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Graphical Abstract

Aberrant blood transcriptomes in people with tuberculosis are further altered in
people who also have type 2 diabetes.
Excessive inflammatory responses persist throughout tuberculosis treatment in
tuberculosis-diabetes co-morbid patients.
Inclusion of TB patients with diabetes or elevated hyperglycaemia permits the
development of biosignatures which accurately predict tuberculosis-treatment
response across the normoglycaemia/diabetes spectrum and across geographical
populations.
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Abstract
Background: People with diabetes are more likely to develop tuberculosis
(TB) and to have poor TB-treatment outcomes than those without. We previ-
ously showed that blood transcriptomes in people with TB-diabetes (TB-DM)
co-morbidity have excessive inflammatory and reduced interferon responses at
diagnosis. It is unknownwhether this persists through treatment and contributes
to the adverse outcomes.
Methods: Pulmonary TB patients recruited in South Africa, Indonesia and
Romania were classified as having TB-DM, TB with prediabetes, TB-related
hyperglycaemia or TB-only, based on glycated haemoglobin concentration at TB
diagnosis and after 6 months of TB treatment. Gene expression in blood at diag-
nosis and intervals throughout treatment was measured by unbiased RNA-Seq
and targetedMultiplex Ligation-dependent ProbeAmplification. Transcriptomic
data were analysed by longitudinal mixed-model regression to identify whether
genes were differentially expressed between clinical groups through time. Pre-
dictive models of TB-treatment response across groups were developed and
cross-tested.
Results: Gene expression differed between TB and TB-DM patients at diagno-
sis and was modulated by TB treatment in all clinical groups but to different
extents, such that differences remained in TB-DM relative to TB-only through-
out. Expression of some genes increased through TB treatment, whereas others
decreased: some were persistently more highly expressed in TB-DM and others
in TB-only patients. Genes involved in innate immune responses, anti-microbial
immunity and inflammation were significantly upregulated in people with TB-
DM throughout treatment. The overall pattern of change was similar across
clinical groups irrespective of diabetes status, permitting models predictive of
TB treatment to be developed.
Conclusions: Exacerbated transcriptome changes in TB-DM take longer to
resolve during TB treatment, meaning they remain different from those
in uncomplicated TB after treatment completion. This may indicate a pro-
longed inflammatory response in TB-DM, requiring prolonged treatment or
host-directed therapy for complete cure. Development of transcriptome-based
biomarker signatures of TB-treatment response should include people with
diabetes for use across populations.

KEYWORDS
diabetes, transcriptome, treatment, tuberculosis

1 INTRODUCTION

Diabetesmellitus (DM) negatively impacts on tuberculosis
(TB) control efforts by increasing the risk of Mycobac-
terium tuberculosis infection1 and of progression to active
TB disease three-fold.2,3 The growing prevalence of DM,
particularly in countries with high burdens of TB, means

DM now underlies around 15% of TB cases globally,4
accounting for 10% of TB deaths in HIV-negative people.
Concomitant DM negatively affects TB-treatment out-
comes and is associated with increased risks of delayed
sputum conversion, relapse, treatment failure and death:
the relative risk for each poor outcome is∼2 to∼5 in meta-
analyses.5,6 It is unknown whether extending standard TB
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treatment would improve the outcome for TB-DM comor-
bid patients, or whether alternative treatment is required,
such as host-directed therapy. Improvement of diabetes
management in people with TB- DM comorbidity may
also improve TB outcomes. A pragmatic clinical study7
linked to this one showed that structured DM monitoring
and intervention improved glycaemic control in TB-DM
patients, but was underpowered to determine the effect on
TB treatment outcome.
The worldwide DM prevalence is ∼463 million people

and is estimated to rise to 700million by 2045.8 The major-
ity of people have type-2 DM, caused by a reduction in
the response to insulin thereby reducing its ability to con-
trol target cell metabolism, which triggers an increase in
insulin production leading to pancreatic damage through
exhaustion, and impaired glucose tolerance. There is a
spectrum from normal through to overt DM via interme-
diate hyperglycaemia (IH), and people with IH are more
likely to develop DM in the future.9 As well as mea-
sures such as impaired fasting glucose and the impaired
glucose tolerance test, the HbA1c concentration can indi-
cate an individual’s position on this spectrum.9 Infectious
diseases, including TB, can cause temporary stress hyper-
glycaemia, which carries a higher risk of adverse events
than longer-term pre-diabetes.10 TB-induced stress hyper-
glycaemia also makes DM diagnosis difficult: some people
with apparent newly diagnosed DM at TB diagnosis no
longer reach DM diagnostic criteria after TB treatment.11
TB incidence and TB-DM treatment outcomes are worse
in people with poorly controlled DM with higher HbA1c
concentrations.12
People with TB-DM comorbidity have altered immu-

nity compared with people with uncomplicated TB, with
both innate and adaptive immune responses affected.13
In plasma, various inflammatory cytokines such as IL-
1β, IL-17A, interferon (IFN)γ and TNFα are more elevated
in people with TB-DM14,15 and TB-pre-diabetes16 than in
people with uncomplicated TB. People with TB-DM have
more circulating Th1 and Th17 cells and fewer Tregs. In
uncomplicated TB, peripheral immune responses typically
resolve to normal levels during successful TB treatment.15
In contrast, the excessive inflammatory plasma cytokine
responses in TB-DM are still evident after treatment
completion,17 and dendritic cell, monocyte18 and T cell
differentiation19 aberrations are still present at 2 months,
although resolved by 6 months, indicating a delayed
response to TB treatment in TB-DM patients.
Transcriptomic technologies have shown widespread

changes in gene expression occur in blood from TB
patients compared with healthy individuals in multiple
studies, revealing an enhanced circulating inflamma-
tory and type 1 IFN response.20–23 With successful TB
treatment, this transcriptomic signature is rapidly down-

regulated, has largely diminished after 2 months of
treatment and mostly disappears by 12 months,21,23,24
mirroring clinical resolution and chest X-ray improve-
ment; however, transcriptomes do not fully resolve with
poor TB treatment outcome,25 including in people with
TB-DM comorbidity.26 We recently showed27 that DM
comorbidity, as well as IH, significantly affects the TB
diagnosis biosignature, causing an enhanced inflam-
matory but reduced type 1 IFN response. This is in
concordance with reduced IFNβ responses to Toll-like
receptor stimulation in people with DM.28 Differences
in the changes in blood transcriptomes through TB
treatment between people with TB-DM comorbidity and
those with uncomplicated TB have not been described.
The main aim of this study was to determine whether
transcriptomic biosignatures resolve normally in people
with TB-DM co-morbidity, or whether changes during
TB treatment are kinetically or qualitatively different to
those observed in people with uncomplicated TB alone.
Additionally, differences in TB patients with pre-diabetes
or IH compared with uncomplicated were identified. The
characterisation of any such differences between people
with TB-DM and TB-only may indicate the underlying
mechanisms for worse TB treatment outcomes and may
indicate promising avenues for the development of new
therapies.

2 METHODS

2.1 Patient recruitment and
classification

Newly diagnosed patients with bacteriologically con-
firmed pulmonary TB, with or without concomitant DM,
were recruited in three locations: Bandung, Indone-
sia (UNPAD), Cape Town, South Africa (SUN) and
Craiova, Romania (UMFCV), as part of the TANDEM
project.29 Exclusion criteria were multi-drug-resistant TB,
HIV positivity, pregnancy, other serious co-morbidity
or corticosteroid use. In South Africa, healthy con-
trols (HCs) without TB, diabetes or hyperglycaemia
were also enrolled: all had laboratory HbA1c < 5.7%
were sputum smear and culture negative and had nor-
mal chest X-rays. Samples were not available from
HCs in the Indonesian cohort. All participants gave
written informed consent. The study was approved by
the LSHTM Observational Research Ethics Committee
(6449/July2013), theUNPADHealthResearchEthics Com-
mittee (377/UN6.C2.1.2/ KEPK/PN/2012), the SUN Health
Research Ethics Committee (N13/05/064/July2013) and
the UMFCV Committee of Ethics and Academic and
Scientific Deontology (94/September2013).

 20011326, 2023, 9, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ctm

2.1375 by L
eiden U

niversity L
ibraries, W

iley O
nline L

ibrary on [07/06/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



4 of 19 ECKOLD et al.

All TB patients underwent first line TB treatment
according to WHO guidelines. Most patients diagnosed
with DM received the local standard of care treatment,
and the medication taken was noted. A TB-DM subgroup
within the Indonesian cohort had intensive HbA1c mon-
itoring as part of a pragmatic randomised control trial,
with DM medication changed accordingly.7 Participants
were classified by DM/glycaemia status at TB diagno-
sis and after 6 months of TB treatment (Figure 1 and
Table S1). The ‘TB-DM’ group included patients with both
pre-existing and newly diagnosed DM (Table S2). Peo-
ple with newly diagnosed TB-DM had laboratory HbA1c
test ≥6.5% with confirmatory HbA1c test ≥6.5% or fasting
blood glucose ≥7 mmol/L at TB diagnosis,29,30 followed
by a further HbA1c test ≥6.5% after 6 months of TB treat-
ment. Infection, including TB, can drive impairments in
glucose control leading to elevated HbA1c, which can
then resolve when the infection is cleared. In order to
distinguish between people with TB-induced, transiently
elevated HbA1c from people who had pre-diabetes irre-
spective of their TB, we further sub-classified people who
had HbA1c ≥5.7% at TB diagnosis. TB patients whose
HbA1c test results were ≥5.7% and <6.5% at both TB diag-
nosis and at 6 months were deemed to have pre-diabetes
(‘TB-preDM’). Patients whose HbA1c result was ≥5.7% at
TB diagnosis but <5.7% at 6 months were deemed to have
TB-related IH at TB diagnosis (‘TBrel-IH’).

2.2 Sample collection and RNA
extraction

Venous blood samples (2.5 mL) were collected into PAX-
gene Blood RNA Tubes (PreAnalytiX) from TB patients
prior to TB treatment initiation (W0) and at intervals
through treatment (W2,4,8,16,26) up to 12 months post
diagnosis (W52) and stored at −80◦C prior to analysis.
Total RNA was extracted using RNeasy spin columns
(Qiagen) and quantified by Nanodrop (Agilent).

2.3 Unbiased whole genome RNA-Seq

RNA samples that were processed for RNA-Seq analy-
sis were quality-assessed using the LabChip GX HiSens
RNA system (PerkinElmer). Total RNA samples were
processed using the poly-A tail Bioscientific NEXTflex-
Rapid-Directional mRNA-seq method with the Caliper
SciClone to generate libraries, which were single-end
sequenced using the NextSeq500 High Output kit V2 (Illu-
mina) for 75 cycles. Data are deposited in the NCBI-GEO
database, accession number GSE193978. STAR (v2.5.1b)31
was used to align the sequence data from FASTQ files to

the Human g1kv37 reference genome, and quality control
was performed with FastQC.32 Downstream data analysis
was performed in R.33 HTseq-count (v0.61) was used for
transcript quantification,34 and lowly abundant transcripts
were removed. Data were normalised using the DESeq2
(1.30.0)35 R package, which included a correction for sex.
For the MaSigPro36 analysis, due to the number of

timepoints, a quadratic regression model (degrees of
freedom = 2) was executed. MaSigPro uses a two-step
regression-based approach which finds genes with tempo-
ral differences and also differences between groups. It is
similar to a two-way ANOVA but for longitudinal RNA-
Seq data, accounting for similarity between samples from
the same individual. This includes an initial least-squares
technique and then stepwise regression. The coefficients
obtained then undergo hierarchical clustering to group
the genes together that behave similarly. False discov-
ery correction was done using the Benjamini–Hochberg
methodwith an adjusted p value< .05 deemed to be signif-
icant. From the genes that were found to be differentially
expressed between clinical groups, the R package tmod37
and its HGtest function were used for modular analysis,
with all genes used as the background. Modules with an
adjusted p value < .05 were deemed significant. Modular
activity was calculated by summing the differential expres-
sion of genes in the TB-DM group relative to the TB-only
group within a module and then dividing by the number
of genes within that module. Molecular degree of pertur-
bation (MDP) analysis was performed using the R package
mdp.38 The g:profiler webtool39 was used for gene ontology
and pathway analyses of gene lists.

2.4 Targeted gene expression profiling

Reverse-Transcriptase Multiplex Ligation-dependent
Probe Amplification (dcRT-MLPA) was performed using
the SALSA MLPA kit (MRC-Holland) as described
elsewhere.40 RT primers and half-probes were designed
by Leiden University Medical Centre (LUMC, Leiden,
the Netherlands)41,42 and included sequences for four
housekeeping genes and 144 selected key immune-related
genes to profile specific compartments of the human
immune response (Table S3): (1) innate immune response:
inflammasome components, pattern recognition receptors
and myeloid-associated genes; (2) inflammatory and IFN-
signalling genes (ISGs); (3) adaptive immune response:
T, Th, Treg, B and NK cell markers; (4) other genes:
anti-microbial activity, inflammation, intracellular trans-
port, markers of apoptosis, cell survival or cell growth,
proliferation and activation, additional chemokines,
transcriptional regulators/activators. Briefly, 125 ng RNA
was reverse transcribed to cDNA by incubation at 37◦C
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F IGURE 1 Recruitment of participants with TB into the TANDEM study, and selection of participants for inclusion in the gene
expression analyses. The TANDEM study was a multi-centre, multidisciplinary project investigating various factors in TB and diabetes
co-morbidity. This bioprofiling study was nested within the TANDEMMaster study, in which 2185 TB patients were recruited to undergo
screening for diabetes. They were initially classified into those with diabetes or without diabetes and were recruited into the bioprofiling
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for 15 min using Moloney Murine Leukemia Virus reverse
transcriptase (Promega) with gene-specific RT-primers
(Sigma–Aldrich), followed by inactivation of the enzyme
by heating at 98◦C for 2 min. The left- and right-hand half
probes were hybridised to the cDNA at 60◦C overnight,
followed by ligation at 54◦C for 15 min using ligase-65
(MRC-Holland), and inactivation by heating at 98◦C for
5 min. Ligated probes were amplified by PCR (33 cycles
at 95◦C for 30 s, 58◦C for 30 s and 72◦C for 60 s, followed
by one cycle at 72◦C for 20 min). PCR products were 1:10
diluted in Highly deionised (Hi-Di) formamide (Ther-
moFisher) containing the 400HD Rhodamine X (ROX)
fluorophore size standard (ThermoFisher). PCR products
were denatured at 95◦C for 5 min, stored immediately at
4◦C and analysed on an Applied Biosystems 3730 capillary
sequencer in GeneScan mode (BaseClear). Trace data
were analysed using GeneMapper software 5 (Applied
Biosystems). The areas of each assigned peak (arbitrary
units) were exported for analysis in R (version 3.6.3). Data
were normalised to the housekeeping gene glyceraldehyde
3-phosphate dehydrogenase (GAPDH) and signals below
the threshold value for noise cutoff in GeneMapper (log2
transformed peak area 7.64) were assigned the threshold
value for noise cutoff.
dcRT-MLPA data were analysed to identify differen-

tially expressed genes (DEGs) between groups at diag-
nosis by the non-parametric Mann–Whitney U-test with
Benjamini–Hochberg correction formultiple testing. Inge-
nuity pathway analysis (IPA-60467501) (QIAGEN) was
used to explore interactive networks between the DEGs.
MDP analysis (mdp R package),38 partial least squares—
discriminant analysis (PLS-DA) (mixOmics R package)43
and Pearson correlations of gene expression (log2 FC)
versus HC were performed in R version 4.0.2. Longitu-
dinal changes in gene expression levels from diagnosis
(baseline) to 6 months (Indonesian cohort) or 12 months
(South African cohort) were assessed by means of lin-
ear mixed models for repeated measurements over time.
Models were fitted to Log2-transformed measurements in
the lme4 R package using the lmer function.44 Group–
time interactions were included as fixed effects and the
patient identifier–time interactions were included as ran-
dom effects. For the South African cohort, we forced a
b-spline at 6 months, which enabled us to identify altered
gene expressions during treatment (0–6 months) as well
as altered gene expression after treatment (6–12 months).
Time was coded as 0 for the first timepoint (diagnosis) and

as a continuous variable for the time difference between
the two time points. p Values were adjusted for multiple
testing using the false discovery ratemethod of Benjamini–
Hochberg.45 An adjusted p value < .05 and a log2-fold
change (FC) <− .6 and > .6 were set as thresholds for the
identification of DEGs. Genes that were below the detec-
tion limit in>90% of the samples per cohort were excluded
from the analysis. Signatures with the best discriminatory
capability were identified using logistic regression with
lasso regularisation (glmnet R package).46 Leave-one-out
cross validation and train-test split were used to assess
the performance of the trained regression models. The
classifying performance of the models were assessed by
evaluating the sensitivity, specificity, receiver operating
characteristic (ROC) curve and area under the ROC curve
(AUC) with 95% confidence interval (CI), and box-and-
whiskers-plots representing the predicted probability for
each class were used to evaluate the classifying perfor-
mance of themodels. Ingenuity pathway analysis was used
to identify top canonical pathways, upstream regulators
and causal networks in the biosignaturemodel andMaSig-
Pro RNASeq DEG lists. Therapeutic drug inhibitors were
identified using the Therapeutic Target Database47 and the
GeneCards Database.48

3 RESULTS

3.1 Study population

TB patients were recruited in South Africa, Indonesia
and Romania, as a nested sub-study within the TANDEM
project29 (Figure 1 and Table S1). Sixty-eight patients had
TB and DM comorbidity, of whom 49 had pre-existing dia-
betes and 19were diagnosedupon study recruitment (Table
S2). Forty-two TB patients without diagnosed DM were
classified as having uncomplicated TB-only, whereas 53
had TBrel-IH at the time of TB diagnosis which resolved
by the end of treatment. Thirty-two patients had TB-
preDM, with persistent moderately elevated glycaemia. TB
patients were all followed up for 18 months, with blood
samples collected during TB treatment. In South Africa,
HCs (n = 27) were also recruited, with blood samples
collected at one time. Their RNASeq profiles have been
published previously,27 and they are included here in the
targeted gene dcMLPA analysis for reference. All groups
were evenly sex balanced, except for male predominance

sub-study if they met the inclusion and exclusion criteria. Study participants were followed up at time points shown, with blood samples
taken for gene expression analyses. The primary aim was to compare people with TB and with TB-DM comorbidity through TB treatment.
Secondarily, we analysed gene expression in TB patients with stable (TB-preDM) or transient (TBrel-IH) elevated glycaemia, as we discovered
that this also impacted gene expression.
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in the TB-PreDM group. Age ranges were similar across
clinical groups. In the Indonesian TB-DMgroup, there was
a highly significant decrease in HbA1c through TB treat-
ment, which was likely due to the intensive DM follow-up
in Bandung (Figure S1 and Table S1); this was not evident
in South Africa or Romania.

3.2 Global longitudinal transcriptomes
in TB-DM

Gene expression was determined in venous blood by RNA-
Seq in a subgroup of study participants from the four TB
patient clinical groups (TB-DM: n= 34; TB-PreDM: n= 10;
TBrel-IH: n = 20; TB-only: n = 16; Table S1 and Figure 1).
The MDP of gene expression in individual samples from
patients with TB-only or TB-DM over time was calculated
relative to the mean gene expression at diagnosis in peo-
ple with TB-only (Figure 2). We have previously shown
that the gene expression in TB and TB-DM patients at
TB diagnosis is perturbed relative to HCs.27 The overall
gene expression was different between TB and TB-DM
patients at diagnosis. As expected, there were changes in
gene expression during TB treatment in the TB-only group,
which were evident by week 2 and continued through-
out treatment. The global gene expression change in the
TB-DM group through treatment was of lower magnitude,
indicating less impact of TB treatment: global gene expres-
sion in the TB-DMgroup remained different to the TB-only
group at all time points (Figure 2).
The MaSigPro package performs a two-step regression

analysis. This novel statistical approach identifies genes
that change significantly across groups and through time.
Traditional methods rely on pairwise comparisons which
would be ineffective at capturing the dynamic nature of
longitudinal data.36 This analysis identified 167 genes with
significantly different changed expression between TB-
DM and TB-only groups through TB treatment, in the
combined dataset from SouthAfrica, Indonesia andRoma-
nia. Hierarchical clustering of these genes based on similar
expression patterns yielded nine clusters (Figure 3 and
Table S4). Clusters which were more highly expressed
in TB-DM patients throughout treatment (clusters 1, 2,
4 and 8) were enriched for genes involved in the innate
immune response, IL-4 signalling, protein dimerisation
and neutrophil chemotaxis, determined using the DAVID
Functional Annotation Tool49 (Table 1). Cluster 6 exhibited
divergence between TB and TB-DMpatients only at week 8
of treatment: this cluster was enriched for genes involved
in anti-viral and IFN signalling responses. Clusters more
highly expressed in TB-only patients (clusters 3, 5, 7 and 9)
were smaller and enriched for alternative splice variants
and immunoglobulins.

F IGURE 2 Molecular degree of perturbation plots
representing change in global gene expression in blood relative to
patients with TB-only at TB diagnosis. Gene expression was
determined by RNA-Seq of whole venous blood from pulmonary TB
patients from all three clinical locations with (TB-DM: n = 34) or
without (TB-only: n = 18) concomitant diabetes, at TB diagnosis and
during TB treatment. The bars show the median and
1.5*inter-quartile range.

3.3 Aberrant longitudinal
transcriptomes in TB patients with
intermediate hyperglycaemia

Previously27 we showed that gene expression in TBrel-IH
is more similar to people with diagnosed DM and TB than
with TB-only at TB diagnosis. We repeated the MaSigPro
analyses separately for South Africa and Indonesia, com-
bining patients with pre-DM and intermediate glycaemia,
to determine how transcriptomes changed through TB
treatment in intermediate groups (Figure S2). In South
Africa, the analysis resulted in 1179 transcripts separated
into three hierarchical clusters, which changed through
treatment differently across clinical groups (Figure S2A
and Table S5), with the combined intermediate group
behaving more similarly to TB-DM. Similar results were
obtained with the Indonesian cohort, with 2354 tran-
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8 of 19 ECKOLD et al.

F IGURE 3 MaSigPro analysis of change in gene expression through TB treatment in blood samples from patients in all three
populations combined (South Africa, Indonesia and Romania). MaSigPro identified genes that behave similarly between patient groups using
hierarchical clustering. Results are shown for log-transformed normalised count for the TB-only group or TB-DM. Bars show mean ± 1 SEM.
Data were filtered to remove lowly abundant transcripts prior to analysis.

scripts across four hierarchical clusters behaving differ-
ently between clinical groups (Figure S2B and Table
S6).
A core list of 102 genes overlapped between MaSigPro

analyses for the combined cohort from Romania, South
Africa and Indonesia, and from the latter two popula-
tions separately (Figure S3 and Table S7). Gene ontology
and pathway analyses of this core list using the g:profiler
webtool revealed functional enrichment of genes involved
in the immune response, in the response to biotic stim-
uli, and gene products localising to intracellular vesicles
(Figure S4). We hypothesised there would be differences
between the TB-preDM and TBrel-IH groups, as the ini-
tially elevated HbA1c in the TBrel-IH group was directly
ascribed to TB and resolved during TB treatment, whereas
there was persistence of hyperglycaemia in the TB-preDM
group through TB treatment; however, there was no evi-
dence to support this postulate, as gene expression changes
in both TB-preDM and TBrel-IH patients were largely sim-
ilar to each other, and the similarity to TB-DM or TB-only
patient groups varied by gene cluster (Figure 4). Longi-
tudinal mixed effects model analysis of mean expression
within the core gene list clusters showed highly significant

changes across all four clinical groups throughout treat-
ment, with differences between the groups in larger gene
clusters (Table S8). Importantly, there was no interaction
between clinical group and time, showing there was reso-
lution of expression in all groups through treatment, albeit
from different starting points and at different rates.

3.4 Modular analysis of DEGs

DEGs identified in the MaSigPro analyses were used in
modular analyses to understand biological differences
between clinical groups in South Africa and Indonesia.
The DEGs were used as a foreground signal against all
genes (Tables S9 and S10 respectively). Immune activa-
tion,monocytes and neutrophilswere themost statistically
significant differentially expressed modules. The most sta-
tistically significant modules were investigated further by
calculating theirmodular activity in TB-DM relative to TB-
only through time. The top module in both populations
was immune activation, which was upregulated in TB-
DMcomparedwith TB-only throughout treatment. In both
populations, different modules fluctuated and behaved
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ECKOLD et al. 9 of 19

TABLE 1 Clusters of genes differentially expressed between TB-DM and TB-only patients in MaSigPro analysis of the combined
RNA-Seq dataset from South Africa, Indonesia and Romania.

Gene function

Cluster Overall pattern
Number of
transcripts

Protein
coding

Processed
transcript Pseudo-gene

Regulatory
RNAsb

Top non-redundant
functions from DAVIDa

1 Higher in TB-DM
throughout;
decreasing with time

27 19 0 2 6 Innate Immunity
Antimicrobial
RAGE receptor binding

2 Higher in TB-DM
throughout;
decreasing with time

50 28 5 4 13 IPAF inflammasome
IL-4 signalling
Transmembrane helices

3 Lower in TB-DM
throughout;
decreasing with time

6 6 0 0 0 Disulphide bond
Inflammation/fibrosis

4 Higher in TB-DM
throughout;
increasing with time

17 11 3 0 3 Coiled coil
Protein
homo-dimersiation

5 Lower in TB-DM
throughout;
increasing with time

9 8 1 0 0 Collagen-binding
Alternative splicing
phosphoprotein

6 Higher in TB-DM at
week 8, otherwise
similar

28 22 1 0 5 GTPase activity
Anti-viral defence
IFNγ signalling

7 Lower in TB-DM
throughout;

rising end treatment

10 4 1 0 5 Splice variant

8 Higher in TB-DM
throughout;
decreasing with time

16 13 2 0 1 Secreted
Neutrophil chemotaxis
Transmembrane helix

9 Lower in TB-DM at
week 8 and 24,
otherwise similar

4 3 0 0 1 Immunoglobulins

aDAVID49 analysis of GO terms BP, MF, CC direct UP-keywords.
bRetained introns, antisense, LncRNA, miRNA, nonsense-mediated decay, sense overlapping, sense intronic, snoRNA.

inversely to one another between TB-DM and TB-only
(Figure 5).

3.5 Impact of DM on the TB treatment
response using targeted gene expression
profiling

We performed targeted profiling of TB-relevant immune
gene expression in an expanded cohort from South Africa
withmore intensive sampling, using dcRT-MLPA (TB-DM:
n = 19; TB-PreDM: n = 28; TBrel-IH: n = 32; TB-only:
n= 17; HC: n= 27; Table S11). At baseline, the overall gene
expression perturbation, including genes from modules
previously highlighted, was similar in all study groups and
significantly increased compared with HCs (Figure S5A).
PLS-DA displayed a clear although partial separation of all
the TB groups irrespective of DM or glycaemia from HCs,
suggesting distinct genes are perturbed (Figure S5; B27).

Gene expression was strongly correlated between TB-only
and TB-DM, TB-preDM or TBrel-IH, but with some outlier
geneswhichwere affected by glycaemic status (Figure 6A).
The number of DEGs relative to HCs was higher in the
TB-DM (n= 11 DEGs), TB-preDM (n= 7 DEGs) and TBrel-
IH (n = 14 DEGs) groups than TB-only (n = 3 DEGs)
at TB diagnosis (Figure 6B). In these groups, the num-
ber of DEGs progressively reduced over time, indicating a
resolution of expression through treatment. In particular,
normalisation of expression of genes such as GNLY and
GBP1 occurred by 2 weeks in the TB-only group but was
delayed in TB-DM, TB-preDM and TBrel-IH.
Longitudinal MDP analysis in the South African

(TB-DM: n = 19; TB-PreDM: n = 28; TBrel-IH: n = 32;
TB-only: n = 17) and Indonesian cohorts (TB-DM: n = 41;
TB-PreDM: n = 0; TBrel-IH: n = 19; TB-only: n = 20)
indicated the magnitude of the transcriptomic response to
TB treatment was dependent on diabetes/glycaemia, with
TB-DM patients displaying the largest gene expression
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10 of 19 ECKOLD et al.

F IGURE 4 Gene expression through treatment in TB patients with pre-diabetes or TB-related intermediate hyperglycaemia, relative to
TB-DM and TB-only patients. The expression of genes in the Core 102 genelist (Table S7) was summed for those genes within each MaSigPro
gene cluster (Figure 3) for individual patients (log2 scale). Only MaSigPro clusters with >3 genes in the core gene list are shown. Points show
the mean ± SEM for each of the four clinical groups at each timepoint.

perturbation over time (Figures 7A and S6A). Gene
expression changes through treatment, identified by
linear mixed models, showed some consistency across TB
groups, with the South African cohort exhibiting down-
regulation of GBP5, GBP1 and IFITM3 (Figure 7B) and
the Indonesian cohort showing downregulation of GBP5
and IFITM3 and upregulation of GNLY (Figure S6B) from
diagnosis to 6 months. Importantly, the number of upreg-
ulated DEGs in response to TB treatment increased with
rising glycaemia in both cohorts (South Africa: TB-only: 6

DEGs, TB-preDM: 10 DEGs, TBrel-IH: 12 DEGs, TB-DM:
14 DEGs; Indonesia: TB-only: 9 DEGs, TBrel-IH: 13 DEGs,
TB-DM: 22 DEGs). We did not find any evidence that the
change in the expression of the most significantly DEGs
correlated with the change in the glycaemic control in the
TB-DM group, tested in the Indonesian cohort (Figure S7),
suggesting this is an independent measure of TB disease
resolution. Notably, no DEGs were detected between 6 and
12 months in the South African cohort, except for GBP5
(p < 1e−10) in patients with TBrel-IH (Figure S8).
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ECKOLD et al. 11 of 19

F IGURE 5 Modular activity of the most significant modules in TB-DM relative to TB-only in (A) South Africa and (B) Indonesia.
Modular analysis was performed between TB-DM and TB-only patients and the most statistically significant were chosen (p value < .05).
Modular activity calculated by summing the expression of genes within a module and dividing by the number of genes within that module.

Ingenuity pathway analysis showed the majority of
treatment-response DEGs in TB-only and TB-preDMwere
IFN-signalling genes (ISGs) (Figures 8C and S6C). In con-
trast, in TBrel-IH and TB-DM patients, although downreg-
ulation of ISGs through treatment was observed, themajor
changewas upregulation of genes associatedwith adaptive
immunity (T-cell subset markers, Th1-associated genes,
Treg-associated genes, cytotoxicity markers). Overall, the
dcRT-MLPA confirmed that although TB-associated gene
profiles showed similar patterns and rate of change in
TB patients and people with TB-DM, the magnitude was
different.

3.6 Identification of a signature for TB
treatment-response

As TB transcriptomic signatures were altered in people
with DM or IH, we identified signatures with the high-
est classifying power to discriminate between patients at
diagnosis and end of TB treatment irrespective of dia-
betes/glycaemia by pooling all TB patients, using logistic
regression with lasso regularisation. Initially, signatures
were developed in the South African and Indonesian
cohorts separately (Tables 2 and S12). The classifying capa-
bility of each signature against the training (AUC range:
0.73–1.0) and validation (AUC range: .69 – .92) cohorts for

each clinical groupwas reasonably good (Figures 8A and B
and S9A and B). To improve the classification performance
and reduce cohort dependency, the datasets of both cohorts
were pooled, and a combined two cohort 15-gene signature
developed. This showed enhanced classification perfor-
mance across the cohorts, with ROC analysis showing
AUCs of .88 for TB-only, .96 for TBrel-IH and .85 for TB-
DM, with excellent classification retained in individual
cohorts (Figures 8C and S9C). The kinetic profiles of six
representative genes are shown in Figure S10.
Ingenuity pathway analysis revealed the top network of

genes included in the model were centred on TNF/NF-
κB/MAPK (Figure S11A), with the top upstream regulators
including proteins such as natural cytotoxicity triggering
receptor and UL16 binding protein, which are involved in
NK cell mediated killing, as well as the binding partners
solute carrier family 15 member 4 and TLR adaptor inter-
acting with endolysosomal SLC15A4, which are involved
in regulation of TLR7 and TLR8 signalling (Table S13). An
online search revealed limited drugs currently available or
under development to target these regulators. This anal-
ysis was extended to include the genes from the RNASeq
global MaSigPro which were upregulated in TB, down-
regulated by TB treatment but consistently more highly
expressed in TB-DM, that is, genes in Clusters 1, 2, 6 and
8 from Figure 3. The top network identified was an inflam-
matory network centred on NF-κB and MAPK, alongside
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12 of 19 ECKOLD et al.

F IGURE 6 Gene expression profiles in TBrel-IH and TB-DM are not completely normalised to healthy control profiles at the end of TB
treatment. (A) Scatter plots representing Pearson correlations between expression of all genes in targeted dcRT-MLPA panel in TB patients
relative to healthy controls (y-axes) versus the other study groups relative to healthy controls (x-axes), plotted as log2 FC. Red line corresponds
to line of best fit and shaded bands indicate confidence intervals. Genes regulated log2 FC < - .6 or > .6 are annotated. (B) Differential
Expression Analysis was performed on GAPDH-normalised log2-transformed targeted gene expression data of the South African cohort.
Volcano plots representing DEGs at diagnosis and at different timepoints post TB treatment initiation of TB patients categorised based on
their diabetes/glycaemia status compared with the healthy controls. The y-axis scales of all plots are harmonised per study group. p Values,
-log10-transformed for better visualisation, are plotted against log2 FC. Genes with p < .05 and log2 FC < -.6 or > .6 were labelled as DEGs.
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ECKOLD et al. 13 of 19

F IGURE 7 TB treatment response in TB patients is dependent on diabetes/glycaemia status. MDP and differential expression analyses
were performed on GAPDH-normalised log2-transformed targeted gene expression data of the South African cohort. (A) MDP analyses of the
different study groups showing the impact of TB treatment on the overall gene perturbation over time. Samples of patients at diagnosis were
used as baseline controls. (B) Volcano plots representing DEGs regulated during TB treatment of TB patients categorised based on their
diabetes/glycaemia status. The y-axis scales of all plots are harmonised per study group. p Values, -log10-transformed for better visualisation,
are plotted against log2 FC. Genes with p < .05 and log2 FC < -.6 or > .6 were labelled as DEGs. (C) IPA interactive network analyses of DEGs
regulated during TB treatment. The various shapes of the nodes represent the functional classes of the gene products. Gene modules are
indicated by distinctive colours.
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14 of 19 ECKOLD et al.

F IGURE 8 Identification of common host biomarker signatures associated with TB treatment response irrespective of population
heterogeneity and diabetes/glycaemia severity. South African, Indonesian or pooled cohort transcriptomic datasets of TB patients
independent of their diabetes/glycaemia status were used to train the models. Receiver operating characteristic (ROC) curves (sensitivity
plotted against 1-specificity) and area under the curve (AUC) with 95% confidence intervals (CI) show the classifying performance of the
trained models. (A) The model trained on 70% of the South African dataset was tested in the remaining 30% of the South African dataset split
into the different TB study groups (left panel) and validated using the complete dataset of the Indonesian cohort split into the different TB
study groups (right panel). (B) The model trained on 70% of the Indonesian dataset was tested in the remaining 30% of the Indonesian dataset
split into the different TB study groups (left panel) and validated using the complete dataset of the South African cohort split into the different
TB study groups (right panel). (C) The model trained on 70% of the pooled (South African and Indonesian) dataset was tested in the
remaining 30% of the pooled dataset split into the different TB study groups that both cohorts have in common (left panel) and validated
using the complete dataset of the South African cohort split into the different TB study groups (middle panel) or the complete dataset of the
Indonesian cohort split into the different TB study groups (right panel).
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TABLE 2 Gene expression signature predicting month 6 versus
diagnosis, obtained by pooling the study groups and cohorts (South
Africa + Indonesia).

Gene Module Coefficient
Intercept −14.99967
BLR1 G protein-coupled receptors .07841
CCL13 Chemokines .40415
CCL4 Treg-associated genes .66015
CD19 Immune cell subset markers—B cells .2371
CD3E T cell subset markers .35071
CD4 T cell subset markers .00263
FCGR1A IFN signalling genes −.48224
FPR1 Myeloid-associated genes −.1725
GBP5 IFN signalling genes −.16957
IFIT5 IFN signalling genes .0172
NLRP1 Inflammasome components .3498
PTPRCv1 T cell subset markers .6625
TAP1 IFN signalling genes −.51107
TNF Th1-associated genes .06539
ZNF532 Transcriptional regulators/activators .06389

the IFN response (Figure S11B). The top canonical path-
ways identified included inflammasomes and cytokine
signalling. Various compounds exist which target some of
the upstream regulators identified, such as Emapalumab
for IFNγ, anakinra for IL-1α, or H-151 which is under
development for STING1 antagonism (Table S13).

4 DISCUSSION

In this longitudinal analysis of blood transcriptomes,
excessive gene expression perturbation previously
described at TB diagnosis14,27 continued throughout
six months of TB treatment in pulmonary TB patients
with diabetes co-morbidity. However, qualitatively and
kinetically similar changes occurred in patients with or
without diabetes, suggesting prolonged TB treatment
might be sufficient to restore normal transcriptomes and
potentially improve TB treatment outcomes: this would
need to be tested in a clinical trial. Whilst DM itself causes
altered blood transcriptomes, we have previously shown
these are qualitatively different to the changes seen in
TB-DM,27 making it unlikely the remaining TB-related
transcriptomic signature in TB-DM patients is caused
by DM directly. TB patients with either pre-diabetes
or TB-related IH also exhibited greater magnitudes of
gene expression perturbation throughout treatment,
similar to patients with diagnosed diabetes. There was no
clear difference between the pre-diabetes and TB-related

IH groups through treatment, indicating that aberrant
glycaemic control in TB and early in TB treatment is
sufficient to cause prolonged excessive gene expression
abnormalities despite resolution of glycaemic control
in the latter group. Our data published here and in our
previous cross-sectional study27 are not fully consistent
with results reported by Prada-Medina et al13 in an
Indian TB-DM cohort, whereby they concluded that the
differences in the TB-DM transcriptome compared with
TB-only were largely driven by diabetes-related signa-
tures: the difference may be related to the classification
of participants as we have only included people with no
evidence of any hyperglycaemia in our clinical group. The
patient classification utilised in this study was primarily
based on measures of hyperglycaemia. People with type 2
diabetes have complex metabolic and lipid disturbances,
including elevated triglycerides, reduced high-density
lipoproteins and increased low-density lipoproteins in
blood. Such changes have also been observed in TB-DM
co-morbidity,50 with measurements of altered carbohy-
drate, amino acid and lipid metabolism able to clearly
discriminate between TB and TB-DM.51 It is likely not the
hyperglycaemia per se which has caused the alterations
in the gene expression in people with TB-DM in the
current study: rather this would be the overall result of
the complex metabolic disturbance. Here, the overall
consistency in change of gene expression through treat-
ment, irrespective of diabetes status, enabled derivation
of accurate predictive models of TB treatment response,
which could be used effectively in populations with or
without diabetes.
Diabetes has a negative effect on TB treatment

outcomes,5,6 for unclear reasons. One explanation
could be a qualitatively different immune response in
diabetes, leaving people persistently susceptible to bacte-
rial replication and disease reactivation. An alternative
explanation is that excessive inflammation and immune
activation at diagnosis in TB-DM means patients require
longer or, more likely, different treatment to reach the
same endpoint as people with uncomplicated TB, so that
they are not left susceptible to TB recurrence. Our data
support the latter model, as all gene clusters differentially
expressed between clinical groups exhibited similar
changes, but of different magnitude. Prolonged enhanced
concentrations of the pro-inflammatory cytokines IL-1β
and TNFα in blood, and reduced anti-inflammatory IL-10
in sputum, have been observed in patients with TB and
diabetes comorbidity,52 in accordance with our results.
Bronchial spread often persists beyond treatment initia-
tion, with new or expanding cavities appearing on PET-CT
scans 4 weeks into treatment in one-fifth of pulmonary TB
patients.53 Plausibly, increased ongoing bacterial spread
in patients with diabetes co-morbidity causes persistent
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16 of 19 ECKOLD et al.

pro-inflammatory responses: the peripheral transcrip-
tome correlates with lung inflammatory activity in TB
patients.54 Restoration of normal transcriptomes, and pre-
sumably improved lung resolution, could potentially also
be achieved by co-administration of host-directed therapy
alongside standard treatment. Therapy which dampens
pro-inflammatory responses, such as corticosteroids or
matrix metalloproteinase inhibitors,55 would have added
benefit by reducing lung damage, which often persists
after microbiological cure.56 Our data suggest upstream
regulators of inflammatory responses, such as inhibition
of IL-1α or STING1, might provide tractable drug targets
for TB-DM comorbidity. The role of specific DEG or of
upstream regulators could be tested using mouse models
of diabetes coupled with CRISPR technology, to deter-
mine the impact on TB disease pathology and treatment
response following infection with M. tuberculosis. Anti-
hyperglycaemic therapy, such as metformin, leads to more
balanced, less inflammatory responses toM. tuberculosis,57
and has been suggested as adjunctive therapy for TB, par-
ticularly in patients with diabetes.58 Our transcriptomic
data suggest that patients with either pre-diabetes or
TB-related IH would also benefit from prolonged or
adjunctive host-directed therapy, in alignment with the
observed worse TB treatment outcomes in people with
transient hyperglycaemia.59 Improved DM management
per se might also improve TB treatment outcomes, but
there is currently weak evidence in this field and larger
clinical trials are warranted worldwide.60 In one recent
study in the UK, TB patients with well-controlled DM
appear to have had normal TB treatment outcomes,61
whereas we have previously found that many TB patients
with DM have been very poorly managed across four high
TB burden countries.29
The ability to monitor TB treatment and predict out-

come would be beneficial for clinical management. We
show that transcriptomic models can be derived from host
blood which reflect TB treatment-response irrespective
of glycaemia. These models worked well across geo-
graphically and ethnically diverse populations, enhancing
their utility for drug development. There were however
substantial differences between the three populations in
Indonesia, South Africa and Romania, potentially reflect-
ing different genetics of both host and pathogen, alongside
other parameters such as social determinants including
smoking and alcohol consumption, and exposure to other
microbes. The best models include genes involved in IFN
signalling, known to be suppressed at TB diagnosis in TB-
DM patients,27 which we found were enhanced mid-way
through treatment but did eventually resolve by 6 months.
People protected against TB development display balanced
prostaglandin E2 and lipoxin expression in lungs, prevent-
ing TB disease progression following infection.62 Drugs

which target 5-lipoxygenase restrict lung pathology and
reduce bacterial replication in murine models, by low-
ering the type 1 IFN response63; the increases through
treatment in the TB-DM cohort may plausibly relate to
sustained infection and accompanying inflammation. In
TB-DM patients, the inflammation-related genes resolved
more linearly through TB treatment, but remained ele-
vated to the end of TB treatment, persisting until 12
months post-diagnosis in the South African cohort. In
future studies, it would be important to test whether pro-
longed treatment with standard therapy impacts blood
transcriptomes beyond the 6 month time point. Increased
doses of anti-TB drugs might also lead to better treat-
ment outcomes in TB-DM. In a complementary paper,26
transcriptomic signatures indicative of treatment outcome
have been derived that can be used in patients with either
DM or IH. Together, these papers show that signatures
related to poor TB outcome are distinct from the exces-
sive and prolonged inflammation observed in TB-DM. A
strength of our study is the inclusion of several timepoints
through TB treatment, particularly in the South African
cohort, allowing a detailed kinetic analysis of how gene
expression resolves in people with TB-DM. Ahead of the
study, we did not know whether gene expression resolu-
tion would be similar between people with TB-DM and
TB but of a different magnitude, whether there would be
delayed kinetic of expression resolution, or whether there
would be qualitatively different changes in gene expres-
sion – all of these scenarios would have been in keeping
with the increased poor treatment outcomes experienced
by people with TB-DM. Theoretically, transcriptomic dif-
ferences between people with TB-DM and people with
TB-only might be caused by diabetes medications; how-
ever, we consider this to be unlikely as we have shown
that people with TB-IH, who are not taking any diabetes
medicines, have similar profiles to those with TB-DMwho
are.27 Also, the administration of the diabetes drug met-
formin, which is widely used by people with TB-DM in this
study, has no effect on ex vivo blood transcriptomes when
administered to healthy individuals.57
The strengths of our study include the detailed clinical

and temporal characterisation of TB patients with or with-
out diabetes from three cohorts from three continents,with
varied genetic and social backgrounds, with the deriva-
tion of a biosignature of TB treatment which applies across
all groups. The limitations of the current study include
the modest sample size, and that not all samples were
analysed in depth by RNASeq to quantify the entire tran-
scriptome: our data support the undertaking of a large
scale prospective clinical study of biosignatures for the pre-
diction of delayed immune/inflammatory resolution in TB
and diabetes comorbid patients. Such a study should also
include HCs and people with diabetes only in all cohorts,
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with samples collected longitudinally from these groups:
this was another limitation in the current study, as sam-
ples were only available from these groups at one time
point and only in South Africa and Romania. In this study,
we used HbA1c to characterise people with TBrel-IH and
pre-diabetes. Amore comprehensive approachwould have
included impaired fasting glucose and impaired oral glu-
cose tolerance test; however, these markers overlap and all
are associated with future risk of diabetes.64 People with
diabetes often have a range of clinical complications, such
as heart disease, kidney disease, nerve damage and prob-
lems with other infections. Our study was not powered to
investigate the impact of diabetic complications on gene
expression as only two TB-DMparticipants in SouthAfrica
and two in Indonesia had experienced significant clini-
cal complications. A future biomarker large scale study
should include assessment of the impact of these poten-
tial confounders on the TB-DM transcriptome, which was
beyond the scope of the current study. It would also be
valuable to follow up people with pre-diabetes andwho are
‘latently’ infected with M. tuberculosis, to determine how
these conditions drive each other long-term.
These findings further illustrate how comorbidity with

diabetes affects the host response to M. tuberculosis infec-
tion and to antibiotic treatment, and how a better under-
standing of these interactions could be exploited to reduce
poor TB treatment outcomes associated with TB and
diabetes comorbidity.
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