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Many organisms increase their chance of survival 
and reproduction by anticipating seasonal changes in 
temperature and food availability. Internal clocks 

drive the circadian and seasonal rhythms responsi-
ble for physiological and behavioral adaptation. In 
mammals, the endogenous clock is located in the 
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Abstract  The mammalian circadian clock is located in the suprachiasmatic 
nucleus (SCN) and consists of a network of coupled neurons, which are 
entrained to the environmental light-dark cycle. The phase coherence of the 
neurons is plastic and driven by the duration of daylight. With aging, the 
capacity to behaviorally adapt to seasonal changes in photoperiod reduces. The 
mechanisms underlying photoperiodic adaptation are largely unknown, but 
are important to unravel for the development of novel interventions to improve 
the quality of life of the elderly. We analyzed the phase coherence of single-cell 
PERIOD2::LUCIFERASE (PER2::LUC) expression rhythms in the SCN of 
young and old mice entrained to either long or short photoperiod. The phase 
coherence was used as input to a 2-community noisy Kuramoto model to esti-
mate the coupling strength between and within neuronal subpopulations. The 
model revealed a correlation between coupling strength and photoperiod-
induced changes in the phase relationship among neurons, suggesting a func-
tional link. We found that the SCN of young mice adapts in coupling strength 
over a large range, with weak coupling in long photoperiod (LP) and strong 
coupling in short photoperiod (SP). In aged mice, we also found weak coupling 
in LP, but a reduced capacity to reach strong coupling in SP. The inability to 
respond with an increase in coupling strength suggests that manipulation of 
photoperiod is not a suitable strategy to enhance clock function with aging. We 
conclude that the inability of aged mice to reach strong coupling contributes to 
deficits in behavioral adaptation to seasonal changes in photoperiod.
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suprachiasmatic nucleus (SCN) of the anterior hypo-
thalamus. The SCN is a relatively small structure that 
consists of approximately 20,000 neurons (Hastings 
et al., 2018). Generation of circadian rhythms occurs 
autonomously in all individual neurons and is based 
on a negative feedback loop between clock genes and 
their protein products (Welsh et al., 2010; Buijs et al., 
2016; Hastings et al., 2019). This population of auton-
omous oscillators is able to produce a coherent 
rhythm of 24 h in electrical activity that acts as output 
of the SCN (Meijer et al., 2012; Herzog et al., 2017). 
The shape of this timing signal adapts to seasonal 
changes in photoperiod due to plasticity in phase 
coherence between the individual neurons. These 
changes in the phase coherence encode for the differ-
ent seasons, reflecting day-length differences 
(VanderLeest et al., 2007; Ciarleglio et al., 2011; Buijink 
et al., 2016; Tackenberg and McMahon, 2018).

Although it is known that photoperiodic adapta-
tion of the circadian clock is correlated with changes 
in phase relationship between SCN neurons, the 
mechanism is unknown. One possibility is that a 
decrease in coupling strength leads to a broadened 
phase distribution, when the day-length increases. 
Alternatively, phase differences can be driven by an 
active process, for example, due to repulsive coupling 
between subpopulations of SCN neurons (Myung  
et al., 2015). In such a scenario, the coupling strength 
could be equally strong in LP and SP. Subpopulations 
of SCN neurons form phase clusters that map approx-
imately to the core and shell SCN (Foley et al., 2011; 
Evans et al., 2013; Buijink et al., 2016). The question 
addressed in this study is whether we can explain the 
changes in phase coherence between the neurons in 
different photoperiods by changes in coupling 
strength.

The coupling strength between neurons is largely 
determined by synaptic release of neurotransmitters 
and direct communication via gap junctions (Finger 
et al., 2020). We separately analyzed the coupling 
strength within and between neuronal subpopula-
tions of the SCN. Based on neuropeptide expression, 
an anatomical subdivision can be made between the 
core and shell regions. Vasoactive intestinal polypep-
tide (VIP) and gastrin-releasing peptide (GRP) are 
primarily expressed in the core SCN, arginine vaso-
pressin (AVP) in the shell SCN, and γ-aminobutyric 
acid (GABA) in almost all SCN neurons (Hegazi et 
al., 2019).

With aging, there is a reduction in peptidergic 
function, and there are significant changes in the 
GABAergic synaptic network of the SCN, as seen in a 
striking reduction of presynaptic terminals (Palomba 
et al., 2008). These alterations in the SCN network 
will cause reduced communication among neurons 
in the aged SCN (Nakamura et al., 2011; Farajnia et 

al., 2012). It has been shown that weakened circadian 
rhythmicity of the elderly have negative health effects 
and is causal to a broad array of diseases (Leng et al., 
2019). Therefore, strengthening the clock in the aged 
is important, and strategies to do so rely on an identi-
fication of underlying mechanisms. One intervention 
to strengthen the clock could be to subject old mice to 
SP, because this may increase the phase coherence 
among the neurons in the aged SCN.

We used data from bioluminescence imaging of 
single-cell PERIOD2::LUCIFERASE (PER2::LUC) 
gene expression rhythms and Kuramoto models 
(Achterhof and Meylahn, 2021a, 2021b) to estimate 
the coupling strength within and between neuronal 
subpopulations in young and old mice entrained to 
long (LP, LD 16:8) and short (SP, LD 8:16) photope-
riod (Buijink et al., 2016, 2020). Neuronal subpopu-
lations of the SCN were identified with an unbiased 
clustering algorithm (Almog et al., 2019). We took 
into account that the coupling strengths are not the 
same within and between the different neuronal 
subpopulations, since it is known that in the SCN, 
the core projects densely to the shell while the shell 
projects only sparsely to the core (Welsh et al., 2010). 
The Kuramoto model predicted that coupling 
strength within and between subpopulations of 
SCN neurons contributes to photoperiod-induced 
changes in the phase relationship among neurons. 
We found that young animals can adapt their cou-
pling strengths over a wide range. Therefore, young 
animals can easily adjust to both SP and LP. On the 
contrary, old animals have a diminished range over 
which they can adapt their coupling strengths, 
making it more difficult for them to adjust to SP.

Materials and Methods

Bioluminescence Imaging and Analysis

To obtain the parameters for the Kuramoto model, 
the PER2::LUC expression data from the studies 
(Buijink et al., 2016, 2020) were used. The dataset con-
sisted of bioluminescence data from young 
(4-8 months) and old (22-28 months) homozygous 
PER2::LUC mice entrained to either LP (LD 16:8) or 
SP (LD 8:16). For details on the data collection, see 
Buijink et al. (2016). In short, mice were killed 1 to 3 h 
before lights-off. The brain was dissected, and the 
SCN was sliced in coronal slices with a VT 1000S 
vibrating microtome (Leica Microsystems, Wetzlar, 
Germany). Slices containing the SCN were visually 
identified and placed in a petri dish. The dish was 
transferred to a temperature-controlled (37 °C) light-
tight chamber, equipped with an upright microscope 
and a cooled charge-coupled device camera 
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(ORCA-UU-BT-1024, Hamamatsu Photonics Europe, 
Herrsching am Ammersee, Germany). 
Bioluminescence images were collected with a 1-h 
time resolution.

To analyze the time series of bioluminescence 
images, a custom-made MATLAB-based (Mathworks, 
Natick, MA, USA) program was used, as described in 
Buijink et al. (2016). Briefly, groups of 3 to 9 adjacent 
pixels with luminescence intensity above the noise 
level were defined as regions of interest (ROIs). Each 
ROI is referred to as a “single cell.” The average bio-
luminescence of all pixels in each ROI was calculated 
for the image series, which resulted in the biolumi-
nescence traces representing PER2::LUC expression 
for all single-cell ROIs. For the analysis of rhythm 
characteristics, the raw PER2::LUC expression traces 
were smoothed and resampled to 1 data point per 
minute. Only single-cell traces containing at least 3 
cycles with a period length between 20 and 28 h were 
included for further analysis.

The phase distribution and the Kuramoto order 
parameter (r) were calculated for all SCN slices. 
Phase distribution was defined as the SD of the peak 
times from all cells in a slice of the specified cycle in 
vitro. The order parameter is a measure for phase 
coherence and is based on the relative phase of the 
single cells. The order parameter was determined by 
first calculating the mean peak time ( )tp  of 
PER2::LUC expression of all cells (j = 1, . . ., N) for the 
specified cycle:

	
t

t
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N
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1
.
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Then the relative phase of each cell was approxi-
mated by first subtracting the peak time of the indi-
vidual cell from the averaged peak time of all cells to 
get the relative peak time and then converting the 
relative peak time to its relative phase ( ) :θr
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where τ is the period in hours. The relative phase 
can be approximated because the sin( )x  function is 
linear for small x, and the relative peak times are 
small in comparison with the period. Thereafter, the 
relative phase was transformed with Euler’s formula 
and the absolute value was taken to get the order 
parameter (r):
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The order parameter can take values between 0 
and 1, where 0 means that the neurons are completely 
unsynchronized and 1 means perfect synchrony.

Community Detection

To identify functional clusters in the SCN neuronal 
network, we used a community detection method 
that was previously described by Almog et al. (2019). 
In brief, from the raw time series of PER2::LUC biolu-
minescence traces, a cross-correlation matrix was 
constructed. Next, with the use of random matrix 
theory, the global (SCN-wide) and local (neuron-spe-
cific) noise components were filtered out of the cross-
correlation matrix. Clusters were detected with 
optimally contrasted functional signature, resulting 
in a positive overall correlation within clusters and a 
negative overall correlation between clusters, relative 
to the global SCN activity. Although the clustering 
algorithm was not bound to a pre-defined number of 
groups, the community detection method results con-
sistently in 2 main groups of cells with a robust spa-
tial distribution. The spatial distribution differed 
slightly for the anterior and posterior slices (Buijink 
et al., 2016, 2020). Hence, the resulting clusters were 
visually labeled as ventromedial and dorsolateral in 
the anterior SCN and as medial and lateral in the pos-
terior SCN slices.

Kuramoto Model

To model the SCN, we used a Kuramoto model. The 
Kuramoto model is a simple model that only contains 
phase information (Gu et al., 2019). First, we used a 
1-community Kuramoto model to estimate the upper 
and lower bounds on the coupling strength and on the 
noise in the different experimental conditions. The noise 
term captures both the effect of the thermal environ-
ment in which the SCN resides (i.e., external noise) and 
the time-dependent variations in the natural frequen-
cies of individual oscillators (see Rohling and Meylahn, 
2020). The noise should be the same in all experimental 
conditions. With use of the 1-community model, we 
show that the amount of noise is indeed approximately 
the same in the different experimental conditions and 
therefore the differences in phase coherence are caused 
by changes in the coupling strength. Next, we extended 
our model to a 2-community Kuramoto model. By treat-
ing the noise as a constant factor in the 2-community 
Kuramoto model, we could separate the influence of 
the noise from the influence of the coupling strength on 
the phase coherence. We used the 2-community 
Kuramoto model to assess the relationship between the 
coupling strength within each subgroup and the cou-
pling strength between the 2 subgroups.



464  JOURNAL OF BIOLOGICAL RHYTHMS / October 2023

The framework of the Kuramoto model we used in 
this study is extensively described in 4 recent papers 
(Garlaschelli et al., 2019; Meylahn, 2020; Achterhof and 
Meylahn, 2021a, 2021b). We will therefore not repeat 
all the steps involved, in detail, in the next 2 sections. 
However, we will show all main steps supported by 
references to the relevant parts of these papers.

One-community Kuramoto Model

In the 1-community Kuramoto model, we consider 
one community of N oscillators. Each oscillator cor-
responds to a neuron in the SCN. The oscillators 
interact with a strength K which gives a mean-field 
interaction strength K/N. The phase angles of the 
oscillators are denoted by θi, i = 1, . . ., N and represent 
the state of the neuron. The evolution of a single oscil-
lator i is then given by,

	 d
K
N

dt DdW ,i j i
j=

N

θ θ − θ= +∑sin (
1

) t 	 (4)

where D is the noise strength and Wt is a standard 
Brownian motion. The model in equation (4) does not 
explicitly include the natural frequencies of the neu-
rons or the external driving force of the light-dark 
cycle. This could be included explicitly, as done for 
the (noiseless) Kuramoto model in Childs and 
Strogatz (2008). The data we are considering, how-
ever, exhibit a number of properties that allow us to 
simplify the model as in equation (4). It is in steady-
state and such that the period of the light-dark cycle, 
the average period of the neurons and the period 
associated with the average intrinsic frequency are 
approximately equal. This allows us to consider the 
system in the rotating frame of reference which 
matches the period of these quantities. As a result, we 
can set the average phase of the neurons, the average 
intrinsic frequency and the phase of the driving force 
to zero. Furthermore, whereas most circadian models 
assume that each neuron has a fixed intrinsic fre-
quency, we assume that this internal frequency is not 
fixed, but probabilistic around a mean. This is due to 
the probabilistic nature of the processes in the tran-
scriptional-translational feedback loop (Barkai and 
Leibler, 2000) and is shown experimentally by Herzog 
et al. (2004), where they show that dispersed neurons 
have a higher cycle-to-cycle variation in period than 
neurons that are connected in a network. The effect of 
the variation of intrinsic frequencies of each neuron 
can thus be included as a modification of the noise 
strength in the model. Finally, the driving forces in 
both LP and SPs have a period of 24 h; we note that as 
the period of the driving force matches that of the 
neurons in steady-state, we can include its effect as a 

modification of the interaction strength of the neu-
rons. The parameters D and K in equation (4) are 
therefore modified parameters that include the distri-
bution of intrinsic frequencies and driving force, 
respectively. Note that these simplifications would no 
longer hold if we were considering a driving force 
with a different period. Using these simplifying 
assumptions and the standard rewriting of the 
Kuramoto model, as given on page 39 of Sakaguchi 
(1988), the equation for a single representative neu-
ron is given by,

	 d (t) = Kr (t)dt +DdW .tθ θ− sin 	 (5)

The noise can be understood as the effect of the 
thermal environment of the SCN and the time-depen-
dent variations in the natural frequencies of individ-
ual oscillators. Now we will integrate the stochastic 
differential equation (SDE) in equation (5) from 0 to 
T, where we will take T to be 1 period of the average 
phase:

	

∆ θ −θ

− θ −

T

T

T 0

T

Kr s ds D W W

:= ( ) (0)

= sin ( ) + ,
0
∫ ( ) 	 (6)

which, when taking the expectation, leads to,

	  ∆Τ[ ]= 0. 	 (7)

Equation (6) allows us to relate 2 measurements of 
the phase of a single oscillator at different times to the 
noise parameter D. Since we are only interested in the 
change of phase ∆T between these 2 measurements, 
we can set the phase of the first measurement to zero, 
that is, θ(0) = 0.  Equation (7) then states that we 
expect the change in phase to be zero, which is a 
result of employing a rotating frame of reference. To 
derive upper and lower bounds for the noise strength 
parameter, we will first calculate bounds for the sec-
ond moment of ∆T and solve these for D. To do this, 
note that we now have,

	  ∆T T2 2( )   = θ , 	 (8)

and by Itô’s lemma in its integral form, we have 
that,

f T f
df
d

d t
d f

d
dt

TT

θ θ
θ

θ
θ

( ) = (0) + ( )+
1
2

.
2

2
00

( ) ( ) ∫∫ 	 (9)

Plugging in d tθ( ),  as given by equation (5), leads 
to,

θ − θ θ θ( )T Kr s s ds D s dW TDs

TT
2 2

00

2 ( )sin ( ) + 2 ( ) + .= ∫∫   (10)
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The samples of the phase difference in subsequent 
cycles show that ∆T is much smaller than 1. This 
allows us to employ a Taylor expansion of the sine 
function in the first integral of equation (10). Since 
this expansion is alternating and has higher order 
terms smaller than lower order terms, we can find an 
upper bound for the second moment of ∆T by truncat-
ing the expansion at a negative term, and find a lower 
bound by truncating the expansion at a positive term 
(note the reversal here due to the sign of the integral 
containing sine in equation (10)). Taking 
sin = ( 3!)3x x x−  gives,
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
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As explained above, using only the first term of the 
expansion implies that,

	  ∆T D T K ds.2 2 2  ≥ −  ∫r s

T
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Since we are in stationarity, this gives an upper 
bound for the noise strength (D+),

	 D KrT D
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Using one more term in the expansion for sine 
gives,
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so that the noise strength is bounded from below 
(D–) by,

D KrT Kr D
T2

2 4
21+2 2

3!
≥

  −
  = −

 ∆ ∆T

T
( ) : . 	 (15)

Since we have experimentally obtained time series 
data, we are able to numerically calculate upper and 
lower bounds for the noise strength in terms of the 
interaction strength K. This holds in the case that sine 
is approximated well by the expansion used, which 
we posit to be the case since the spread of the phases 
around the average is small relative to the size of the 
entire cycle.

To do this, we need unbiased estimators of the sec-
ond and fourth moments. Since the mean is zero, the 
fourth moment is equal to the fourth central moment 
for which an unbiased estimator is given by the 
fourth h-statistic:

h =
( n)n m +n (n n+ n)m

(n )(n )(n )n
,4

2
2
2 2 2

43 3 2 2 3
3 2 1

− −
− − −

	 (16)

where n is the sample size and mp is the pth sample 
central moment given by,

	
m =

1
np : ( )x mi

i

n p
−∑

=1

,
	 (17)

with m the sample mean. An unbiased estimator 
for the variance is,

	 h =
nm
(n )

.2
2

− 1 	 (18)

Now, if we want to calculate the interaction 
strength parameter K for a single community, we 
must solve the equation,

	 V(Cr) = r, 	 (19)

for C, where,

	 V x
x

x
( ) =

BesselI 1,

BesselI 0,
,

[ ]
[ ] 	 (20)

and BesselI 0,  and BesselI 1,x x[ ] [ ]  are modified 
Bessel functions of the first kind. Note that the func-
tion V(.)  has the following properties: (1) V ( ) ,0 0=  
(2) lim

x→∞
V x( ) = 1 , and (3) V(.)  is monotonically increas-

ing, so that there is a unique non-zero solution to 
equation (19) for any 0 1≤ <r .  Equation (19) is 
derived in the general case with natural frequencies 
in equation (1.21) of Garlaschelli et al. (2019). In the 
case with all ω = 0,  it simplifies to equation (19), as 
shown in equation (3.51) of Garlaschelli et al. (2019). 
From the bioluminescence time series data, we have 
calculated r so that we can use numerical methods 
(like FindRoot in MATHEMATICA) to solve for C. In 
the 1-community model, C K D= 2 / , so that we can 
find upper and lower bounds for K:

	
CD

K
CD− +≤ ≤

2 2
. 	 (21)

Now both D- and D+ depend on K so that we find,
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and
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To recapitulate, we calculated the order parameter 
from the bioluminescence data. Next, we used the 
order parameter to solve the non-linear equation (20) 
for C, and then we inferred the range for the coupling 
strength using the order parameter, C, and the second 
and fourth moment.

Two-community Kuramoto Model

The 1-community Kuramoto model was expanded 
to a 2-community model (Meylahn, 2020; Achterhof 
and Meylahn, 2021a, 2021b) for which each commu-
nity consists of N oscillators. The oscillators in the 
same community interact with strength K, and oscil-
lators in different communities interact with strength 
L. The phase angles of the oscillators in the first com-
munity are denoted by θ1,i, i = 1, . . ., N and in the sec-
ond community by θ2,j, j = 1, . . ., N. The equations 
governing their evolution are,
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and
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In the 1-community Kuramoto model, we found 
that D does not depend on the phase coherence and 
that D is close to 1 for all experimental conditions. 
Therefore, we take D = 1 in the 2-community 
Kuramoto model. As we are only interested in the 
qualitative relationship between the synchronization 
and interaction strengths, we could set it to any posi-
tive constant. Furthermore, we made the assumption 
that the average phase is the same in both communi-
ties (i.e., ψ1 = ψ2 = 0). Now we can calculate the rela-
tionship between K1 and L1 and between K2 and L2 in 
the infinite oscillator limit by solving the equations,

	 V
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D
r1 1 1 2
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and
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




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which are stated in Proposition II.6 and Remark 
II.8 of Achterhof and Meylahn (2021a) and have been 
derived in Appendix A1 of the same article. In the 
above equations, K1 and K2 represent the coupling 
strengths within, respectively, subpopulations 1 and 
2. L1 and L2 represent the interaction strength between 
subpopulations, where L1 is the strength from sub-
population 2 to subpopulation 1 and L2 is the strength 
from subpopulation 1 to subpopulation 2. r1 and r2 
are the order parameters in, respectively, subpopula-
tions 1 and 2. The function V(·) is the same function as 
in equation (20), so there is a unique non-zero solu-
tion to the equation,

	 r =V C ,1 1( ) 	 (29)

for C1 (Meylahn, 2020), with C K r L r1 1 1 1 2= + .  We 
therefore must have,

	 K =
C
r

r
r
L .1

1

1

2

1
1− 	 (30)

We can do the same for equation (28).

Coupling Strength Analysis

With the 2-community model, we found a linear 
relationship between the coupling strength within a 
subpopulation and the interaction strength between 
subpopulations. We created a search-space with 
range [0: 10] for K1 and K2 and range [–5: 10] for L1 
and L2. Here, a negative coupling strength indicates 
repulsive coupling. We investigated the search-space 
of the lines with 2 different approaches to determine 
whether there are differences in the range over which 
young and old mice can adapt their coupling 
strengths between photoperiods and whether the dif-
ferences in coupling strengths between young and 
old mice are larger in LP or SP.

For the first approach, we investigated all possible 
solutions in the search-space, where each pair of val-
ues for (K1, L1) and (K2, L2) located on the linear line is 
a possible solution. We used an interval of 0.1 for K 
and numerically calculated the corresponding value 
for L. To compare the coupling strengths between the 
experimental conditions, we defined the total adap-
tive capacity as, ∆K1 +∆|L1| + ∆K2 +∆|L2|. 

For the second approach, we added 3 constraints to 
the search-space and investigated the remaining solu-
tions. Combinations of value pairs for (K1, L1) and (K2, 
L2) were only included (1) when K and L are higher in 
young animals than in old animals (i.e., K1young > K1old, 
K2young > K2old, |L1|young > |L1|old, and |L2|young > |L2|old), 
(2) when K and L are higher in SP than LP (i.e., K1SP > K1LP, 
K2SP > K2LP, |L1|SP > |L1|LP, and |L2|SP > |L2|LP), and 
(3) when the relationship between K1 and K2 and 
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between L1 and L2 is in the same direction for the differ-
ent experimental conditions (e.g., when K1YSP > K2YSP 
then K1YLP > K2YLP, K1OSP > K2OSP, and K1OLP > K2OLP). The 
constraints are illustrated in Figure 1.

Results

Synchronization of PER2::LUC Rhythms in the SCN

We calculated the order parameter (r), using equa-
tions (1) to (3), and peak time dispersion from the 
smoothed bioluminescence traces (Figure 2a) for all 
SCN slices in the different experimental conditions. To 
test whether the order parameter is an appropriate 
measure for phase coherence, we calculated the 
Pearson correlation coefficient between r and peak 

time dispersion, which was taken as a measure for 
phase coherence in previous studies (Buijink et al., 
2016, 2020). The correlation coefficient showed a 
strong negative correlation between r and peak time 
dispersion (R = –0.91; Figure 2b), which is as we 
expected, as high dispersion should lead to lower 
phase coherence (r). Then, we compared the values of 
r between the different experimental conditions. 
Independent t tests showed that the r value was 
always significantly higher in SP than in LP in both 
young and old mice (young anterior, LP: 0.49 ± 0.23, 
n = 4, young anterior, SP: 0.87 ± 0.04, n = 5, p < 0.05; 
young posterior, LP: 0.77 ± 0.12, n = 4, young poste-
rior, SP: 0.91 ± 0.03, n = 5, p < 0.05; old anterior, LP: 
0.53 ± 0.23, n = 7, old anterior, SP: 0.80 ± 0.08, n = 10, 
p < 0.01; old posterior, LP: 0.77 ± 0.06, n = 9, old poste-
rior, SP: 0.83 ± 0.04, n = 10, p < 0.05; Figure 2c). We refer 

Figure 1.  Illustration of constraints. Example of the (a) first and (b) second constraint. The black marked areas on the lines indicate the 
possible range of values for OSP and YLP based on the reference point for YSP for the first and second constraints, respectively. The col-
ored background indicates the regions where either K is larger (yellow), L is larger (pink), or both K and L are larger (blue). (c) Example of 
the third constraint. The black marked area indicates the possible range of values for OSP based on the reference points for YSP and OSP. 
The colored background indicates where either K1 < K2 (yellow), L1 > L2 (pink), or both K1 < K2 and L1 > L2 (blue). Abbreviations: OSP = 
old short photoperiod; YLP = young long photoperiod; YSP = young short photoperiod. 
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Figure 2.  Synchronization of the SCN. (a) Example of smoothed intensity traces of PER2::LUC expression from single cells in the ante-
rior SCN of a young mouse in SP. (b) Pearson correlation between r and peak time dispersion for all recordings (n = 54, R = –0.91). (c) The 
order parameter r is calculated for all slices and is shown for anterior and posterior slices in LP (LPA and LPP, respectively, green) and 
SP (SPA and SPP, respectively, blue) in young (circles) and old (triangles) mice. The black crosses indicate the mean. Abbreviations: 
SCN = suprachiasmatic nucleus; PER2::LUC = PERIOD2::LUCIFERASE; SPA = short photoperiod anterior; SPP = short photoperiod pos-
terior; LPA = long photoperiod anterior; LPP = long photoperiod posterior. 
*p < 0.05. **p < 0.01.

to the studies of Buijink et al. (2016, 2020) for a more 
comprehensive analysis on the rhythm characteristics 
of the data.

Coupling Strength and Noise Estimation

We used the order parameter (r), as calculated 
from the bioluminescence traces, to estimate the cou-
pling strength (K) between the neurons in the SCN 
and to estimate the amount of noise (D) in the differ-
ent experimental conditions. The noise represents the 
thermal environment of the SCN (see “Materials and 
Methods”). For both the coupling strength and the 
noise, we calculated for each slice an upper and lower 
bound (Suppl. Fig. S1). A 1-sample Kolmogorov-
Smirnov test showed that K and D were not normally 
distributed (p > 0.05). To compare the bounds of K 
and D between the experimental conditions, we used 
non-parametric independent-samples median tests. 
The lower and upper bound of K is always signifi-
cantly higher in SP than LP (p < 0.05), except for the 

upper bound of the posterior SCN in old mice (Suppl. 
Fig. S1A; p > 0.05). There were no significant differ-
ences in the lower and upper bound of D between the 
experimental conditions (Suppl. Fig. S1B; p > 0.05). 
Next, the ranges between the medians of the upper 
and lower bounds for K and D in the different experi-
mental conditions were calculated (Figure 3). The 
ranges for K and D only differ significantly between 
conditions when the mean values of the ranges that 
are compared are not situated within each other’s 
range. Therefore, the coupling strength is definitely 
higher in SP than LP in young mice (p < 0.05). This is 
in agreement with Buijink et al. (2016). For old mice, 
the differences in coupling strength between SP and 
LP are not significant (p > 0.05), as the mean value of 
the range in SP is within the range of LP. The range 
between the upper and lower bound for D is larger 
for LP than SP in both young and old mice; however, 
the range does not differ significantly between the 
experimental conditions (p > 0.05). The mean value 
between the upper bound and lower bound of D is 
close to 1 for all experimental conditions. This shows 
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that the noise will not affect the results of the 2-com-
munity Kuramoto model, as D has a constant value 
that is independent of the phase coherence.

Synchronization of the Neuronal Subpopulations

Next, we identified neuronal subpopulations 
within the SCN using an unbiased community detec-
tion algorithm (Almog et al., 2019). The community 
detection algorithm resulted consistently in 2 main 
groups of cells with a robust spatial distribution, 
without prespecifying the number of groups. The 
spatial distribution of the neuronal subpopulations 
corresponded only partially with the division of the 
SCN in dorsomedial (shell) and ventrolateral (core) 
SCN based on neuropeptide content (Yan et al., 2007) 
and differed slightly between the anterior and poste-
rior slices (Figure 4a). From now on, we will refer to 
the ventromedial cluster from anterior slices and the 
medial cluster from posterior slices as the medially ori-
ented cluster. We will refer to the dorsolateral cluster 
from anterior slices and the lateral cluster from poste-
rior slices as the laterally oriented cluster for simplicity. 
Note that we used the same clustering of the data as 
reported in Buijink et al. (2016, 2020). Hence, we refer 
to these studies for detailed analysis on the commu-
nity structure.

We calculated the order parameter for the biolumi-
nescence traces for each subpopulation. Paired-
sampled t tests showed that r was always significantly 

higher in each of the neuronal subpopulations com-
pared with the SCN as a whole (p < 0.05, Figures 2c 
and 4b). For the medially oriented cluster, there was 
only a significant difference in r between LP and SP in 
the anterior SCN of young mice (young anterior, LP: 
0.66 ± 0.12, n = 4, young anterior, SP: 0.92 ± 0.02, n = 5, 
p < 0.05; Figure 4b). For the laterally oriented cluster, 
r was significantly higher in SP than in LP in nearly 
all conditions, except for the posterior SCN of young 
mice (young anterior, LP: 0.78 ± 0.08, n = 4, young 
anterior, SP: 0.95 ± 0.01, n = 5, p < 0.01; young poste-
rior, LP: 0.85 ± 0.09, n = 4, young posterior, SP: 
0.92 ± 0.02, n = 5, p = 0.286; old anterior, LP: 0.74 ± 0.08, 
n = 7, old anterior, SP: 0.92 ± 0.03, n = 10, p < 0.01; old 
posterior, LP: 0.80 ± 0.08, n = 9, old posterior, SP: 
0.89 ± 0.04, n = 10, p < 0.01; Figure 4b).

Estimating Coupling Strength Within and 
Between Communities

Next, we calculated the averaged order parame-
ters for the neuronal subpopulations in the different 
experimental conditions. Here we took the anterior 
and posterior slices within the same experimental 
condition together, because the 2-community 
Kuramoto model only allows for 2 communities (i.e., 
the medial- and lateral-oriented clusters). The result-
ing order parameters for the medial-oriented cluster 
were r = 0.77 for young mice in LP, r = 0.94 for young 
mice in SP, r = 0.84 for old mice in LP, and r = 0.91 for 

Figure 3.  Range of K and D in different experimental conditions. (a) Range for the coupling strength between neurons in anterior and 
posterior slices in long (LPA and LPP, respectively, green) and short (SPA and SPP, respectively, blue) photoperiod in young and old 
mice. The range is based on the distance between the median of the upper and lower bound of K in each condition. The black cross 
indicates the mean of the range. (b) Range for the noise term in anterior and posterior slices in long (LPA and LPP, respectively, green) 
and short (SPA and SPP, respectively, blue) photoperiod in young and old mice. The range is based on the distance between the median 
of the upper and lower bound of D in each condition. The black cross indicates the mean of the range. Abbreviations: short photoperiod 
posterior; SPA = short photoperiod anterior; SPP = short photoperiod posterior; LPA = long photoperiod anterior; LPP = long photope-
riod posterior. 
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old mice in SP. And for the lateral-oriented cluster, 
the resulting order parameters were r = 0.81 for young 
mice is LP, r = 0.94 for young mice in SP, r = 0.77 for old 
mice in LP and r = 0.90 for old mice in SP. We used the 
averaged order parameters, as computed from the 
bioluminescence traces, to estimate the coupling 
strength within and between the neuronal subpopu-
lations in the SCN. Figure 5 shows a simplified repre-
sentation of the model. We made the assumption that 
D = 1 for all experimental conditions, since the 
changes in D were minor in the results of the 1-com-
munity Kuramoto model. To find the relationship 
between K1 and L1 and between K2 and L2, equations 
(27) and (28) (“Materials and Methods” section), 
which are derived from the extended Kuramoto 
model (Achterhof and Meylahn, 2021a, 2021b) were 
numerically solved. K1 represents the coupling 
strength within the medial-oriented cluster and K2 

Figure 4.  Synchronization in the SCN neuronal subpopulations. (a) Examples of the projection of cell location on bright field image of 
an anterior (A, left) and posterior (P, right) SCN of a young animal. The blue cells represent the medial-oriented cluster and the orange 
cells the lateral-oriented cluster. (b) The order parameter is calculated for the medial-oriented (left) and lateral-oriented (right) neuronal 
subpopulations in all slices and is shown for anterior and posterior slices in LP (LPA and LPP, respectively, green) and SP (SPA and 
SPP, respectively, blue) in young (circles) and old mice (triangles). The black crosses indicate the mean of the experimental condition. 
Abbreviations: SCN = suprachiasmatic nucleus; short photoperiod posterior; SPA = short photoperiod anterior; SPP = short photoperiod 
posterior; LPA = long photoperiod anterior; LPP = long photoperiod posterior. 
*p < 0.05. **p < 0.01.

Figure 5.  Simplified representation of the 2-community Kura-
moto model. The blue area represents the medial-oriented cluster 
in which the coupling strength is denoted by K1 and the orange area 
represents the lateral-oriented cluster in which the coupling strength 
is denoted by K2. L1 shows the interaction strength from the lateral-
oriented cluster to the medial-oriented cluster, and L2 shows the 
interaction strength from the medial-oriented cluster to the lateral-
oriented cluster. 
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the coupling strength within the lateral-oriented clus-
ter. L1 represents the interaction strength from the 
lateral-oriented cluster to the medial-oriented cluster 
and L2 the interaction strength from the medial-ori-
ented cluster to the lateral-oriented cluster, and r1 is 
the order parameter for the medial-oriented cluster 
and r2 is the order parameter for the lateral-oriented 
cluster.

In Figure 6, the relationship between K and L is 
shown for the different experimental conditions. For 
both subpopulations, we found a negative linear rela-
tion between K and L. The coupling strength (K) 
within a neuronal subpopulation is always positive, 
and the interaction strength (L) between the neuronal 
subpopulations can be both positive or negative, 
where a negative strength indicates repulsive 
coupling.

Since the relation between K1 and L1 appeared to 
be linear, we can express each line as,

	 K a L b1 1 1 1= + , 	 (31)

in which a r r1 2 1= −  and b1 is positively depen-
dent on r1. The relationship between K2 and L2 can be 
described in the same way, by interchanging the role 
of r1 and r2. From the relations between the lines, we 
can investigate how well young and old mice can 
adapt to different photoperiods.

From our available experimental data, it is not pos-
sible to obtain precise values for K1, K2, L1, and L2. We 
know that the values for K1, K2, L1, and L2 are located 
somewhere on the lines (Figure 6), but we do not 
know the exact spot on the lines. However, we can 
investigate the search-space of the lines to determine 
(1) whether there are differences in the range over 
which young and old mice can adapt their coupling 
strengths between photoperiods and (2) whether the 
differences in coupling strengths between young and 
old mice are larger in LP or SP. The adaptation capac-
ity to photoperiods is deducted from the degree of 
variation in coupling within and between clusters in 
different conditions. Analysis of the search-space 
revealed that only in ~32% of all possible solutions, 
old mice have higher adaptive capacity than young 
mice and that in ~37% of the solutions, the differences 
in coupling strength between young and old mice are 
larger in LP than SP.

Note that this information was derived from all 
possible solutions in the search-space, including solu-
tions that are unlikely to be present in real life. 
Therefore, we added 3 constraints and investigated 
the search-space of the lines again. Spots on the lines 
for K1, K2, L1, and L2 were only included (1) when K 
and L are higher in young animals than in old ani-
mals, (2) when K and L are higher in SP than LP, and 
(3) when the relationship between K1 and K2 and 

Figure 6.  Coupling strength within and between neuronal subpopulations of the SCN. (a) The relation between the coupling strength 
(K1) within the medial-oriented cluster and the interaction strength (L1) from the lateral-oriented cluster to the medial-oriented cluster 
are shown for the different experimental conditions. The green line indicates old mice in LP; the blue line, old mice in SP; the orange 
line, young mice in LP; and the purple line, young mice in SP. There is a range of values for K1 and L1 that result in the same synchroniza-
tion as observed in the bioluminescence data. (b) The same as (a) for the coupling strength (K2) within the lateral-oriented cluster and the 
interaction strength (L2) from the medial-oriented cluster to the lateral-oriented cluster. Abbreviation: SCN = suprachiasmatic nucleus. 
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between L1 and L2 is in the same direction for the dif-
ferent experimental conditions. Then, in less than 
0.005% of the remaining solutions do old mice have a 
higher total adaptive capacity than young mice. This 
indicates that the range over which young mice can 
adapt their coupling strength is larger than the range 
over which old animals can adapt their coupling 
strength. Furthermore, in only 9.0% of the remaining 
solutions, the differences in coupling strength between 
young and old mice were larger in LP than SP.

Discussion

In this study, we analyzed single-cell PER2::LUC 
gene expression rhythms of SCN neurons to deter-
mine the phase coherence between neurons in the 
SCN and in neuronal subpopulations of the SCN. By 
use of the 1-community Kuramoto model, we found 
that the coupling strength between SCN neurons is 
stronger in SP than LP. Next, we expanded to a 2-com-
munity Kuramoto model, which revealed a negative 
linear relationship between the coupling strength 
within a subpopulation and the coupling strength the 
subpopulations experience from the other subpopula-
tion. Furthermore, we found evidence that the SCN of 
old animals is less capable of adjusting to SP because 
of an inability to respond to SP with an increase in 
coupling strength. There is less of a difference in cou-
pling strength between young and old animals in a 
LP, when only a low degree of coupling is required.

In 2 other recent studies, a model similar to our 
model was used. Hannay et al. (2020) used the Ott-
Antonsen ansatz to investigate the processing of light 
information in the SCN, and Goltsev et al. (2022) used 
a reduced Kuramoto model to investigate the dynam-
ical behavior of the core and shell SCN under differ-
ent lighting conditions. Their results showed that the 
2-community Kuramoto model captures essential 
features of phase coherence in the SCN. This vali-
dates our method to use the phase coherence, as cal-
culated from empirical data, to estimate the coupling 
strength between and within subpopulations of the 
SCN with a 2-community Kuramoto model.

In our study, the 2-community Kuramoto model 
appeared to be highly suitable to determine network 
properties of the SCN that are not directly measurable 
but can be derived on the basis of available empirical 
data. For example, the model made clear that while 
the differences in phase coherence between young 
and old animals are approximately the same in SP and 
LP, the differences in coupling strength between 
young and old animals are larger in SP than in LP. 
PER2::LUC time traces of single cells seemed suitable 
to determine the coupling strengths between and 

within neuronal subpopulations of the SCN. Although 
we could not obtain the exact values for K1, K2, L1, and 
L2, we could narrow down the number of possible 
solutions by adding biologically based constraints. 
The 2-community Kuramoto model is highly suitable 
for adding constraints because of its unique property 
that the coupling strengths between and within the 2 
communities do not have to be the same.

The constraints we added were based on neu-
rotransmitter expression within the SCN together 
with our results from the 1-community Kuramoto 
model. We assumed the coupling strengths would be 
stronger in young animals than in old animals based 
on reductions in the synaptic network and changes in 
membrane properties, leading to altered neurotrans-
mission in the aged SCN (Palomba et al., 2008; 
Farajnia et al., 2012; Leise et al., 2013). Second, we 
assumed the coupling strengths would be stronger in 
SP than LP, because the 1-community model showed 
that the differences in synchronization between pho-
toperiods were caused by differences in coupling 
strength and were not due to more or less noise in the 
system. And finally, we assumed the relationship 
between the coupling strengths to be in the same 
direction between different experimental conditions. 
This constraint is based on the fact that VIP, which is 
an important neurotransmitter for synchronizing 
SCN neurons, is only expressed in the ventral (or 
core) SCN (Hegazi et al., 2019; Finger et al., 2020). 
Furthermore, it is known that the dorsal SCN receives 
strong input from the ventral SCN, whereas the ven-
tral SCN receives sparse input from the dorsal SCN 
(Taylor et al., 2017). However, since our clusters only 
partially overlap with neuropeptide content in the 
SCN, we decided not to specify whether K1 and L1 
should be higher than K2 and L2, or the other way 
around. Identifying more constraints on the coupling 
strength between (and within) communities could 
help in narrowing down the search-space, so that we 
can better understand the mechanism of coupling in 
the SCN under different conditions.

Adding the above-mentioned constraints to the 
model revealed that young mice can adapt their cou-
pling strengths over a larger range than old mice, 
which suggests that the SCN of young mice has larger 
adaptive capacity than the SCN of aged mice. It fur-
thermore revealed that the differences in coupling 
strength between young and old mice are larger in SP 
than in LP in 91% of the possible solutions. This sug-
gests that it is more difficult for old mice to adjust to 
SP than to LP. Although the effects of a reduced range 
of coupling strengths in old mice seem negligible at 
the molecular level, these results are in agreement 
with previously reported effects of aging downstream 
of the SCN (Buijink et al., 2020). Buijink et al. showed 
that old mice had a reduced rhythm amplitude in 
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behavior and that old mice particularly had a strongly 
reduced ability to adapt to SP behaviorally. Hence, 
exposure to SP is not a useful intervention for boost-
ing the rhythm of old animals. However, when inter-
preting the results, we need to keep in mind that the 
coupling strengths are inferred from the model. There 
are possibly other factors, such as reduction in the 
strength of photic input or increased variance in the 
intrinsic periods of the SCN oscillators, that could 
contribute to less phase coherence in older mice.

Previous modeling work by Myung and Pauls (2018) 
also used a Kuramoto model to describe the interaction 
between functional oscillators in the SCN to encode for 
seasonal time. Their work pioneered in showing the 
existence of repulsive coupling from the ventral part of 
the SCN to the dorsal part of the SCN and attractive 
coupling from the dorsal part of the SCN to the ventral 
part of the SCN. They suggested that there is an increase 
in repulsive coupling from SP to LP, creating a wider 
peak time dispersion between neurons in LP. Their 
framework fits nicely within our model where we 
added additional parameters for the coupling strength 
within subpopulations of neurons in the SCN.

Besides repulsive coupling, a broadened peak time 
dispersion between neurons in LP could be caused by 
a reduction in the coupling strength. From the rela-
tionship between the order parameter and the cou-
pling strength, we know that the coupling strength 
increases when the order parameter increases. This 
would suggest a reduction in coupling strength is the 
correct mechanism. However, we were not able to 
perform measurements within the neuronal subpop-
ulations, without one subpopulation being influ-
enced by the other. Therefore, we do not know 
whether the phase coherence of the subpopulations 
of the SCN differs from the phase coherence mea-
sured over the entire SCN, due to changes in coupling 
strength within the clusters or due to the interaction 
strength between the clusters. As a result, it is impos-
sible to determine which mechanism is the correct 
one from our data and analysis, and we need to rely 
on constraints to interpret the results of our model.

We used the order parameter of the Kuramoto 
model as a measure for neuronal synchronization 
within the SCN. The order parameter was normal-
ized to obtain a value between 0 and 1, in which 0 
means that the phases of the single cells are ran-
domly distributed and 1 implies perfect synchrony 
(Gu and Yang, 2017; Meylahn, 2020). A limitation of 
the extended Kuramoto model is that the coupling 
strength would become infinite when the neuronal 
synchronization of the SCN is 100%. This problem 
is theoretical rather than practical: due to the dif-
ferences in intrinsic characteristics of the neurons 
and noise in the system, perfect synchronization 
will never be reached (Maywood, 2020).

To recapitulate, with the 2-community Kuramoto 
model, we could determine the relationship between 
the coupling strength within neuronal subpopula-
tions of the SCN and the interaction strength between 
the neuronal subpopulations, after we determined 
the phase coherence of SCN neurons in different 
experimental conditions. We found evidence that 
coupling strength within and between subpopula-
tions correlates with photoperiod-induced changes 
in the phase relationship among neurons. In young 
mice, the SCN has a large adaptive capacity—as seen 
in the range of coupling strength—making them able 
to adapt to different photoperiods. With aging, the 
adaptive capacity of the SCN seems to be reduced. 
Aged animals seem to be unable to reach sufficient 
coupling strengths, which are necessary for correct 
encoding of short day-length in the SCN signal, mak-
ing it more difficult for old mice to also behaviorally 
adapt to SP.
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