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Abstract
A simple Hamiltonian Marcus-type model for cation-coupled electron transfer reactions is introduced, and an expression for 
the activation energy is derived. The expression is mathematically similar to the classical Frumkin correction. The model 
explains how cations lower the activation energy for the Volmer reaction in alkaline media and how cations help stabilizing 
the first intermediate in electrochemical CO2 reduction. The second part of the paper introduces the cation effect in a more 
empirical way in an effective rate law and shows how coupling to local pH changes and the corresponding interfacial cation 
concentration leads to deviations from the standard Butler-Volmer behavior and to non-linear Tafel plots.

Introduction

It is an honor to contribute this paper to the memory of 
Professor Alexander Milchev. I have many good memories 
of my stimulating interactions with Alexander, from my 
PhD, through my postdoc, to my junior and senior scien-
tific career. Alexander was an intellectual giant of electro-
chemistry, deeply interested in the fundamentals of electron 
transfer. This paper deals with an old problem in electrode 
kinetics and electrocatalysis, namely how the interfacial 
double layer structure influences the rate of electron transfer 
reactions and how that effect may impact the electrochemi-
cal current–potential characteristics.

The structure of the electrolyte near the electrode, and in 
particular the presence of cations, can indeed have a substan-
tial impact on the rate of electrode reactions. This idea goes 
back to the seminal work of Frumkin, who modeled this 
effect by the influence that the local cation concentration has 
on the potential in the “reaction plane” [1, 2]. In principle, 
that potential can be calculated from the Gouy-Chapman-
Stern theory [3], if one makes suitable assumptions about 
the location of the reaction plane.

In recent years, there has been growing interest in the 
role of the electrolyte on the rate and selectivity of electro-
catalytic reactions, with special emphasis on the effect of 

cations [4–6]. It has been shown that especially for reduction 
reactions such as CO2 reduction (CO2RR) [7–9] and water 
reduction to hydrogen [10–12] (hydrogen evolution reaction 
(HER)), the reaction rate is strongly coupled to the nature 
and the concentration of electrolyte cations. For the HER 
on gold electrodes, we established that in a certain range 
of local cation concentration, cations promote the HER 
rate [10]. On the other hand, at high cation concentration, 
the HER rate appears to be adversely affected by the local 
concentration of cations. These effects have been observed 
for both gold and platinum electrodes [10, 11] and presum-
ably relate to the cation effects on the HER rate on mercury 
electrodes observed decades ago [13], studies that served as 
an initial inspiration for Frumkin to formulate his “cation 
theory” [2]. A recent short review on cations effects on 
HER has been published by Ringe [14]. Electrolyte effects 
on electron-transfer rates have also been highlighted in other 
areas of inorganic chemistry and electrochemistry [15, 16].

In this short paper, I will first propose a simple Marcus-
type theory which introduces an electrostatic interaction 
between the reactant “Ox” and the cation “cat,” which 
lowers the energy barrier for electron transfer (ET) and 
the associated bond breaking. I will refer to this as cation- 
coupled electron transfer (CCET). The model is equivalent 
to the Frumkin model, but interprets the effect of the cation 
as a more specific local effect, rather than its effect on the 
mean-field potential in the reaction plane [1]. Fraggedakis 
et al. [17], Bazant [18] and Nazmutdinov et al. [19] have 
recently formulated similar models, motivated by experimen-
tal results on electrochemical ion insertion in solid (oxide) 
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materials and by the effect of ion pairing on the rate of elec-
tron transfer and electroplating reactions, respectively. The 
model presented here applies explicitly to electrocatalysis by 
building on a Hamiltonian formulation of Savéant’s model 
for bond-breaking electron transfer (BBET) [20, 21]. The 
model demonstrates how the reactant to be reduced benefits 
from the (electrostatic) interaction with cations, either by 
lowering the activation energy for BBET or by stabilizing 
an intermediate surface-adsorbed ion-pair state. These situ-
ations correspond to those envisaged to happen during HER 
and CO2RR, showing the applicability of this theoretical 
framework in understanding environmental effects in elec-
trocatalysis. Mathematically, the model provides an exten-
sion of the Frumkin correction into the Hamiltonian-based 
Marcus-type theory of electrochemical electron transfer reac-
tions. In the second part of the paper, I will then introduce a 
more empirical equation accounting for cation effects on the 
rate of proton-coupled electron transfer reactions, to illustrate 
how the current–voltage characteristics of such reactions are 
expected to exhibit unusual mass transport limitations [10], 
translating into anomalous Tafel behavior that cannot be con-
sidered purely kinetic.

Hamiltonian and ground‑state potential 
energy surface

The reaction modeled here is of the following type:

We use here the same notation as in a previous model for 
bond breaking electron transfer [21], in which Ox = R–X is 
typically an organic molecule involving a halide bond. How-
ever, R–X could be any “Ox” molecule in which an electron 
is transferred to the lowest unoccupied antibonding molecu-
lar orbital, leading to bond weakening and eventually bond 
breaking upon electron transfer.

The Hamiltonian H of the system consists of four parts:

The electronic ( Helec ), solvent ( Hsolv ), and bond breaking 
( Hbb ) parts of the Hamiltonian are the same as in a previous 
model suggested by Koper and Voth [21], which was based 
on Schmickler’s original reformulation ( Helec+Hsolv ) of the 
Anderson-Newns Hamiltonian for describing electrochemi-
cal electron transfer (ECET) processes [22]. The Hint term is 
introduced here to account for the (Coulombic) interaction 
between the reactant and the nearby cation.

Let �a be the electronic energy of the abovementioned 
lowest unoccupied molecular orbital. In second quantized 
form, the expression for Helec is:

(1)R − X + e− + cat+ → R⋅ + X−
⋯ cat+

(2)H = Helec + Hsolv + Hbb + Hint

where na is the occupation number operator of the antibo-
nding orbital, with c+

a
 and ca the corresponding creation and 

annihilation operators. The electronic states on the metal 
are labeled by the quantum number k; nk , c+k  , and ck are the 
corresponding number, creation, and annihilation opera-
tors. The Vk are the corresponding matrix elements. The 
solvent part is:

where the first term denotes the unperturbed solvent, mod-
eled as a collection of harmonic oscillators; qv and pv are 
the dimensionless coordinates and momenta, �v are the 
frequencies, and v labels the solvent modes. The second 
term accounts for the interaction between the solvent and 
the reactant, assumed linear in the charge na on the reactant, 
with gv as the coupling constant. In this model, the well-
known Marcus solvent reorganization energy is given by 
𝜆 =

∑
v ℏ𝜔vg

2
v
∕2 [23]. The third term in Eq. 2 is a switching 

function which describes the breaking of the bond by the 
occupation of the antibonding orbital with a metal electron:

where r is the distance between R and X, r0 is the equilib-
rium bond distance, and D the bond dissociation energy. 
Note that in this model the intact bond ( na = 0) is described 
by a Morse potential, and the broken bond ( na = 1) by the 
repulsive part of the Morse potential. The parameter a 
in Eq. 5 is related to the bond vibration frequency �b by 
a = �b(�∕2D)

1∕2 , with µ the reduced mass of the fragments 
participating in the bond breaking. Finally, the fourth term in 
Eq. 2 is the interaction term introduced here, i.e., the inter-
action between the charge transferred to the reactive system 
and the charge z on the cation:

where x is the distance between the reactant and the cation, 
and �s is the relative dielectric constant of the medium. We 
will consider this interaction mostly at the distance of clos-
est approach x0, and will refer to �cat = z∕�sx0 as the corre-
sponding local cation potential, expressed in units of energy.

Let the generalized solvent reaction coordinate be defined 
by q =

∑
v qv∕gv . Since all terms coupling to the ET and 

the reactive system are linear in na , the ground-state poten-
tial energy surface E0(q, r) can be calculated in the so-called 
wide-band approximation, using standard techniques outlined 
elsewhere [22]:

(3)Helec = �ana +
∑

k
�knk +

∑
k

[
Vkc

+
k
ca + V∗

k
c+
a
ck
]

(4)Hsolv =
1

2

∑
v
ℏ𝜔v

(
p2
v
+ q2

v

)
− na

∑
v
ℏ 𝜔vgvqv

(5)
Hbb =D

(
1 − na

){
1 − exp

(
−a(r − r0)

)}2

+ Dnaexp(−2a
(
r − r0

)
)

(6)Hint = −naz∕�sx
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with ⟨na(q, r)⟩ the average occupation of the antibonding 
orbital, given by

and

The energy width parameter Δ is a measure for the 
strength of the electronic coupling between the antibond-
ing orbital and the metal electronic states:

It is well known that Eq. 7 predicts a potential energy 
surface (PES) with either three stationary states, i.e., two 
minima and one maximum or saddle point representing 
reactant, product and transition state, resp., or a single 
minimum, with the two situations primarily depending on 
the value of Δ [21, 22]. By the Hellman–Feynman theorem, 
these stationary points satisfy the following equations:

Let us consider the situation with three stationary 
points first, which occurs when Δ → 0. For a meaning-
ful PES, we need to define the equilibrium situation, in 
which we consider the product state R and X− to be infi-
nitely far apart, i.e., x → ∞ . The reactant state is given 
by nR = ⟨na

�
q = 0, r = r0

�⟩ = 0 and the product state by 
nP = ⟨na(q = 1, r = ∞)⟩ = 1. They have equal energy if 
�a = � , and hence we can introduce an overpotential � by 

(7)
E0(q, r) = �̃a(q, r)⟨na(q, r)⟩ + Δ

2�
ln
�
�̃2
a
(q, r) + Δ2

�

+ �q2 + D
�
1 − exp

�
−a(r − r0)

��2

(8)⟨na(q, r)⟩ = 1

�
arccot

�
�̃a(q, r)

Δ

�

(9)
�̃a(q, r) = �a − 2�q − D

{
1 − 2 exp

(
−a

(
r − r0

))}
− �cat

(10)Δ = �
∑

k
||Vk

||2(� − �k)

(11)qs = ⟨na(qs, rs)⟩, 1 − ⟨na
�
qs, rs

�⟩ = exp(−a
�
rs − r0

�
)

defining �a = � + � . For the transition state, �cat will have 
a finite value (that is, r is not infinite), and using Eq. 11, 
we calculate for nT:

If η, Δ, and |φcat|≪ λ, D, a good approximation to Eq. 12 is:

Using Eq. 13, we can calculate the free energy of activation:

At the equilibrium potential, in the limit of Δ → 0, this 
simplifies to

showing that the activation energy is lowered by a factor (
1 −

�cat

�+D

)2

 compared to the non-cation coupled (bond 
breaking) electron transfer, i.e., the expression originally 
derived by Savéant [20]. This lowering of the activation 
energy is of course expected, as the transition state is nega-
tively charged. A schematic drawing of this situation for the 
example of water reduction reaction is given in Fig. 1A.

Again in the limit of Δ → 0, the transfer coefficient 
� = dΔGact∕d� is given by:

(12)nT =
1

�
arccot

(
� + D + � − �cat − 2nT(� + D)

Δ

)

(13)nT =
1

2
+

� − �cat

2(� + D)

(14)
ΔGact =E

T
0
− ER

0
=

(
� + D + � − �cat

)2
4(� + D)

+
Δ

2�
ln

(
Δ

(� + D + � − �cat )
2 + Δ2

)

(15)

ΔGact (� = 0) =

(
� + D − �cat

)2
4(� + D)

=
� + D

4

(
1 −

�cat

� + D

)2

(16)� =
1

2
+

� − �cat

2(� + D)
= nT

Fig. 1   A Stabilization of the 
transition state for water dis-
sociation by interaction with 
nearby cation; B Stabilization 
of the adsorbed CO2

2δ− inter-
mediate by interaction with 
nearby cation
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where nT is the partial charge transferred to the transition 
state. Interestingly, Eq. 16 predicts that for η = 0, the transfer 
coefficient is not ½, but smaller than ½. This is because the 
interaction with the cation introduces an asymmetry in the 
PES as the neutral reactant does not interact with the cation, 
whereas the transition state and the product exit channel do. 
Unsurprisingly, Eqs. 14 and 16 show that φcat acts as a local 
potential to enhance electron transfer, effectively lowering 
the energy of the transition state in a way that is mathemati-
cally equivalent to Frumkin’s reaction plane potential [1]. 
In the PES Eq. 7, there is a state that is more stable than 
either the reactant or the product state, which is the product 
X− state interacting closely (at x = x0) with the cation. In a 
more complete model, X− and the cation are expected to 
separate for entropic reasons.

Next, let us consider the situation in which Δ is not small. 
A large value of Δ basically means a strong electronic interac-
tion between the metal states and the antibonding orbital of the 
reactant. It has been previously shown that under these condi-
tions, Eq. 7 predicts a single stationary state which corresponds 
to an R–X species bonded to the surface by backdonation [21]. 
The R–X bond does not break, but the species becomes surface 
adsorbed with a partial charge ⟨na

�
qs, rs

�⟩ . The nearby cation 
then enhances that surface bonding by ⟨na

�
qs, rs

�⟩ φcat. This 
expresses the expected result that a nearby cation enhances the 
bonding of an adsorbate that acquires a negative charge during 
the adsorption process. This situation is schematically illus-
trated in Fig. 1B with the presumed stabilization of adsorbed 
CO2

δ− by the interaction with the cation.
In principle, knowing the PES (Eq. 7) also allows one to 

estimate the actual rate of the reaction, if the dynamics of 
the reactive system on the PES is known. It is important to 
point out that we do not consider the electron transfer and 
the cation dynamics to be concerted, as for instance for some 
proton-coupled electron transfer reactions (PCET), in which 
case they are referred to concerted proton-electron trans-
fer (CPET) reactions [24, 25]. This situation is unlikely for 
cations as cations are typically much heavier particles than 
protons. Rather, we consider the reaction to be electroni-
cally adiabatic, taking place on PES Eq. 7, and the electrons 
follow the nuclear motion on the PES instantaneously. The 
PES depends on three reaction coordinates: the collective 
solvent coordinate q, the distance r between R and X, and the 
distance x between cation and (R–)X−. The motion on such 
a multidimensional PES can be described by the approach 
introduced by Sumi and Marcus [26].

Kinetic modeling of cation‑coupled electron 
transfer reactions

The above model shows that cation-coupled electron transfer 
should lead to a lowering of the activation energy for electron 
transfer in a way that is very similar (at least mathematically) 

to the Frumkin correction of the Butler-Volmer equation. The 
model does not specify the exact location of the cation or the 
cation-intermediate complex; it just specifies their interac-
tion energy φcat. While Eqs. 14 and 15 predict a lowering of 
the activation energy and therefore promotion of the reac-
tion rate by cations, I do not consider that the equation itself 
is very useful for detailed kinetic modeling purposes. For 
instance, Eq. 15 does not explain why for very high local 
cation concentration, the rate of HER lowers again [10, 11] 
(unless one assumes some cation-concentration dependent 
φcat, the nature of which then still remains to be elucidated). 
Moreover, the local cation concentration is not a constant, 
but in fact depends on the current (density), as it is governed 
by migration effects. To illustrate the impact of this effect, I 
use here a more empirical expression for the rate of a cation-
coupled (electrocatalytic) electron transfer reaction, specifi-
cally the rate-determining Volmer step of HER, which we 
introduced in ref.[10]:

where the subscript “V” refers to “Volmer”, we have used the 
Butler-Volmer expression for the potential-dependence (i.e., 
we ignore the quadratic dependence of the activation energy 
on potential, as predicted by the Marcus model Eq. 14), 
[cat+]s is the local cation concentration (i.e., the interfacial 
cation concentration at the electrode surface), and γ is an 
empirical reaction order in (interfacial) cation concentration. 
A positive value of γ signifies a lowering of the activation 
barrier by cations:

Equation 17 assumes that the rate of the reaction does 
not depend on the local pH or OH− concentration; any pH 
dependence is apparent and indirect through the depend-
ence on the local cation concentration. The motivation for 
such a simplification has been discussed in ref. 10 and lies 
in the fact that it basically reproduces the experimental 
data in that paper. The complication in predicting the cor-
responding current–voltage curve arises from the fact that 
many CCET reactions typically produce OH−. This leads to 
a higher local concentration of OH−, i.e., a higher local pH. 
However, just outside the double layer, these newly generated 
OH− ions need to be screened electrostatically, that is: local 
electroneutrality must be satisfied. The system takes care of 
this by migrating other anions away from the surface and 
by migrating cations toward the surface. This implies that 
the local cation concentration actually depends on the local 
OH− concentration:

(17)kV = k0 exp

(
−�F (E − E0)

RT

)[
cat+

]�
s

(18)� =
d ln kV

d ln [cat+]s
=

dΔGact

d�cat

d�cat

d ln [cat+]s

(19)[cat+]s ≈ [cat+]b + �
(
[OH−]s − [OH−]b

)
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where β is a kind of local transference number. Simulta-
neously, the local OH− concentration depends on the local 
mass transport characteristics. At steady state, the genera-
tion of OH− by the CCET reaction and the transport away 
of OH− by migration and diffusion must have equal rates. If 
(convective) diffusion dominates, one can write:

There is no simple solution to this equation, but for argu-
ment sake, let us first consider the limiting case of low back-
ground concentration of cations. For [cat+]b ≈ 0 , one may 
also assume that [OH−]s ≫ [OH−]b , so that it follows that:

Inserting this expression into the rate of HER gives:

Under these (admittedly somewhat extreme) conditions, 
it follows that the effective transfer coefficient is:

For values of 0 < γ < 1, this shows that the effective trans-
fer coefficient is expected to be larger than the intrinsic 
transfer coefficient α, and hence the Tafel slope would be 
smaller than 120 mV/dec (if α ≈ 0.5). The reason for this is 
that a higher reaction rate leads to a higher local hydroxide 
concentration and a correspondingly higher local cation con-
centration, and hence a higher rate.

In the limit of a high background cation concentration, 
one can use a Taylor expansion to derive an approximate 
expression for the reaction rate [10]. However, to illustrate 
the effect qualitatively, we choose here a particular value for 
γ which allows to solve Eq. 20, namely γ = ½. The expression 
for the current then becomes:

(20)

k0exp

(
−�F(E − E0)

RT

)(
[cat+]b + �

(
[OH−]s − [OH−]b

))�

=
D

�

(
[OH−]s − [OH−]b

)

(21)
�
cat+

�
s
= �[OH−]s =

⎛
⎜⎜⎜⎝

k0 exp
�

−�F(E−E0)

RT

�
��γ

D

⎞
⎟⎟⎟⎠

1

1−�

(22)

jHER ∝ k0 exp

(
−�F(E − E0)

RT

)
[OH−]γ

s

= k0

(
k0��

γ

D

) γ

1−γ

exp

(
−�(1 +

�

1−�
)F(E − E0)

RT

)

(23)�eff = �(1 +
�

1 − �
)

(24)

j
HER

∝ k
0
exp

�
−
�FE

RT

�
⎛⎜⎜⎜⎜⎝
[cat+]b + �

⎛⎜⎜⎜⎜⎝

� + (�2 + 4
�
cat+

�
b

D2

�2k2
0

exp
�

2�FE

RT

�
)
1∕2

2D2

�2k2
0

exp
�

2�FE

RT

�
⎞⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎠

�

This expression shows again that the potential depend-
ence of the reaction rate does not follow a simple Tafel 
law and that the slope of the Tafel plot does not reflect 
the intrinsic transfer coefficient α. Also, the experimen-
tally accessible reaction order in the bulk cation con-
centration [cat+]b does not reflect the intrinsic reaction 
order γ, but something considerably more complicated, 
due to the interplay with mass transport. Figure 2 shows 
typical Tafel plots and the corresponding “effective” 
transfer coefficients (i.e.RT

F

dlnjHER

dE
 ) for various values of 

D/δk0, showing how for lower values of the relative mass 
transport rate (i.e., low D/δk0), the deviation from ideal 
Tafel behavior increases. These non-kinetic effects on 
the Tafel slope for a reaction for which one intrinsically 
would not expect mass transport effects were recently 
also discussed in the experimental context of the oxygen 
evolution reaction [27].

The primary aim of the above exposition was to illus-
trate that cation-coupled electron transfer reactions that 
produce OH−, a reaction type which I believe to be quite 
ubiquitous in electrocatalysis, are not expected to follow 
simple Butler-Volmer rate laws. Detailed validation of these 
models with model systems on model electrodes will be an 

Fig. 2   A ln |jHER| vs. E predicted by Eq. 24, for three different values 
of D/δk0 ( [cat+]b = 0.1 M, β = 0.5, γ = 0.5, α = 0.5). B Corresponding 
“effective” transfer coefficient extracted from curves in A 
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important topic of future research. Note however that the 
unexpected mass transport dependence predicted by Eq. 24 
(with the reaction current going down for a thinner diffu-
sion layer or higher disk rotation rate, due to the enhanced 
removal of hydroxide from the interfacial region) has been 
semi-quantitatively confirmed experimentally for the HER 
on gold polycrystalline electrodes in alkaline media [10].

Conclusion

In this paper, I have considered a Marcus-type model for 
cation-coupled electron transfer (CCET) reactions, show-
ing how the interaction with a cation may stabilize a nega-
tively charged transition state or negatively charged surface-
adsorbed intermediate. An expression was derived for the 
activation energy which is similar to the Savéant-Marcus 
expression for bond-breaking electron-transfer reaction, 
but including a term which is mathematically equivalent 
to the Frumkin correction, effectively lowering the activa-
tion energy. A simpler more empirically inspired expression 
for the reaction rate shows how the overall rate of CCET 
is strongly coupled to the mass transport of the hydroxide 
ions that the CCET reaction typically produces, as the local 
hydroxide concentration influences the local cation con-
centration. The result is a complicated rate expression that 
does not follow simple Tafel or Butler-Volmer laws and that 
displays an unusual mass transport dependence. This unu-
sual mass transport dependence has indeed been observed 
experimentally during hydrogen evolution on a gold elec-
trode in alkaline media [10], in good agreement with the 
predictions of the model, but other more detailed predic-
tions of the model remain to be validated experimentally.
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