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ABSTRACT

PURPOSE Decision about the optimal timing of a treatment procedure in patients with
hematologic neoplasms is critical, especially for cellular therapies (most in-
cluding allogeneic hematopoietic stem-cell transplantation [HSCT]). In the
absence of evidence from randomized trials, real-world observational data
become beneficial to study the effect of the treatment timing. In this study, a
framework to estimate the expected outcome after an intervention in a time-to-
event scenario is developed, with the aim of optimizing the timing in a per-
sonalized manner.
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METHODS Retrospective real-world data are leveraged to emulate a target trial for treatment
timing using multistate modeling and microsimulation. This case study focuses on
myelodysplastic syndromes, serving as a prototype for rare cancers characterized
by a heterogeneous clinical course and complex genomic background. A cohort of
7,118 patients treated according to conventional available treatments/evidence
across Europe and United States is analyzed. The primary clinical objective is to
determine the ideal timing for HSCT, the only curative option for these patients.

RESULTS This analysis enabled us to identify the most appropriate time frames for HSCT
on the basis of each patient’s unique profile, defined by a combination relevant
patients’ characteristics.

CONCLUSION The developed methodology offers a structured framework to address a relevant
clinical issue in the field of hematology. It makes several valuable contributions:
(1) novel insights into how to develop decision models to identify the most
favorable HSCT timing, (2) evidence to inform clinical decisions in a real-world
context, and (3) the incorporation of complex information into decision making.
This framework can be applied to provide medical insights for clinical issues
that cannot be adequately addressed through randomized clinical trials.

INTRODUCTION

In the realm of clinical decision making, determining the
optimal timing for interventions is crucial, especially when
curative treatments are one-time events (such as cellular
therapies in patients with hematologic neoplasms), necessi-
tating a careful assessment of waiting time on the basis of the
risk of treatment toxicity/failure and of disease progression.
Additionally, the assumption of uniform treatment effects
across populations often does not apply to timing, which
demands individualized adjustments on the basis of patient
characteristics. This is even more evident for rare diseases with
heterogeneous clinical and genomic background. Although

ASCO JCO’ Clinical Cancer Informatics

randomized trials are the reference source for providing
clinical evidence, practical or ethical constraints can prevent
them; in such instances, observational data play a crucial role
in studying the effects of timing on treatment outcomes."*

In this work, observational data are exploited to address the
challenge of identifying an optimal timing for allogeneic
hematopoietic stem-cell transplantation (HSCT), which is
the only curative option for most hematologic neoplasms. In
the clinical setting of rare diseases with heterogeneous
clinical outcomes, where the possibility to generate clinical
evidence is hampered by the reduced data availability and by the
complex biologic and clinical landscape, the need to develop

ascopubs.org/journal/cci | 1


https://orcid.org/0000-0002-8163-1634
https://orcid.org/0000-0002-7773-9976
https://orcid.org/0000-0003-1877-8497
https://orcid.org/0000-0002-7830-988X
https://orcid.org/0009-0006-9078-6482
https://orcid.org/0000-0003-2404-8829
https://orcid.org/0000-0003-1863-3239
https://orcid.org/0000-0002-1467-6779
https://orcid.org/0000-0002-1876-5269
https://orcid.org/0000-0002-6915-5970
https://doi.org/10.1200/CCI.23.00205
http://ascopubs.org/doi/full/10.1200/JCO.23.02175
http://ascopubs.org/doi/full/10.1200/JCO.23.02175
http://ascopubs.org/journal/cci
http://crossmark.crossref.org/dialog/?doi=10.1200%2FCCI.23.00205&domain=pdf&date_stamp=2024-05-09

Downloaded from ascopubs.org by Universiteit Leiden on June 5, 2024 from 132.229.026.244
Copyright © 2024 American Society of Clinical Oncology. All rights reserved.

Gregorio et al

CONTEXT

Key Objective

How can decision models be developed to determine the timing of allogeneic hematopoietic stem-cell transplantation
(HSCT) for hematologic neoplasms in an individualized way?

Knowledge Generated

Using real-world data, it is possible to address the clinical challenge of studying the optimal timing of HSCT in hematology
with a target trial emulation approach on the basis of multistate modeling and microsimulation, enabling more effective

personalized treatment strategies.

Relevance (J.L. Warner)

HSCT is a highly toxic therapy with efficacy critically dependent on timing. This study demonstrates that a data-driven
approach to personalized timing is feasible for myelodysplastic syndromes and may be generalizable to other hematologic

malignancies.*

*Relevance section written by JCO Clinical Cancer Informatics Editor-in-Chief Jeremy L. Warner, MD, MS, FAMIA, FASCO.

innovative methods to guide clinical decisions is maximized.
This article specifically focuses on myelodysplastic syndromes
(MDS),> rare hematologic neoplasms most occurring in the
elderly, characterized by peripheral blood cytopenia and
increased risk of evolution into AML. Patients with MDS
present large clinical heterogeneity and outcome, and therefore
a risk-adapted treatment strategy is needed.®

Clinical decision-making process in MDS relies on clinical
parameters and biomarkers, which are synthesized in the
Revised International Prognostic Scoring System (IPSS-R).”
The IPSS-R has been recently refined and complemented by
introducing genomic features that are closer to the disease
biology and better define individual probability of survival
and risk of disease progression (Molecular-International
Prognostic Scoring System [IPSS-M]).®

HSCT is the only potentially curative treatment for patients
with MDS.® However, it carries a significant risk of failure
because of toxicity and disease relapse. Both pre- and post-
HSCT survival depends on the timing of the procedure and
patient-specific characteristics. Therefore, tailoring the
timing of HSCT to eligible patients becomes essential for
optimizing the procedure’s effectiveness and clinical
outcome.’" The clinical challenge consists in planning, at
the time of MDS diagnosis, when to perform HSCT on the
basis of the available patient information.

In this study, a new method for optimizing the personalized
timing of a treatment procedure (HSCT) exploiting obser-
vational data from an international multicenter longitudinal
registry is developed. The proposed methodology emulates a
target trial that randomly assigns eligible individuals into
procedures given by different timing of intervention. Fol-
lowing the target trial emulation approach recently proposed
by Hernan and Robins,* the essential design and analytical
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components of the study are meticulously established before
conducting the analysis. Once the target protocol is defined,
the clinical problem is translated into statistical terms by
developing a tailored decision-strategy analysis for each
patient profile of interest.

Patient profiles are delineated by key factors selected
according to their clinical relevance in the decision-making
process (for MDS: age and IPSS-R/IPSS-M).”# The aim is to
identify the optimal policies by computing the quality-
adjusted average survival times using different transplanta-
tion policies and comparing them within each patient profile.
For this reason, a multistate modeling framework is used to
consider pre- and post-treatment disease states, adjusting
for possible confounders on the timing of therapeutic pro-
cedure and post-treatment outcomes. This multistate disease
model describes the natural history of the disease and esti-
mates the effect of the covariates of interest. Finally, a
decision-strategy model on the basis of microsimulation® is
implemented to identify the optimal timing of the procedure
associated with the highest survival time.

The main objective of the study is to delve into the statistical
methodology. For this reason, here, the focus is on the
conventional tool for treatment decision-making process in
MDS (IPSS-R).” Detailed clinical results obtained after in-
troducing patient genomic profile as assessed by IPSS-M?®
are discussed elsewhere.™

METHODS
Target Trial Emulation
The study was conducted by GenoMed4All*> and Synthema'®

consortiums, with the support of EuroBloodNET, the Euro-
pean Reference Network on Rare Hematological Diseases,”
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and of the International Consortium on MDS. The Humanitas
Ethics Committee approved the study (ClinicalTrials.gov
Identifier: NCT04889729). Informed consent was obtained
from each participant.

Data from these consortiums were used to emulate a target trial
for individuals diagnosed with MDS that incorporates random
assignment among various treatment strategies on the basis of
different HSCT timings. To emulate a target trial, the identi-
fication of a comprehensive protocol that outlines the fun-
damental design and analytical elements of the study (ie,
eligibility criteria, treatment strategy, assignment procedures,
outcomes, follow-up period, causal contrast of interest, and
statistical analysis)>*® was necessary. A summary of the
components of the emulated trial’s protocol is given in Table 1.

Notation and Estimand of Interest

A multistate process with MDS pre-HSCT, AML pre-HSCT,
post-HSCT, and post-HSCT and relapse as transient states,
and death as final absorbing state was considered. Let Y; denote
the state of an individual at time t=o0. Let D be the time at
which the death state is reached. Let C be the time to censoring,
assumed to be noninformative. The observation time of the
terminal event was Y? = min(D, C). Moreover, the event in-
dicator for reaching the absorbing state was &° = I(Y? = D).

An intervention g on the timing to the treatment T was
defined according to a distribution g = G(T), where g=G(-)

denoted a random draw for this distribution. Such distri-
bution was assumed to be an arbitrary distribution chosen by
the investigator. D9 was defined as the potential timing for
the terminal event under intervention g.

The interest was in estimating the expected conditional
outcome after the intervention g on a subset of the vector X
of observable covariates, denoted as X;. The choice of the
expected conditional outcome instead of a marginal one
was made to obtain a tailored estimate for specific sub-
populations defined by the vector X;. In the considered
application, the vector X contained the covariates of in-
terest for the definition of the profiles, and the possible
confounding factors. As measure of effect, the quality-
adjusted restricted mean survival time (QA-RMST) on a
time horizon was chosen, accounting for quality of life
through the definition of the utility function h(e):
QA — RMST], = Eh(min (D9, w))| X; = x].

The timing of the intervention was defined to be continuous
so that the QA-RMST defined above, given x,, is a curve. Let
[ti;t;] denote the closed interval during which the inter-
vention can take place. The final aim was to determine
b =1 1,1, QA — RMST{ ™, which was the time point in [t;; t,]
for which the outcome after intervention is maximum,
conditionally on covariates X;.

To identify the causal contrasts involving the potential
outcome D, the main assumptions for causal inference (ie,

TABLE 1. Summary of the Protocol Components of a Target Trial to Study the Timing of HSCT Conditional on Patients’ Profile in MDS

Protocol Component

Target Trial

Emulation Using Observational MDS Data

Eligibility criteria:

Who will be included in the study? low or higher

Individuals =18 years diagnosed with MDS with IPSS-R risk score as

Same as for target trial
Required data for each person: age, IPSS-R,
history of MDS diagnosis

Treatment strategies:
What interventions will eligible persons
receive?

HSCT

Different treatment strategies correspond to different timing of

HSCT will be performed if the participants are still alive at the time

Same as for target trial
Required data for each person: date of HSCT,
history of AML

assigned by the strategy, unless they have progressed to AML

Assignment procedures:
How will eligible persons be assigned to

the interventions? been assigned

Eligible participants will be randomly assigned to the different
strategies and will be aware of the strategy to which they have

Eligible persons will be assigned to the
strategies with which their data are
compatible

Outcomes:
What outcomes in eligible persons will
be compared among intervention

groups? transplant

Conditional QA-RMST with respect to patient profile in terms of
IPSS-R and age over a horizon of 8 years taking into account
possible development of AML before HSCT and relapse after

Same as for target trial (multistate outcome)

Required data for each person: date of death
during the study, history of AML, history of
relapse

Follow-up period:
During which period will eligible persons
be followed in the study?

administrative end of the study

Starts at diagnosis of MDS and ends at death, loss at follow-up, or

Same as for target trial
Required data for each person: date of loss to
follow-up

Causal contrasts of interest:
Which counterfactual contrasts will be
estimated using the above data?

Intention-to-treat effect (effect of being assigned to treatment)

Observational analog of the intention-to-treat
effect

Statistical analysis:
How will the counterfactual contrasts
be estimated?

Intention-to-treat analysis via comparison of QA-RMST among
individuals assigned to each HSCT timing strategy

Same as intention-to-treat analysis

Required data for each person: history of AML,
date of death, history of disease-modifying
therapy

Abbreviations: HSCT, allogeneic hematopoietic stem-cell transplantation; IPSS-R, Revised International Prognostic Scoring System; IPSS-M,
Molecular-International Prognostic Scoring System; MDS, myelodysplastic syndromes; QA-RMST, quality-adjusted restricted mean survival time.
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consistency, conditional exchangeability, and positivity)
must hold.*®

Disease Model

To estimate the outcome after intervention g, it was nec-
essary to estimate the transition hazards of the disease model.
This required assessing the risk of death both before and
after intervention, also considering the intermediate events;
AML before HSCT and relapse after HSCT. The model was
assumed to be semi-Markov, that is, a clock-reset time scale
was used.?®° The model structure is shown in Figure 1: HSCT
was considered possible only from MDS pre-HSCT in ac-
cordance with the target protocol (Table 1). The intervention
aimed at controlling the intensity of transition from MDS
pre-HSCT to post-HSCT (transition 2). This necessitated the
estimation of all the other transition hazards from the data.
For each transition, a cause-specific transition model was
fitted using flexible parametric survival models as proposed
by Royston and Parmar,* where IPSS-R” and age were used
as covariates and the baseline hazards were modeled using
restricted cubic splines. For the transitions from post-HSCT
state, time of entry in the state was also included as an
additional covariate. Model selection in terms of number of
knots for the baseline hazards, possible inclusion of non-
linear effect for continuous variables, interactions between
variables, and time-dependent effects was performed
according to the lowest Bayesian information criteria. To
ensure conditional exchangeability for observed covariates not
contained in X;, the transition hazards from post-HSCT
needed to be estimated using either G-estimation or the
inverse probability of treatment weighting (IPTW). Here, an
IPTW setting was considered, while the estimation using
G-estimation has been described elsewhere** (Appendix 1).

Decision-Strategy Model Through Microsimulation

Microsimulation was used to obtain the estimates of the
QA-RMST under the intervention g¢g. In general,

microsimulation consists of simulating individuals’ life
trajectories from a specified multistate continuous time
model using random-number generator.>? Here, it allowed
to mimic the target trial and evaluate what would occur if
HSCT were performed at different time points. In the
microsimulation, the only deterministic transition was the
one from pre-HSCT and MDS to post-HSCT as it was
dictated by the intervention g. All the others were sto-
chastic, and they were defined by the ones estimated from
the data using the disease model as previously described.
For each individual with covariate vector x; assigned to
a treatment strategy g=te[t;;t,], its path through the
multistate model over a time horizon w was simulated
according to the microsimulation algorithm? reported in
the Appendix 1. Finally, the estimates of the expected
conditional QA-RMST under each scenario t and horizon w
were computed by averaging the survival time across the
simulated patients with the same values in the covariates x;,.

To provide a reliable decision analysis tool, the uncertainty in
the estimations was considered by constructing confidence
intervals. In the context of microsimulation, this can be done
using probability sensitivity analysis (PSA)>* on the basis of
parametric bootstrap. When performing PSA, the parameters
were considered random quantities themselves that were
to be drawn from the asymptotic normal distribution of the
maximum likelihood estimator. Therefore, in the micro-
simulation with PSA, first a random sample of B values for
the vector of the parameters was generated. Then, for each
parameter vector drawn, the microsimulation was per-
formed, thus obtaining a vector of B estimates of QA-RMST
for each scenario t and patient profile.

Decision-Strategy Analysis and Identification of
Optimal Rules

In the case of microsimulation without uncertainty analysis,
for each combination of the covariates X;, a discrete set of
points (t, RMST,%:t), that is, a set of treatment timings and

Pre-HSCT and
MDS

Pre-HSCT and
AML

Post-HSCT and
relapse

FIG 1. Multistate model structure and observed number of transitions in the training cohort.
HSCT, allogeneic hematopoietic stem-cell transplantation; MDS, myelodysplastic syndromes.
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TABLE 2. Results of the Multistate Disease Model

Transition?
1: MDS - AML 3: MDS — Death 4: AML — Death

Parameter Coef (SE) 95% ClI Coef (SE) 95% ClI Coef (SE) 95% Cl
Baseline hazard

Gamma0 (yp) —13.994 (0.643) —15.254to —12.733 -15.313 (0.439) -16.174 to —14.452 —6.857 (0.774) —8.374 to —5.340

Gammal (y,) 1.718 (0.132)  1.459 to 1.976 1.416 (0.037) 1.344 to 1.489 0.689 (0.275) 0.15 to 1.227

Gamma2 (v,) 0.015 (0.003) 0.009 to 0.022 = —-4.755 (0.671) —6.071 to —3.44

Gamma3 (Ag) = = 6.293 (0.882) 4.565 to 8.020

Gamma4 (v,) = = —2.523 (0.546) —3.593 to —1.453

Gammab (ys) = = 1.135 (0.604) —0.048 to 2.318

Gammab (g) = = —0.201 (0.419) —1.023 to 0.62

Gamma? (y,) - - 0.015 (0.169) —0.317 to 0.347
IPSS-R

Low Reference Reference Reference

Intermediate (B7) 1.358 (0.236) 0.894 to 1.821 0.521 (0.099) 0.327 to 0.715 —0.187 (0.159) —0.500 to 0.125

High (8,) 2.338 (0.241) 1.865 to 2.811 1.325(0.108) 1.114 to 1.537 —0.243 (0.174) —0.585 to 0.099

Very high (B5) 1.937 (0.245) 1.458 t0 2.417 2.041 (0.109) 1.827 to 2.255 0.736 (0.157) 0.428 to 1.044
Age, years (B,) 0.027 (0.003) 0.02 to 0.034 0.048 (0.004) 0.04 to 0.056 0.009 (0.006) —0.002 to 0.020
Interactions with time

Gamma?2 - intermediate (BAS) 0.006 (0.002) 0.003 to 0.010 - -

Gamma2 - high (BAG) 0.007 (0.002) 0.003 to 0.011 - -

Gamma2 - very high @) 0.005 (0.002) 0.001 to 0.010 - -

Transition?

5: Post-HSCT — Relapse

6: Post-HSCT — Dead

7:Relapse — Dead

Parameter Coef (SE) 95% Cl Coef (SE) 95% Cl Coef (SE) 95% ClI
Baseline hazard
Gammao (yp) —8.006 (0.542) —9.968to —7.843 —9.057 (0.443) -9.926t0 —8.188 -7.209 (0.72)  —8.621 to —5.797
Gammal (7;) 1.385 (0.105)  1.179 to 1.592 1.256 (0.079)  1.101 to 1.412 116 (0.164)  0.838 to 1.482

Gammaz2 (v,)

0.033 (0.004)  0.026 to 0.041

0.026 (0.002)  0.021 to 0.030

Transition?

0.013 (0.005)  0.003 to 0.023

5: Post-HSCT — Relapse

6: Post-HSCT — Dead

7: Relapse — Dead

Parameter Coef (SE) 95% ClI Coef (SE) 95% ClI Coef (SE) 95% ClI
IPSS-R
Low Reference Reference Reference
Intermediate (B;) -0.014 (0.181)  —0.369 to 0.341 -0.143 (0.168)  -0.472 to 0.185 0712 (0.31)  0.105to 1.319
High (8,) 0.129 (0.173)  —0.210 to 0.467 0.010 (0.161)  —0.307 to 0.326 0.277 (0.305)  —0.32 to 0.873
Very high (83) 0.335 (0.172)  —0.002 to 0.672 0.423 (0.155)  0.118 to 0.727 0.779 (0.297)  0.198 to 1.360
Age, years (B) 0.005 (0.004)  —0.003 to 0.013 0.026 (0.004)  0.017 to 0.034 0.008 (0.005)  —0.001 to 0.018
Time of entry in the state —0.045 (0.001) —-0.062 to —0.028 0.005 (0.001) 0.001 to 0.070 =

(//3;; 2 months difference)

Abbreviations: HSCT, allogeneic hematopoietic stem-cell transplantation; IPSS-R, Revised International Prognostic Scoring System; MDS,

myelodysplastic syndromes.

®Transition 2 from MDS to post-HSCT is not included because of its deterministic nature (it is considered contingent upon the specific
transplantation strategy scenario).

JCO Clinical Cancer Informatics

ascopubs.org/journal/cci | 5


http://ascopubs.org/journal/cci

Downloaded from ascopubs.org by Universiteit Leiden on June 5, 2024 from 132.229.026.244
Copyright © 2024 American Society of Clinical Oncology. All rights reserved.

Gregorio et al

- Before IPTW
= EU us
S
@
=
= 1.00 -
=3
S o754 P00 P=.19
o
[T} 0.50 \
o
< 0.25
.0
o
8_ T L] T L T T T T T L] T T T T
© 0 6 12 18 24 30 36 0 6 12 18 24 30 36
o
Time HSCT (months)
Therapy: No Therapy: Yes
1.00

»v 0754 P=.09 P<.001
]
c
.
5 0.50 -
o
=%
2 0.25 - \
o

1 L] L] L] ] 1 L] ] L] L] ] ] ] L]

0 6 12 18 24 30 36 0 6 12 18 24 30 36

Time HSCT (months)

- After IPTW
g EU and US
@ 1,00 -
i e
= P=.96
g’ 0.75 - =
=
Q050
=
= 0.25 -
o
€ (00 4
8_ : L] T T T T T T
o 0 6 12 18 24 30 36
m .
Time HSCT (months)
Therapy: No and Yes
1.00

[75) _ P=.14
B 075
[
o
'© 050 /________-——/
o
o
© 0.25-
o

1 L L] L] ] ] ]

0 6 12 18 24 30 36

Time HSCT (months)

FIG 2. Balance assessment for disease-modifying therapy and EU/US group before and after IPTW. EU/US, Europe/United States; HSCT,
allogeneic hematopoietic stem-cell transplantation; IPTW, inverse probability of treatment weighting.

corresponding estimate of the expected conditional QA-
RMST, was obtained. To perform the decision analysis, the
steps to follow were (1) reconstruct the continuous curve
underlying the estimated discrete points, and (2) find its
maximum. For this purpose, smoothing techniques through
basis expansion (eg, natural cubic splines) were used.>> Once
the smoothed curves were obtained, for each of them, their
global maximum t; within the closed interval [t;; t,], that is,
the point estimate of the optimum timing for the inter-
vention, given the vector of covariates x;, was found. Sim-
ilarly, in the case of microsimulation with PSA, for each
replication B: b=1,..., B, the maximum t;(b) of each of the
replicated B curves was found. Finally, the optimal interval
for HSCT for a specific combination of covariates x; at 95%
confidence level was derived by considering the 2.5% and
97.25% percentiles of the distributions of the global maxima

.....

RESULTS
Study Cohort

Overall, 7,118 patients from 26 institutions across Europe
and the United States matched study inclusion criteria. Study
participants included 4,397 men (62%) and 2,721 women
(38%). Date range of diagnosis was from 2000 to 2018.
Administrative end of follow-up was December 31, 2020.
Patients were randomly stratified into a training cohort

6 | © 2024 by American Society of Clinical Oncology

(n = 4,627, 65%) and a validation cohort (n = 2,491, 35%).
According to the eligibility criteria of the target trial
(Table 1), 3,854 and 2,075 patients, respectively, were in-
cluded in the following analyses. Their characteristics are
described in Appendix Table A1.

Disease Model

The observed transition frequencies are reported in Figure 1
and Appendix Figure A1. On the basis of data, the parameters
associated with the transition hazards were estimated
using the R package flexsurv,?® except for transition 2,
which was controlled by the intervention under consider-
ation. Table 2 reports the estimated parameters of the
transition-hazard functions of the selected multistate
disease model (Appendix Table A2). In general, age and
IPSS-R were risk factors for death (both) and disease-
progression (IPSS-R). Moreover, the influence of cova-
riates tended to diminish in subsequent transitions. This
phenomenon can be attributed to the decreasing relevance
of baseline characteristics once the disease status has
changed. To adjust for possible unbalance because of
disease-modifying therapy and EU/US group on the timing
of HSCT, all post-HSCT transitions were adjusted through
IPTW. Balance in confounders by comparing the therapy
proportion in the EU/US group with respect to HSCT timing
in transplanted patients, before and after weighing, was
assessed using a logistic model (Fig 2). The relationship
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illustrates the decline in the probability of individuals being in the pre-HSCT and MDS state to zero at the specified time of HSCT. This is
due to all subjects still alive who have not progressed to AML transitioning to the post-HSCT state. Consequently, there is a sudden
increase in the probability of being post-HSCT from zero at the same time point. However, this probability does not reach one since some
patients have already deceased or progressed to AML. Notably, the graph demonstrates the stratification of patient risk, particularly
concerning the risk of death on the basis of different IPSS-R levels. HSCT, allogeneic hematopoietic stem-cell transplantation; IPSS-R,

Revised International Prognostic Scoring System; MDS, myelodysplastic syndromes.

between HSCT timing and confounders vanished in the
weighted data set (right panel), unlike the original data set
(left panel).

The models’ overall goodness of fit for transition hazards
was confirmed by comparing predicted values of the cause-
specific cumulative hazard with nonparametric estimates
(Appendix Figs A2 and A3) from both the training and the
validation data sets.

Decision-Strategy Model Through Microsimulation

The microsimulation was performed using the R package
hesim.2? In the microsimulation, different scenarios of
HSCT timing ranging from 1 to 36 months were performed.
The time horizon w for the simulation was 8 years. A QALY
value of 0.85 was assigned to the evolution to AML,
whereas a QALY value of 0.90 was set to post-HSCT states.
In each scenario, for each profile considering the different
level of IPSS-R score and age values (40-70 years), B=200
PSA replicates for a total of 80,000 patients were simu-
lated. As an example, Figure 3 shows the state occupancy
probabilities under three different policy scenarios cor-
responding to HSCT after 4, 12, and 24 months since MDS
diagnosis for a 60-year-old individual with different levels
of IPSS-R (purple: low; light blue: intermediate; orange:
high; red: very high).

JCO Clinical Cancer Informatics

Decision-Strategy Analysis

For each patient profile, Figure 4 shows the estimated QA-
RMST curves, which were smoothed using natural cubic
splines with three internal knots (upper panel). By identi-
fying the maximum of each QA-RMST smoothed curve,
the optimal intervals of HSCT at 95% confidence level were
derived (bottom panel).

DISCUSSION

This study assessed the challenge of identifying the optimal
timing of a personalized intervention to maximize survival
time, considering both pre- and post-intervention risks of
death and adverse events in the setting of rare hematologic
neoplasms with heterogeneous clinical course. An inno-
vative methodologic approach with respect to previous
works was developed.>?

First, a decision-strategy model on the basis of micro-
simulations, a method increasingly applied in oncology to
study clinical effectiveness and cost-effectiveness using
observational data,?’ was used. This study demonstrated the
relevance of decision-strategy models in the clinical context
for optimizing treatment timing, as they allow to compare
different treatment strategies. In addition, the use of
microsimulation-based methods enabled to estimate mean

ascopubs.org/journal/cci | 7
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FIG 4. In the upper panel, the QA-RMST curves (y-axis) as function of HSCT timing (x-axis) and corresponding 95% Cl obtained using the
decision-strategy model according to patient profile. In the lower panel, the optimal windows for HSCT for each patient profile corresponding to
time intervals for which the QA-RMST is maximum at 95% confidence level. It can be observed how, according to the IPSS-R, only lower-risk
patients do not benefit from an early transplantation policy. HSCT, allogeneic hematopoietic stem-cell transplantation; IPSS-R, Revised In-
ternational Prognostic Scoring System; MDS, myelodysplastic syndromes; QA-RMST, quality-adjusted restricted mean survival time.

survival time conditioned on covariates from both Markov
and semi-Markov models. This distinguishes the proposed
approach from conventional models in the literature (eg,
cohort models), as this novel decision-strategy model in-
corporates the treatment intervention as a state within the
multistate model, providing a unique perspective on treat-
ment optimization.

When developing a decision-strategy model, it is crucial to
incorporate a realistic disease model. By including interme-
diate pre- and post-treatment states, the dynamic nature of
the treatment-disease pathway was captured, achieving more
accurate estimations of mean survival time. The semi-Markov
property relaxed the restrictive Markov assumption and
accounted for the dependence of individuals’ transition risks
between states on both the time since entering the state and
the time of entry into the state. This is particularly relevant in
describing the disease progression of chronic illnesses. Ad-
ditionally, using spline-based parametric survival models
allowed for the consideration of a flexible yet parametric
shape for the transition hazards and for the inclusion of time-
dependent effects of covariates as appropriate.

The proposed methodology places a strong emphasis on

personalization, since it is in general capable to encompass
factors such as demographics, clinical features, genomic

8 | © 2024 by American Society of Clinical Oncology

information, risk of disease progression, and response to
treatment. This enabled to identify the optimal timing of an
intervention on a profile-specific level, recognizing that
different individuals may benefit from different treatment
timings. By incorporating this variability, the analysis ac-
curately reflected the complexity of clinical decision making.
In addition, a novel approach of emulating a target trial for
optimizing the personalized timing of therapeutic inter-
vention was introduced. By coupling a decision-modeling
strategy with target trial emulation, a clear interpretation of
the target quantity of interest, as well as transparency on the
study design and intervention, was gained. This approach
has not been previously explored in the context of trans-
plantation for hematologic neoplasms.

Like any analysis on the basis of observational data, the
obtained results rely on previously stated assumptions.
Adjustment for disease-modifying therapy has been eval-
uated and balance with respect to the treatment timing has
been achieved. However, it is important to recognize that
unobserved confounding could still be present. To account
for the uncertainty in parameter estimation using observed
data, PSA was incorporated into the decision-strategy
model, providing confidence intervals for the optimal tim-
ing of HSCT. Finally, validation is an important aspect of
building a decision-strategy model.?® Because of the lack of a
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standardized practice within this framework, both internal
validation and external validation of the disease model were
conducted. Validating the microsimulation results directly
proves challenging because of the absence of observed data
on the specific intervention under study, which is essential
for evaluating the decision-strategy model. From our per-
spective, the most suitable method to thoroughly validate
the complete decision-strategy model would involve a
comparison with the outcomes of a randomized clinical trial.

The developed methodology provided robust results in the
context of a rare cancer with heterogeneous clinical and
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genomic background, and can be adapted and applied to
different disease models.

In conclusion, the methodology developed in this article of-
fers a structured framework to address a relevant clinical issue
in the field of hematology. It makes valuable contributions:
novel insights into how to develop decision models to iden-
tify the most favorable HSCT timing in a real-world context,
and inform clinical decision making incorporating relevant
individual patient information. This framework can be applied
to provide medical insights for clinical issues that cannot be
adequately addressed through randomized clinical trials.
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APPENDIX 1. SUPPLEMENTARY MATERIAL

Causal Assumptions

To identify the causal contrasts involving the potential outcome D@, the main
assumptions for causal inference (ie, consistency, conditional exchangeability, and
positivity) must hold.” In our context, consistency refers to the principle that the time
to the terminal event in a world where we intervene with strategy g leading the time of
the treatment to be fixed at a specific value t is the same as the survival in the real
world where we observe a time to treatment equal to t. Conditional exchangeability
assumes that the potential outcome is independent of the observed timing of the
treatment, conditionally on the observed vector of covariates X. Methods to adjust for
covariates contained in the vector X but not on the conditioning vector X;, denoted
with X, = X — X;, are explained later. Moreover, censoring times are assumed to be
conditionally independent of all potential event times. Finally, to satisfy positivity, for
each vector of covariates X, the probability of receiving the intervention for each g = t
is positive (ie, all individuals included are eligible to receive the treatment at each time
teltr; to).

Definition of Inverse Probability of Treatment Weighting

For each individual with vector x, of observed confounders, the propensity score'"'?
in our setting is defined as

ps=Pr(T=t|D>t,A>tX,=x,),

where T the time of the allogeneic hematopoietic stem-cell transplantation (HSCT), A
the time to AML, and D the time to death. Specifically, X is the vector of covariates
for pre-HSCT transition (ie, contained in the vector X but not on the conditioning
vector X;): the disease-modifying therapy (yes or no) status and the consortium-
group (EU or US).

The stahilized weights by inverse probability of treatment weighting are proportional
to the inverse of the propensity score ps and can then be obtained as

Pr(T=t|D>tA>t)

W BT =t D>tA> 6.5, =X)

Both numerator and denominator in sw are estimated fitting flexible parametric
transition hazards coupled with Aalen-Johansen estimator for the transition prob-
ability in a competing-risk/multistate framework.

Disease Model Formulas

According to the Royson-Parmar model, the logarithm of each transition j cumulative
hazard is specified as

K+1

log(H;(t)) = gammao + Zkzlgammak by (t),

JCO Clinical Cancer Informatics

where K are the number of internal knots, and by (t) is the k™ basis of the natural
cubic spline,

gammao
Yo + B, X intermediate + B, X high + g, x very high

+B, xageifj=1,3,4,7
Yo + B, X intermediate + B, X high + g, X veryhigh + g,
X age + Bg X time of entry in the state if j=5,6

v + Bs X intermediate + B4 X high + g, x very high
gammak = { forj=1and k=2
v, in all other cases

Microsimulation Algorithm

Formally, simulating the path of an individual in a given multistate model means
finding the J distinct jumps between health states. Here, t; denotes the time of a
generic jump j. Below is reported one step of the microsimulation algorithm for a
subject i with covariate vector x;; and assigned to a treatment strategy g = t.

1. Let r be the state entered at time ;. The number of permitted stochastic
transitions from state r is given by n;.

2. If tj =t and the individual is still in the state pre-HSCT and myelodysplastic
syndromes (MDS), then the next state s is post-HSCT.

3. Else simulate a time for each of the n, permitted transitions and set the time
of the transition # 1 equal to the minimum simulated time and set the next
state s to the corresponding state.

4. Setr=sand t; =t ;1. If the individual is not in the death state and t; = w,
repeat the previous steps.

Inclusion Criteria for the Study Cohort

Inclusion criteria were age 18 years and older, a diagnosis of primary MDS according
to WHO 2016-2017 criteria and available information on Revised International
Prognostic Scoring System-related variables collected at diagnosis for patients who
did not receive HSCT, before HSCT for patients who were transplanted upfront, and
before starting disease-modifying treatments for patients who underwent pre-HSCT
cytoreduction. Patients affected with therapy-related MDS, AML from MDS, or with
incomplete information on IPSS-M variables were excluded. Patients were reclas-
sified according to WHO 2022 and International Consensus Classification of Myeloid
Neoplasms (ICC) criteria.
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TABLE A1. Descriptive Statistics of Training and Validation Cohorts

Characteristic Main (n = 3,854) Validation (n = 2,075)
Age, years, median (IQR) 69 (61-77) 69 (60-76)
Sex, No. (%)
Female 1,471 (38) 807 (39)
Male 2,383 (62) 1,268 (61)
IPSS-R, No. (%)
Low 1,453 (38) 783 (38)
Intermediate 949 (25) 496 (24)
High 740 (19) 401 (19)
Very high 712 (18) 395 (19)
IPSS-M, No. (%)
Low 1,115 (29) 589 (28)
Moderate low 552 (14) 301 (15)
Moderate high 524 (14) 262 (13)
High 764 (20) 435 (21)
Very high 899 (23) 488 (24)
Disease-modifying therapy, No. (%) 1,786 (46) 979 (47)
Consortium group, No. (%)
EU 2,468 (64) 1,314 (63)
us 1,386 (36) 761 (37)

Abbreviations: EU, Europe; IPSS-R, Revised International Prognostic Scoring System; IPSS-M, Molecular-International Prognostic Scoring System;
US, United States.
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TABLE A2. Results of the Transition Hazards Models Used to Estimate the IPTW

Parameter

Transition

1: MDS - AML

2: MDS — Post-HSCT

3: MDS — Dead

Coef (SE)

95% Cl

Coef (SE)

95% ClI

Coef (SE)

95% Cl

Denominator

Baseline hazard

Gammao (yp) -11.032 (0.512) —12.035 to —10.028 -10.021 (0.803) —11.595 to —8.447 —12.325 (0.661) —13.621 to —11.029
Gammal (7;) 1.713 (0.119)  1.479 to 1.947 1.376 (0.237) 0.911 to 1.84 1.652 (0.126) 1.404 to 1.899
Gammaz2 (7,) 0.022 (0.003) 0.016 to 0.028 —0.093 (0.057) —0.204 to 0.018 0.024 (0.006) 0.012 to 0.035
Gamma3 (&;) = 0.178 (0.105) —0.028 to 0.385
Gamma4 6/:) = —0.073 (0.062) —0.194 to 0.047
Disease-modifying therapy
No Reference Reference Reference
Yes (B7) 1.067 (0.085) 0.901 to 1.233 1.067 (0.085) 0.907 to 1.233 0.365 (0.123) 0.124 to 0.605
Group/continent
EU Reference Reference Reference
USs (8,) —-1.943 (0.321) -2.573to —1.313 —1.946 (0.322) -2.577 to —1.315 0.674 (0.115)  0.449 to 0.899
Interaction
Yes - US (Bs) 1.5622 (0.332) 0.871 to 2.173 1.526 (0.333) 0.874 to 2.178 —-0.187 (0.166) —0.512 to 0.139
Transition
1: MDS - AML 2: MDS — Post-HSCT 3: MDS — Dead
Parameter Coef (SE) 95% Cl Coef (SE) 95% ClI Coef (SE) 95% ClI
Numerator

Baseline hazard

Gamma0 (;/E)

~10.648 (0.500)

—11.627 to —9.668

—12.766 (1.357)

—156.426 to —10.105

~11.752 (0.652)

—13.03 to —10.474

Gammal (v,

1.74 (0.117)

1.512 to 1.969

2.037 (0.346)

1.369 to 2.714

1.623 (0.125)

1.377 to 1.868

Gamma?2 (y,

0.024 (0.003)

0.018 to 0.030

—1.746 to —0.965

0.023 (0.006)

0.011 to 0.034

2.356 (0.275)

1.818 to 2.895

)
(v2)
Gammas3 (ys)
Gamma4 (y,)

(

(
~1.355 (0.199)

(

(

-0.997 (0.097)

—1.188 to —0.807

Abbreviations: HSCT, allogeneic hematopoietic stem-cell transplantation; IPTW, inverse probability of treatment weighting; MDS, myelodysplastic
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FIG A1. Multistate model structure and observed number of transitions in the validation cohort.
HSCT, allogeneic hematopoietic stem-cell transplantation; MDS, myelodysplastic syndromes.
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FIG A2. Goodness of fit of transition hazard models on the main cohort: (A) transition 1, (B) transition 3, (C) transition 4, (D) transition 5, (E)
transition 6, and (F) transition 7. For each transition, predicted cumulative transition hazards obtained from the (continued on following page)
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FIG A2. (Continued). spline-based parametric cause-specific models estimated on the main data set (black curves) have been compared with the
nonparametric estimates obtained from the same data set according to IPSS-R values (red curves); age was considered fixed at the mean value of
patients at risk for the transition. Dashed lines correspond to 95% CI. To prevent unstable nonparametric estimates, the x-axis limit for each
transition was specifically determined to maintain a minimum of 10 patients at risk throughout time, while considering the IPSS-R strata. All
transition hazard models show a satisfactory goodness of fit since the 95% Cl of the model fit overlaps the corresponding nonparametric
estimate. HSCT, allogeneic hematopoietic stem-cell transplantation; IPSS-R, Revised International Prognostic Scoring System; MDS, myelo-
dysplastic syndromes.
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FIG A3. Out-of-sample goodness-of-fit of transition hazard models on the validation cohort: (A) transition 1, (B) transition 3, (C) transition 4,
(D) transition 5, (E) transition 6, and (F) transition 7. For each transition, predicted cumulative transition (continued on following page)
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FIG A3. (Continued). hazards obtained from the spline-based parametric cause-specific models estimated on the main data set (black curves)
have been compared with the nonparametric estimates obtained from the test data set according to IPSS-R values (red curves); age was
considered fixed at the mean value of patients at risk for the transition. Dashed lines correspond to 95% CIl. To prevent unstable non-
parametric estimates, the x-axis limit for each transition was specifically determined to maintain a minimum of 10 patients at risk throughout
time, while considering the IPSS-R strata. All transition hazard models show a satisfactory goodness of fit since the 95% Cl of the model fit
overlaps the corresponding nonparametric estimate. HSCT, allogeneic hematopoietic stem-cell transplantation; IPSS-R, Revised Interna-
tional Prognostic Scoring System; MDS, myelodysplastic syndromes.

JCO Clinical Cancer Informatics ascopubs.org/journal/cci


http://ascopubs.org/journal/cci

	Personalized Timing for Allogeneic Stem ...
	INTRODUCTION
	METHODS
	Target Trial Emulation
	Notation and Estimand of Interest
	Disease Model
	Decision
	Decision

	RESULTS
	Study Cohort
	Disease Model
	Decision
	Decision-Strategy Analysis

	DISCUSSION
	REFERENCES
	APPENDIX 1. SUPPLEMENTARY MATERIAL


