segmentation allow for the detection of
NO2 plumes that cannot be recognized visually?

The rest of this Chapter is organized as follows: In Section 5.2.1, we start with an
explanation of data selection and data preparation steps. We then provide a descrip-
tion of the developed methodology in Section 5.2.2. In Section 5.3, the reader can
find the results of the study, which are followed by the conclusions in Section 5.4 and
discussion in Section 5.5.

5.2 Materials and methods

5.2.1 Data preparation

In this Section, we explain the steps of data selection and preparation that were
performed in the process of the preparation of the dataset used in this study. First,
to generate images of regular size, we regridded1 the original TROPOMI data into a
regular-size grid of size of 0.045◦ × 0.045◦, which for the pixel in the middle of the
analyzed area translates to approximately 4.2 × 5 km2. To assure the good quality
of the used TROPOMI measurements, we applied the following filtering criteria to
TROPOMI data: qa_value > 0.5, cloud fraction < 0.5. In Chapter 3, we showed
that such filtering criteria assure a good trade-off between data quality and data
availability.

In this study, we analyzed 68 days of TROPOMI measurements from the period
between 1 April 2019 and 31 December 2019. The analyzed days were mostly sunny –
the distribution of the variable cloud fraction for the scope of this study is provided in

1For the data regridding HARP v.1.13 Python package was used.
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Figure 5.1: Distribution of the variable cloud fraction for the dataset used in this
study.

Figure 5.1. The studied data product: tropospheric vertical column of nitrogen dioxide
[31]. Data version: 1.3.0. For the analysis, we chose an area in the Mediterranean
Sea, similar to the one studied in Chapter 4 (for an area outline c.f Figure 4.3). The
area is restricted by the Northern coasts of Libya and Egypt from the south and South
coast of Crete from the north2. Apart from the fact that it was already studied in the
previous studies, this region was selected because of the presence of a busy shipping
lane connecting Europe and Asia, the high frequency of occurrence of sunny days, and
relatively low levels of NO2 background concentrations, which are favorable conditions
for the analysis.

With the aim of reducing the number of images where the ship plume cannot be
visually detected, in our study, we only focus on ships with a speed that exceeds 14 kt.
If two ships move in immediate proximity to each other, only the ship with the highest
speed was taken into consideration. From the analysis were also excluded ships that
are not involved in global trade, such as Yachts, Leisure Vessels, or Research Vessels.
In Figure 5.2, the information about the dates used for this study as well as the number
of ships per day studied is depicted. The differences in the number of ships per studied
day can be caused by bad weather conditions on the measurement day.

2lon: [19.5◦; 29.5◦], lat: [31.5◦; 34.2◦].
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Figure 5.2: A list of days used for the dataset creation and the number of ships per
day studied.

68



Chapter 5. Ship plume segmentation with supervised machine learning

(a)
Ship track

Ship track

(b)
Wind-shifted ship track

Ship track
Wind-shifted track

Figure 5.3: Both panels: ship plume image with indicated ship tracks. Panel a):
Ship track – estimated, based on AIS data records. The ship track is shown for the
time period starting from 2 hours before the satellite overpass until the moment of
the satellite overpass. Panel b): Wind-shifted ship track – a ship track shifted in
accordance with the speed and direction of the wind. The wind-shifted ship track
indicates the expected position of the ship plume. A black arrow indicates the wind
direction. For both presented images, the size of the pixel is equal to 4.2 × 5 km2

5.2.2 Method

In this Subsection, we present the developed methodology. Taking advantage of the
characteristics of the analyzed ship as well as wind conditions in the studied region,
our approach allows the segmentation of NO2 plume produced by the particular ship
of interest distinguishing it from all the other concentration peaks in the surrounding
area. The results produced by the proposed approach are easily interpretable and thus
can be used as a reliable source of information by ship inspectors.

The method is built upon the concepts introduced in Chapter 4. Therefore, with
the aim of not repeating ourselves, for some definitions, the reader will be referred
to the above-mentioned chapter. The method presented in this Chapter consists of
the following steps: definition and enhancement of a ship plume image, definition of
a ship sector that allows the further restriction of the analyzed area, normalization of
the defined ship sector, and split of the normalized sector into sub-regions that, finally,
give the possibility to retrieve the set of necessary features. These steps are described
below.
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Ship plume image definition and enhancement

As a first step of our method, we define an area within the immediate proximity of
an analyzed ship. We call it a ship plume image. For this, we utilize the knowl-
edge of a ship’s position summarized in its ship track and wind-shifted ship track,
as defined in Chapter 4, Section 4.2.2. In Figure 5.3, an illustration of ship plume
image with indicated ship track and wind-shifted ship track is presented. Based
on wind-shifted ship track, the area of the ship plume image is determined as fol-
lows: the average coordinate of the studied wind-shifted ship track defines the center
(longitudecentr, latitudecentr) of the ship plume image, the borders of the image are
defined as longitudecentr, latitudecentr ± 0.4◦3. This particular size of a ship plume
image was determined in order to allow for optimal plume coverage for the most typi-
cal range of ship speeds (14kt - 20 kt)4. Given the size of the pixel grid, such an offset
results in an image of a maximum dimension of 18× 18 pixels.

To improve the quality of the TROPOMI data, in the data pre-processing step, on
each of the analyzed ship plume images we apply spatial auto-correlation statistic local
Moran’s I [5]. The formal introduction of the method the reader can find in Chapter
4. There we showed that the application of this technique substantially improves
separability between the ship plume and the background.

Ship sector

Parameter Value

Trace track duration 2 hours
Wind speed uncertainty 5 m/s

Wind direction uncertainty 40◦

Table 5.1: Parameters applied for ship sector definition.

A plume produced by a ship at a given moment will be displaced, over time, in
the direction of the wind in the analyzed area. Having the wind information available,
we restrict the analysis to the part of the ship plume image, where the probability
of finding the plume of the ship is the highest. We perform the area restriction by
defining the RoI of an analyzed ship – a ship sector, defined in accordance with the
description provided in Section 4.2.2, Chapter 4. By defining a ship sector, we assume

3For the area in Mediterranean Sea, in horizontal direction 0.4◦ ≈ 37.4 km, in vertical direction
0.4◦ ≈ 44.2 km.

4kt - knot, a unit of speed equal to a nautical mile per hour. 14 kt ≈ 26 km/h. 20 kt ≈ 37 km/h.
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that the plume produced by a studied ship will lie within the ship sector boundaries.
Only pixels lying within the ship sector are taken into consideration in further analysis.
Parameters related to the ship sector definition can be found in Table 5.1.

Feature engineering

In order to obtain a multivariate description of the ship sector pixels, we encode the
spatial information into a set of generic features. First, we perform a ship sector nor-
malization to make spatial information in the sector comparable between the different
sectors. We define a normalized sector by standardization of the orientation and the
scale of the original ship sector. In this way, the position of the plume within the ship
sector becomes invariant to the heading (direction) and speed of the ship, as well as
to the direction and speed of the wind.

We standardize the orientation of a ship sector by rotating to 320◦ (This particular
value of sector rotation angle was chosen for the convenience of visualization and
has no influence on further modeling) so that the angle of the polar coordinate of
the corresponding wind-shifted ship track is the same for all ships (see Figure 5.4).
Assuming S is a set of ship sectors in the dataset, formally, the rotation coordinates
of a ship sector are defined in the following way:

∀s ∈ S, ∀i ∈ s : lon_rots,i = rs,i ·cos(αs,i+Θs), lat_rots,i = rs,i ·sin(αs,i+Θs),

(5.1)
where lon_roti and lat_roti are the polar coordinates of the pixel i within the rotated
ship sector, rs,i is the radial distance of the pixel i from the origin of the ship sector
s (in our case, sector origin corresponds to the position of the ship at the moment of
satellite overpass), αs,i is a counterclockwise rotation angle of the pixel i from the axis
x (longitude) of the ship sector s, Θs = β − αs is a counterclockwise rotation angle
that will be applied for the orientation change of each pixel i of the ship sector s, αs

is a rotation angle of a ship sector s that corresponds to the counterclockwise rotation
angle of the pixel is,max with the radial distance from the origin rs,max = max(rs),
β = 320◦ is a new rotation angle of each ship sector s after the rotation.

We standardize the ship sector’s scale so that the horizontal and vertical coordi-
nates of the rotated ship sector are rescaled into the range [0, 1] by applying a min-max
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Figure 5.4: Sector normalization. We rotate the ship sectors so that all resulting
sectors have the same orientation equal to 320◦ independently of the original direction
of the ship’s heading. We then rescale the image so that the range of both coordinates
is between 0 and 1. The gray area in each figure indicates a ship sector. The ship
sector origin indicator shows the position of the ship at the moment of the satellite
overpass. Two examples of original and rotated sectors are shown: one in the top row,
and one in the bottom row.

scaler on the horizontal and vertical coordinates of the pixel:

lon_norm =
lon_rot−min(lon_rot)

max(lon_rot)−min(lon_rot)
, (5.2)

lat_norm =
lat_rot−min(lat_rot)

max(lat_rot)−min(lat_rot)

The second step of the feature construction procedure is the division of the nor-
malized sector into a set of sub-regions that enable encoding spatial information of the
pixels within the normalized sector. First, we define levels of the normalized sector
by splitting it into six sub-regions on the basis of the radial distance of the pixel from
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Figure 5.5: Levels and sub-sectors. We perform a feature construction by dividing
the normalized sector into sub-regions: levels and sub-sectors. For the convenience of
visualization, data points from one day of analysis were used for the preparation of
the figure.

the origin of the sector. Then, we define sub-sectors by splitting the normalized sector
into four sub-regions on the basis of the pixel’s rotation angle. As a result, the position
of each pixel within the normalized sector image can be characterized in terms of two
values: a level and a sub-sector. An illustration of the normalized sector divided into
a set of levels and sub-sectors is presented in Figure 5.5.

5.2.3 Experiment design

Here, we describe the experimental setup used in this study: first, we describe the
dataset used for the training of the multivariate models. Then we explain the models
used for the benchmarking, provide a list of used multivariate classifiers, and describe
the methods used for hyperparameters optimization.

Dataset composition

Following the steps provided in the previous subsections, we created 754 images and
cropped them to an area of the ship sector. The ship sector images were enhanced
by Moran’s I operator and manually labeled so that they can be used for training
machine-learning models. Not all ship sector images contained a visually identifi-
able NO2 plume. Moreover, due to the dispersion and chemical transformation of
a ship plume, some parts of the plume will always be under the detection limit of
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Figure 5.6: Class-wise distribution of the two main features of the dataset: NO2 and
Moran’s I.

No plume Plume

Number of pixels 68646 6980
Number of images 208 535

Table 5.2: A number of measurement points per class in the dataset.

the TROPOMI instrument and therefore, indistinguishable. Thus, labeling errors are
possible. To minimize the chance of mistakes the labeler was supported with several
representations of the area of interest: the original not enhanced NO2 tropospheric
vertical columns for the area of a ship plume image, the enhanced with the Moran’s I

area of a ship plume image, and NO2 tropospheric vertical columns for the full studied
area in Mediterranean Sea with the positions of the neighboring ships. The descriptive
statistics of the resulting dataset are provided in Figure 5.6. In Table 5.2, the infor-
mation on the data distribution within the two classes of the dataset is shown. All
mentioned numbers correspond to the full dataset before the training/test set division.

Multivariate models

To exploit the potential of multivariate modeling, we used several classifiers of in-
creasing complexity: Logistic Regression, Support Vector Machines with linear kernel
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[34], Support Vector Machines with radial basis kernel [21], Random Forest5[14], and
Extreme Gradient Boosting (XGBoost)6[22]. The above-mentioned models are multi-
variate and thus are able to benefit from the set of prepared features. Namely, the set
of spatial features developed with the method is described in Subsection 5.2.2, along
with ship and wind-related features. All models selected for the experiment are highly
robust. Therefore, the potential mistakes in human labeling, if present in reasonable
amounts, should still allow for models’ proper training.

The first feature of the model is enhanced by Moran’s I values of the pixels that
were translated into a one-dimensional feature vector. As can be inferred from the
definition of Moran’s I statistic (see Equation 4.1), the application of Moran’s I may
result in the creation of additional high-value pixels resulting from the enhancement
of clusters of low-value pixels. To mitigate the negative impact of this side effect,
apart from the Moran’s I, the feature set was composed of the corresponding value
of NO2. This way, a supervised learning model will be able to differentiate between
high and low-value enhanced NO2 clusters. Other features used by the model are
Wind Speed, Wind Direction7, Ship Speed, and Ship Length. Finally, the position of
an analyzed pixel within the normalized sector in terms of levels and sub-sectors was
translated into the feature vectors using one-hot encoding. The resulting feature set
was composed of 17 features in total. For the full feature list, see Figure 5.10. The
used binary label indicates whether the given pixel is a part of the ship plume or not.

For the model fine-tuning and model performance evaluation, a 5-fold nested cross-
validation [96, 18] with randomized search [10] was used. The average precision score
was used as a target function for optimization.

Benchmarks

To quantify the performance improvement gained by the usage of multivariate su-
pervised models, we performed ship plume segmentation by applying a thresholding
method on a single selected feature. First, we applied a thresholding method on the
tropospheric vertical column of NO2 TROPOMI product regridded in accordance to
the description in Section 5.2.1. No image enhancement technique was applied. This
simplest way of plume-background separation was used, among the others, in [85] for
the quantification of NO2 emission from the international shipping sector. In [41], the
separation of pixels related to NO2 plumes from individual ships was also performed

5All above-mentioned models were implemented in Scikit-learn v. 0.24.2 package [80].
6Implemented in xgboost Python package v. 1.3.3.
7Wind Direction feature vector was encoded into its sine and cosine components, in order to enable

a continuous feature space for various wind directions.
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(a)
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Figure 5.7: Input data example for univariate threshold-based benchmarks. a) Input
data for a benchmark method NO2 threshold. b) Input data for a benchmark method
Moran’s I threshold. At the top of the ship sector the reader can find an example
when a cluster of low value NO2 was mistakenly enhanced by Moran’s I. c) Input
data for a benchmark method Moran’s I on high NO2. For all presented images, the
size of the pixel is equal to 4.2 × 5 km2.
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based on solely TROPOMI NO2 data. In this Chapter, we will refer to this bench-
marking method NO2 threshold. Visualization of the input data for this thresholding
technique can be found in Figure 5.7(a).

As a second benchmarking method, following the suggestion made in Chapter 4,
we performed a ship plume segmentation based on images enhanced with Moran’s I

statistic. The TROPOMI image enhancement allows effective separation of a greater
amount of NO2 plumes. However, as it can be inferred from the definition of Moran’s I
statistic (c.f. 4.1), the application of Moran’s I statistic may result in the enhancement
of low-value clusters that are not part of a plume. Visualization of the input data for
this benchmarking technique is presented in Figure 5.7(b). In the rest of the article,
we call this method Moran’s I threshold.

To overcome the problem of enhancement of low-value clusters by Moran’s I, we
propose to assign the value 0 to all pixels of the image with intensity lower than the
median of the given ship sector picture, and afterward apply the Moran’s I enhance-
ment. This is the third benchmarking method used in this study. We call it Moran’s I
on high NO2. Visualization of the results of the application of Moran’s I only on high
NO2 values can be found in Figure 5.7(c). As presented in Figure 5.7, for all three
benchmarking methods only pixels that lie within the ship sector area were taken into
account for segmentation.

NO2 validation metrics

So far, we have been measuring models’ performance based on manually created labels.
To evaluate the uncertainty hidden in human labeling, a reference value is required.
Due to the fact that there are no on-site emission measurements available at the scale
of this analysis, it is therefore necessary to use a ship emission proxy to represent the
reference value. Similarly, as in previous chapters, we use a theoretically derived NOx

emission proxy Es as defined in 2.4.

The ship emission proxy is calculated for each ship of the test sets. We compare
the obtained values of emission proxy with the estimated on the basis of segmentation
results amount of produced NO2. We estimate the amount of produced NO2 by
summing up NO2 concentration within the pixels classified as a "plume" by each of
the studied models. For the comparison between the emission proxy and the estimated
amount of NO2, Pearson linear correlation was used.
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Model AP ROC-AUC

Linear SVM 0.609±0.063 0.935±0.009
Logistic 0.610±0.064 0.936±0.010

RBF SVM 0.742±0.031 0.951±0.008
Random Forest 0.743±0.030 0.952±0.008

XGBoost 0.745±0.030 0.953±0.007
NO2 threshold 0.375±0.062 0.823±0.017

Moran’s I threshold 0.493±0.063 0.912±0.011
Moran’s I on high NO2 0.607±0.056 0.922±0.010

Table 5.3: Results on the test set with 5-fold cross-validation. Bold font indicates
the best-obtained result. Under the dashed line: results obtained from univariate
threshold-based methods that, in this study, we considered as benchmarks.

5.3 Results

In this Section, we present the results of our study. We begin with the presentation
of the results of the plume segmentation model in Subsection 5.3.1. Appropriate
segmentation quality is necessary for a correct estimation of NO2 produced by ships. In
Subsection 5.3.2, we validate the concept presented in this Chapter. In the Subsection,
we compare the obtained on the basis of segmentation model results of ship NO2

estimation with the theoretical ship emission proxy.

5.3.1 Plume segmentation

In Table 5.3, we report the results of the pixel classification based on a 5-fold cross-
validation for all models and benchmarks studied. Figure 5.8 provides the correspond-
ing precision-recall curves, obtained by averaging the scores over all cross-validation
test sets. In Figure 5.10, we visualize the model coefficients for the linear models stud-
ied, as well as the impurity-based feature importance coefficients for the tree-based
models (Random Forest and XGBoost). The obtained results can be summarized as
follows:

(i) From Table 5.3, Figure 5.8, as well as Figure 5.9 we can conclude that nonlin-
ear classifiers clearly outperform both linear classifiers and threshold-based univariate
benchmarks. Both used measures: AP score and ROC-AUC resulted in a similar rank
of the studied classifiers. With XGBoost, Random Forest, or RBF SVM models, a very
high level of precision can be achieved. For the task of ship plume segmentation, our
biggest interest lies in the correct segmentation of the most representative pixels of the
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Figure 5.8: Precision-recall curve based on 5-fold cross-validation. Dashed lines indi-
cate the results obtained from univariate threshold-based methods that, in this study,
we considered as benchmarks.
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Figure 5.9: Receiver Operating Characteristics (ROC) curve based on 5-fold cross-
validation. Dashed lines indicate the results obtained from univariate threshold-based
methods that, in this study, we considered as benchmarks.
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Segmentation Method Pearson Correlation Number of detected plumes

XGBoost 0.834 371
Manual Labeling 0.781 334
Random Forest 0.775 436

NO2 0.774 334
Logistic 0.766 452

Linear SVM 0.765 452
RBF SVM 0.757 447

Moran’s I on high NO2 0.733 422
Moran’s I 0.681 448

Table 5.4: Results on the comparison between the estimated amount of NO2 and
theoretically derived NOx ship emission proxy. Sorted in accordance with the achieved
level of Pearson correlation. Italic font indicates baseline results.

ship plume. Thus, the obtained level of recall we consider as reasonably satisfactory.
From Table 5.3, we can also see that the level of the standard deviation of AP scores
for multivariate non-linear models is significantly lower than for linear or univariate
models. This suggests that the results obtained with the nonlinear classifiers are more
robust.

(ii) From Figure 5.10, we can see that Linear SVM, Logistic Regression, Random
Forest, and XGBoost multivariate models utilize the spatial information provided by
sub-sectors and levels. The complexity of the RBF SVM model does not allow the
direct calculation of the importance of the utilized features. Even though due to
the different nature of the models, the coefficients’ values depicted in Figure 5.10
cannot be compared directly, the relative differences between the models’ features go
along with our intuition on where the plume produced by an analyzed ship should
be located within a normalized sector. For instance, high negative coefficients for the
linear models that correspond to the features Level 4 and Level 5 suggest that even
if a high-value pixel does occur in those regions of the normalized sector, it was most
probably produced by a source other than the analyzed ship. On the other hand,
the high positive coefficients corresponding to a feature Sub-sector 2, tell us that if a
high-value pixel occurs in the middle of the sector, it is most probably a part of the
plume produced by the studied ship.
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Figure 5.11: Pearson correlations between estimated (based on classification results)
values of NO2 emitted by each ship on a given day and a theoretical ship emission
proxy. Black lines indicate a fitted linear trend. Grey lines show 30% deviations from
the fitted linear trend.
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Figure 5.12: XGBoost classifier allows for the segmentation of plumes that were not
recognized by the labeler. (a) TROPOMI NO2 tropospheric vertical column density.
Units: mol/m2. The variable was a part of the input to machine-learning models.
Ship plume is difficult to distinguish by the human eye. (b) TROPOMI NO2 image
enhanced by Moran’s I. The variable was a part of the input to machine-learning
models. After enhancement, the ship plume can be recognized better. At the top
of the ship sector can be found an example when a cluster of low value NO2 was
enhanced incorrectly. (c) Results of segmentation of XGBoost model. Black pixels
indicate pixels classified by the model as a "plume". (d) Human labels. The absence
of black pixels means that there were no pixels within the area labeled as a plume.
For all presented images, the size of the pixel is equal to 4.2 × 5 km2. Measurement
date: June 24th, 2019. Ship type: Tanker. Ship length: 230 m. Average speed within
the studied time scope: 14.27 kt.
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Figure 5.13: NO2-based thresholding allows for distinguishing plumes cumulated
within one pixel of the TROPOMI image. (a) TROPOMI NO2 tropospheric verti-
cal column density. Units: mol/m2. (b) TROPOMI NO2 image enhanced by Moran’s
I. At the top left of the ship sector can be found an example when a cluster of low
value NO2 was enhanced incorrectly. (c) Results of segmentation of NO2 threshold
method. A black pixel is a pixel that was identified by a model as a plume. (d) Human
labels. The absence of black pixels means that there were no pixels within the area
labeled as a plume. For all presented images, the size of the pixel is equal to 4.2 ×
5 km2. Measurement date: June 9th, 2019. Ship type: Tanker. Ship length: 285 m.
Average speed within the studied time scope: 15.4 kt.

84



Chapter 5. Ship plume segmentation with supervised machine learning

5.3.2 Validation with emission proxy

Figure 6.6 provides the correlation plots of NO2 values estimated for a given ship on
a given day based on the segmentation results of a given model and the theoretically
derived NOx ship emission proxy Es. Table 5.4 gives information on the achieved level
of Pearson correlation and the number of plumes that were segmented by a certain
model. Here, our baseline result is the level of Pearson correlation and the number
of plumes that were identified by Manual Labeling. We can see that the majority
of the models detected more plumes than the labeler. However, in all cases apart
from XGBoost, the higher number of segmented plumes caused the decrement in the
correlation score. The XGBoost model, on the other hand, was able to detect more
plumes than the manual labeler, while achieving the highest correlation score. Such
a result allows us to form a hypothesis that the developed machine-learning-based
methodology is able to segment plumes better than a human labeler. An example of
a case where the XGBoost classifier identifies a plume better than the human labeler
can be found in Figure 5.12. More experiments are, however, required in order to
make final conclusions.

The highest contrast between the scores of the performance metrics and the corre-
lation with the emission proxy can be noted for the NO2 threshold benchmark model.
This is due to the fact that the ship plumes composed out of one pixel in our dataset
were not labeled as plumes. The substantially high correlation with the emission proxy
suggests that the single-pixel plumes were, nevertheless, identified by the method cor-
rectly. An illustration of such an example is provided in Figure 5.13.

5.4 Conclusions

In this Chapter, we presented a new supervised-learning-based method for the auto-
matic evaluation of emission plumes produced by individual ships using TROPOMI
data. The experiments were performed using NO2 measurements from the TROPOMI
instrument. We started with the enhancement of the TROPOMI data in order to in-
crease the contrast between the ship plume and the background. The applied image
pre-processing technique enhances the intensity of high-value pixels located in a clus-
ter (plume) and suppresses random concentration peaks in the background. We then
automatically assigned a ship sector to each analyzed ship, which excludes from the
analysis parts of the image where the plume of the studied ship cannot be located
based on wind conditions and speed/direction of the ship. As a next step, we pre-
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sented a feature engineering method consisting of the normalization of the ship sector
and its division into smaller sub-regions. Each sub-region has a different probability
of containing a plume produced by the ship of interest. This way, we differentiate the
plume produced by the ship of interest from all the other plumes potentially located
within the ship sector. The set of newly created spatial ship sector -based features
allows us to perform ship plume segmentation using multivariate machine-learning
models. The application of the multivariate models gives the possibility to support
the ship plume segmentation process with a set of additional one-dimensional features
such as ship characteristics and speed.

We integrated several data sources into a multivariate dataset. We manually la-
beled the data, so that the problem of individual ship-plume segmentation can be
addressed with supervised learning. We trained a set of robust linear and nonlinear
multivariate classifiers and compared their performance with the segmentation results
of thresholding-based univariate benchmarks. All studied non-linear classifiers showed
superior results in comparison to both linear models and univariate benchmarks. With
the XGBoost model, we were able to achieve more than a 20% increase in the segmen-
tation average precision in comparison to the best benchmark univariate model. This
allows us to answer positively the RQ6 of this thesis.

We validated the proposed methodology using an independent measure, i.e. a
theoretically derived NOx ship emission proxy that we use as a reference value. For the
comparison, we estimated the amount of NO2 produced by each of the analyzed ships
and calculated the Pearson correlation of the obtained results with the ship emission
proxy. We compared the obtained correlations and the number of plumes segmented
by each of the studied models with the results obtained from manual segmentation.
We showed that with the XGBoost model, we are able to segment more plumes while
achieving a 6.8% higher correlation with the emission proxy than when the plumes
were segmented manually. That might suggest that the proposed method is able to
find plumes that are hardly or not detectable by the human eye (RQ7).

5.5 Discussion

The presented approach opens new perspectives for the application of remote sensing
in the domain of ship emission monitoring. However, there are several points on
the generalization of results, the methodology, and the TROPOMI detection limit we
would like to address here.

Firstly, we would like to discuss the possibility of the application of the proposed
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Figure 5.14: Distribution of the dataset features for the images, where there were
no visible ship plumes distinguished, and for the images, where there was a visually
distinguishable ship plume.

Variable Name No plume image Image with a plume

Wind speed [m/s] 5.47± 2.31 5.27±2.00
Ship speed [kt] 16.83± 2.01 17.41 ± 2.04
Ship length [m] 279.92±86.64 303.99 ± 82.79

Table 5.5: Average and standard deviation for the dataset features for the images,
where there were no visible ship plumes distinguished, and for the images, where there
was a visually distinguishable ship plume.
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methodology to other regions. In this study, we presented a general approach that
allows for the application of machine-learning models for more efficient, automated
segmentation of plumes from individual ships using TROPOMI data. All steps of
feature preparation can be performed on the data from any region of the globe. Nev-
ertheless, the machine-learning models will have to be retrained on the region-specific
datasets.

Secondly, not all regions will be equally suitable for the performance of ship emis-
sion monitoring with remote sensing. In particular, at the moment there is no scien-
tific evidence that under the thick layer of land-based emission outflow, it will still be
possible to differentiate plumes produced by ships. Therefore, areas that lie in close
proximity to big cities, ports, or industrial objects are currently challenging to analyze.

The next point is the validation approaches used in this study. For the training of
the machine-learning model, we used human labels. Human labeling is the basis of all
machine-learning methods and this study pioneers ship plume segmentation with more
efficient supervised learning based on human labeling. However, the dispersion and
chemical transformation of a ship plume, as well as its non-rigid structure mean that
there are always some parts of this plume that are at or beyond the visible detection
limit of the combination of the TROPOMI instrument and the retrieval algorithm.
This can cause errors in labeling as is demonstrated in Figure 5.12. Such mistakes if
present in reasonable amounts should not affect the performance of the model, but,
if the number of labeling errors is too high, the machine-learning model will not be
able to learn properly, and thus, the resulting performance will be very poor. The fact
that non-linear models were able to easily outperform thresholding-based benchmarks
suggests that the models were able to use the provided labels for training and thus,
the labeling error rate is low. Nevertheless, an independent measure of the method
evaluation is needed. Since the interest of our study centers around seagoing ships, the
in-situ measurements cannot be considered as a potential way of method validation.
The option of on-board measurement of fuel samples, cannot be performed at the scale
of the study. Therefore, a theoretical measure of ship emission potential which is ship
emission proxy turns out to be the only available option of a reference value for the
results of this study.

The usage of the ship emission proxy, however, has its limitations. Namely, the
used ship emission proxy does not take into account many factors that influence the
expected level of emission for a given ship. Nonetheless, the used proxy allows us to
rank the emission potential of the analyzed ships properly.

As a following, we would like to discuss the fact that even though only fast ships
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were taken into consideration in this study, the number of ships for which the plume
was possible to distinguish is higher than the number of ships for which the plume was
invisible for the labeler. This study focuses on observing emission sources at the edge
of the detection limits of the TROPOMI instrument. It is, therefore, likely that under
certain circumstances ship plumes remain undetected. We can only in part explain
under what circumstances plumes are not visible. With the data presented in Figure
5.14 and Table 5.5, we show that, as expected, smaller and slower ships are more often
not detected. Similarly, for high wind speeds – the detection is more challenging due to
the high dilution of the ships’ emissions and therefore low concentrations (the evidence
can also be found in Figure 5.14 and Table 5.5). Regarding the lower detectability at
lower wind speeds that can also be observed in Figure 5.14, we find some accordance
with the findings from [86], where it is described how the wind speed impacts the
reflectivity of the sea surface due to the shape of the waves, which in turn influences
the sensors’ sensitivity. However, this topic needs further study in the satellite retrieval
community.

To sum up, the method presented in this study is a big step towards automated
and global ship emission monitoring with remote sensing and should not be devalued
by the above-mentioned limitations. Firstly, one can train a machine-learning model
per region as commonly done in remote sensing. In addition, the region can serve as
a feature of the model itself to make it invariant to geographic locations. Moreover,
adding such variables as month, solar radiation, or temperature will make the model
invariant to the seasonal changes that might be more severe at northern latitudes.
Secondly, main ship routes go through both more and less suitable regions for the
satellite observations. Thus, a selection of the more convenient regions will still allow
us to use our approach for efficient monitoring of the emission levels produced by ships
that follow those routes. Moreover, the obtained good results both in terms of segmen-
tation quality and comparison with the emission proxy suggest that labeling has been
of substantial quality. The proposed methodology also opens new research directions.
For instance, human labeling can be replaced with chemical plume dispersion models,
which will further improve the labeling quality and make the proposed methodology
even more effective. Finally, the problem of visibility of ship plumes that have been
unrevealed with the presented study, once solved, will give us a great overview of the
capabilities of TROPOMI sensors.
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Automatic detection of
anomalously emitting ships

Based on: Kurchaba, S., van Vliet, J., Verbeek, F.J., Veenman, C.J., 2023. Anoma-
lous NO2 emitting ship detection with TROPOMI satellite data and machine learning.
Remote Sensing of Environment 297, 113761. doi:10.1016/j.rse.2023.113761.
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6.0.

Abstract
In the previous chapter, we introduced the first method for a large-scale ship NO2

estimation – a supervised machine learning-based segmentation of ship plumes on
TROPOMI image patches. However, both challenging data annotation and insuffi-
ciently complex ship emission proxy used for the validation limit the applicability of
the model for ship compliance monitoring. In this Chapter, we present a methodology
for the automated and scalable selection of potentially non-compliant ships using a
combination of machine learning models on TROPOMI data. It is based on a proposed
regression model predicting the amount of NO2 that is expected to be produced by a
ship with certain properties operating in the given atmospheric conditions. The model
does not require manual labeling and is validated with TROPOMI data directly. The
differences between the predicted and actual amount of produced NO2 are integrated
over observations of the ship in time and are used as a measure of the inspection
worthiness of a ship. To add further evidence, we compare the obtained results with
the results of the previously developed segmentation-based method. Ships that are
also highly deviating in accordance with the segmentation method require further at-
tention. If no other explanations can be found by checking the TROPOMI data, the
respective ships are advised to be the candidates for inspection.

92



Chapter 6. Automatic detection of anomalously emitting ships

6.1 Introduction

The current state-of-the-art of large-scale methods for NO2 ship plume modeling use
thresholding or supervised machine-learning-based segmentation of TROPOMI image
patches to attribute the measured NO2 to individual ships [62, 63]. We presented those
methods in Chapter 4 and Chapter 5 correspondingly. The latter methodology is an
automated procedure improving significantly upon previously used manual methods.
However, due to the low signal-to-noise ratio of TROPOMI measurements, ship plumes
are often hard to delineate, which makes the process of manual data annotation time-
consuming and potentially erroneous. The absence of ground truth for a given task
requires an alternative measure of validation. One possibility is the usage of theoretical
models for ship emission approximation – ship emission proxy [33, 41]. An example
of such a proxy is the one that was utilized by us in previous chapters (explained in
Section 2.4) in [41]. However, the proxies (and this one in particular) do not cover the
full list of factors that can potentially influence the levels of ship emissions (e.g. amount
of cargo on board, local meteorological conditions), which does not allow a proper
quantification of the effects of the errors coming from manual labeling. Consequently,
the possibilities of the application of this approach to the task of monitoring NO2

emissions from individual ships are limited.
In this Chapter, we propose a robust method for automated selection of anoma-

lously NO2 emitting seagoing ships, addressing the last research question of the thesis:

• RQ8: How to identify ships that are potential anomalous emitters using
TROPOMI data?

The presented approach does not require data labeling and is validated using
TROPOMI data directly. Moreover, our method is based on the integration of multi-
ple observations, which gives a more complete perspective on ship performance. This
is achieved by training a specifically designed regression model, which predicts the
amount of NO2 that is expected to be observed by the TROPOMI instrument for a
given ship operating in certain atmospheric conditions. The difference between the
predicted and actual amount of observed NO2 is integrated over the available number
of ship observations. The integrated difference we consider a measure of inspection
worthiness of the ship.

For the training of the regression model, we use the concept of ship Region of In-
terest (RoI) defined in Chapter 4. We apply Automated Machine Learning (AutoML)
(for the explanation of the concept, c.f. Section 2.3) to optimize the machine-learning-
based regression pipeline for the NO2 prediction. To assure the robustness of the
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proposed method, we compare the results obtained with the regression model with
the method for ship plume segmentation [63] introduced in Chapter 5. Ships that
are also ranked as highly deviating in accordance with the ship plume segmentation
model are nominated as anomalous emitters and require further attention. We visually
check the TROPOMI data for objective explanations of anomalous results. If no other
explanations are found, the ships are advised to be candidates for further inspection.

The rest of this Chapter is organized as follows: In Section 6.2, we describe the data
sources used in this study. In Section 6.3, we introduce the developed methodology,
which is followed by the results presented in Section 6.4. In Sections 6.5 and 6.6, the
reader can find the discussion and final conclusions respectively.

6.2 Data

In this study, the variable of interest is NO2 tropospheric vertical column density
– VCDtrop [31]. As described in Chapter 2, the VCDtrop column is the result of
a transformation of SCD (slant column density) using the air mass factors (AMS)
calculated, among the others, on the basis of historical emission inventories [31]. This
results in the fact that the plumes located in the regions of historical shipping lanes will
be enhanced by the retrieval algorithm [30]. To minimize the impact of the potential
bias, such variables as background NO2 SCD, AMF, surface albedo, and sun/satellite
geometry will be used as model features for ship NO2 estimation.

In this Chapter, we analyze the same region1 in the eastern Mediterranean Sea
as in Chapter 5. The study period is 20 months, starting from 1 April 2019 until 31
December 2020. To obtain the image patches of regular size, we perform regridding2

of the original TROPOMI data into a grid of regular size 0.045◦ × 0.045◦, which for
the studied area translates to approximately 4.2 × 5 km2 [63]. The following quality
filers were applied on the TROPOMI data: only pixels flagged with qa_value > 0.5

[93] are taken into consideration. In addition, since the TROPOMI observations of
scenes covered with clouds should not be considered valid, we filtered out from the
data pixels with a cloud fraction higher than 0.05. With this level of cloud filtering,
we lost approximately 35% of ship observations.

In order to prevent the occurrence in our dataset of ships below the detection
limit, we focus our analysis on the seagoing ships that are longer than 150 meters

1The studied region is restricted by the following coordinates: long: [19.5◦; 29.5◦], lat: [31.5◦;
34.2◦].

2The regridding is performed using the Python package HARP v.1.13.
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Figure 6.1: High-level diagram of the proposed methodology.

and faster than 12 kt, which is slightly faster than the TROPOMI detection limit
established in Chapter 3. Another situation we want to prevent is when too many ships
contribute to the creation of the detected NO2 plume, as in this case, quantification of
individual contributions is extremely challenging. Thus, we remove the ships, whose
trajectories within 2 hours before the satellite overpass, intersect with more than 3
other neighboring ships. This is a trade-off between a sufficient size of the dataset and
the complexity of the problem of the quantification of individual contributions. Among
all ship types present in the dataset, for the detection of anomalously emitting ships,
we focus our attention on two ship types: containers and tankers. Other ship types
have not been represented in the dataset in a sufficient amount to obtain statistically
significant results.

6.3 Method

In this Section, we present the method for automated detection of ships that produce
anomalously high amounts of NO2. The method is composed of the following steps:
we train a regression model for the prediction of the amount of NO2 within the RoI
of the analyzed ship. We calculate the difference between the observed and predicted
amount of NO2 and integrate this value over all observations of the same ship within
the studied period. The integrated difference between the real and predicted value of
NO2 we consider as a measure of the inspection worthiness of the ship. We rank the
studied ships accordingly. To assure the robustness of the results, we apply the ship
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plume segmentation model [63] to the same dataset. We compare the results obtained
using the segmentation model with the value of the theoretical ship emission proxy. We
consider the results of the comparison to be a measure of the inspection worthiness
according to the segmentation model. The ships that are high on the inspection
worthiness list of both independently trained and validated machine-learning models
are considered to be potentially anomalously emitting. We evaluate the obtained
results by visual inspection of the corresponding TROPOMI observations. Figure
6.1 provides a high-level explanation of the proposed method for the detection of
anomalously emitting ships. Below, each step of the methodology is described in
detail.

6.3.1 Regression model

Here, we describe our proposed regression model as part of a method for the detection
of anomalously emitting ships. Firstly, we provide a formal definition of the proposed
way for ship NO2 estimation with the regression model. Then, we introduce the
details of training and optimization of the machine-learning methodology proposed in
this study.

Formalization of the problem

For a given ship s ∈ S on a given day d ∈ D, the real amount of NO2 observed by
TROPOMI is calculated as:

NO2;d,s =
∑

i∈RoId,s

V CDNO2;i
(6.1)

where VCDNO2
is the value of the retrieved TROPOMI pixel within the RoI of the

analyzed ship, where the RoI of the ship is a ship sector defined in accordance with the
description proposed in Chapter 4 (c.f. Section 4.2.2). We then use a machine-learning
model f that based on values of features X ∈ R predicts the expected amount of NO2:
N̂O2;d,s ∈ R.

N̂O2;d,s = f(Xd,s) (6.2)

The list of features X can be found in Table 6.1. In Figure 6.3, we provide
histograms of the features. As a next step, we calculate diffd,s[%] – a percentage
difference between the predicted and observed amount of NO2. Finally, assuming
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Figure 6.2: Histogram of occurrences of the same ship in the created dataset. The black
line indicates the set level of min_obs_nb. Only ships that have been observed more
than min_obs_nb = 4 days are taken into account for the detection of anomalously
emitting ships.
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Figure 6.3: Distribution of variables of the dataset.
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|Ds| is the number of days when the ship s was observed, min_obs_nb is the mini-
mum number of days we require the ship to be present in the dataset, for each ship
s ∈ S : |Ds| ≥ min_obs_nb, we integrate the obtained differences over the ob-
served number of days calculating arithmetic mean µ(diffd,s) and standard deviation
σ(diffd,s). To ensure that our ship profile is representative to make the decision about
being anomalously emitting and taking into consideration data availability (see Figure
6.2), we set the threshold as min_obs_nb = 4.

A high value of µ(diffd,s) represents a situation when the observed value of NO2

was repeatedly underestimated by the model. This means that the amount of NO2

observed was consistently higher than can be expected given the ship’s characteristics
and operational atmospheric conditions. In other words, µ(diffd,s) is a measure of
the inspection worthiness of the ship in accordance with the regression model IW regr

s .
The value σ(diffd,s) is a measure of the consistency of the obtained results. Since
the TROPOMI measurement results have a lower limit and do not have an upper
limit, a very high σ(diffd,s) can only occur from the fact that very high values of
NO2 were assigned to a ship that on a regular basis does not produce that much –
only high NO2 outliers can cause a high standard deviation. Such a situation is not
of our interest. Therefore, ships with outlying values of σ(diffd,s) will be removed
from the analysis. The value of σ(diffd,s) is considered to be outlying if σ(diffd,s) >
µ(σ(diffd,s)) + 2σ(σ(diffd,s)), which corresponds to 5% of the highest observations
of σ(diffd,s).

Model optimization

Similarly to the previous chapters, for the selection of the regression and optimization
of its hyperparameters, we use a 5-fold nested scheme of cross-validation. Within the
outer loop of cross-validation we create 5 "hold out" non-overlapping test sets and 5
training sets. Given the considered application, the test sets are used for:

1. Performance evaluation of the regression model.

2. Detection of anomalously emitting ships.

Within the inner loop of cross-validation, we split the training set into training and
validation, which are used for the optimization of the regression model performance.
The task of model optimization is tackled here with automated machine learning (Au-
toML) [49] by solving a so-called CASH problem (for an explanation of the concept and
benefits coming from its application see Section 2.3). Given the absence of available
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Feature type Feature name

Ship related Ship length
Ship speed

Ship heading
Gross tonnage

Ship type
State of the atmosphere Wind speed

Wind direction
Surface albedo

Solar zenith angle
Measurement month

Priors for background Average NO2 VCDtrop outside ship sector
Average NO2 SCD outside ship sector

AMF outside ship sector
Sensor zenith angle

Table 6.1: List of features used for the regression model. The area outside the ship
sector is restricted to the ship neighborhood defined as the ship plume image in ac-
cordance with Chapter 4.

benchmarks for our original dataset, such a technique allows for an efficient selection
of a regression model and feature preprocessor from among a wide variety of machine-
learning models and feature transformation techniques. As mentioned in Section 2.3,
we address the CASH problem using TPOT (Tree-based Pipeline Optimization Tool)
[77] – a Python package for automatic selection of machine-learning pipelines based
on genetic programming (GP) [58].

The results obtained using the TPOT AutoML library are benchmarked towards
the results obtained using the eXtreme Gradient Boosting (XGBoost) [22] regression
model with the default hyperparameters settings. The XGBoost model is considered
to be a good choice when it comes to tabular data [45], as well as showed the best
performance on the same type of data in Chapter 5.

6.3.2 Detection of anomalously emitting ships

In order to ensure the robustness of the proposed method for detecting anomalously
emitting ships, we compare the results obtained with the regression model with an-
other, independently trained and validated machine-learning model applied to the
same dataset. We intersect the results obtained with both considered models in order
to obtain a list of potentially anomalously emitting ships. Hereafter, we explain how
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the model introduced in Chapter 5 is added to the presented regression model as a
decision support tool, and explain how the results of both models are used to make a
decision regarding the candidate selection of anomalously emitting ships.

Segmentation Model

As a support tool for the presented regression model, we use the ship plume segmen-
tation model prepared in accordance with the methodology introduced in Chapter 5.
Below, we provide a formal explanation of how we propose to use this method for the
detection of potentially anomalously emitting ships.

For a given ship s ∈ S on a given day d ∈ D, the estimated with the segmentation
model amount of NO2 can be expressed as:

N̂O2;d,s =
∑

i∈RoId,s

ŷi ·NO2,i, (6.3)

where ŷi ∈ {0, 1} and NO2,i are the output of the segmentation model for the pixel i
and the value of the pixel i of the ship s on day d.

To detect potential anomalous emitters, for each ship observation, we calculate
the value of the ship emission proxy Ed,s (for definition c.f. Section 2.4). For each
ship s ∈ S : |Ds| ≥ min_obs_nb, we aggregate the N̂O2;d,s and Ed,s over the days
of observation by calculating their arithmetic mean µ. We assume that µ(N̂O2;d,s) is
linearly proportional to µ(Ed,s). Therefore, we can express it as:

µ(N̂O2;d,s) = α · µ(Ed,s) + β + ϵs, (6.4)

where α and β are the parameters of the fitted linear equation. We consider ϵs the
measure of the inspection worthiness of the ship in accordance with the segmenta-
tion model IW segm

s . The measure of the consistency of the results is defined as the
standard deviation of the estimated values of NO2, σ(N̂O2;d,s). The ships for which
σ(N̂O2;d,s) > µ(σ(N̂O2;d,s)) + 2σ(σ(N̂O2;d,s)) are considered to be outlying and will
not be taken into consideration.

6.3.3 Merge of two models to identify anomalous ships

In order to identify anomalously emitting ships, we intersect the results obtained with
the two independently trained/validated machine-learning models: a newly developed
regression model for the prediction of ship’s NO2 within the assigned ship sector, and
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the ship plume segmentation model presented in Chapter 4. To assure the comparabil-
ity of the results, we perform a normalization of the inspection worthiness measures ob-
tained from both used methods, defining norm_IW regr

s , norm_IW segm
s ∈ [0, 1]. The

normalization is performed using min-max scaling applied on IWregrs and IWsegms

such that:

norm_IW regr
s =

IW regr
s −min(IW regr

s )

max(IW regr
s )−min(IW regr

s )
(6.5)

norm_IW segm
s =

IW segm
s −min(IW segm

s )

max(IW segm
s )−min(IW segm

s )
(6.6)

Providing a decision threshold t, the ship is assigned to the list of anomalously
emitting ships in accordance with the following rule:

norm_IW regr
s > t ∧ norm_IW segm

s > t ⇐⇒ s ∈ Anomalous_emitters, (6.7)

such that:

Anomalous_emitters = {s1, ..., sn} :

norm_IW regr
si · norm_IW segm

si < norm_IW regr
si+1

· norm_IW segm
si+1

(6.8)

The decision about the selection of the used threshold level t is left to the user. In
this study, the threshold was manually selected as t = 0.55.

6.4 Results

In this Section, we present the obtained results. We first present the results of the re-
gression model optimization. We then show the aggregated results of the application
of the regression and segmentation models and perform the selection of potentially
anomalously emitting ships. Finally, using a one-way ANOVA analysis of group dif-
ferences, we inspect the obtained results for the presence of a decision bias resulting
from the merge of regression and segmentation models.

6.4.1 Regression model optimization

In Table 6.2, we present the results of the regression model optimization. The appli-
cation of the TPOT pipeline optimization algorithm allowed us to improve the results
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Method Pearson R2

TPOT 0.740 ± 0.058 0.538 ± 0.08
Default XGBoost 0.715 ± 0.057 0.497 ± 0.098

Table 6.2: Regression model results. Hyperparameters applied for AutoML optimiza-
tion: Maximum evaluation time: 10 min; Population size: 50; Number of generations:
50; Early stopping criteria: 10.

Feature processor Model

MaxAbs Scaler Gradient Boosting [39]
MaxAbs Scaler Gradient Boosting

Polynomial Features (2nd deg.) XGBoost [22]
Standard Scaler Gradient Boosting
Standard Scaler XGBoost

Table 6.3: A model and a feature pre-processor selected by TPOT as optimal at a
given iteration of cross-validation.

of both used quality metrics over our benchmark – default XGBoost. In Table 6.3, we
provide models and feature pre-processing methods selected as optimal (best perfor-
mance on validation set) at each cross-validation iteration. The XGBoost model was
still one of the most often selected optimal models. The advantage of the AutoML ap-
plication, in this case, was gained by the possibility of hyperparameters optimization
and selection of feature pre-processing method. Another well-performing model was
the related Gradient Boosting algorithm.

6.4.2 Detection of anomalously emitting ships

Here, we analyze the results of the application of the regression and plume segmen-
tation model with the aim of detecting anomalously emitting ships. First, for each
model, we calculated the measures of the consistency of the results, i.e. σ(diffd,s) and
σ(N̂O2;d,s), while removing the resulting outlying values from the analysis. Figure 6.4
presents the consistency measures for regression and segmentation models along with
the applied cut-off thresholds.

In Figure 6.5, we depict the integrated results of the regression model for each
studied ship (µ(diffs), σ(diffs)) and rank them in ascending order of inspection wor-
thiness, IW regr

s = µ(diffs). Ships for which the observed level of NO2 is substantially
higher than the predicted level are the most interesting for us. Figure 6.6 presents the
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Figure 6.6: Relation between the estimated amount of NO2 using the segmentation
model and ship emission proxy with a fitted linear trend. Gray dashed lines indicate
the measure of the ship inspection worthiness IW segm

s according to the plume seg-
mentation model.

resulting relationship between the averaged amounts of µ(N̂O2;s) for each ship and
averaged ship emission proxy µ(Es). The black line indicates the fitted linear trend.
The gray dashed lines indicate the ship inspection worthiness IW segm

s . The ships for
which the IW segm

s is the highest are of our main interest.

Next, we combine the errors obtained from the regression and the ship plume
segmentation models. Figure 6.7 shows the combined inspection worthiness for the two
studied ship types. Black scatter plot markers indicate the analyzed ships. The size of
the markers is scaled in accordance with the average value of the ship’s emission proxy.
Ships located in the green zone of the plots, we consider as weak emitters, because both
of the models overestimate the actual level of NO2. Two yellow zones indicate ships for
which one of the models overestimates the actual level of NO2, while the other model
underestimates it. This can be due to the low resistance of the particular machine-
learning model to certain types of difficult modeling conditions, or systematic errors.
To name a few, the combination with land-based NO2 sources, a plume accumulated
within one TROPOMI pixel, certain atmospheric conditions, etc. Finally, the red zone
of a plot indicates ships that are most inspection-worthy according to both models. We
call those ships potentially anomalously emitting since throughout twenty months of
analysis they were producing more than is expected based on their characteristics and
operational atmospheric conditions. Clearly, to make final conclusions, the detected
ships should be studied closer.
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Figure 6.7: Combination of results of segmentation and regression models. Values of
the inspection worthiness obtained from each model were normalized using a min-max
scaler.

6.4.3 Visual verification of potential anomalous emitters

In order to make final conclusions regarding the ships that were identified by the
proposed method as anomalously emitting, as a next step, we visually analyzed the
TROPOMI observations related to those ships. Figure 6.8a – c and Figure 6.9a – c
provide the TROPOMI image patches for the red-zone containers and tankers respec-
tively. On the image patches from the corresponding dates of TROPOMI observations,
we indicate the trajectory of the ship of interest, the other ships in the image patch,
and the pixels that were classified as a part of the plume of the ship by the segmen-
tation model.

First, we can see that for each ship, there are image patches where the segmented
plume was in fact produced by another ship. This underlines the earlier mentioned
constraint that intersecting ship plumes pose a challenge for this type of analysis.
Nonetheless, each container ship selected as a potential anomalous emitter has at
least two measurement days where there are no other candidates for producing the
observed/segmented NO2 plume. Comparing the values of results consistency (see
Table 6.4) for ships selected as anomalous emitters with the data distribution for the
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(a)

(b)

(c)

Figure 6.8: Ship type: Container. Lines represent shifted ship tracks. Magenta line
– ship of interest. Cyan line – other ships in the area. Grey lines – borders of the
ship sector. Dots indicate pixels classified by the segmentation model as a plume. a)
Outlying ship 1. Ship length: 398 m. Average ship speed: 19.6 kt. Year of built: 2008.
b) Outlying ship 2. Ship length: 363 m. Average ship speed: 17.5 kt. Year of built:
2011. c) Outlying ship 3. Ship length: 397 m. Average ship speed: 18.4 kt. Year of
built: 2006.
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(a)

(b)

(c)

Figure 6.9: Ship type: Tanker. Lines represent shifted ship tracks. Magenta line –
ship of interest. Cyan line – other ships in the area. Grey lines – borders of the
ship sector. Dots indicate pixels classified by the segmentation model as a plume. a)
Outlying ship 1. Ship length: 180 m. Average ship speed: 15.3 kt. Year of built: 2016.
b) Outlying ship 2. Ship length: 315 m. Average ship speed: 16.1 kt. Year of built:
2008. c) Outlying ship 3. Ship length: 179.5 m. Average ship speed: 13 kt. Year of
built: 2017.
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Ship type Ship Id σ(diff) σ(N̂O2)

Container 1 0.57 1.5 ·1016
2 0.17 0.99 ·1016
3 0.22 1.5 ·1016

Tanker 1 0.36 2.03 ·1016
2 0.33 1.4 ·1016
3 0.12 0.65 ·1016

Table 6.4: Measures of results consistency of regression (σ(diff)) and segmentation
(σ(N̂O2)) models, for ships identified as anomalous emitter. Ship Ids are in accordance
with the numbers assigned in Figure 6.7 for containers and tankers respectively.

whole set of studied ships (Figure 6.4), we can see that values of interest are located
in the middle of the data distribution. Therefore, we do not have reasons to remove
any of the selected ships from the list of anomalous emitters.

In the case of tankers, the situation is different. For a potential anomalous emitter
with Id 1 (c.f. Figure 6.9a), we can see that for two (2019-09-13, 2020-07-29) out of five
measurement days, the segmentation model did not segment any plumes. In addition,
for one measurement day (2020-05-13), the segmented plume was at least partially
produced by another ship. Finally, the obtained σ(N̂O2) is very high and close to
the applied cut-off threshold. Therefore, we conclude that the given ship should be
removed from the list of potential anomalous emitters.

For the tanker with Id 2, both σ(N̂O2) and σ(diff) are within the distributions.
However, from Figure 6.9b, we can see that at least two times (2019-06-11, 2020-04-
28) the segmented plumes were produced by more than one ship. In three other cases
(2020-04-11, 2019-07-19, 2020-08-29), the segmented pieces of plumes partially or fully
belong to other emitters. For the measurement day of 2020-06-22, the model did not
segment any plume. The one remaining measurement from the profile of a given ship
does not justify the addition of that ship to the list of anomalous emitters.

Finally, for the tanker with Id 3, there is one measurement day (2020-07-29) when
the segmented plume was at least partially produced by another ship. The rest of the
image patches, nevertheless, show visually distinguishable NO2 plumes that can be
attributed to the ship of our interest. Consequently, we do not have reasons to remove
a given ship from the list of potential anomalous emitters.
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Ship type Variable Strong emitters Weak Emitters

Tanker Year of built 2013 ± 5 2009 ± 4
Ship length [m] 224 ± 78 253 ± 66
Ship speed [kt] 14.8 ± 1.5 14.8 ± 1.6

Wind speed [m/s] 4.9 ± 0.4 5.0 ± 0.7
Average IoU 0.07 ± 0.1 0.05 ± 0.06

Container Year of built 2008 ± 2 2012 ± 5
Ship length [m] 386 ± 20 340 ± 70
Ship speed [kt] 18.5 ± 1. 17.1 ± 1.7

Wind speed [m/s] 4.8 ± 0.5 5.1 ± 0.8
Average IoU 0.07 ± 0.02 0.04 ± 0.04

Table 6.5: Statistical summary for important factors that influence levels of produced
NO2 for ships that by both models were identified as strong and weak emitters. IoU
stands for Intersection over Union.

Ship type Variable F statistic p-value

Tanker Year of built 2.3 0.13
Ship length 0.48 0.49
Ship speed 0.004 0.95
Wind Speed 0.12 0.72
Average IoU 0.4 0.53

Container Year of built 1.7 0.19
Ship length 0.24 0.27
Ship speed 1.95 0.16
Wind Speed 0.53 0.47
Average IoU 1.32 0.25

Table 6.6: One way ANOVA for the significance of the statistical difference between
samples of ships identified as strong and weak emitters. IoU stands for Intersection
over Union.
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6.4.4 Decision bias

To select the anomalously emitting ships, we combined the results of two independently
trained models: a regression model for ship NO2 estimation and a model of ship plume
segmentation. Taking this into account, as a final step of the analysis, we would
like to know if such a model fusion did not create any decision bias that would pre-
determine the attribution of a certain ship to a class of strong or weak emitters. For
this, we decided to study five variables that are interesting from the point of view of
result interpretability. Three of the selected variables (ship length, ship speed, and
wind speed) were features of both regression and segmentation models. Another two
variables (Year of built – stands for the ship built year, and Average IoU – stands for
an average score of Intersection over Union of the ship sector of the analyzed with the
ship sectors of other ships3) were not a part of any model4 but can have a potential
influence on the attribution of a ship to a class of weak or strong emitters.

To check the potential presence of decision bias, for each studied ship type, we
compared the averages of the above-mentioned features (see Table 6.5) and performed
a univariate one-way ANOVA test (Table 6.6), analyzing the statistical significance of
the differences between the values of the variables from two groups of ships – strong
or weak emitters. From the obtained results, we conclude that none of the analyzed
variables had a statistically significant influence on attributing a certain ship to a class
of strong or weak emitters. This implies the absence of decision bias related to these
variables.

6.5 Discussion

In this Chapter, we presented a method for detecting anomalously NO2 emitting ships
by applying a combination of machine-learning-based methods on TROPOMI instru-
ment data (RQ8). The provided methodology is an important step toward the au-
tomation of the procedures for the selection of ships that should undergo inspection.
The application of satellite data for such a task is a substantial advancement, as
satellite-based measurements are the only available tools that can access ship emis-
sions in the open sea.

Another advantage of satellite-based observations in contrast to all the other meth-

3Given two areas of interest, IoU is computed as the surface of their overlap divided by the surface
of their joint area.

4The variables were tested in the preliminary phase of our regression model experiments but were
removed due to the negative impact on model performance.

110



Chapter 6. Automatic detection of anomalously emitting ships

ods currently used for ship emission monitoring is that satellite observations enable
us to observe the emissions over time regularly and remotely. The presented approach
exploits this property of satellite-based observations by making multi-day profiles of
ship observations. Such an approach allows us to make conclusions based on aggre-
gated statistics of several ship observations rather than based on a single observation
only. The disadvantage of such a statistics-based approach is that only systematic
high emitters can be captured.

In order to be able to use the proposed approach on a day-to-day basis some
technological advancements are needed. First of all, as we can see from Figures 6.8
and 6.9, the correct and complete segmentation of ship plumes remains a challenging
task. Additionally, it is challenging to attribute the detected plume to a certain ship.
Both challenges will become more feasible when satellite-based observations with an
even higher spatial resolution (for instance, TANGO instrument [67]) become available.
Moreover, it is still difficult to fully eliminate signal interference. This is mainly due to
the high irregularities of both atmospheric chemistry processes and ship trajectories.
Also, the problem will become less significant once the higher-resolution data are
available.

Another possible improvement is to account for the dynamics of the atmospheric
processes within the methodology. The dynamics of the atmospheric processes affects
how fast and how much NO2 will be created out of emitted NOx. In this study, we
implicitly addressed the atmospheric chemistry processes by using features such as the
month the observation took place (seasonability) and solar angle. Explicit modeling
such as through the introduction of ozone concentration or air temperature features
may provide additional insights.

Finally, at the moment, we do not have access to the ground truth data that would
allow us to validate the proposed selection of potentially anomalously emitting ships.
As we mentioned at the beginning of this Section, the TROPOMI observations are
currently the most complete available source of information regarding emissions of
ships in the open sea. Once the proposed approach is implemented into a production
environment, the feedback received from inspectors can be used for validation and for
further optimization of the method.

6.6 Conclusions

In this Chapter, we applied a combination of machine-learning-based methods on
TROPOMI instrument data and presented an approach for automatic identification
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of potentially anomalously NO2 emitting ships. Our approach allows the automatic
processing of a huge amount of satellite remote sensing data in order to select for
the inspection ships that consistently emit more than can be inferred based on their
properties and sailing conditions. With the proposed methodology, the selected cases
for inspection are based on multi-day observations of ship emissions. With this, we
harvest the main advantage of satellite-based observations over the existing approaches
for ship compliance monitoring, with which the decisions have to be made on the basis
of a single observation only. The proposed methodology provides a potential path
toward the development of a scalable recommendation system for ship inspectors that
is based on satellite-based observations.
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Conclusions and future work

In this Chapter, we recapitulate the work presented in this thesis. We summarize
the research findings that were presented in the preceding chapters and revisit the re-
search questions outlined in the Introduction chapter. Finally, we present an overview
of future research opportunities with regard to the application of the TROPOMI in-
strument or next-generation satellite-based instruments for the task of monitoring of
NOx emission from shipping.

In Chapter 3, we examined the sensitivity limits of TROPOMI data with respect
to the detection of NO2 plumes from individual seagoing ships. In that Chapter, we
addressed three research questions:

• RQ1: What is the minimum speed and length of a seagoing ship so that the
NO2 plume from it can be detected with the detection system using TROPOMI
data?

• RQ2: To what extent can the detectability of NO2 plumes be improved if only
the biggest emitters are taken into account?

• RQ3: Is there a potential for improvement of detectability of NO2 plumes from
the slow/small ships if more data were used to train the used classification model?

We addressed the above-mentioned questions with a classification model trained
to separate image patches into those with and without ship plumes. We proposed
to estimate the detection capabilities of the detection system using TROPOMI data
based on parameters such as speed and length of the ship, as those are known to be
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good estimates of ship emission potential. The study was performed for four regions
of interest: the Mediterranean Sea, Arabian Sea, Biscay Bay, and Bengal Bay.

Addressing RQ1, we first demonstrated that the smallest ships in our dataset fall
below the detection limit. However, once a certain level of ship speed/size is reached,
the ship plume becomes detectable with our method. Subsequently, we calculated that
for the Mediterranean Sea and the Arabian Sea, the sensitivity limits of the studied
detection system are approximately 1× 107m5/s3. For the Biscay Bay, the sensitivity
limit is lower and is around 3.8 × 106m5/s3 (c.f. Figure 3.10). Translating this into
ship speed and length, we infer that, for the Mediterranean and Arabian Seas, ships
slower than 10 knots or shorter than 150 meters are below the sensitivity limit of the
detection system using TROPOMI data. For the Biscay Bay, the limit lies around 8
kt and 100 m. For Bengal Bay, we were not able to estimate the sensitivity limit due
to the insufficient amount of data.

With respect to RQ2, our results indicate that restricting the analysis to
faster/larger ships leads to enhanced detectability of ship plumes. This suggests that
focusing on the larger emitters could potentially increase the efficiency of the appli-
cation and accuracy of ship emission monitoring using the TROPOMI instrument.
The analysis also shows differences in model performance between studied regions.
We concluded that these variations could be partially attributed to variations in ship
traffic density between the regions. Additional factors that potentially can influence
the performances of the models are measurement conditions (e.g., number of cloudy
days), differences in data quality between regions, and different scales of temperature
fluctuations or concentration of ozone in the background.

When addressing RQ3, we again encountered the variability of the results across
the regions. For the Mediterranean Sea and Biscay Bay, an increase in data volume
led to a notable enhancement in model performance. While, for the Arabian Sea and
Bengal Bay, the impact of increasing the amount of data, even though present, was
less pronounced. One of the reasons was the fact that for European regions we had a
higher ratio of data points with a high value of emission proxy in the dataset than for
the Bengal Bay and Arabian Sea. Nonetheless, the obtained results indicate that the
accuracy of currently determined detection limits is perhaps constrained not only by
the methodology or the sensor but also by data availability.

In Chapter 4, we addressed the research questions:

• RQ4: How to assign a TROPOMI signal associated with a certain plume to a
potential emitting ship?
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• RQ5: To what extent can the NO2 plumes be segmented in the TROPOMI data
using a simple thresholding method?

To address RQ4, we proposed a method for automated assignment of the region
of interest (RoI) to the analyzed ship. We called the proposed RoI a ship sector. The
ship sector is defined based on AIS data, information about the speed and direction of
the prevailing wind, as well as assumed uncertainties in the speed and direction of the
wind data. The ship sector is defined such that the plume produced by an analyzed
ship will always be located within it. Moreover, the proposed approach provides a
possibility for large-scale automatic processing of satellite data for the quantification
of emissions from individual seagoing ships. Addressing RQ5, we concluded that ship
plume segmentation within the assigned ship sector requires a more complex method
than the linear threshold. Indeed, when comparing the estimated values of NO2 with
the ship emission proxy, we obtained low linear correlation scores, calling for a more
complex methodology for ship NO2 estimation.

Therefore, in Chapter 5, we focused on the development of a supervised machine
learning methodology for ship plume segmentation within a ship sector. The presented
methodology is based on task-specific feature engineering that allows to address ship
plume segmentation with a multivariate model. Using the developed methodology, the
following research questions were studied:

• RQ6: Can we improve the segmentation quality of NO2 plumes from individual
ships using supervised machine learning?

• RQ7: Does the machine learning-based segmentation allow for the detection of
NO2 plumes that cannot be recognized visually?

To address RQ6, we studied a list of multivariate classifiers of increasing com-
plexity and compared them with the threshold-based benchmarks. With the best
(XGBoost) model, we achieved more than 20% increase in the segmentation average
precision in comparison to the best benchmark model. We can state that the appli-
cation of supervised machine learning can indeed improve the quality of ship plume
segmentation.

In Chapter 5, we also showed that with an XGBoost model, we can segment more
plumes while achieving 6.8% higher correlation with the emission proxy than when
the plumes were segmented manually. This result suggests that the machine learning-
based segmentation allows for the detection of NO2 plumes that were not recognized
visually (RQ7).
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Finally, in Chapter 6, we focused on the last research questions:

• RQ8: How to identify ships that are potential anomalous emitters using
TROPOMI data?

To identify anomalously emitting ships, we presented a method that combines two
independently trained machine-learning models. Based on the models’ responses, we
identify ships that emit more than can be expected based on the operating conditions
and characteristics of the ship. To minimize the effects of disruptive events (weather,
neighboring another ship, or land outflow), we observed each analyzed ship for an ex-
tensive period of time, creating respective ship profiles. Ships that are ranked as highly
deviating throughout the time of observation according to both machine learning mod-
els, are considered to be potential anomalous emitters and require further attention.
If no other explanations can be found, the ships are advised to be the candidates for
inspection.

7.1 Future directions

Referring back to the overarching research question of the thesis, we can state that
indeed the TROPOMI instrument has the potential to be used for monitoring NO2

emissions from individual ships on a global scale. Nevertheless, to make such an
application industrially operational, several challenges still need to be addressed:

• Attribution of a signal to individual ships in case of overlapping plumes. In
this thesis, we reduce this issue by means of the application of multi-day data
averaging. This is suitable when drawing conclusions on the basis of long-term
observations. However, in order to observe day-to-day changes in the level of
emissions produced by a ship, the solution should be adapted.

• The study of other chemical compounds that can be used by machine-learning
models as an additional signal of ship plumes. Throughout the thesis, we wit-
nessed that NO2 plumes from such comparable sources of emissions as ships are
often difficult to detect in TROPOMI signals. However, it is known from the lit-
erature that the presence of gases such as ozone (O3) or formaldehyde (HCHO)
may be coupled with the presence of ship plumes [27, 44, 53, 2]. The current
quality of satellite-based measurements does not allow to distinguish ship traces
of these components on daily data. Yet, multi-day averaging confirms that the
HCHO signal from ships is present in the data [72, 44], while the concentration
of O3 in the background affects the speed of NOx−→NO2 transformation [19].
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• The investigation of causes for regional differences observed in TROPOMI sen-
sitivity with respect to the detection of NO2 plumes from individual ships. In
Chapter 3, we showed that the sensitivity limits of the instrument vary signif-
icantly depending on the region under study. We see that it can be explained
partially by the traffic density in the region. However, we do not have evidence
to state that the latter is the only cause of the differences observed. Other po-
tential sources of regional differences can be varying ozone concentrations, wind
speed, or the presence of emitters that are not registered with AIS (e.g. oil rigs
or military ships).

We believe that by tackling the aforementioned directions, we can improve the
overall understanding of the potential of the application of the TROPOMI instrument
with respect to ship emission monitoring.

7.2 Final remarks

Summarizing our conclusions, we can state that with the work presented in this thesis,
we notably moved forward the state-of-the-art with respect to the application of satel-
lite observations for the task of continuous and global monitoring of emissions from
individual ships. When starting the work of this thesis, all we knew was that some of
the plumes from individual ships could be distinguished with the TROPOMI instru-
ment. When reaching the end, we know the sensitivity limits of the detection system
of ship NO2 plumes using TROPOMI data, how to process the TROPOMI signal to
extract information about the ship emissions automatically, and how to automatically
select ships that are potential anomalous emitters.

The aim of this thesis has been to improve the quality of monitoring of emissions
coming from the shipping industry, toward mitigating its adverse environmental ef-
fects. A collaborative and continuous effort of professionals across various domains
and fields of expertise is essential to ensure that both monitoring of ship emissions
and related policies yield the intended outcomes. Indeed, it was noted recently that
the implementation of the nitrogen emission control area (NECA) in the North and
Baltic Seas in 2021 had little impact on remotely measured NOx concentrations in
European waters [104]. The work presented here is just a piece of a complicated web
of required actions, reactions, and decisions necessary to achieve desired environmen-
tal outcomes. Nonetheless, we believe that it lays a solid foundation for the future
applications of satellite observations for the monitoring of emissions (including but
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not limited to NO2) produced by individual ships. In this manner, it will contribute
to mitigating the environmental impact of the shipping industry as a whole.
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Samenvatting

De zeevaartsector is een van de grootste vervuilers waar het gaat om de uitstoot van
stikstof-oxides (NOx). Dit is een groep van vervuilende stoffen die zeer schadelijk
zijn voor ecosystemen en humane gezondheid. De afgelopen 20 jaar is de vervuiling
veroorzaakt door electriciteitscentrales, de zware industrie en het autoverkeer constant
afgenomen. Deze trend zien we niet terug in de zeevaart, integendeel, we zien in feite
dat de bijdrage van de scheepvaart aan de vervuiling continu toeneemt. Deze opwaartse
trend zorgt voor een sterke druk vanuit de maatschappij die erin geresulteerd heeft dat
er nieuwe regelgeving is voorgesteld vanuit de "International Maritime Organisation"
(IMO). Deze voorschriften leggen resticties op aan individuele schepen met betrekking
tot het niveau van uitstoot (emissie) dat een schip kan produceren. Er bestaan ver-
schillende methodes voor het monitoren van uitstoot voor kustvaart en voor schepen
in havengebieden, terwijl het monitoren van schepen op open zee tot op heden onhaal-
baar is gebleken. De grote verandering in dit verband is het TROPOMI instrument
dat is ingebouwd in de Sentinel 5 Precursor Satelliet - studies hebben aangetoond at
NO2 rookpluimen van sommige zeegaande schepen op TROPOMI beeldmateriaal kun-
nen worden onderscheiden. Het doel van het onderzoek dat in dit proefschrift wordt
gepresenteerd is de mogelijkheden te laten zien van het TROPOMI instrument voor de
naleving de van de regelgeving door IMO opgesteld voor zeegaande schepen. Ons doel
wordt bereikt door het inzetten van innovatieve combinaties van geavanceerde meth-
odes uit het machinaal leren, kenmerk extractie en data integratie. Ieder hoofdstuk
uit dit proefschrift bouwt voort op de bevindingen uit het voorgaande hoofdstuk; het
geheel van de hoofdstukken representeert de nieuwste-van-het-nieuwste kennis met
betrekking tot het toepassen van TROPOMI satelliet data voor het monitoren van
NO2 uitstoot van individuele zeegaande schepen. In de eerste twee hoofdstukken in-
troduceren we het werkveld en achtergrondinformatie relevant voor ons onderzoek.
Vervolgens ontwikkelen we in Hoofdstuk 3 een methodologie gebaseerd op machinaal-
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leren en we gebruiken deze methodologie om de grenzen van de gevoeligheid van het
detectiesysteem uit TROPOMI data te onderzoeken met betrekking tot de het de-
tecteren van NO2-rookpluimen van schepen. De inzichten uit dit hoofdstuk bepalen
de reikwijdte van het verdere onderzoek in dit proefschrift. In Hoofdstuk 4 presen-
teren we een methode voor het automatische afbakening van een TROPOMI-beeld dat
correspondeert met een schip onder aandacht. Door hiervan gebruik te maken kunnen
delen waarin geen informatie van belang voorkomt worden uitgesloten van de analyse,
terwijl de specifieke aandacht kan gaan naar dat deel van van het TROPOMI-beeld
waar de lokatie van de rookpluim van een schip kan worden verwacht. Daaropvol-
gend presenteren we in Hoofdstuk 5 een methode gebaseerd op machinaal-leren voor
de automatische segmentatie van NO2-rookpluimen zoals die zijn geproduceerd door
individuele schepen. De resultaten die hiermee worden verkregen suggereren dat het
gebruik van machinaal leren voor de taak van rookpluim detectie (segmentatie) ons
in staat stelt de rookpluim correct te detecteren; anderszins zijn deze rookpluimen
moeilijk tot niet detecteerbaar voor het menselijk oog. Tenslotte, presenteren we in
Hoofdstuk 6 een methode voor de automatische detectie van schepen die potentieel
abnormale uitstoot produceren. Onze aanpak maakt het mogelijk grote hoeveelhe-
den "remote sensing" satelliet data geautomatiseerd verwerken teneinde schepen te
kunnen selecteren die consistent meer uitstoot produceren dan op basis van eigen-
schappen van een schip en vaarcondities kan worden afgeleid. De voorgestelde meth-
ode voorziet in een mogelijke benadering voor het ontwikkelen van een schaalbaar
systeem voor het verstrekken van aanbevelingen voor scheep-inspecteurs gebaseerd
op satelliet observaties. Concluderend, kunnen we stellen dat met het onderzoek en
de resultaten gepresenteerd in dit proefschrift, we opmerkelijke stappen voorwaarts
gezet hebben betreffende vernieuwingen in het inzetten van satelliet-observaties voor
de taak van het continue en wereldwijd monitoren van de NO2-uitstoot van individu-
ele schepen op open zee. Bij aanvang van het onderzoek voor dit proefschrift wisten
we niet meer dan dat sommige rookpluimen met het TROPOMI instrument zouden
kunnen worden onderscheiden. Maar bij de afsluiting van dit onderzoek hebben we
inzicht verkregen in de beperkingen van de gevoeligheid van het detectiesysteem van
het TROPOMI-instrument met betrekking tot NO2-pluimen van schepen, weten we
hoe het TROPOMI-signaal moet worden verwerkt teneinde automatisch informatie te
verkrijgen over de uitstoot van schepen, en hoe we automatisch schepen kunnen se-
lecteren met een potentieel abnormale uitstoot. De door ons beschreven vooruitgang
legt een solide basis voor toekomstige toepassing van satelliet-gebaseerde technologie
in het wereldwijd en continue monitoren van antropogene uitstoot.
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Summary

The marine shipping industry is one of the strongest emitters of nitrogen oxides (NOx),
a pollutant detrimental to both ecology and human health. Over the last 20 years, the
pollution produced by power plants, the industry sector, and automobile vehicles has
been constantly decreasing. In contrast, the pollution impact of maritime transport
persists and continues to increase. This generates a big societal pressure, resulting in
regulations proposed by the International Maritime Organization. These regulations
impose restrictions on emission levels that can be produced by individual ships. While
various methods are used to assess the emission from ships in ports and off-coastal
areas, monitoring over the open sea has been infeasible until now. The game-changer
is the TROPOMI instrument on board the Sentinel 5 Precursor Satellite – studies
show that NO2 plumes from some individual seagoing ships can be distinguished on
TROPOMI images. The objective of this thesis is to pave the way toward the ap-
plication of the TROPOMI instrument for the monitoring of compliance of seagoing
ships with the regulations of the International Maritime Organization. This is being
achieved through the innovative fusion of the methods of advanced machine learning,
feature engineering, and data integration. Each chapter of this thesis builds upon
the findings of its predecessor, as a whole, representing state-of-the-art knowledge in
the application of TROPOMI satellite data for the monitoring of NO2 emissions from
individual seagoing ships.

Following the introductory chapters, in Chapter 3, using a developed machine
learning-based methodology, we examine the sensitivity limits of the detection system
using TROPOMI data concerning the detection of NO2 plumes from ships. The in-
sights gained in this chapter establish the scope for the rest of this study. In Chapter
4, we present a method for automated delineation of a part of a TROPOMI image
that corresponds to a ship under study. This way, one can exclude unnecessary pieces
of information from the analysis and focus attention on the parts of a TROPOMI
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image, where the ship plume is expected to be located. Such an advancement opens a
possibility for a large-scale processing of the ship plume data. In Chapter 5, we pre-
sented a machine-learning-based method for automated segmentation of NO2 plumes
produced by individual ships. The results presented in the Chapter suggest that by us-
ing machine learning for the task of ship plume segmentation we are able to correctly
segment plumes that are hardly or not-at-all detectable by the human eye. Lastly,
in Chapter 6, we present a methodology for the automated detection of potentially
anomalously emitting ships. The presented approach allows the automatic processing
of a huge amount of satellite remote sensing data in order to select for the inspection
ships that consistently emit more than can be inferred based on their properties and
sailing conditions. The proposed methodology provides a potential path toward the
development of a scalable recommendation system for ship inspectors that is rooted
in satellite-based observations.

To conclude, we can state that with the work presented in this thesis, we notably
moved forward with the state-of-the-art concerning the application of satellite obser-
vations for the task of continuous and global monitoring of emissions from individual
ships. At the onset of the work for this thesis research, all we knew was that some
of the plumes from individual ships could be distinguished with the TROPOMI in-
strument. When reaching the end, we know the sensitivity limits of the detection
system of ship NO2 plumes using TROPOMI data, how to process the TROPOMI
signal to extract information about the ship emissions automatically, and how to au-
tomatically select ships that are potential anomalous emitters. These advancements
lay a solid foundation for the future of the application of satellite-based technologies
for continuous monitoring of anthropogenic emissions on a global scale.
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