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Patients with proteinuria can suffer from a myriad of diseases that cause protein to pass 
the glomerular filtration barrier and being insufficiently reabsorbed by the proximal 
tubule apparatus. These diseases include those that are histopathologically characterized 
by scarring and fibrosis of glomeruli, such as both primary and secondary focal 
segmental glomerulosclerosis, and diabetic nephropathy. Other types of diseases leading 
to proteinuria could be classified as auto-immune mediated, such as lupus nephritis 
and membraneous nephropathy. Moreover, many monogenetic diseases that cause 
proteinuria have been identified. Most of these display either a podocytopathy or a defect 
in tubular reabsorption. Although the underlying pathophysiological mechanisms differ 
between all of these diseases, they can share some elements in their respective pathways 
leading to proteinuria. As proteinuria is an independent risk factor for the progression of 
renal disease, cardiovascular morbidity, and overall mortality, treatments attenuating or 
relieving proteinuria are needed. Current treatment is mainly focused on the underlying 
disease and consists of reducing glomerular filtration pressure through inhibition of the 
renin-angiotensin-aldosterone system and, depending on whether an auto-immune or 
auto-inflammatory disease is involved, the addition of immunosuppressive drugs such 
as corticosteroids. 

Elucidating the pathways leading to proteinuria is required to identify novel potential 
therapeutic targets for the treatment of proteinuria. Historically, the main constituents 
of the glomerular filtration barrier were identified through analysis of hereditary 
proteinuria syndromes, as also reviewed by Tryggvason et al.(16) For example, the slit 
diaphragm proteins of Nephrin (NPHS1) and Podocin (NPHS2), glomerular basement 
membrane protein Laminin (LAMB2), and transcription factors that influence podocyte 
gene expression (WT1 and ACTN4) were all identified by investigation of monogenetic 
proteinuric diseases. 

As eloquently said by Iain Drummond: ‘unravelling the molecular pathogenesis of 
human disease presents many experimental challenges, not the least of which is that 
experiments on humans are generally frowned upon.(105)’ Although experimentation on 
animals is also increasingly frowned upon and must rightfully adhere to rigorous ethical 
standards, it is currently still an indispensable element of pathophysiological research. In 
this thesis, a combination of cell culture, experimental animal models, histopathological 
examination of human tissue, and a patient cohort investigation were all employed to 
investigate pathways leading to proteinuria. 
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Nephropathic cystinosis
In chapter 2, an experimental zebrafish embryo model for the autosomal recessive disease 
of nephropathic cystinosis is introduced. Nephropathic cystinosis is a lysosomal storage 
disease where the CTNS gene is mutated, which leads to the accumulation of cystine in 
lysosomes. If left untreated, the disease is fatal.(106, 107) Currently, specific treatment is 
limited to cysteamine, which prevents further cystine accumulation but does not reverse 
the damage. Moreover, drug compliance is relatively low due to adverse effects of bad 
breath, skin odour, gastro-intestinal complaints such as nausea, vomiting, diarrhoea, 
and abdominal pain.(108-110) A Ctns knockout mouse has been developed, but this 
model lacks the glomerular changes also seen in nephropathic cystinosis.(111-113) The 
ctns -/- zebrafish mutant introduced in this study is presented as a promising model for 
the investigation of new therapeutic options and the pathophysiology of nephropathic 
cystinosis. The model displays a phenotype similar to that of the human disease, 
including cystine accumulation, increased glomerular permeability, and decreased 
proximal tubular reabsorption. They have higher mortality than wild-type animals. 
These last symptoms were preventable by treating mutant embryos with cysteamine. 
Renal and extrarenal manifestations of cystinosis have also been described in the adult 
model of this mutant.(114) The zebrafish cystinosis model has already been used to test 
novel treatment strategies for nephropathic cystinosis, such as luteolin, disulfiram, and 
bicalutamide-cysteamine.(115-118) 

Heparan sulphate glycosaminoglycans
Chapters 3 and 4 discuss the previously held paradigm that heparan sulphate 
glycosaminoglycans are essential to glomerular filtration barrier function. This 
hypothesis was formulated by Kanwar and Farquhar several decades ago and was based 
on the finding that enzymatic removal of HS-GAG resulted in the loss of GFB integrity.(7, 
8) Also, HS-GAG expression has been found to be reduced in various proteinuric renal 
diseases.(22) However, based on the results presented in chapters 3 and 4, homozygous 
germline mutations in zebrafish and, respectively, heterozygous mutations in humans 
of HS backbone elongating enzymes are shown not to result in proteinuria, nor a renal 
phenotype. The role of HS-GAG has long been thought to provide the GFB its charge 
selectivity due to the negatively charged sulphate groups of heparan sulphate. In chapter 
3, we show that a significant reduction in negatively charged sites in the glomerular 
basement membrane does not result in proteinuria. Results from other experimental 
animal models with HS-GAG deficiencies are in line with this notion.(23-25, 27, 119) 
In chapter 4, the effect of heterozygous germline mutations on the backbone elongating 
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enzymes of heparan sulphate glycosaminoglycans was investigated in patients with 
multiple osteochondromas. Multiple osteochondroma is an autosomal dominant disease 
caused by a mutation in either EXT1 or EXT2 leading to the formation of, as the name 
implies, multiple osteochondromas.(59, 60, 69) We investigated a cohort of multiple 
osteochondroma patients in a cross-sectional manner and found that they did not exhibit 
proteinuria or an altered endothelial glycocalyx. Also, we investigated a historic cohort of 
patients who had both an osteochondroma resection and kidney biopsy in their medical 
history. Upon re-examination of the slides, no specific glomerular morphological changes 
were observed. One patient did show a glomerular phenotype on electron microscopy 
similar to that of a described case of ‘MO glomerulopathy’ with focal fibril deposition.
(56) The rare cases of MO glomerulopathy are hypothesized to be caused by local loss of 
heterozygosity. 

In conclusion, the results from these studies support the growing body of evidence 
that loss of heparan sulphate glycosaminoglycans does not result in loss of glomerular 
filtration barrier integrity, despite resulting in loss of negatively charged sites. 

Dynamin and GTPases 
One of the most promising potential therapeutic targets for the treatment of proteinuria 
is dynamin. Dynamin is known for its role clathrin-mediated endocytosis and synapse 
junction vesicle budding. Dynamin is a GTPase that forms a helical polymer around the 
neck of budding vesicles and causes membrane scission (120). In the kidney, it has been 
identified to be involved in the turnover of nephrin, direct interaction with actin and 
actin-regulatory proteins, and the endocytosis of albumin by podocytes. (11, 12, 14, 74) Its 
function depends on its oligomerization state and on whether it is cleaved by cathepsin L. 
(13, 14, 87, 121, 122) Schiffer et al. and Ono et al. demonstrated the potential of dynamin 
as a therapeutic target by treating several proteinuric animal models with Bis-T-23, which 
stimulates dynamin oligomerization. After administration, proteinuria decreased and the 
ultrastructure of podocyte foot processes was restored.(75, 76) In chapter 5, we show 
that glomerular dynamin mRNA expression increases before the onset of proteinuria 
and that both Dynamin and Cathepsin L protein expression is increased in proteinuric 
patients with various different underlying diseases. These results further support the 
suggested protective and dynamic role of dynamin in preventing the development of 
proteinuria through its interaction with the actin cytoskeleton and nephrin before the 
onset of proteinuria. As this mechanism also seems to play a role in proteinuric patients, 
this study further propagates the concept that dynamin and its regulation are potential 
therapeutic targets for the treatment of proteinuria.
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Podocyte actin cytoskeletal regulation not only depends on dynamin, which is classed 
as a large GTPase, but also on the Rho-family of small GTPases like RhoA, Cdc42, and 
Rac1. They are involved in podocyte foot process motility and junctional and cytoskeletal 
interactions. Imbalances to the Rho GTPases are described to result in either hypo- or 
hypermobility of foot processes which both result in the progression of podocytopathy.
(123) Rho GTPase signaling can be influenced by circulation factors such as soluble 
urokinase-type plasminogen activator receptor (suPAR), which activates Rac1. Inhibiting 
suPAR has been shown to inhibit podocyte injury in vitro. (124)

The results described in this thesis, combined with other literature on actin cytoskeleton 
regulation, expand the understanding that the GFB is not the static barrier it was once 
presumed to be, but rather an intricate apparatus that is dynamically regulated depending 
on local circumstances and circulating factors. 

Transmembrane protein 14A
In chapter 6, transmembrane protein 14A (TMEM14A) is reported as another important 
protein in the preservation of adequate GFB function and integrity. It was previously implied 
to be involved in suppressing Bax mediated apoptosis.(95) Other than that, TMEM14A is 
a relatively unknown protein. Here, we identified it to be involved in the development of 
proteinuria by examining the results of a microarray study in spontaneously proteinuric Dahl 
SS rats. There, it was found to be significantly downregulated compared to spontaneously 
hypertensive, non proteinuric rats. To establish whether TMEM14A plays a direct and 
essential role in the development of proteinuria, a zebrafish embryo knockdown model 
was utilized. Results from this study shows that knocking down TMEM14A translation 
results in loss of GFB integrity without affecting tubular reabsorption capacity. Next, we 
show that both mRNA and protein expression of TMEM14A is reduced before onset of 
proteinuria. This study also reveals that glomerular TMEM14A expression is increased in 
proteinuric kidney disease, except in diabetic nephropathy. This result corresponds with 
in vitro findings, where inducing podocyte damage also increases TMEM14A expression. 
A protective mechanism by TMEM14A is proposed with a potential action mechanism 
through inhibiting podocyte apoptosis. Further studies are required to assess whether 
this is indeed the case. It would be of particular interest to identify up- and downstream 
modulators of TMEM14A expression and function.   

Zebrafish embryo model
Zebrafish (Danio rerio) are freshwater fish originally from Southern Asia. They have 
become a widespread scientific model for the investigation of various pathophysiological 



Chapter 7

126

processes, including renal physiology. They are even part of the aquatic habitat on the 
International Space Station and are one of the few vertebrates to have lived a full life cycle 
in space.(125) 

In chapters 2, 3, 5, and 6, an experimental zebrafish (Danio rerio) embryo model is 
used to assess whether knocking down mRNA translation of a single gene results in the 
development of proteinuria and whether tubular reabsorption mechanisms remain intact. 
Using this model presents several advantages compared to other experimental animal 
models. First, zebrafish embryos develop rapidly. Most major organs are formed within 
40 hours post-fertilization. Due to their mostly transparent appearance, this development 
can be visualized relatively easily. Secondly, a single pair of adult zebrafish can lay over 
200 eggs. Thus, in controlled conditions, it is possible to create high throughput models. 
The zebrafish embryo kidney consists of a pronephros with two nephrons that share a 
fused glomerulus in the midline of the body. Despite its simple structure compared to the 
more complex human metanephros, the zebrafish kidney shares many similar features 
with the kidneys of higher vertebrates and as such, is increasingly used as an experimental 
model for the study of cellular and molecular mechanisms of renal pathophysiology.(105, 
126) Because of these characteristics, these animals are highly suited for investigating 
individual components of the pathways leading to proteinuria. (39, 40, 43, 82, 105, 126, 
127)

In chapters 2 and 3, genetically mutated zebrafish were used as experimental models. In 
chapters 5 and 6, gene knockdown was effectuated by injecting zebrafish embryos with 
morpholino constructs. These constructs bind to mRNA and thus inhibit translation, 
leading to a functional knockdown of the targeted gene and its mRNA. In all these models, 
functional assays of glomerular filtration barrier integrity and tubular reabsorption were 
assessed by injecting a mixture of TRITC-labelled 3 kDa and FITC-labelled 70-kDa 
dextrans. As 3 kDa dextrans can freely pass the glomerular filtration barrier, they are 
reabsorbed in endosomes in the proximal tubule under physiological conditions. On the 
other hand, 70 kDa dextrans do not readily pass the GFB and as such, are only reabsorbed 
when GFB integrity is compromised. Thus, the presence of 3 kDa droplets was used to 
assess whether tubular reabsorption mechanism functions properly. The presence of 70 
kDa was used to assess the loss of GFB integrity. This model was developed in these 
studies after adapting it from Hentschel et al. (40)

Other methods to assess GFB integrity in zebrafish embryos have also been developed 
by others. For example, a transgenic zebrafish expresses its main serum protein, vitamin 
D binding protein, bound with green fluorescent protein (EGFP). This model removes 



7

General discussion and future perspectives

127   

the necessity to inject a dextran mixture but has no simultaneous assessment of tubular 
reabsorption function. With the introduction of this model, measuring the loss of 
fluorescence intensity in the zebrafish eye was also established as an indirect measurement 
of loss of GFB integrity. (45) 

Spontaneously proteinuric rat model
Laboratory rats (Rattus norvegicus domestica) are perhaps the most well-known 
experimental animal model, after mice. The first documented experiment on rats was 
performed in France back in 1856 and consisted of the examination of the effects of 
adrenalectomy.(128) Rats were also ahead of zebrafish regarding space travel, as they 
had joined Soviet space dogs Belka and Strelka aboard the Sputnik 5 in 1960. In this 
thesis, the spontaneously proteinuric Dahl salt-sensitive rat strain was compared with 
nonproteinuric spontaneously hypertensive rats in chapters 5 and 6. Although these two 
strains have similar blood pressure levels, the Dahl rats become progressively proteinuric 
as they age. The cause of early onset albuminuria in Dahl rats was previously found to 
be a polygenic trait.(79) In that study, genome-wide linkage, and quantitative trait loci 
(QTL) mapping analysis was performed. These QTLs were subsequently used to identify 
individual genes that are involved in the development of proteinuria. This was done by 
microarray analysis on purified Dahl and SHR glomeruli and comparing the differential 
regulation in time to the previously defined QTLs. Dynamin, which is discussed in chapter 
5, was one of the cytoskeleton-related genes identified in this manner. TMEM14A was 
one of the most markedly downregulated genes in the comparison of relative expression 
prior to QTL correlation.

Future perspectives
In conclusion, the work presented in this thesis adds to the knowledge of the pathways to 
proteinuria by both challenging the previously held tenet of a static filtration barrier and 
supporting the theories entailing a dynamically regulated interplay between the various 
layers of the glomerular filtration barrier in conjunction with the tubular reabsorption 
apparatus. As also reviewed by Comper et al., the functionality of both the GFB and 
proximal tubular reabsorption seems to depend on whether proteinuric circumstances 
are present.(129) The expansion of comprehension of the pathophysiological mechanisms 
underlying pathways to proteinuria will be key to identifying new therapeutic targets. 
As described above, the novel zebrafish model of nephropathic cystinosis has already 
proven its worth for testing new therapeutic compounds whilst simultaneously offering 
new insights in the pathophysiology of cystinosis.
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Regarding the role of negative charge and specifically, that of heparan sulphate 
glycosaminoglycans in the glomerular filtration barrier, it would be most interesting 
to investigate which proteins or circulating factors (next to the previously identified 
heparanase) influence its expression and degradation.(130, 131) Also, the changes in 
ligand binding ability of the glomerular glycocalyx might reveal more about the role of 
HS-GAG in maintaining GFB integrity. 

Both large (dynamin) and small (Rho family) GTPases have already shown promise 
as therapeutic targets in preventing or even attenuating renal damage in proteinuric 
animal models. Compounds acting on these targets are yet to enter safety and efficacy 
testing for human trials but are an elegant example of translational medicine from 
a pathophysiological point of view. New potential targets, such as TMEM14A and its 
uncharted regulatory proteins, are being discovered at a high rate. As glomerular 
expression levels in human proteinuric kidneys in our TMEM14A experiments differed 
depending on etiology, it is conceivable that this particular pathway might not be of 
interest to all proteinuric diseases, but only a subset like diabetic nephropathy. It can 
be tentatively stated that the further identification of its protein-protein interactions 
including up- and downstream effects will reveal if this pathway to proteinuria is indeed 
a feasible therapeutic option.

The zebrafish experimental animal model has presented itself as an expedient model for 
both identifying and testing therapeutic targets. Further innovations in experimental 
animal models and especially in non-animal models such as organoids, will hopefully 
increase the rate of discovering potential targets and screening the effectiveness of 
therapeutic compounds. Thus, by further illuminating the pathways to proteinuria we 
hope to keep advancing the field towards targeted treatment of proteinuria for the benefit 
of our patients.
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