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Abstract Convergence–extension in embryos is controlled by chemical and mechanical signal-
ling. A key cellular process is the exchange of neighbours via T1 transitions. We propose and analyse 
a model with positive feedback between recruitment of myosin motors and mechanical tension in 
cell junctions. The model produces active T1 events, which act to elongate the tissue perpendicular 
to the main direction of tissue stress. Using an idealised tissue patch comprising several active cells 
embedded in a matrix of passive hexagonal cells, we identified an optimal range of mechanical 
stresses to trigger an active T1 event. We show that directed stresses also generate tension chains in 
a realistic patch made entirely of active cells of random shapes and leads to convergence–extension 
over a range of parameters. Our findings show that active intercalations can generate stress that 
activates T1 events in neighbouring cells, resulting in tension-dependent tissue reorganisation, in 
qualitative agreement with experiments on gastrulation in chick embryos.

Editor's evaluation
This theoretical investigation provides important findings on the role of active mechanical feedback 
on tissue remodelling. The authors present convincing evidence that mechanically enforced myosin 
recruitment at cell-cell junctions can lead to tissue expansion in the direction perpendicular to an 
externally applied uniaxial mechanical stress. The relevance of the proposed mechanism for conver-
gence–extension systems requires more investigation through comparison with experimental data.

Introduction
Embryonic development involves complex tissue dynamics, including rearrangements and shape 
changes of the cells. This is particularly evident during gastrulation where the presumptive ectoderm, 
mesoderm, and endoderm take up their correct positions in the embryo (Wolpert et  al., 2015). 
Key cellular processes that underlie tissue formation and morphogenesis during gastrulation are cell 
division, differentiation, and cell movement. Directed cell intercalation is a major mechanism driving 
large-scale tissue shape changes both in epithelial and mesenchymal tissues (Huebner and Walling-
ford, 2018). The narrowing and lengthening of epithelial tissues resulting from such intercalations, 
known as convergent extension (Keller et  al., 2000), underlie germband extension in Drosophila 
(Bertet et  al., 2004; Blankenship et  al., 2006), as well as primitive streak formation in the chick 
embryo (Voiculescu et  al., 2007; Rozbicki et  al., 2015). In the latter, cell intercalations facilitate 
coordinated movements of hundreds of thousands of cells in two counter-rotating millimetre-scale 
cell flows that drive the formation of the primitive streak at the site where the flows meet (Rozbicki 
et al., 2015; Saadaoui et al., 2020; Serrano Nájera and Weijer, 2020). Unlike cell migration (Alert 
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and Trepat, 2020), which typically involves a significant contribution from crawling against a substrate 
such as the extracellular matrix, during intercalation, cells pull against each other in order to exchange 
their neighbours (Huebner and Wallingford, 2018). This is a complex, active process that requires 
a carefully coordinated shrinking and subsequent expansion of cell–cell interfaces, known as the T1 
transition (Kong et al., 2017).

The widely studied morphological process of germband extension in Drosophila involves directed 
cell intercalations in the ventral ectoderm, where during the associated T1 events dorsal–ventral (DV)-
oriented junctions shrink and new junctions are generated in anterior–posterior (AP) direction. The 
contraction of DV-oriented junctions has been shown to correlate with increased accumulation of 
apical myosin II in these junctions that can form supercellular cables in aligned junctions (Bertet et al., 
2004; Blankenship et al., 2006). The extension of new junctions has been associated with the activity 
of medial myosin (Rauzi et al., 2010; Collinet et al., 2015). Laser ablation experiments in the ventral 
ectoderm have shown that the myosin-rich DV-oriented junctions are under higher tension than AP 
junctions (Rauzi et al., 2008; Fernandez-Gonzalez et al., 2009; Collinet et al., 2015), and aspiration 
and optical tweezing and optogenetic experiments have shown that myosin can be recruited to junc-
tions in response to increased tension in these junctions, demonstrating the existence of mechanical 
feedback (Fernandez-Gonzalez et al., 2009; Clément et al., 2017; Gustafson et al., 2022). This is in 
agreement with observations in the Drosophila wing disk when it has recently been shown that myosin 
accumulates on apical junctions in response to mechanical stretching of the disk (Duda et al., 2019). 
It has recently been shown that the distribution of apical myosin can accurately predict the observed 
tissue flow patterns during germband extension (Streichan et al., 2018). However, an as yet unre-
solved question is by which mechanism the anisotropic distribution of myosin cables is initially gener-
ated. It is thought to depend on the family of Toll receptors under the control of pair rule genes (Paré 
et  al., 2014) and their interactions with an adhesion G protein0coupled receptor (Lavalou et  al., 
2021) that could generate asymmetries in cells and can possibly signal to Rho-kinase and myosin; 
however, the precise molecular details remain to be resolved. Recently, a strong correlation between 
the DV junctional strain rate gradient and the junctional myosin recruitment rate gradient, both high 
at the ventral side, has been observed (Gustafson et al., 2022). This has led to the renewed sugges-
tion that the myosin anisotropy may arise in response to extrinsic forces, such as those generated by 
the mesoderm invagination of the ventral furrow (Butler et al., 2009), a process that starts somewhat 
before germband extension and in combination with other extrinsic events such as posterior hindgut 
invagination, and other geometric constraints could drive germband extension (Collinet et al., 2015; 
Gehrels et al., 2023). In this scenario, the AP and DV patterning system could be involved in setting 
the level of mechanical feedback.

Experiments in the chick embryo showed that directed intercalations of mesendoderm precursors 
located in a sickle-shaped region in the posterior of the epiblast drive the tissue flows underlying the 
formation of the primitive streak (Voiculescu et al., 2007; Rozbicki et al., 2015). This sickle-shaped 
mesendoderm precursor region contracts along its long axis towards the AP midline of the embryo 
and extends along this midline in anterior direction to form the primitive streak. Measurements of the 
directions of intercalations show that they are aligned along the long axis of the mesendoderm sickle 
in the direction of the contraction of the sickle and correlate well with the direction and magnitude 
of the anisotropic strain rate component (Rozbicki et al., 2015; Chuai et al., 2023). These directed 
intercalations are mediated by super cellular myosin cables in aligned junctions in the direction of 
intercalation (Rozbicki et al., 2015; Saadaoui et al., 2020; Serrano Nájera and Weijer, 2020). The 
onset of tissue motion starts near the central midline of the sickle and then rapidly extends outwards 
to more lateral regions, suggesting the existence of an outward-propagating signal (Rozbicki et al., 
2015). Furthermore, the intercalating cells go through a characteristic elongation in the direction of 
intercalation around the time of the onset of motion, which disappears when the epiblast tissue flows 
pickup speed. These observations, coupled with the fact that the chick embryo epiblast contains 
more than 60,000 cells at the onset of gastrulation requiring coordination of cell intercalation over 
large distances, led us to suggest that long-range mechanical signals coordinate the intercalations in 
the large scale (Rozbicki et al., 2015; Serrano Nájera and Weijer, 2020). More specifically, Rozbicki 
et al., 2015; Serrano Nájera and Weijer, 2020 proposed that local contraction of a junction would, 
through an increase in tension in aligned junctions of neighbouring cells, activate a mechanical feed-
back process in those junctions, in turn, resulting in their contraction. This process could explain 
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the formation of the observed myosin cables in response to tension and result in coordinated and 
directed intercalations. So far, it has not yet been possible to test tension-dependent myosin recruit-
ment directly in chick embryos since there has not been a live indicator of myosin activity. Currently, 
it is only possible to observe active myosin using a phospho-myosin light chain antibody in fixed 
embryos. The orientation and alignment of the myosin cables, however, correlate well with the aniso-
tropic component of the strain rate tensor (Rozbicki et al., 2015; Chuai et al., 2023), making it likely 
that a tension-dependent recruitment of myosin occurs in chick embryos.

To develop a cell-level model of the convergence–extension process, it is necessary to understand 
how externally applied and internally generated mechanical stresses couple to the signalling path-
ways that regulate the cell’s mechanical response. One, therefore, needs to understand the feed-
back between mechanical stress anisotropy and the anisotropy of the distribution of force-generating 
molecular motors in the cell, that is, how it emerges and is propagated and coordinated over large 
distances. The aim of this study is to formulate and analyse a model for cell intercalations that includes 
explicit mechanochemical coupling and does not require initial chemical prepatterning. The initial 
symmetry breaking is driven by anisotropic mechanical stresses rather than anisotropic distribution 
of signalling molecules. The focus of this work is on the mechanism of the T1 transition that occurs 
perpendicular to the direction of the maximum principal mechanical stress. We refer to such T1 transi-
tion that generate stress as active, which is different from T1 transitions that relieve stress by interca-
lating in a direction perpendicular to stresses generated by surrounding tissues. In the present model, 
this stress is assumed to be anisotropic and externally applied, while in an embryo it is produced by 
the tissue surrounding the region of interest, for example, the sickle-shaped region in the poste-
rior of the chick embryo that develops into the primitive streak (Serrano Nájera and Weijer, 2020). 
Unlike passive T1 events that are local plastic rearrangements that relieve the applied stresses as, 
for example, in foams (Weaire and Hutzler, 2001), active T1 transitions studied here require the cell 
to induce junction contractions via self-amplifying generation of tension. The key ingredient of the 
model is, therefore, a feedback mechanism between the kinetics of the force-producing molecules, 
here assumed to be myosin, and mechanical tension in cell junctions. One of the simplest forms 
in which this feedback could be implemented is through the formation of well-documented catch 
bounds between myosin heads and actin filaments, which is highly relevant for proper muscle func-
tion (Veigel et al., 2003). In this catch-bond mechanism, the dissociation rate of myosin from actin 
filaments is a decaying exponential function of tension, where increased tension results in dissocia-
tion rate of myosin from the actin-cytoskeleton to be a simple exponential function of tension where 
increased tension results in a lower dissociation rate of myosin. Assuming that the association rate is 
not tension sensitive, this process will result in a net tension-dependent myosin accumulation.

Here we construct a model that generically provides a mechanism for active T1 events that underlie 
convergent extension flows such as those observed during primitive streak formation in the chick 
embryo (Rozbicki et  al., 2015). Our analysis indicates that the viscoelastic nature of the cell–cell 
junctions is essential for an active T1 event, in agreement with studies on ratcheting during junction 
contractions (Clément et al., 2017; Staddon et al., 2019). In addition, for the active T1 transition to 
be possible, there must be a separation of elastic (‍t∗‍), viscoelastic remodelling (‍τv‍), and motor turnover 
timescales (‍τm‍), with ‍τv, τm > t∗‍.

We first analyse the mechanochemical feedback in the case of a single junction, which describes 
the key ingredients of the proposed mechanism but avoids complications associated with cell rear-
rangements. The analysis then proceeds to the two-dimensional case, implemented as an extension 
of the vertex model (Farhadifar et al., 2007; Fletcher et al., 2014), where cell rearrangement is not 
only possible but leads to shape changes at the tissue scale. We find active T1 transitions and conver-
gence–extension flows over a broad region of externally applied stresses and relaxation timescales, 
confirming that the proposed mechanism is robust.

Results
Single-junction model
To understand the mechanism that couples the kinetics of myosin motors to the local mechanical 
tension and leads to the activation of contractility in cell–cell junctions, we first analyse a model of 
a single junction. The single-junction model thus provides insight into the conditions under which 
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the junction length can contract to zero and trigger a T1 transition. In this model, for simplicity, the 
junction is assumed to be surrounded by a tissue which provides an elastic, tension-generating back-
ground against which it actively contracts. Guided by experiments, there are three key ingredients 
of the single-junction model. (1) The junction is viscoelastic, as established by pull-release optical 
tweezer experiments on cell–cell junctions in Drosophila and chick embryos (Clément et al., 2017; 
Ferro et al., 2020). This means that the junction is able to remove imposed tension by remodel-
ling itself. (2) The junction can generate tension via the action of myosin motor minifilaments that 
slide actin filaments against each other. (3) There is self-amplifying feedback due to the exponentially 
decreasing unbinding rate of myosin motors with tension in the junction (Veigel et al., 2003; Kovács 
et al., 2007; Figure 1A and Figure 1—figure supplement 1A and B). Furthermore, epithelial tissues, 
and early-stage embryos, in particular, are under mechanical tension as revealed by tissue and cell 
junction cutting and tweezing experiments (Clément et al., 2017; Ferro et al., 2020). This tension 
generates an elastic background against which the junction contracts and expands. We refer to that 
background elasticity as the elastic barrier since it is assumed that it acts to prevent junction remod-
elling. In the full model, it additionally captures the yield stress of the underlying material that inhibits 
T1 transitions (Bi et al., 2015). Details of the model are discussed in ‘Materials and methods’, with 
parameter values given in Table 1.

In order to describe the three key ingredients that characterise a cell–cell junction, while taking into 
account the effects of the elastic background, we adopt a minimal description, that is, we assume that 
the junction consists of four elements connected in parallel: (1) a Maxwell element with stiffness ‍k‍ and 
viscous relaxation timescale ‍τv‍, which models the viscoelastic character of the junction; (2) an elastic 
spring with spring constant ‍B‍ and rest length ‍a‍, which represents the elastic background, that is, the 
elastic barrier; (3) an active element that models the contribution of the cytoskeleton by generating 
active tension ‍β

(
m − m0

)
‍, where ‍β‍ is the activity, ‍m‍ is the ratio of the number of myosin motors bound 

to the junction and the maximum possible number of bound motors, and m0 is the reference value of 
‍m‍; and (4) a dashpot with dissipation rate ‍1/ζ‍, which models dissipation with the surrounding medium. 
The first two elements form a standard linear solid (SLS) element (Figure  1—figure supplement 
1A). The presence of m0 in the active element is necessary to account for the possibility that active 

B C

Figure 1. An active junction. (A) An external pulling force of magnitude ‍Text‍ induces tension ‍T ‍ in a cell–cell junction of length ‍l‍, which consists of 
passive viscoelastic and active components. The passive component consists of a Maxwell element with stiffness ‍k‍ and viscous relaxation time ‍τv‍ and 
a harmonic spring of stiffness ‍B‍ and rest length ‍a‍ connected to it in parallel. The active component is due to myosin motors (green and blue dots) 
with concentration ‍m‍ that act to contract cortical actin filaments (red lines), exerting a force of magnitude ‍βm‍. Myosin motors bind to the actin cortex 
with association rate ‍τ

−1
m ‍ and unbind with a tension-dependent dissociation rate ‍τ

−1
m F(T)‍. (B) Heatmap plot of the contraction force ‍FC

(
Text,β

)
‍. For 

‍B = 0‍, the junction contraction rate is ‍̇l = FC/ζ ‍, where ‍ζ ‍ is the friction coefficient with the surrounding medium. The mechanochemical feedback loop 
is contractile in the top-right quadrant where ‍β > βc‍, ‍Text > T∗‍, and ‍FC > 0‍. Negative values of ‍FC‍ correspond to an extending junction. (C) Junction 
length vs. time for ‍Text = 0.5ka‍, ‍β = 2.5ka‍, ‍τv = τm = 10t∗‍ (black dot in B) for increasing values of the elastic barrier ‍B‍. An active ‍T1‍ corresponds to 
reaching ‍l = 0‍. Increasing ‍B‍ slows down contractions, until, for ‍B ≥ FC/a‍, the equilibrium length ‍l ≥ 0‍ and no T1 is possible. Inset: myosin dynamics for 
the same set of junctions; the horizontal dashed line indicates ‍meq · α = 1‍, ‍T

∗ = 0.3ka‍, ‍k0 = 2/T∗
‍, and ‍m0 = 0.5‍. Length is measured in units of ‍a‍, time 

in units of ‍t∗ = ζ/k‍, and force in units of ‍ka‍.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Key ingredients of the single active junction model.

Figure supplement 2. A linear chain of active junctions.

https://doi.org/10.7554/eLife.79862
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contractions of the surrounding tissue are stronger than those in the junction, which would result in it 
expanding. Furthermore, since ‍m‍ and m0 measure the relative numbers of bound motors, the expres-
sion for the active force does not include the junction length (for further discussion, see ‘Materials and 
methods’). Under these assumptions, the dynamics of a junction with length ‍l‍ and the rest length l0 is

	﻿‍ ζ l̇ = −T + Text, τv l̇0 = l − l0, τmṁ = 1 − mF(T),‍� (1)

where ‍T = k
(
l − l0

)
+ β

(
m − m0

)
+ B

(
l − a

)
‍ is the junction tension, and ‍Text‍ is external tension, which 

generates stresses in the junction. The feedback loop between the concentration of bound myosin 
motors and the mechanical tension is captured by the equation for the myosin dynamics, which incor-
porates a tension-independent myosin binding rate ‍τ

−1
m ‍, and an unbinding rate ‍F(T)/τm‍ that decreases 

with tension as ‍F(T) = α + e−k0(T−T∗)
‍. The third equation in Equation 1, therefore, describes a catch-

bond-type mechanism (Dembo et al., 1988; Veigel et al., 2003; Thomas et al., 2008; Prezhdo and 
Pereverzev, 2009) for myosin kinetics. We remark that it is possible to construct different models 
for tension-dependent myosin kinetics, for example, with the motor binding rate being tension-
dependent. This is, however, not expected to lead to qualitative differences. The key for the mecha-
nism of the active T1 transition studied here is that there is increased contractile activity in response 
to external mechanical tension, without the need to specify its precise molecular origin. The reason, 
however, to consider tension-dependent unbinding is because the nonmuscle myosin II, which is the 
primary molecular motor that drives contractions in early embryonic tissues, is known to have actin 
association rates that are tension-independent, but exhibits tension-dependent dissociation (Kovács 
et al., 2007). At steady state ‍ṁ = 0‍, and the equilibrium myosin ‍meq = F(T)−1

‍ is a sigmoid function 
of tension. ‍T∗‍, therefore, sets the threshold that separates low and high levels of attached myosin 
motors. ‍α‍ and k0 are constants with choices of their values discussed in ‘Materials and methods’.

The first two equations in (1) can be combined as ‍ζu̇ = − ζ
τv

u − T + Text‍, where ‍u = l − l0‍. The inter-
section of nullclines ‍̇u = 0‍ and ‍ṁ = 0‍ defines the fixed points of the dynamics, ‍

(
meq, ueq

)
‍ (Figure 1—

figure supplement 1C). Experiments of Clément et al., 2017 showed that prolonged pulling forced 
the junction to remodel and retain the elongated shape. Therefore, the relevant regime consistent 
with observations in real tissues is where the viscoelastic remodelling and myosin association times-
cales are longer than the elastic relaxation timescale, that is, for ‍τv, τm > ζ/k ≡ t∗‍. For ‍B = 0‍, there is a 

Table 1. Values of the parameters in the single-junction model.
Units: length (‍a‍), time (‍t∗ = ζ/k‍), force (‍ka‍).

Base

Parameter Description

‍k‍ Spring constant

‍a‍ Barrier rest length

‍ζ ‍ Friction with substrate

Model

Parameter Description Value range

‍B‍ Barrier spring constant ‍0 − 0.2k‍

‍Text‍ Applied external tension ‍0 − 1ka‍

‍β‍ Myosin activity ‍0 − 3ka‍

‍τv‍ Viscoelastic time ‍10t∗‍

‍τm‍ Myosin time ‍10t∗‍

‍m0‍ Myosin reference level 0.5

‍T∗‍ Threshold tension ‍0.3ka‍

‍k0‍ Slope of ‍m‍ vs. ‍T ‍ at ‍T∗‍ ‍2/T∗‍

‍α‍ Tension-independent myosin dissociation 1

https://doi.org/10.7554/eLife.79862
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unique stable fixed point ‍G0‍ that determines the long-time dynamics of the junction and the length of 
the junction continues to change at a constant rate ‍l̇ = u̇ + l̇0 = ueq/τv‍ (Figure 1C, the ‍B = 0‍ curve). For 
a junction with no external load, therefore, a fixed point with ‍ueq ≤ 0‍ corresponds to steady contrac-
tion, while a fixed point with ‍ueq > 0‍ corresponds to expansion.

In the presence of a finite elastic barrier of height ‍Ba‍, the junction behaves as an elastic solid in the 
long-time limit, and it is in mechanical equilibrium with ‍T = Text‍. This corresponds to a single steady-
state solution of Equations 1 at ‍u

B
eq = 0‍, indicated by the fixed point GB (Figure 1—figure supple-

ment 1C). The corresponding steady-state value of myosin,

	﻿‍
meq = 1

α + ek0
(

T∗−Text
) ,

‍�
(2)

is independent of ‍B‍, reflecting the fact that in mechanical equilibrium external tension is balanced 
by the tension generated by myosin motors. The condition for a T1 transition to occur is, therefore, 
that the active tension due to myosin motors is sufficiently strong to shrink the junction to ‍l0 = 0‍. 
The mechanical equilibrium condition ‍T = Text‍ at that point allows one to compute the magnitude 
of the contraction force ‍FC‍ the junction generates, or equivalently, the maximum barrier height, 

‍FC
(
Text,β

)
≡ Ba = β

(
meq − m0

)
− Text‍ that a contracting junction can overcome. Figure  1B shows 

isolines of ‍FC‍, where positive values of ‍FC‍ correspond to junctions that can contract down to a T1 
in the presence of a load, while negative values of ‍FC‍ correspond to junctions that cannot. Above a 
threshold in ‍Text ≳ T∗

‍ and ‍β > βC‍, the junction is able to gradually generate sufficiently large contrac-
tion forces required to overcome the elastic barrier and shrink down. Conversely, for ‍Text ≲ T∗

‍ the 
junction expands, which is the appropriate regime for elongation after a T1. Therefore, there is posi-
tive feedback between mechanical tension and activity, which results from the assumption that the 
myosin association rate is independent of tension while the dissociation rate decays exponentially 
with it. The isoline ‍FC = 0‍ (Figure 1B, thick black curve), separates the contracting and the expanding 
regimes, and it corresponds to a critical threshold ‍βc‍ for a T1 transition,

	﻿‍
βc ≥ Text

meq − m0
,
‍�

(3)

where ‍meq‍ is given by Equation 2. Figure  1C shows the junction dynamics in the presence of 
barriers of different heights for ‍Text = 0.5ka‍, ‍β = 2.5ka‍ with ‍FC ≈ 0.2285ka‍ (Figure 1B, black dot). The 
junction shrinks to a point for ‍B ≤ FC/a‍, while for larger values of ‍B‍ the contraction stops at finite 
‍l‍. The initial elongation of the junction (Figure 1C) is due to our choice of the initial value of ‍m‍ and 
reflects the fact that it takes ‍≈ τm‍ for the active contractile machinery to kick in.

We conclude by emphasising the contractile response to applied tension of the single-junction 
model that will be at the heart of convergence–extension mechanism discussed below. That is, 
applying small external forces will lead to an expanding junction. Increasing the force, however, leads 
to the junction shrinking due to the increase of bound myosin motors. Once initiated, the process of 
activation can continue spontaneously. To showcase this, we applied a pulling force corresponding 
to ‍FC = 0‍ (neither contracting nor expanding) to a chain of active junctions connected in series 
(Figure 1—figure supplement 2A). An initial myosin pulse applied to the central junction causes it to 
contract. The contraction of the central junction activates contractions of the neighbouring junctions, 
leading to shrinking of the entire chain (Figure 1—figure supplement 2B). Finally, the contraction 
rate strongly depends on the timescale of viscoelastic relaxation in the junction. Both effects should 
be measurable experimentally.

Vertex model with active junctions
The single-junction model serves as a building block for a model of the entire epithelial tissue. A 
natural way to proceed is to extend an existing model for tissue mechanics. Setting aside apicobasal 
polarity, which affects cell intercalations in real tissues (Huebner and Wallingford, 2018), it can be 
assumed that the mechanical properties of the epithelial tissue arise chiefly from the apical junc-
tion cortex, an approximation that is able to qualitatively capture many aspects of tissue mechanics 
(Fletcher et al., 2014; Murisic et al., 2015).

We, therefore, model the mechanical response of the tissue with the vertex model (Farhadifar 
et al., 2007; Fletcher et al., 2014). The appeal of the vertex model is that it is able to capture both 

https://doi.org/10.7554/eLife.79862
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fluid and solid behaviours of epithelial tissues, including some aspects of the viscoelastic rheology 
(Tong et al., 2021; Tong et al., 2022). In the vertex model, the transition between the fluid state 
where cells can easily intercalate and tissue scale flows is possible, and the solid phase where interca-
lations are arrested is controlled by a single dimensionless geometric parameter, ‍p0 = P0/

√
A0 ‍ (Staple 

et al., 2010; Bi et al., 2015; Park et al., 2015; Bi et al., 2016).
Here we extend the vertex model to include activity via the mechanochemical coupling introduced 

for the single junction and define the vertex model with active junctions. Details of the model are 
given in ‘Materials and methods’. Each junction, shared by two cells denoted as 1 and 2, is augmented 
by two active elements that model active contractions by the actomyosin cortex on either side. The 
tension in the junction is then

	﻿‍ T = TP + k
(
l − l0

)
+ β1

(
m1 − m0

)
+ β2

(
m2 − m0

)
,‍� (4)

where ‍TP‍ is the passive contribution from the standard vertex model energy given in Equation 
11. The junction rest length ‍l0‍ is, however, not constant but subject to viscoelastic relaxation with 

‍τv l̇0 = l − l0‍. It is important to note that ‍TP‍ depends only on the cell perimeter and not on junction 
length ‍l‍ and, therefore, does not allow for anisotropic mechanical response to an applied anisotropic 
tension. This term is however responsible for the yield stress of the vertex model when attempting 
T1 transitions (Bi et al., 2015) and corresponds to the barrier term in the single-junction model. The 
additional spring term of the Maxwell element in Equation 4 is, therefore, crucial for generating 
anisotropic tension. The myosin dynamics of each active element is coupled to a conserved myosin 
pool of size ‍M ‍ for each cell ‍C‍ that determines the association rate of myosin motors to the junctions. 
As in the single-junction model, the myosin dissociation rate is modulated by mechanical tension, 
leading to the following equation for myosin kinetics:

	﻿‍
τmṁ =

(
M − mC

act
)
− zmF

(
T
)

+ η.
‍� (5)

Here, ‍m
C
act =

∑z
e=1 me‍ is the total amount of activated myosin bound to the ‍z‍ junctions of cell ‍C‍, and 

we have included a noise component ‍η‍ with zero mean and variance ‍f ‍ to model stochastic binding and 
unbinding of myosin. The overdamped dynamics of vertices is determined by force balance between 
friction, elastic forces due to deformations of the passive vertex model, and active forces due to pairs 
of active elements acting along the junctions connected to the vertex, that is. ‍ζ ṙi = −∇ri EVM + Fact

i ‍, 
where ‍ri‍ is the position of vertex ‍i‍, ‍EVM‍ is the energy of the passive vertex model (Equation 9), and 
the active term ‍F

act
i ‍ derives from the active elements introduced in Equation 4.

Single active T1 transition in a hexagonal patch
We begin by discussing a single active T1 event (Figure 2 and Figure 3). The unit of time is set by the 
elastic timescale ‍t

∗ = ζ/
(
k + Γ

)
‍, the unit of length by the side of a regular hexagon ‍a‍, and the unit of 

force by ‍f
∗ =

(
Γ + k

)
a‍, where ‍Γ‍ is the perimeter modulus of the passive vertex model introduced in 

Equation 9. Values of the parameters used in simulations are listed in Table 2.
To understand the dynamics of a single active T1, we first studied a regular lattice of hexagonal 

cells that are passive except for an inclusion of four central active cells surrounded by a buffer ring 
at half activity (Figure 2A). The buffer cells were used to prevent distortions associated with large 
differences in activity between cells. Mechanical anisotropy was created by applying forces of equal 
magnitude and opposite direction perpendicular to the left and right boundaries to induce aniso-
tropic mechanical stresses in the tissue. Furthermore, both activity and viscoelastic relaxation were 
switched off until mechanical equilibrium was reached (see ‘Materials and methods’). The initial 
state is mechanically anisotropic (Figure 2B, top left), with differential tension in horizontal (h) vs. 
shoulder (s) junctions (Figure 3A), with ‍Th‍ being significantly larger than ‍Ts‍. Near the equilibrium point 
‍T = T∗‍, and for ‍M = 6‍, ‍mC

act ≈ 3‍, the dynamics of the model tissue closely resembles the dynamics of 
the single-junction model. It is easy to show that ‍meq ≈

(
2F(T)

)−1
‍, and mechanical anisotropy leads to 

anisotropic distribution of myosin, that is, ‍mh > ms‍ (Figure 2B, bottom left). There is a range of applied 
pulling forces that, therefore, produce tensions ‍Ts < T∗ < Th‍ in the system. In this regime, for a suit-
able ‍β > βc/2‍ (Equation 3) horizontal junctions are contractile, while shoulder junctions are extensile. 
Here, the factor of 1/2 is due to both active elements of a junction acting in parallel.

https://doi.org/10.7554/eLife.79862
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In steady state, both activity ‍β‍ and viscoelasticity were switched on (Figure 2—videos 1–6), with 
timescales chosen such that ‍τv, τm ≳ t∗‍, which is the biologically relevant regime. Figure 2B, second 
column, shows the system after ‍75t∗‍. For the central horizontal active junction, contractility has been 
triggered, and the junction is steadily contracting at high myosin and against high tension (Figure 3B).

The active T1 transition is reached at ‍121t∗‍, when the central junction shrinks to a point and a four-
vertex is created (Figure 2B, third column). If the sum of the forces on the four-vertex is favourable for 

Figure 2. An active T1 transition event. (A) Top panel: the mechanical anisotropy in the initial state is produced by applying pulling forces (green 
arrows) in the horizontal direction to the left and right boundaries. Bottom panel: the final state after the active T1 shows a clear convergence–
extension deformation (red arrows). Cells are coloured by type: passive (light grey), buffer (medium grey), and active (dark grey). Junctions are 
coloured by junctional myosin. (B) Time sequence of the active T1 transition measured from the moment activity and viscoelasticity were switched 
on. Cells in the top row are coloured by type and junctions are coloured by tension. Cells in the bottom row are coloured by activated myosin ‍mC

act‍, 
and junctions are coloured by myosin. Parameters: ‍A0 = 3

2
√

3a2
‍, ‍P0 = 6a‍, ‍β = 0.8f∗‍ (active), ‍β = 0.4f∗‍ (buffer), ‍β = 0‍ (passive), ‍M = 6‍, ‍T∗ = 0.3f∗‍, 

‍k0 = 2/T∗
‍, ‍τv = 20t∗‍, ‍τm = 100t∗‍, ‍α = 0.1‍, ‍f = 1‍, ‍fpull = 0.15f∗‍, with ‍nx = 15‍ (‍ny = 11‍) cells in the horizontal (vertical) direction. Units: length (‍a‍), time 

(‍t
∗ = ζ/

(
Γ + k

)
‍), force (‍f

∗ =
(
Γ + k

)
a‍).

The online version of this article includes the following video and figure supplement(s) for figure 2:

Figure supplement 1. Schematic representation of the key ingredients in the vertex model with active junctions.

Figure 2—video 1. Simulation of a passive system with applied horizontal pulling for ‍fpull = 0.15f∗‍.

https://elifesciences.org/articles/79862/figures#fig2video1

Figure 2—video 2. Low activity system with no T1 transitions.

https://elifesciences.org/articles/79862/figures#fig2video2

Figure 2—video 3. Active T1 transition.

https://elifesciences.org/articles/79862/figures#fig2video3

Figure 2—video 4. System with low pulling force.

https://elifesciences.org/articles/79862/figures#fig2video4

Figure 2—video 5. System with too high pulling force.

https://elifesciences.org/articles/79862/figures#fig2video5

Figure 2—video 6. System with too high activity.

https://elifesciences.org/articles/79862/figures#fig2video6

Figure 2—video 7. Active T1 transition with low ‍τm‍ and ‍τv‍.

https://elifesciences.org/articles/79862/figures#fig2video7

Figure 2—video 8. Active T1 transition with low ‍τm‍.

https://elifesciences.org/articles/79862/figures#fig2video8

Figure 2—video 9. Active T1 transition with low ‍τv‍.

https://elifesciences.org/articles/79862/figures#fig2video9

Figure 2—video 10. Active T1 transition at intermediate values of ‍τm‍ and ‍τv‍.

https://elifesciences.org/articles/79862/figures#fig2video10

Figure 2—video 11. Active T1 transition at high ‍τv‍.

https://elifesciences.org/articles/79862/figures#fig2video11

Figure 2—video 12. Active T1 transition at high ‍τm‍.

https://elifesciences.org/articles/79862/figures#fig2video12

Figure 2—video 13. Active T1 transition at high ‍τm‍ and ‍τv‍.

https://elifesciences.org/articles/79862/figures#fig2video13

https://doi.org/10.7554/eLife.79862
https://elifesciences.org/articles/79862/figures#fig2video1
https://elifesciences.org/articles/79862/figures#fig2video2
https://elifesciences.org/articles/79862/figures#fig2video3
https://elifesciences.org/articles/79862/figures#fig2video4
https://elifesciences.org/articles/79862/figures#fig2video5
https://elifesciences.org/articles/79862/figures#fig2video6
https://elifesciences.org/articles/79862/figures#fig2video7
https://elifesciences.org/articles/79862/figures#fig2video8
https://elifesciences.org/articles/79862/figures#fig2video9
https://elifesciences.org/articles/79862/figures#fig2video10
https://elifesciences.org/articles/79862/figures#fig2video11
https://elifesciences.org/articles/79862/figures#fig2video12
https://elifesciences.org/articles/79862/figures#fig2video13
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it to split (Spencer et al., 2017) in the vertical direction, a T1 event occurs, accompanied by myosin 
redistribution (see ‘Materials and methods’). The newly created vertical junction expands at interme-
diate values of myosin and tension (Figure 2B, fourth column, and Figure 3B). In contrast, aided by 
the anisotropic redistribution of myosin, the shoulder junctions are now strongly polarised and begin 
contracting, with higher myosin levels on the side of the junction belonging to the expanding pair of 
cells (Figure 3C). This expansion phase is followed by several secondary T1 events, the first of which 
typically occurs at a shoulder junction (Figure 2B, fifth column). During this propagation phase, there 
is a strong mechanical anisotropy in the direction of applied pulling forces. Together, the central T1 
and the subsequent T1 events lead to substantial convergence–extension flow as can be seen qual-
itatively in the shape of the region formed by the 14 central and buffer cells (Figure 2, medium and 
dark grey).

Timescales of active T1 events and local convergence–extension strain
We proceed to quantify T1 transitions using the method introduced by Graner et al., 2008 (for a 
brief summary, see ‘Materials and methods’). First, using the topological tensor, ‍̂T‍ (Equation 19), 
we measured the time and orientation of the T1 transition along the direction of the central junction 
of the active region (hereafter the ‘central T1’). Figure 4A shows the probability of a central T1 as a 
function of ‍fpull‍ and ‍β‍, with other parameters held constant at the same values as in Figure 2. The 
probability was computed from ‍n = 32‍ simulations with different realisations of the myosin noise as 
the fraction of simulations where the first observed T1 was along the central active junction rather 
than elsewhere in the system. The probability of any T1 in the system was also measured, with the red 
contour in Figure 4A corresponding to 50% of realisations having a T1.

These results show that there is an absolute lower threshold, ‍β > βc/2‍, for any form of T1 to occur. 
This is qualitatively consistent with both sides of the junction acting as two parallel instances of the 
single-junction model. Second, there is an optimal range of applied pulling forces for central T1 
transitions, ‍0.1 < fpull/f∗ < 0.2‍. Within this range, ‍Ts < T∗ < Th‍ for the central and shoulder junctions, 
and during the initial contracting phase, they are contractile and extensile, respectively. Outside this 
optimal regime, the probability for central T1 events decreases rapidly, though T1 transitions still 
occur elsewhere for large values of ‍β‍.

The orientation of the central T1 transition in the optimal region is shown in Figure 3D. It was 
computed from the angle of the principal direction of ‍̂T‍ corresponding to the largest eigenvalue 
before and after the T1. One can immediately observe that the transition is highly symmetric, with the 

Figure 3. Junction dynamics during the active T1 transition shown in Figure 2. (A) Definition of central (red/blue – junction that disappears/appears), 
inner (orange), and outer (blue-green) shoulder junctions through the T1 transition. (B) Central junction: myosin, ‍m‍ (green; two curves for myosin on 
two sides of the junction), tension, ‍T ‍ (yellow), junction length, ‍l‍ (black), and rest length l0 (purple) vs. time. The vertical line indicates the T1 transition, 
at which point junctional myosin is redistributed according to the rules outlined in Figure 2—figure supplement 1B. (C) Same as in panel (A) but 
averaged over four shoulder junctions, with variance indicated as shade. (D) Polar histogram of the orientation of the first T1 event measured with 
respect to the pulling direction, from ‍n = 32‍ simulations. Blue (red) indicates appearing (disappearing) junctions. Parameters are ‍β = 0.8f∗‍ and 

‍fpull = 0.15f∗‍ and as in Figure 2.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Continuous strain tensors through the active T1 transition, for ‍β = 0.8f∗‍, ‍fpull = 0.15f∗‍, and the other parameters corresponding 
to Figure 2 and Figure 3.

https://doi.org/10.7554/eLife.79862
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Table 2. Values of the parameters used in the vertex model with active junctions.
Units: length (‍a‍), time (‍t

∗ = ζ/
(
Γ + k

)
‍), force (‍f

∗ =
(
Γ + k

)
a‍).

Base

Parameter Description

‍a‍ Hexagonal cell edge length

‍Γ‍ Perimeter modulus

‍k‍ Spring constant

‍ζ ‍ Friction with substrate

Model

Parameter Description Value range

‍κ‍ Area modulus ‍1f∗/a3
‍

‍A0‍ Target cell area ‍3
√

3a2/2‍

‍P0‍ Target cell perimeter ‍6a‍

‍fpull‍ Pulling force ‍0.0 − 0.3f∗‍

‍β‍ Myosin activity ‍0.0 − 1.4f∗‍

‍τv‍ Viscoelastic time ‍100 − 103t∗‍

‍τm‍ Myosin time ‍101 − 103t∗‍

‍T∗‍ Threshold tension ‍0.3f∗‍

‍K0‍ Slope of ‍m‍ vs. ‍T ‍ at ‍T∗‍ ‍2/T∗‍

‍m0‍ Myosin reference level 0.5

‍M ‍ Total cell myosin 6

‍f ‍ Variance of myosin fluctuations 1

‍α‍ Tension-independent myosin dissociation 0.1

Figure 4. Existence and timescales of T1 transitions in the vertex model with active junctions as a function of ‍fpull‍ and ‍β‍, averaged over ‍n = 32‍ 
simulations with different realisations of the myosin noise. (A) Probability of a central T1 transition. The red line is the 50% probability contour of any T1 
occurring in the simulation. (B) Typical timescale for the T1 transition to occur, measured as the length of the contraction phase. The other parameters 
are the same as in Figure 2. (C) Magnitude of the convergence–extension deformation as a function of ‍fpull‍ and characterised by measuring ‍ε

tot
xx − εtot

yy ‍ 
induced by the T1 transition.

https://doi.org/10.7554/eLife.79862
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orientation of the shrinking (disappearing) junction being very close to horizontal, and the expanding 
(appearing) junction very close to vertical. Outside the optimal regime, this symmetry disappears, with 
T1 events of non-central junctions occurring in different directions, similar to the fully random case 
discussed below.

Figure 4B shows the time to the first ‍T1‍ transition, ‍τc‍, measured from the point when the activity 
and viscoelastic relaxation were switched on. The analysis was limited to central T1 transitions at 
parameter values where at least 25% of simulations yield a central T1, with ‍τv = 20t∗‍ and ‍τm = 100t∗‍. 
One immediately observes that ‍τc ≳ τv, τm‍, consistent with a T1 dynamics being dominated by myosin 
activation and viscoelastic relaxation. We find that ‍τc‍ has a minimum in the same optimal region iden-
tified in Figure 4A, with ‍τc‍ rising both for larger and smaller values of ‍fpull‍. Furthermore, increasing 

‍β‍ beyond ‍βc = 0.6f∗‍ gradually reduces ‍τc‍, consistent with active contractions becoming stronger. 
For ‍β > 1.0f∗‍, cells shapes become increasingly distorted, suggesting that the model is no longer 
applicable.

We now quantify convergence–extension generated by the model. The shear component of the 
total integrated strain ‍ε

tot
xx − εtot

yy ‍ given in Equation 24 was computed for the 14 cells comprising the 
central and buffer regions (Figure 2A). Figure 4C shows ‍ε

tot
xx − εtot

yy ‍ as a function of ‍fpull‍, evaluated 
at ‍t = 400t∗‍ and averaged over ‍10t∗‍. This point approximately corresponds to the empirically deter-
mined peak of convergence–extension in the optimal region of applied pulling forces (see sample 
time traces in Figure 3—figure supplement 1). From Figure 4C it is evident that the model gener-
ates pronounced convergence–extension. Without activity, that is, for ‍β = 0‍, the system extends in 
the direction of the applied pulling force and contracts perpendicular to it with ‍ε

tot
xx − εtot

yy > 0‍ and, as 
expected, it increases with ‍fpull‍. For ‍β > 0‍, ‍ε

tot
xx − εtot

yy > 0‍ decreases, indicating that the activity acts 
against the applied pulling force. As ‍β‍ increases beyond a critical value, ‍βc ≈ 0.6f∗‍, active forces are 
strong enough to counteract the pulling forces and the system shrinks against the external load and 
extends in the perpendicular direction, that is, ‍ε

tot
xx − εtot

yy < 0‍. During this process there are no signifi-
cant changes of the area, that is, ‍ε

tot
xx + εtot

yy ≈ 0‍. This mechanism is, however, effective only for a range 
of values of ‍fpull‍. If ‍fpull‍ is insufficiently strong, the myosin–tension feedback loop does not fully acti-
vate (Figure 2—video 4). Conversely, if ‍fpull‍ is too strong, the feedback loop is active, but all junctions 
are activated, stiffening the tissue (Figure 2—video 5).

We conclude the analysis of a hexagonal tissue patch by investigating the influence of ‍τv‍ and ‍τm‍ 
(Figure 2—videos 7–13). Figure 5A shows the probability of a central T1 for ‍β = 1.0f∗‍, ‍fpull = 0.15f∗‍, 
that is, deep in the optimal region, as a function of ‍τm‍ and ‍τv‍. Here, we only consider the biologically 
plausible regime with ‍τm, τv ≳ t∗‍, with proportionally scaled myosin noise ‍f = 1‍, and we excluded very 
small values of ‍τm‍ where noise dominates. We find that the mechanism for T1 events is very robust 
over 2–3 orders of magnitude in both ‍τm‍ and ‍τv‍, with a guaranteed T1 transition in most of the param-
eter space. The only exception is the regime ‍τm ≳ 10τv‍, that is, very slow myosin dynamics compared 

Figure 5. Robustness of the T1 mechanism as a function of ‍τv‍ and ‍τm‍ for ‍β = 1.0f∗‍ and ‍fpull = 0.15f∗‍. (A) Probability of a central T1 event, averaged 
over ‍n = 32‍ simulations with different realisations of the myosin noise. The probability of any T1 event is 1 throughout. (B) Contraction time to collapse 
for the central T1 as a function of ‍τv‍, for different values of ‍τm‍, for points where a central T1 event occurred in at least 25% of simulations. (C) Peak of 
the total convergence extension strain ‍ε

tot
xx − εtot

yy ‍, showing very weak dependence on viscoelastic and myosin timescales. Shading in panels (B) and (C) 
indicates the standard error of the mean.

https://doi.org/10.7554/eLife.79862
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to viscous relaxation, where the system fails to develop anisotropy. All simulations generated at least 
one T1, and there is no equivalent of the red contour in Figure 4A. In Figure 5B, we show the times-
cale of the T1 transition. We find the T1 timescales as ‍τc ∼ τ1/2

v ‍ and ‍τc ∼ τ1/3
m ‍. This influence of both 

timescales is consistent with the complex interplay between myosin activation on central and shoulder 
junctions. Finally, in Figure 5C, we show the convergence–extension strain ‍ε

tot
xx − εtot

yy ‍ as a function of 
‍τv‍ for a range of values of ‍τm‍. The effectiveness of the T1 mechanism is largely independent of ‍τv‍ and 
‍τm‍, and we have ‍ε

tot
xx − εtot

yy ≈ −0.3‍, the same value as in Figure 4C. This additional robustness of the 
model to varying timescales is likely due to being in a quasistatic regime where the elastic deforma-
tion timescale is much shorter than any other timescale.

Convergence–extension in a fully active random patch
The hexagonal tissue patch is convenient to analyse isolated active T1 events. Cells in real epithelia, 
however, do not have regular shapes packed in crystalline order. We, therefore, studied a patch of 
520 active and 80 passive cells generated from a centroidal Voronoi tessellation starting from ‍N = 600‍ 
points placed at random in the simulation box. As in the case of the hexagonal patch, we applied 
pulling forces of constant magnitude on left and right boundaries in order to generate internal aniso-
tropic stresses that mimic the mechanical conditions in the sickle region of the embryo (see next 
section). First, we investigated the occurrence of active T1 transitions and the emergence of conver-
gence–extension as a function of ‍fpull‍ and ‍β‍, at fixed ‍τv = 20t∗‍ and ‍τm = 100t∗‍, that is, in the same 
region of parameter space as in Figure 4 (see also Figure 6). To be consistent with the hexagonal 
patch, the unit of length here is set by the length of a regular hexagon of area ‍L2/N ‍, where ‍L‍ is the 
initial patch size (see ‘Materials and methods’).

0.3

0.5

0.8

0.05 0.2 0.4

Figure 6. Disordered active tissue at time ‍t ≈ 700t∗‍ as a function of the magnitude of the pulling force ‍fpull‍ and 
activity ‍β‍. The region of convergence–extension is at the centre of the diagram, around ‍β ≈ 0.4 − 0.6f∗‍ and 

‍fpull ≈ 0.1 − 0.3f∗‍. The remaining parameters are the same as in Figure 2.

The online version of this article includes the following video(s) for figure 6:

Figure 6—video 1. Video of simulations of active contractions in disordered tissues for a range of activities, β, and 
magnitudes of the pulling force, ‍fpull‍.

https://elifesciences.org/articles/79862/figures#fig6video1

Figure 6—video 2. Active T1 transitons in a random patch.

https://elifesciences.org/articles/79862/figures#fig6video2

https://doi.org/10.7554/eLife.79862
https://elifesciences.org/articles/79862/figures#fig6video1
https://elifesciences.org/articles/79862/figures#fig6video2
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We observed T1 transitions for all simulated systems, though their rate rapidly increased when 
either ‍β‍ or ‍fpull‍ were increased. Unlike in the case of the active inclusion in a hexagonal passive 
patch, there is no clear threshold for active T1 transitions. Instead, parts of the tissue are activated, 
and we observed the emergence of pronounced myosin cables and accompanying tension chains 
(e.g. Figure 6, middle row). The system starts to experience significant flow and convergence–exten-
sion from ‍β = 0.4f∗‍, significantly below the values observed in the hexagonal patch with a single 
active inclusion where, depending on the magnitude of the applied force, T1 events start to appear 
for ‍β‍ above ‍0.6 − 1.0f∗‍. This suggests cooperative rearrangements in the tissue, and we indeed see 
evidence of serial active T1 transitions along tension chains (Figure 6—video 2). This suggests that 
the individual junction feedback mechanism together with mechanical (as opposed to chemical) prop-
agation of myosin activation is a key ingredient in the formation of the myosin cables that have been 
observed to accompany convergence–extension flow in chick embryo gastrulation (Rozbicki et al., 
2015) and in Drosophila germ band extension (Jacinto et al., 2002).

The system starts to rearrange from ‍β ≈ 0.4f∗‍, and for ‍β ≳ 0.7f∗‍, one observes a highly active state 
with many uncorrelated rearrangements and implausible cell shapes. The region with realistic cell 
shapes is significantly below the hexagonal patch with a single active inclusion, where, depending on 
the magnitude of the applied force, T1 events start to appear for ‍β‍ above ‍0.6 − 1.0f∗‍.

In Figure 7A, we show a snapshot of a random patch long after (‍≈ 700t∗‍) activity was switched on 
for ‍β = 0.5f∗‍ and ‍fpull = 0.2f∗‍, in what emerges to be the optimal region for convergence–extension. 
Oriented myosin cables accompanied by tension chains form in the initial stage of the simulation 
at ‍≈ 100t∗‍ after activity was turned on. At longer times, the pronounced orientation of myosin and 
tension decreases (but does not disappear entirely), and convergence–extension stops (see ‘Materials 
and methods’ for details). The convergence–extension process is accompanied by active T1 events 
that predominately occur perpendicular to the direction of the external pulling, as shown in the orien-
tational histogram (Figure 7B).

Figure 7C quantifies the amount of convergence–extension by measuring the difference of total 
integrated strain in directions along and perpendicular to the direction of the applied pulling force, 
that is, ‍ϵ

tot
xx − ϵtot

yy ‍. It is evident that like the hexagonal case, the random patch undergoes substantial 
convergence–extension over a range of activities. The process in accompanied by spatially anisotropic 
distribution of myosin, mechanical stress, and cell shapes (Figure 7D), which we measured through 
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Figure 7. Characterisation of convergence-extension in a random tissue patch. (A) Snapshot of a random tissue patch for ‍β = 0.5f∗‍ and ‍fpull = 0.2f∗‍ at 
‍t ≈ 700t∗‍,that is during the convergence–extension flow. Red arrow indicates that a constant pulling force is applied throughout the entire simulation. 
(B) Angular histogram of T1 events for same values of ‍β‍ and ‍fpull‍. Cells and junctions are coloured as in Figure 6. (C) Magnitude of the convergence–
extension deformation as a function of ‍fpull‍ characterised by measuring ‍ϵ

tot
xx − ϵtot

yy ‍ induced by the T1 transition. (D) Anisotropy along (‍xx‍, solid line) 
and perpendicular to (‍yy‍, dashed line) the direction of the external pulling force for myosin (green), mechanical stress (red), and shape tensor (black) as 
functions of ‍fpull‍ for ‍β = 0.5f∗‍ at ‍t ≈ 700t∗‍. In (C) and (D), each point was averaged over ‍n = 33‍ independent samples and the error bar is smaller than 
the symbol size.

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. Continuous strain tensors for the fully active tissue at ‍β = 0.5f∗‍, ‍fpull = 0.2f∗‍, and the other parameters corresponding to 
Figure 2 and Figure 3.

Figure supplement 2. Measuring T1 transitions in the fully active random patch.

Figure supplement 3. T1 histograms in the parameter range where no convergence–extension occurs.

https://doi.org/10.7554/eLife.79862
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the eigenvalues of the myosin (Equation 26) and tension (Equation 25) tensors, and the eigenvalues 
of the shape tensor (Equation 20).

Comparison with myosin-driven intercalations observed in the sickle-
shaped mesoderm precursor domain of chick embryo at the onset of 
gastrulation
Previous experiments have shown that the embryo scale tissue flows driving the lateral to medial 
convergence and posterior anterior extension of the posterior sickle-shaped mesendoderm precursor 
domain that results in its transformation into the streak is driven by directed cell intercalations. These 
cells undergoing directed intercalations are characterised by an anisotropic cell shape and an aniso-
tropic distribution of active myosin II in their cell junctions, organised in supercellular chains of variable 

Figure 8. Analysis of the tissue flows in the early-stage chick embryo. (A) Image of a typical early-stage chick embryo prior to the gastrulation (i.e. 
primitive streak formation). The primitive streak will form along the yellow dashed line. The direction of myosin anisotropy is shown by the green 
double-headed arrows, and the direction of the tissue flow is indicated by the red arrows. x-axis is chosen to coincide with the long direction of the 
sickle-shaped active region in the embryo’s posterior (Rozbicki et al., 2015). (A’) Zoom-in of the rectangular region on the posterior side of the embryo; 
myosin II (green), actin (red), and nuclei (blue). (B) Measured distribution of the orientation of T1 events in a circular patch of diameter ≈ 190 ‍µm‍ tracked 
over the period of ≈ 6 hr (cf. model distribution in Figure 7B). Blue (red) denotes junctions that appear (disappear); arrows have the same meaning as 
in (A). (C) Angle (red) and magnitude (green) of tissue shape anisotropy (dots) and tissue flow (crosses) for ‍n = 6‍ rectangular patches along the sickle 
with corresponding anisotropy and flow patterns shown in (C’). Components of the elastic strain tensor ‍̂U‍ (D) and the total integrated strain tensor ‍̂V‍ (E; 
definition in Equation 24) as a function of time during first 4 hr of the streak formation for two central regions of the sickle (yellow stripes in C). Details of 
the analysis are given in ‘Materials and methods’.

The online version of this article includes the following video and figure supplement(s) for figure 8:

Figure supplement 1. Region of interest in the anterior of the embryo.

Figure 8—video 1. Image sequence taken at the base of the forming streak showing cell intercalations.

https://elifesciences.org/articles/79862/figures#fig8video1

Figure 8—video 2. Image sequence taken in the region of epiblast in front of forming streak.

https://elifesciences.org/articles/79862/figures#fig8video2

https://doi.org/10.7554/eLife.79862
https://elifesciences.org/articles/79862/figures#fig8video1
https://elifesciences.org/articles/79862/figures#fig8video2
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length (Figure 8A and A’; Rozbicki et al., 2015; Chuai et al., 2023). We here make a qualitative 
comparison of the myosin-driven intercalations in the model with the myosin-dependent directed 
cell intercalations driving tissue deformations in the sickle-shaped mesendoderm precursor region 
of the early gastrulation stage chick embryo. Figure 8A shows an image of a typical embryo prior to 
primitive streak formation with a patch magnified in panel A’. Both the myosin (green) and cell shapes 
exhibit a clear anisotropy (indicated by green arrows) along the lateral–medial axis of the mesendo-
derm precursor domain. The myosin cables are believed to reflect and generate the tension chains 
observed in simulations.

We have quantified the experimental tissue convergence–extension as follows. Figure 8B shows an 
orientational histogram of T1 events in a rectangular region of size ‍≈ 200 × 200 µm2

‍ along the sickle 
tracked over a period of approximately 6 hr. The events were identified by calculating the ‍̂T‍ tensor 
using segmented images (see ‘Materials and methods’ and Figure 8—video 1), and validated and 
corrected manually. In Figure 8C, we analysed ‍n = 6‍ tissue patches of diameter ≈ 190 μmm chosen 
sequentially along the sickle-shaped region. We computed tensors that measure shape anisotropy ‍̂U‍ 
and strain rate ‍̂V‍ (Graner et al., 2008) by tracking the patches along the tissue flow over approximately 
4 hr (‘Materials and methods’). The anisotropy remains constant at around 20% and its direction is at 
the angle close to 90°, that is, along the sickle and orthogonal to the streak (Figure 8C’, green arrow). 
We also computed the mean flow magnitude and direction from the eigenvalues and eigenvectors of 
the integrated ‍̂V‍ tensor. There is a pronounced spatial pattern to its direction, pointing towards the 
streak and parallel to the direction of anisotropy on outer parts of the sickle, and orthogonal to the 
sickle and its orientation in the middle of the sickle (Figure 8C’, red arrows). At the same time, the 
magnitude of flow peaks in the middle part of the sickle. This is consistent with the incipient flow to 
create the streak. In Figure 8D and E, we show the time dependence of spatial anisotropy and total 
strain, for two central patches. We see that anisotropy is along ‍x‍ (i.e. perpendicular to the streak) and 
flow is along ‍y‍ (i.e. along the streak), corresponding to convergence–extension flow. For compar-
ison, we show the behaviour in an isotropic region anterior to the streak that shows non-directional 
intercalations and absence of tissue deformation (Figure 8—figure supplement 1, Figure 7—figure 
supplement 3C, and Figure 8—video 2). These observations show a close correspondence with the 
results of the model in the absence of imposed stress anisotropy, where the myosin-mediated active 
intercalations emerge spontaneously, leading to disorganised tissue patches with random intercala-
tion directions (shown in Figure 7—figure supplement 3B).

Discussion
There are two key features of our model with active junctions. First, the anisotropy of myosin distri-
bution is induced by anisotropic mechanical tension. Second, active contractions are triggered by 
tension-sensitive accumulation. The feedback loop between tension and myosin motor activity leads 
to contraction against and extension perpendicular to tension. This cellular mechanism has been 
suggested to be driving the tissue flows during primitive streak formation in avian embryos (Rozbicki 
et al., 2015), where there is no clear evidence of chemical prepatterning. Although it is yet to be 
experimentally confirmed, it is plausible that the symmetry breaking event that induces the initial 
myosin anisotropy occurs as a result of anisotropic tension combined with cell differentiation early in 
development. For example, in the chick embryo, Gdf3 is expressed in the sickle-shaped region in the 
posterior epiblast, and it is believed to play a role in triggering the contractions that initiate the large-
scale tissue flows that subsequently lead to the formation of the primitive streak (Serrano Nájera and 
Weijer, 2020). The key conclusion of this study is that once the process has been initiated, chemical 
anisotropy emerges spontaneously and there is no need to impose it.

Although the model investigated here generates active T1 events, the process loses coherence 
after several T1 events, resulting in biologically implausible tissue shapes. This is very prominent in 
the toy case of regular hexagonal patch. While the problem is to some extent alleviated in patches of 
randomly shaped active cells, generating robust convergence–extension flows that would span scales 
of the entire embryo will be hard to achieve with the current model. One source of instability is likely 
that the post-T1 expansion of the junction, currently effectively modelled as a passive process, is not 
properly captured by the model and requires additional sources of activity to be considered. At the 
scale of the entire embryo, other cellular processes such as cell division, differentiation, and ingression 
all play non-trivial roles. These events have not been considered here.

https://doi.org/10.7554/eLife.79862
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Furthermore, recent results confirm that the mechanics of vertex models is complex (Bi et  al., 
2016; Yan and Bi, 2019; Tong et al., 2021), which makes the tissue-scale flows that emerge from 
active elements coupled to the vertex model hard to predict using continuum approaches. Active 
nematic flows have been observed and modelled in in vitro epithelial tissues (Saw et al., 2017), and 
due to the locally contractile and extensile dynamics it is plausible that large-scale flows predicted by 
this model belong to the same class of models. In real tissues, however, the mechanisms that regu-
late how cells coordinate their internal mechanical stress directions in order to produce a stable flow 
pattern are unknown. Active vertex models therefore provide valuable new insights into the intricate 
interplay between mechanical and biochemical processes that control the collective cell behaviours 
in epithelial tissues.

We also briefly discuss how this work relates to other recent models for active junction contrac-
tions and convergence extension. The single-junction model shares a lot of common features with the 
model of Dierkes et al., 2014. The key difference, however, is a different myosin–tension feedback 
mechanism and that the dashpot in Dierkes et al., 2014 was replaced with a Maxwell element. This 
was inspired by laser tweezer measurements of the response of cell–cell junctions in the Drosophila 
embryo to applied pulling force (Clément et  al., 2017) which showed that the cellular junctions 
behave as a Maxwell viscoelastic material. The presence of an elastic spring attached to the dashpot 
introduces a viscoelastic timescale, which leads to the suppression of the oscillatory behaviour seen 
in Dierkes et al., 2014.

The model of Staddon et al., 2019 considered a Maxwell element subject to active contraction, 
with the spring constant of the cellular junctions that constantly remodels itself to match strain in the 
junctions. The tension, however, remodels only if the strain exceeds a threshold value. These two 
features combine to provide a simple mechanism by which the junction can undergo ratchet-like 
behaviour and contract to a T1 event, and where T1 events can be triggered by applying external 
forces. Staddon et al., however, do not explicitly include kinetic equations for molecular motors.

Furthermore, the model of Curran et  al., 2017 introduced myosin-driven tension fluctuations 
in cell–cell junctions to cell ordering observed in experiments on the fly notum. They argued that 
myosin fluctuations combined with the isotropic distribution of myosin can either drive or inhibit T1 
transitions. This suggests a robust mechanism by which epithelia can tune their properties. Similar 
conclusions about cell ordering have also been reached by Krajnc et al., 2021 using a model with a 
mechanical feedback between junction contraction and force generation. Neither of those studies, 
however, explored whether myosin fluctuations could lead to directional deformations as observed 
during convergence–extension.

The two-dimensional models of Wang et al., 2012 and Lan et al., 2015 provide detailed descrip-
tions for coupling between chemical signalling and corresponding mechanical responses. While they 
were able to produce T1 events, chemical anisotropy in the cell was externally imposed by tuning 
concentrations of relevant molecular species based on the origination of the junctions. This was also 
the case for the two-dimensional version of the model of Staddon et al., 2019, which was able to 
produce convergence–extension flows, albeit with time-dependent activity imposed in a given direc-
tion. Meanwhile, Noll et al., 2017 have also introduced a vertex model with junctions that incorporate 
generic active feedback in a model for tissue contraction in Drosophila gastrulation. They did not, 
however, consider active T1 transitions.

Finally, we remark that pulling experiments on suspended cultured Madine Darby Canine Kidney 
(MDCK-II) cells (Harris et al., 2012) and on the Drosophila wing disk (Duda et al., 2019) do not show 
any topological transitions even for strains that exceed 50%. Instead, the deformation is accommo-
dated by changes of cell shapes. In the case of MDCK layers, directional cell divisions also play an 
important role is releasing some of the mechanical stress introduced by the pull (Wyatt et al., 2015). 
While it is possible that T1 transitions would appear given sufficiently long time, it is unlikely that the 
mechanism proposed in this study would apply to these tissues. This is not unexpected since MDCK 
cells are transformed cells derived from adult tissues and likely not comparable to embryonic tissues 
that need to undergo large-scale highly coordinated shape changes involving massive cell rearrange-
ments. The same argument holds for fly wing disk that also does not show large-scale anisotropic strain 
rates, driven by directed cell intercalations as are typical for embryonic tissues during gastrulation.

In summary, in this study we have introduced a mechanochemical model that describes the 
dynamics of active T1 transforms, that is, cell intercalation events that occur perpendicular to the 

https://doi.org/10.7554/eLife.79862
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externally applied mechanical stress. Such processes are believed to play a key role in the primitive 
streak formation in avian embryos. Crucially, this study suggests that mechanical propagation of acti-
vation of myosin is a key ingredient in formation of the myosin tension chains that have been observed 
to accompany convergence–extension flow in chick embryo gastrulation (Rozbicki et al., 2015) and in 
Drosophila germ band extension (Jacinto et al., 2002). Results of this study show a good qualitative 
agreement with measurements on early-stage chick embryos.

We conclude by observing that it is remarkable that models that share the common assumption of 
a feedback between activity and mechanical tension are able to describe a range of markedly different 
biological processes in different organisms. Although the details depend on the specific biological 
system and its molecular details, this suggests that there is a set of universal physical mechanisms that 
govern tissue-scale behaviours.

Materials and methods
Model setup and analysis
Single active junction
To understand the mechanism that couples the kinetics of myosin motors to the local mechanical 
tension and leads to the activation of contractility in cell–cell junctions, we first analyse a model for a 
single junction. The surrounding tissue is abstracted by assuming that it provides an elastic, tension-
generating background against which the junction actively contracts. There are two key ingredients 
that make an active junction. First, the junction is viscoelastic. Pull-release optical tweezer experi-
ments on cell–cell junctions in Drosophila and chick embryos have shown that cell–cell junctions have 
a viscoelastic response (Clément et al., 2017; Ferro et al., 2020). This means that the junction is 
able to remove imposed tension by remodelling itself. Second, the junction can generate tension. 
Tension is generated by myosin motors that form mini filaments slide actin filaments past each other. 
The single-junction model provides insight into the conditions under which the junction length can 
contract to zero and trigger a T1 transition.

Specifically, the single junction (Figure  1A) is modelled as an active mechanochemical system 
comprising three components connected in parallel (Figure 1—figure supplement 1A): (1) a visco-
elastic SLS element, (2) a viscous dashpot, and (3) a tension-sensitive force-generating motor. The 
junction is subject to external tension ‍Text‍ produced and transmitted by the surrounding cells. The 
SLS element consists of an elastic spring of stiffness ‍B‍ and rest length ‍a‍ connected in parallel with a 
Maxwell element containing a spring of stiffness ‍k‍ and rest length ‍l0‍ attached in series to a dashpot 
of viscosity ‍η‍ (Larson, 1999). The spring ‍B‍ captures the passive elastic response of the junction and 
models the effects of the surrounding tissue. In the two-dimensional model discussed below, this 
term arises naturally and accounts for changes in the cell area and perimeter. It is referred to as the 
elastic barrier. The Maxwell element models the viscoelastic nature of the junction and the ratio of 
viscosity and stiffness sets its relaxation timescale ‍τv = η/k‍. This is the timescale over which the junc-
tion remodels and adjusts its length to that imposed by the external load. The dashpot with viscosity 

‍ζ‍ models dissipation with the environment. Finally, the junction is equipped with an active source of 
tension, which models the action of myosin motors.

Each molecular motor produces a force of magnitude ‍̃β‍. ‍Nmot‍ motors attached to actin filaments of 
the junction, therefore, generate tension ‍Tactive = β̃Nmot‍. If the maximum possible number of attached 
motors is ‍Nmax‍, ‍Tactive = βm‍, with ‍β = β̃Nmax‍ and ‍m = Nmot/Nmax‍. The junction is, however, a part of the 
tissue and in the absence of perturbations the average steady-state value of motors attached to all 
junctions ‍m0Nmax ̸= 0‍. It is, therefore, appropriate to model the active tension as ‍Tactive = β

(
m − m0

)
‍. 

This expression can also be understood as the leading-order term in the expansion of ‍Tactive(m)‍ around 

‍m0‍ (Dierkes et al., 2014). For ‍m < m0‍, ‍T < 0‍, that is, tension acts to extend the junction. While the 

‍m0‍ term may appear counterintuitive, it reflects the fact that if motors attached to the junction are 
depleted, contractions of the surrounding junctions produce stronger pull on it than it can resist, 
resulting in elongation.

Tension feeds back on the kinetics of association and dissociation of myosin to actin filaments, 
leading to the kinetic equation for ‍m‍,

	﻿‍ ṁ = kon − koff
(
T
)

m,‍� (6)

https://doi.org/10.7554/eLife.79862
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where ‍kon‍ is the association rate constant, assumed to be tension-independent with no limit of the 
total available myosin, and ‍koff

(
T
)
‍ is the dissociation rate constant, assumed to be a monotonously 

decaying function of tension ‍T ‍. The kinetics of actin-bound myosin, therefore, resembles that of a 
catch bond. This assumption is motivated by measurements of binding and unbinding rates of myosin 
motors on single actin filaments and has been shown to be described as a simple negative exponential 
dependence of the dissociation rate on applied tension (Veigel et al., 2003; Kovács et al., 2007). The 
dynamics of the junction is given by the following set of equations,

	﻿‍ ζ l̇ = −T + Text, τv l̇0 = l − l0, τmṁ = 1 − mF
(
T
)

,‍� (7)

with a natural choice being a sigmoid curve,

	﻿‍ F
(
T
)

= α + e−k0
(

T−T∗)
,‍� (8)

where ‍α > 0‍ is the contribution to the myosin dissociation that does not depend on tension. 
The first equation describes the time evolution of the junction length due to the internal tension, 

‍T = k
(
l − l0

)
+ B

(
l − a

)
+ β

(
m − m0

)
‍, and external tension,  ‍Text‍. ‍T∗‍ is the threshold tension, and ‍k0‍ 

controls the steepness of the ‍F(T)‍ curve in the vicinity of ‍T∗‍ (Figure 1—figure supplement 1C). The 
minus sign in front of the first term on the right-hand side indicates that ‍T > 0‍ corresponds to a junction 
that is contracting, that is, ‍̇l < 0‍ for ‍Text = 0‍. The second equation accounts for the viscoelastic nature 
of the junction (Clément et al., 2017), that is, the rest length ‍l0‍ relaxes towards the actual length ‍l‍ with 
a characteristic timescale ‍τv‍. Finally, the third equation was obtained by dividing Equation 6 by ‍kon‍, 
where ‍τm = 1/kon‍ is the timescale of myosin association. In general, binding and unbinding of molec-
ular motors is a stochastic process and the third equation should also include stochastic terms. For 
simplicity, such terms were omitted here, but were included in the two-dimensional model. Further-
more, it is assumed that ‍l‍ and ‍l0‍ are comparable in magnitude, that is, that ‍(l − l0)/l0 < 1‍ which makes 
using a linear spring model appropriate despite the total length of the junction changing significantly 
as the junction collapses.

Finally, in all simulations of the single-junction model ‍k‍, ‍ζ‍, and ‍a‍ were kept fixed and, therefore, 
length is measured in units of ‍a‍, time in units of ‍t∗ = ζ/k‍, and force in units of ‍ka‍. Parameters and their 
values used in the analysis of the single junction are listed in Table 1.

Vertex model with active junctions
The mechanical response of the tissue is modelled with the vertex model (Farhadifar et al., 2007; 
Fletcher et al., 2014). The associated mechanical energy is a function of the cell area and perimeter,

	﻿‍
EVM =

∑
C

[
κC
2

(
AC − A0

)2 + ΓC
2

(
PC − P0

)2
]

,
‍�

(9)

where ‍AC‍ and ‍PC‍ are the area and the perimeter of cell ‍C‍, respectively, ‍A0‍ and ‍P0‍ are the preferred 
area and perimeter, respectively (assumed to be the same for all cells), and the sum is over all cells. 
The first term in Equation 9 accounts for three-dimensional incompressibility of cells, and ‍κC‍ is the 
corresponding elastic modulus of the cell ‍C‍. The second term in Equation 9 contains a combination 
of actomyosin contractility in the cell cortex and intercellular adhesions, where ‍ΓC‍ is the contractility 
modulus of cell ‍C‍ (Farhadifar et al., 2007).

All inertial effects were neglected, and, in line with the existing literature, it is assumed that the fric-
tion can be modelled as viscous drag on each vertex. The equation of motion for vertex ‍i‍ is, therefore, 
a balance between friction and mechanical forces,

	﻿‍ ζ ṙi = −∇ri EVM + Factive,‍� (10)

where ‍ζ‍ is the friction coefficient, and ‍Factive‍ accounts for all active forces. Stochastic forces are, 
however, omitted since those do not qualitatively affect the dynamics at timescales of interest. 
Inserting Equation 9 into Equation 11 leads to

	﻿‍
ṙi = 1

ζ

∑
e

(
FA

e ez × le + TP
e l̂e

)
+ 1

ζ
Factive,

‍�
(11)

https://doi.org/10.7554/eLife.79862
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with ‍F
A
e = 1

2
(
pCe,l − pCe,r

)
‍ and ‍T

P
e = −

(
tCe,l + tCe, r

)
‍ being the magnitudes of, respectively, the area 

and perimeter contributions to the force due to junction ‍e‍. The subscript ‍Ce,l‍ (‍Ce,r‍) denotes the cell to 
the left (right) of the junction ‍e‍ when facing in the direction of ‍le‍. ‍ez‍ is the unit-length vector perpen-
dicular to the plane of the tissue and the vector ‍le‍ points along the junction ‍e‍ away from vertex ‍i‍, 
‍̂le = le/le‍ with ‍le =

∣∣le
∣∣
‍, ‍pC = −∂EVM/∂AC = −κC

(
AC − A0

)
‍ is the hydrostatic pressure on the cell C, and 

‍tC = −∂EVM/∂PC = −ΓC
(
PC − P0

)
‍. Finally, the sum is over all junctions that originate at vertex ‍i‍ and 

terms in the sum appear in counterclockwise order (Figure 2—figure supplement 1A).
Activity is introduced by assuming that each junction contains two active elements supplied by the 

two cells sharing it. Furthermore, each cell is assumed to have a finite pool of myosin, ‍M ‍. The finite 
pool of myosin acts to introduce correlations in the distribution of junctional myosin within each cell. In 
other words, it models the mechanism by which, for example, depletion of myosin on a given junction 
is correlated to myosin accumulation on its neighbouring junctions. This is of central importance to 
establish myosin anisotropy within the cell. There are clearly many alternative ways to model coupling 
of myosin on different junctions within a cell. The model used here, however, requires a minimal 
number of parameters while being biologically plausible.

Of this total myosin, ‍M ‍, a fraction ‍m
C
act =

∑zC
e=1 mC

e ‍ is assumed to be activated, that is, bound the 
junctions, and thus depleted from the pool. Here, ‍zC‍ is the number of junctions shared by the cell ‍C‍. 
The association rate of myosin to an individual junction is proportional to ‍M − mC

act‍. As in the single-
junction model, the dissociation rate is proportional to the amount of myosin bound to the junction ‍e‍, 
modulated by a tension-dependent function ‍F

(
Te
)
‍. To match the steady-state value of myosin of the 

single junction where ‍meq = F
(
T
)−1

‍, the prefactor of the unbinding term also needs to be ‍zC‍. Then, to 
lowest order in the contributions of the coupled junctions, ‍meq =

(
2F

(
T
))−1

‍. We can recover ‍meq ≈ 0.5‍ 
at ‍T = T∗‍ by choosing small but finite values of ‍α‍ (‍α = 0.1‍ in simulations). This leads to the kinetic equa-
tion for the myosin motor attached to the junction ‍e‍ by cell ‍C‍,

	﻿‍
τmṁC

e =
(

M − mC
act
)
− zmC

e F
(
Te
)

+ ηC
e ,

‍� (12)

where it is assumed that ‍M ‍ and ‍z‍ are same for all cells. Without loss of generality, it is possible 
to set ‍M = z‍. ‍τm‍ is the inverse rate of myosin binding, that is, the timescale of attachment of myosin 
motors and ‍η

C
e ‍ is a random white noise with zero mean and variance

	﻿‍ ⟨ηC
e
(
t
)
ηC

e
(
t′
)
⟩ = fδ

(
t − t′

)
,‍� (13)

which accounts for the stochastic nature of myosin binding and unbinding. The noise term is 
important for the system to be able to break the symmetry imposed by using regular hexagonal 
tilings. It is, however, not strictly necessary to introduce noise to the myosin kinetics, but instead 
consider, for example, that mechanical properties of the cells are randomly distributed. While the 
quantitative results would be affected, such a model is not expected to have qualitatively different 
behaviour compared to what is discussed here.

Equation 9 models the passive elastic response of the tissue. In order to achieve an active T1 
event, remodelling needs to be present, that is, the system must be viscoelastic. There are various 
ways to include viscoelastic effects into the vertex model. In order to be consistent with the single-
junction model, it is further assumed that the junction ‍e‍ has a viscoelastic contribution to the tension, 

‍
ke

(
le − l0e

)
‍
, where ‍ke‍ is the spring constant analogue to the elastic part of the Maxwell element in the 

single-junction model and ‍l0‍ is the time-dependent rest length with dynamics,

	﻿‍ τv l̇0e = le − l0e ,‍� (14)

where ‍τv‍ is the characteristic timescale for viscoelastic remodelling. The full expression for the 
tension of junction ‍e‍ is

	﻿‍
Te = TP

e + ke
(

le − l0e
)

+ βCl
e

(
mCl

e − m0

)
+ βCr

e
(

mCr
e − m0

)
.
‍� (15)

As above, the superscript ‍Cl‍ (‍Cr‍) denotes the cell to the left (right) of the junction ‍e‍ when facing in 
the direction of ‍le‍. ‍βC

e ‍ is the activity of the junction ‍e‍ produced by the cell ‍C‍, that is, it is a constant 
with units of force that measures the strength of the mechanochemical coupling and m0 has the same 
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meaning as in the single-junction model. For simplicity, ‍ΓC ≡ Γ‍ for all cells and ‍ke ≡ k‍ for all junctions 
and both parameters were kept constant in all simulations. The unit of length, ‍a‍, was chosen to be 
the length of the side of a regular hexagon, which allows us to set the unit of time ‍t

∗ = ζ/
(
Γ + k

)
‍, and 

the unit of force ‍f
∗ =

(
Γ + k

)
a‍. Equation 11, with ‍TP

e ‍ given by Equation 15, and Equation 12 and 
Equation 14 describe the dynamics of the vertex model with active junctions.

The equations of motion for the two-dimensional model were integrated numerically for a rectan-
gular patch made of ‍N = 158‍ hexagonal cells and patch made of ‍N = 600‍ randomly shaped cells using 
open boundary conditions. Mechanical anisotropy was created by applying a force ‍fpull = ±fpullex‍ to 
the left and right boundary vertices (Figure 2A), where the positive (negative) sign corresponds to the 
right (left) boundary. The initial pull was applied for ‍103t∗‍ with both activity and viscoelastic relaxation 
switched off, sufficient to reach mechanical equilibrium. Once the system reached an equilibrium 
stretched state, activity was switched on in 14 central cells in the case of the hexagonal patch and 
for 520 cells in the case of the random tissue patch. For the hexagonal case, activity was set to ‍β‍ in 
4 cells and to ‍β/2‍ in 10 ‘buffer’ cells surrounding them, in order to suppress numerical instabilities 
at contacts between active and passive cells. For the random patch, activity was set to ‍β‍ in all cells 
except for a single-cell thick layer of boundary cells that were kept passive to prevent artefacts due 
to tension chains reaching the sample boundary. An external pulling force of constant magnitude was 
applied throughout the entire simulation. The active system was simulated for ‍max

(
1600t∗, 10τm, 10τv

)
‍ 

using time step ‍10−2t∗‍. In the hexagonal case, the dynamics of the central horizontal junction and 
the shoulder junctions shared by the four central active cells was monitored. The orientation of the 
hexagonal lattice was chosen such that the central active junction was parallel to the direction of the 
applied external force. In the case of the random patch, the dynamics of all junctions shared by active 
cells was monitored.

Parameters and their values used in the analysis of the vertex model with active junctions are listed 
in Table 2.

Characterisation of T1 transitions and tissue flow
The T1 events were implemented following the procedure proposed by Spencer et al., 2017, where 
a junction shorter than ‍0.02a‍ collapses into a fourfold vertex. The fourfold vertex either remains stable 
or it is resolved into two threefold vertices based on the sum of the forces acting along the four junc-
tions connected to it. Importantly, the direction of the new junction is not imposed, and this procedure 
does not generally lead to a new junction orthogonal to the collapsed one. For simplicity, vertices with 
connectivity greater than four were not considered.

If a T1 transition occurs, it is necessary to assign myosin to the newly created junction and redis-
tribute the myosin associated to the collapsed junction to the surrounding junctions. As illustrated 
in and using the notation introduced in Figure  2—figure supplement 1B, the myosin ‍me‍ of the 
collapsing junction is stored right before the junction collapses. After the T1 transition, the myosin on 
the new junction was set to ‍m0‍. Both inner shoulder junctions increased their myosin by ‍me/2‍, while 
the myosin on the outer junctions was reduced by ‍min

(
m2, m0/2

)
‍, where m2 is its myosin right before 

the T1 transition and the minimum function ensures that myosin remains ‍≥ 0‍. The myosin redistribu-
tion procedure reduces artificial jumps of the junctional myosin as the system progresses through T1 
transition and also provides a natural way to handle the finite myosin pool. After the transition, ‍l0‍ of 
the new junction is set to ‍0.022a‍.

To identify and characterise T1 transitions, and quantify the associated deformation of the model 
tissue, we used the analysis method introduced by Graner et al., 2008. For cellular patterns, three 
tensors are defined, texture (‍M̂‍), geometrical texture change (‍̂B‍), and topological texture change (‍̂T ‍). 
Tensor ‍M̂‍ describes the shape of the current cell configuration, and it is defined as

	﻿‍

M̂ = ⟨m̂⟩ = ⟨ℓ⊗ ℓ⟩ =


⟨X2⟩ ⟨XY⟩

⟨YX⟩ ⟨Y2⟩


 ,

‍�
(16)

where ‍X ‍ (‍Y ‍) is the ‍x‍ (‍y‍) component of the vector ‍ℓ = r2 − r1‍ connecting centroids of two neigh-
bouring cells at positions ‍r1‍ and ‍r2‍, respectively, ‍⟨·⟩ = 1

Ntot

∑(
·
)
‍ is an average over ‍Ntot‍ pairs of neigh-

bours, that is, cell–cell contacts, and ‍̂m = ℓ⊗ ℓ‍. Using the same notation, the tensor ‍̂B‍ describes shape 
changes of the cell configuration during a time interval ‍∆t‍, and it is defined as
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	﻿‍ B̂ = Ĉ + Ĉ
T

,‍� (17)

where the superscript T denotes the matrix transpose and

	﻿‍

Ĉ =
⟨
ℓ⊗ ∆ℓ

∆t

⟩
=




⟨
X∆X
∆t

⟩ ⟨
Y∆X
∆t

⟩

⟨
X∆Y
∆t

⟩ ⟨
Y∆Y
∆t

⟩


 .

‍�

(18)

Finally, the tensor ‍̂T ‍ identifies T1 transitions by quantifying topological changes of the cell config-
uration in the time interval ‍∆t‍ via tracking appearance and disappearance of contacts between cells. 
It is defined as

	﻿‍
T̂ = 1

∆t
⟨m̂⟩a −

1
∆t

⟨m̂⟩d,
‍�

(19)

where ‍⟨·⟩a‍ (‍⟨·⟩d‍) is the average over contacts that appeared (disappeared) during the time interval 
‍∆t‍. The total number of contacts that appear and disappear is typically much smaller than ‍Ntot‍, which 
means that ‍̂T ‍ data can be quite noisy. While all three tensors can be calculated for individual cells, 
the averaging is meant to be carried over a mesoscopic region. We, therefore, averaged over the 14 
central active cells (Figure 2A, dark-shaded cells), as well as over an ensemble of ‍n = 32‍ noise realisa-
tions. For the disordered tissue, we averaged over all ‍N = 520‍ active cells.

Tensors ‍M̂‍, ‍̂B‍, and ‍̂T ‍ all involve averaging over cell–cell contacts and, therefore, describe a discrete 
system. In order to make connections to continuous deformations of the entire tissue, one introduces 
their continuous counterparts, the statistical strain tensor (‍̂U)‍, the velocity gradient tensor (‍̂V)‍, and the 
tensor of the rate plastic deformations (i.e. topological rearrangements rate) (‍̂P‍) (Graner et al., 2008). 
These tensors are defined as

	﻿‍
Û = 1

2

(
log M̂ − log M̂0

)
,
‍�

(20)

where ‍M̂0‍ is the texture tensor of an arbitrary reference configuration for the statistical relative 
strain – we chose the initial undeformed configuration. Further,

	﻿‍
V̂ = 1

2

(
M̂−1Ĉ + Ĉ

T
M̂−1) ,

‍�
(21)

and

	﻿‍
P̂ = 1

2

(
M̂−1T̂ + T̂M̂−1) .

‍�
(22)

In the case when variations in ‍Ntot‍ can be neglected, one can show that (Graner et al., 2008)

	﻿‍
V̂ = DÛ

Dt
+ P̂,

‍�
(23)

where ‍D/Dt‍ is the corotational derivative (Larson, 1999). This equation just states that the velocity 
gradient is a sum of two contributions, reversible changes of the internal strain and the rate of irre-
versible plastic rearrangements. The significance of Equation 23 is that if one assumes that there are 
no plastic events other than T1 transitions, it is possible to obtain the total strain of the system ‍̂εtot‍ by 
integrating the tensor ‍̂V ‍ over time, that is,

	﻿‍
ε̂tot =

ˆ ttot

t0
dt′V̂

(
t′
)

,
‍�

(24)

where t0 is the time when the activity is switched on and ‍ttot‍ is the total simulation time. The 
difference ‍ε

tot
xx − εtot

yy ‍ of the ‍xx‍ and ‍yy‍ components of ‍̂εtot‍ (i.e. total strains in the ‍x‍ and ‍y‍ direction, 
respectively) was used as the measure of the amount of convergence–extension in the tissue induced 
by the active T1 transition. Figure 3—figure supplement 1 shows ensemble-averaged time traces of 

https://doi.org/10.7554/eLife.79862


 Research article﻿﻿﻿﻿﻿﻿ Physics of Living Systems

Sknepnek et al. eLife 2023;12:e79862. DOI: https://doi.org/10.7554/eLife.79862 � 22 of 27

‍̂U‍ and the time-integrated total strain ‍̂V ‍ and plastic strain ‍̂P‍ through the active T1 transition and the 
subsequent propagation phase.

Convergence–extension in a patch of randomly shaped active cells
We used the two-dimensional model with parameters for the cell mechanics and the myosin feedback 
loop as defined in Table 2 on a tissue patch with cells of random shapes. The patch was generated 
using an iterative procedure. First, ‍N = 600‍ points were placed at random in a square region of size ‍L‍ 
chosen such that the average cell area is equal to that of the hexagonal patch, that is, ‍A0 = 2.598a2

‍. 
During the initialisation process, we ensured that no two points are closer than ‍a‍ to each other. Once 
all points are placed in the box, the Voronoi diagram was constructed and centroids of each cell of 
the Voronoi diagrams were used as the seeds for constructing Voronoi diagram in the next iteration. 
This was repeated until no centroid moved more than ‍5 × 10−5a‍ between two consecutive iterations, 
resulting in a centroidal Voronoi tessellation. Centroidal Voronoi tessellations have several convenient 
properties. For example, typically, there are no outliers (i.e. very large or very small cells are unlikely) 
and the distribution of cell neighbours is remarkably similar to actual epithelia. Finally, to avoid the 
spontaneous formation of an actomyosin cable at the outside border, we used a setup where the 
‍N = 520‍ interior cells are active, and a one-cell-thick layer of passive cells forms the boundary.

We used the same stretching protocol as for the ordered patch. At every vertex on the left and 
right boundaries, the force ‍fpull‍ was exerted during the entire duration of the simulation. The passive 
tissue was first made anisotropic by stretching it for ‍103t∗‍ with activity and the viscoelastic relaxation 
turned off. We then turned on activity and viscoelasticity and simulated the system for ‍1.6 × 103t∗‍. This 
protocol was repeated for a range of activities ‍β‍, viscous relaxation times ‍τv‍, and myosin times ‍τm‍ 
(not shown since like we observed for the single active T1, results for convergence–extension were 
largely independent of ‍τv‍ and ‍τm‍ and quantitatively similar to Figure 7). All results were averaged 
over ‍n = 5 − 33‍ different random initial configurations and with different random number generator 
seeds for the myosin noise. The results shown in Figure 7C and D are reported with a 95% confidence 
interval computed using bootstrapping by resampling 103 times.

Figure 7 shows tissue dynamics for ‍β = 0.5f∗‍ and ‍fpull = 0.2f∗‍, which is the optimal region for conver-
gence–extension. We measured convergence–extension using the integral of ‍̂V‍, where the calculation 
was done over the entire active region, and the starting point was the time when the activity was 
turned on. For the elastic strain ‍̂U‍, we used the undeformed disordered initial condition to define the 
reference strain ‍M̂0‍. Figure 7—figure supplement 1 shows the time traces of the ensemble averaged 
tensors for elastic strain ‍̂U‍, integrated total strain ‍̂V‍, and integrated plastic strain ‍̂P‍.

We also quantified the amount of tension and myosin anisotropy using the tissue-averaged stress 
tensor components

	﻿‍
T̂tension =

⟨
1

AC

∑
e∈C

Têle × le
⟩

‍�
(25)

and

	﻿‍
M̂myo =

⟨
1

AC

∑
e∈C

mêle × le
⟩

.
‍�

(26)

To measure convergence–extension strain and anisotropy of shape, myosin, and tension, we chose 
‍t = 700t∗‍, which is the time point where convergence–extension and anisotropy stabilise, giving the 
results shown in Figure 7C and D.

To measure orientations of T1s, we first identified cells involved in a T1 transition by diagonalising 
the ‍̂T‍ tensor associated with active cells at a given instance in time. The signature of a T1 event is a 
non-zero ‍̂T‍, and the sign of its trace determines if a junction appeared or disappeared. The eigen-
vector corresponding to the largest eigenvalue determines the direction of the event. We tracked all 
of such events over the simulation runtime and generated polar histograms such as the one shown 
in Figure 7B. As shown in Figure 7—figure supplement 2A for ‍β = 0.5f∗‍ and ‍fpull = 0.2f∗‍, there are 
temporally strongly correlated back-and-forth T1 transitions at the same angle. These correspond to 
four cells flipping back and forth through a T1 transition, or ‘flickering’ in the videos. As these events 
are artefacts of the simulation, we excluded them from the data. Figure 7—figure supplement 2B, 
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which was averaged over ‍n = 5‍ independent simulations, shows that flickering events have mostly 
been filtered out of the dataset.

Figure  7—figure supplement 2 shows filtered T1 histograms for other mechanical conditions, 
outside the parameter region of where convergence–extension occurs, averaged over ‍n = 5‍ inde-
pendent simulations. In particular, we also include a passive tissue that flows in the direction of the 
pulling, and an active isotropic tissue without applied forces where the T1 distribution is isotropic. 
This last situation strongly resembles the observed T1 distribution in the anterior region of the streak 
(Figure 7—figure supplement 3C). As shown in Figure 8—figure supplement 1, this is also a mostly 
isotropic tissue.

Experimental data analysis
Experimental data
Active myosin (phosphorylated myosin light chain) and actin staining in fixed embryos was performed 
as described in Rozbicki et al., 2015. Embryos of a transgenic chick line with cell membranes of all cells 
in the embryonic and extra embryonic tissues labelled with a green fluorescent protein tag (myr-EGFP) 
were live-imaged using a dedicated light-sheet microscope as described previously (Rozbicki et al., 
2015). The microscope produces cell-resolution images of the entire embryo with time resolution of 
3 min between frames for periods up to 16 hr (stage EGXIII-HH4). ‍n = 6‍ rectangular areas of interest 
of size ≈ 255 × 220 ‍µm2

‍ were chosen to lie next to each other along the sickle-shaped mesendoderm 
precursor region in the embryo’s posterior, perpendicular to the direction of the forming primitive 
streak. The two central sections were chosen to lie in the middle of the sickle region that initiates the 
formation of the streak. Each area of interest was tracked for ≈ 4.6 hr covering the onset of the flows 
driving streak formation. The average motion of the area of interest, determined via particle image 
velocimetry using PIVlab (Thielicke and Sonntag, 2021), was used to track its displacement to be able 
to follow the same patch of cells over time. After this, these image time series were bandpass filtered 
to remove some noise followed by segmentation using the watershed algorithm in MATLAB. To follow 
the same cells over time, their centroid positions calculated form the segmentation of the first image 
of the time series are projected forward to the next frame using a newly calculated high-resolution 
velocity field between these successive images and using these as seed points for the segmentation 
of the next image (Rozbicki et al., 2015). This procedure allowed us to track individual cells between 
consecutive time frames and determine changes in neighbours over time as well as determine the 
directions of appearing and disappearing junctions associated with T1 transitions. The ‍M̂‍, ‍̂U‍, and ‍̂V‍ 
tensors in a particular area of interest were averaged for all cells in centred circular domains of 190 µm 
diameter between successive pairs of segmented images and averaged over 30 min time intervals.

The spatially averaged ‍M̂(t)‍ texture tensor allowed us to both compute ‍̂U‍ and also to directly quan-

tify shape anisotropy from the eigenvalues ‍
(
mL, mS

)
‍ and eigenvectors 

‍

(
ξM

L , ξM
S

)
‍
 of the time-averaged 

‍⟨M̂(t)⟩t‍, where ‍L‍ and ‍S‍ label the large and small components, respectively. We defined the dimension-
less shape anisotropy shown in Figure 8C in the main text as

	﻿‍
pS = mL − mS

mL + ms
,
‍� (27)

and the shape anisotropy direction as the angle ‍ξ
M
L ‍ makes with the lab frame  x-axis.

Unlike in the simulation, in the real embryo, cells divide, ingress, and flow in and out of the region 
of interest. Therefore, it is not immediately clear what to use as the reference texture tensor ‍M̂0‍ when 
computing ‍̂U‍ tensor. For simplicity, we chose the isotropic tensor constructed from the time-averaged 
eigenvalues as

	﻿‍
M̂0 = 1

2
(ms + mL )̂I.

‍�
(28)

To compute the flow anisotropy, we measured the integrated total strain tensor

	﻿‍
ε̂tot(t) =

ˆ t

t0
dt′V̂

(
t′
)

,
‍�

(29)
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analogous to the simulated tissue patches. Similar to ‍M̂‍, we can then compute the eigenvalues 

‍(VL, VS)‍ and eigenvectors ‍(ξ
V
L , ξV

S )‍ of the final ‍̂ε
tot(tmax)‍, where we again label the large and small 

components ‍L‍ and ‍S‍, respectively. Here, we now typically have ‍VS < 0‍ and ‍VL > 0‍, corresponding 
to the convergence and extension directions of the tissue, respectively. We compute the total flow 
magnitude as

	﻿‍ εtot
C−E = VL − VS,‍� (30)

and the flow anisotropy direction as the angle ‍ξ
V
L ‍ makes with the lab frame x-axis (Figure 8C).

For comparison, in Figure 8—figure supplement 1, we show the integrated ‍̂V ‍ and the ‍̂U‍ tensor for 
a region in the anterior of the embryo which does not undergo convergence–extension.

The phosphomyosin light chain staining patterns shown in Figure 8A are representative of the 
patterns observed in over 100 embryos of similar developmental stages. The intercalation data shown 
in Figure 8C are based on analysis of a light-sheet microscopy sequence of a single embryo, repre-
sentative of over 50 experiments of control embryos.

Fertile eggs (Shaver brown) were obtained from Henri Stewart & Co Ltd, UK. Fertile Myr-GFP 
eggs were obtained from the National Avian Research Facility at the Roslin Institute, University of 
Edinburgh, UK.

Acknowledgements
RS, MC, and CJW acknowledge support by the UK BBSRC (award BB/N009789/1). SH and IDC 
acknowledge support by the UK BBSRC (grant number BB/N009150/1-2). IDC acknowledges funding 
under Dioscuri, a programme initiated by the Max Planck Society, jointly managed with the National 
Science Centre in Poland, and mutually funded by the Polish Ministry of Science and Higher Education 
and German Federal Ministry of Education and Research (UMO-2019/02/H/NZ6/00003). We thank 
Antti Karjalainen for providing the MATLAB code used to analyse experimental data. RS thanks Andrej 
Košmrlj, Daniel Matoz-Fernandez, and Sijie Tong for many helpful discussions about the vertex model.

Additional information

Funding

Funder Grant reference number Author

Biotechnology and 
Biological Sciences 
Research Council

BB/N009789/1 Rastko Sknepnek
Manli Chuai
Cornelis Weijer

Biotechnology and 
Biological Sciences 
Research Council

BB/N009150/1-2 Ilyas Djafer-Cherif
Silke Henkes

The funders had no role in study design, data collection and interpretation, or the 
decision to submit the work for publication.

Author contributions
Rastko Sknepnek, Conceptualization, Software, Formal analysis, Supervision, Funding acquisition, Vali-
dation, Investigation, Visualization, Methodology, Writing - original draft, Project administration; Ilyas 
Djafer-Cherif, Data curation, Formal analysis, Investigation, Visualization, Writing – review and editing; 
Manli Chuai, Formal analysis, Investigation, Methodology, Writing – review and editing; Cornelis 
Weijer, Conceptualization, Resources, Data curation, Formal analysis, Supervision, Funding acquisi-
tion, Validation, Investigation, Methodology, Project administration, Writing – review and editing; 
Silke Henkes, Conceptualization, Formal analysis, Supervision, Funding acquisition, Validation, Investi-
gation, Visualization, Methodology, Writing - original draft, Project administration

Author ORCIDs
Rastko Sknepnek ‍ ‍ http://orcid.org/0000-0002-0144-9921

https://doi.org/10.7554/eLife.79862
http://orcid.org/0000-0002-0144-9921


 Research article﻿﻿﻿﻿﻿﻿ Physics of Living Systems

Sknepnek et al. eLife 2023;12:e79862. DOI: https://doi.org/10.7554/eLife.79862 � 25 of 27

Ilyas Djafer-Cherif ‍ ‍ http://orcid.org/0000-0002-9619-0202
Cornelis Weijer ‍ ‍ http://orcid.org/0000-0003-2192-8150
Silke Henkes ‍ ‍ http://orcid.org/0000-0002-6688-7367

Decision letter and Author response
Decision letter https://doi.org/10.7554/eLife.79862.sa1
Author response https://doi.org/10.7554/eLife.79862.sa2

Additional files
Supplementary files
•  MDAR checklist 

Data availability
The current manuscript is primarily a computational study, so no data have been generated for this 
manuscript. Modelling code is publically (GNU public license v 2.0) available on GitHub at: https://​
github.com/sknepneklab/ActiveJunctionModel (copy archived at Sknepnek, 2023). The experimental 
data presented in Figure 8 and Figure 8—figure supplement 1 has been generated as described in 
the methods section.

References
Alert R, Trepat X. 2020. Physical models of collective cell migration. Annual Review of Condensed Matter Physics 

11:77–101. DOI: https://doi.org/10.1146/annurev-conmatphys-031218-013516
Bertet C, Sulak L, Lecuit T. 2004. Myosin-dependent junction remodelling controls planar cell intercalation and 

axis elongation. Nature 429:667–671. DOI: https://doi.org/10.1038/nature02590, PMID: 15190355
Bi D, Lopez JH, Schwarz JM, Manning ML. 2015. A density-independent rigidity transition in biological tissues. 

Nature Physics 11:1074–1079. DOI: https://doi.org/10.1038/nphys3471
Bi D, Yang X, Marchetti MC, Manning ML. 2016. Motility-driven glass and jamming transitions in biological 

tissues. Physical Review. X 6:021011. DOI: https://doi.org/10.1103/PhysRevX.6.021011, PMID: 28966874
Blankenship JT, Backovic ST, Sanny JSP, Weitz O, Zallen JA. 2006. Multicellular rosette formation links planar cell 

polarity to tissue morphogenesis. Developmental Cell 11:459–470. DOI: https://doi.org/10.1016/j.devcel.2006.​
09.007, PMID: 17011486

Butler LC, Blanchard GB, Kabla AJ, Lawrence NJ, Welchman DP, Mahadevan L, Adams RJ, Sanson B. 2009. Cell 
shape changes indicate a role for extrinsic tensile forces in Drosophila germ-band extension. Nature Cell 
Biology 11:859–864. DOI: https://doi.org/10.1038/ncb1894, PMID: 19503074

Chuai M, Serrano Nájera G, Serra M, Mahadevan L, Weijer CJ. 2023. Reconstruction of distinct vertebrate 
gastrulation modes via modulation of key cell behaviors in the chick embryo. Science Advances 9:eabn5429. 
DOI: https://doi.org/10.1126/sciadv.abn5429, PMID: 36598979

Clément R, Dehapiot B, Collinet C, Lecuit T, Lenne PF. 2017. Viscoelastic dissipation stabilizes cell shape changes 
during tissue morphogenesis. Current Biology 27:3132–3142. DOI: https://doi.org/10.1016/j.cub.2017.09.005, 
PMID: 28988857

Collinet C, Rauzi M, Lenne PF, Lecuit T. 2015. Local and tissue-scale forces drive oriented junction growth during 
tissue extension. Nature Cell Biology 17:1247–1258. DOI: https://doi.org/10.1038/ncb3226, PMID: 26389664

Curran S, Strandkvist C, Bathmann J, de Gennes M, Kabla A, Salbreux G, Baum B. 2017. Myosin II controls 
junction fluctuations to guide epithelial tissue ordering. Developmental Cell 43:480–492. DOI: https://doi.org/​
10.1016/j.devcel.2017.09.018, PMID: 29107560

Dembo M, Torney DC, Saxman K, Hammer D. 1988. The reaction-limited kinetics of membrane-to-surface 
adhesion and detachment. Proceedings of the Royal Society of London. Series B, Biological Sciences 234:55–
83. DOI: https://doi.org/10.1098/rspb.1988.0038, PMID: 2901109

Dierkes K, Sumi A, Solon J, Salbreux G. 2014. Spontaneous oscillations of elastic contractile materials with 
turnover. Physical Review Letters 113:14. DOI: https://doi.org/10.1103/PhysRevLett.113.148102, PMID: 
25325664

Duda M, Kirkland NJ, Khalilgharibi N, Tozluoglu M, Yuen AC, Carpi N, Bove A, Piel M, Charras G, Baum B, 
Mao Y. 2019. Polarization of myosin II refines tissue material properties to buffer mechanical stress. 
Developmental Cell 48:245–260.. DOI: https://doi.org/10.1016/j.devcel.2018.12.020, PMID: 30695698

Farhadifar R, Röper JC, Aigouy B, Eaton S, Jülicher F. 2007. The influence of cell mechanics, cell-cell interactions, 
and proliferation on epithelial packing. Current Biology 17:2095–2104. DOI: https://doi.org/10.1016/j.cub.​
2007.11.049, PMID: 18082406

Fernandez-Gonzalez R, Simoes SdeM, Röper J-C, Eaton S, Zallen JA. 2009. Myosin II dynamics are regulated by 
tension in intercalating cells. Developmental Cell 17:736–743. DOI: https://doi.org/10.1016/j.devcel.2009.09.​
003

https://doi.org/10.7554/eLife.79862
http://orcid.org/0000-0002-9619-0202
http://orcid.org/0000-0003-2192-8150
http://orcid.org/0000-0002-6688-7367
https://doi.org/10.7554/eLife.79862.sa1
https://doi.org/10.7554/eLife.79862.sa2
https://github.com/sknepneklab/ActiveJunctionModel
https://github.com/sknepneklab/ActiveJunctionModel
https://doi.org/10.1146/annurev-conmatphys-031218-013516
https://doi.org/10.1038/nature02590
http://www.ncbi.nlm.nih.gov/pubmed/15190355
https://doi.org/10.1038/nphys3471
https://doi.org/10.1103/PhysRevX.6.021011
http://www.ncbi.nlm.nih.gov/pubmed/28966874
https://doi.org/10.1016/j.devcel.2006.09.007
https://doi.org/10.1016/j.devcel.2006.09.007
http://www.ncbi.nlm.nih.gov/pubmed/17011486
https://doi.org/10.1038/ncb1894
http://www.ncbi.nlm.nih.gov/pubmed/19503074
https://doi.org/10.1126/sciadv.abn5429
http://www.ncbi.nlm.nih.gov/pubmed/36598979
https://doi.org/10.1016/j.cub.2017.09.005
http://www.ncbi.nlm.nih.gov/pubmed/28988857
https://doi.org/10.1038/ncb3226
http://www.ncbi.nlm.nih.gov/pubmed/26389664
https://doi.org/10.1016/j.devcel.2017.09.018
https://doi.org/10.1016/j.devcel.2017.09.018
http://www.ncbi.nlm.nih.gov/pubmed/29107560
https://doi.org/10.1098/rspb.1988.0038
http://www.ncbi.nlm.nih.gov/pubmed/2901109
https://doi.org/10.1103/PhysRevLett.113.148102
http://www.ncbi.nlm.nih.gov/pubmed/25325664
https://doi.org/10.1016/j.devcel.2018.12.020
http://www.ncbi.nlm.nih.gov/pubmed/30695698
https://doi.org/10.1016/j.cub.2007.11.049
https://doi.org/10.1016/j.cub.2007.11.049
http://www.ncbi.nlm.nih.gov/pubmed/18082406
https://doi.org/10.1016/j.devcel.2009.09.003
https://doi.org/10.1016/j.devcel.2009.09.003


 Research article﻿﻿﻿﻿﻿﻿ Physics of Living Systems

Sknepnek et al. eLife 2023;12:e79862. DOI: https://doi.org/10.7554/eLife.79862 � 26 of 27

Ferro V, Chuai M, McGloin D, Weijer CJ. 2020. Measurement of junctional tension in epithelial cells at the onset 
of primitive streak formation in the chick embryo via non-destructive optical manipulation. Development 
147:dev175109. DOI: https://doi.org/10.1242/dev.175109, PMID: 31964776

Fletcher AG, Osterfield M, Baker RE, Shvartsman SY. 2014. Vertex models of epithelial morphogenesis. 
Biophysical Journal 106:2291–2304. DOI: https://doi.org/10.1016/j.bpj.2013.11.4498, PMID: 24896108

Gehrels EW, Chakrabortty B, Perrin ME, Merkel M, Lecuit T. 2023. Curvature gradient drives polarized tissue 
flow in the Drosophila embryo. PNAS 120:e2214205120. DOI: https://doi.org/10.1073/pnas.2214205120, 
PMID: 36724258

Graner F, Dollet B, Raufaste C, Marmottant P. 2008. Discrete rearranging disordered patterns, part I: robust 
statistical tools in two or three dimensions. The European Physical Journal E 25:349–369. DOI: https://doi.org/​
10.1140/epje/i2007-10298-8

Gustafson HJ, Claussen N, De Renzis S, Streichan SJ. 2022. Patterned mechanical feedback establishes a global 
myosin gradient. Nature Communications 13:7050. DOI: https://doi.org/10.1038/s41467-022-34518-9, PMID: 
36396633

Harris AR, Peter L, Bellis J, Baum B, Kabla AJ, Charras GT. 2012. Characterizing the mechanics of cultured cell 
monolayers. PNAS 109:16449–16454. DOI: https://doi.org/10.1073/pnas.1213301109

Huebner RJ, Wallingford JB. 2018. Coming to consensus: a unifying model emerges for convergent extension. 
Developmental Cell 46:389–396. DOI: https://doi.org/10.1016/j.devcel.2018.08.003

Jacinto A, Wood W, Woolner S, Hiley C, Turner L, Wilson C, Martinez-Arias A, Martin P. 2002. Dynamic analysis 
of actin cable function during Drosophila dorsal closure. Current Biology 12:1245–1250. DOI: https://doi.org/​
10.1016/s0960-9822(02)00955-7, PMID: 12176336

Keller R, Davidson L, Edlund A, Elul T, Ezin M, Shook D, Skoglund P. 2000. Mechanisms of convergence and 
extension by cell intercalation. Philosophical Transactions of the Royal Society of London. Series B, Biological 
Sciences 355:897–922. DOI: https://doi.org/10.1098/rstb.2000.0626, PMID: 11128984

Kong D, Wolf F, Großhans J. 2017. Forces directing germ-band extension in Drosophila embryos. Mechanisms of 
Development 144:11–22. DOI: https://doi.org/10.1016/j.mod.2016.12.001

Kovács M, Thirumurugan K, Knight PJ, Sellers JR. 2007. Load-dependent mechanism of nonmuscle myosin 2. 
PNAS 104:9994–9999. DOI: https://doi.org/10.1073/pnas.0701181104

Krajnc M, Stern T, Zankoc C. 2021. Active instability and nonlinear dynamics of cell-cell junctions. Physical 
Review Letters 127:19. DOI: https://doi.org/10.1103/PhysRevLett.127.198103, PMID: 34797151

Lan H, Wang Q, Fernandez-Gonzalez R, Feng JJ. 2015. A biomechanical model for cell polarization and 
intercalation during Drosophila germband extension. Physical Biology 12:056011. DOI: https://doi.org/10.​
1088/1478-3975/12/5/056011, PMID: 26356256

Larson RG. 1999. The Structure and Rheology of Complex Fluids. New York: Oxford University Press.
Lavalou J, Mao Q, Harmansa S, Kerridge S, Lellouch AC, Philippe JM, Audebert S, Camoin L, Lecuit T. 2021. 

Formation of polarized contractile interfaces by self-organized toll-8/cirl GPCR asymmetry. Developmental Cell 
56:1574–1588. DOI: https://doi.org/10.1016/j.devcel.2021.03.030, PMID: 33932333

Murisic N, Hakim V, Kevrekidis IG, Shvartsman SY, Audoly B. 2015. From discrete to continuum models of 
three-dimensional deformations in epithelial sheets. Biophysical Journal 109:154–163. DOI: https://doi.org/10.​
1016/j.bpj.2015.05.019, PMID: 26153712

Noll N, Mani M, Heemskerk I, Streichan SJ, Shraiman BI. 2017. Active tension network model suggests an exotic 
mechanical state realized in epithelial tissues. Nature Physics 13:1221–1226. DOI: https://doi.org/10.1038/​
nphys4219, PMID: 30687408

Paré AC, Vichas A, Fincher CT, Mirman Z, Farrell DL, Mainieri A, Zallen JA. 2014. A positional Toll receptor code 
directs convergent extension in Drosophila. Nature 515:523–527. DOI: https://doi.org/10.1038/nature13953, 
PMID: 25363762

Park J-A, Kim JH, Bi D, Mitchel JA, Qazvini NT, Tantisira K, Park CY, McGill M, Kim S-H, Gweon B, Notbohm J, 
Steward R Jr, Burger S, Randell SH, Kho AT, Tambe DT, Hardin C, Shore SA, Israel E, Weitz DA, et al. 2015. 
Unjamming and cell shape in the asthmatic airway epithelium. Nature Materials 14:1040–1048. DOI: https://​
doi.org/10.1038/nmat4357, PMID: 26237129

Prezhdo OV, Pereverzev YV. 2009. Theoretical aspects of the biological catch bond. Accounts of Chemical 
Research 42:693–703. DOI: https://doi.org/10.1021/ar800202z, PMID: 19331389

Rauzi M, Verant P, Lecuit T, Lenne PF. 2008. Nature and anisotropy of cortical forces orienting Drosophila tissue 
morphogenesis. Nature Cell Biology 10:1401–1410. DOI: https://doi.org/10.1038/ncb1798, PMID: 18978783

Rauzi M, Lenne PF, Lecuit T. 2010. Planar polarized actomyosin contractile flows control epithelial junction 
remodelling. Nature 468:1110–1114. DOI: https://doi.org/10.1038/nature09566, PMID: 21068726

Rozbicki E, Chuai M, Karjalainen AI, Song F, Sang HM, Martin R, Knölker HJ, MacDonald MP, Weijer CJ. 2015. 
Myosin-ii-mediated cell shape changes and cell intercalation contribute to primitive streak formation. Nature 
Cell Biology 17:397–408. DOI: https://doi.org/10.1038/ncb3138, PMID: 25812521

Saadaoui M, Rocancourt D, Roussel J, Corson F, Gros J. 2020. A tensile ring drives tissue flows to shape the 
gastrulating amniote embryo. Science 367:453–458. DOI: https://doi.org/10.1126/science.aaw1965, PMID: 
31974255

Saw TB, Doostmohammadi A, Nier V, Kocgozlu L, Thampi S, Toyama Y, Marcq P, Lim CT, Yeomans JM, Ladoux B. 
2017. Topological defects in epithelia govern cell death and extrusion. Nature 544:212–216. DOI: https://doi.​
org/10.1038/nature21718, PMID: 28406198

Serrano Nájera G, Weijer CJ. 2020. Cellular processes driving gastrulation in the avian embryo. Mechanisms of 
Development 163:103624. DOI: https://doi.org/10.1016/j.mod.2020.103624

https://doi.org/10.7554/eLife.79862
https://doi.org/10.1242/dev.175109
http://www.ncbi.nlm.nih.gov/pubmed/31964776
https://doi.org/10.1016/j.bpj.2013.11.4498
http://www.ncbi.nlm.nih.gov/pubmed/24896108
https://doi.org/10.1073/pnas.2214205120
http://www.ncbi.nlm.nih.gov/pubmed/36724258
https://doi.org/10.1140/epje/i2007-10298-8
https://doi.org/10.1140/epje/i2007-10298-8
https://doi.org/10.1038/s41467-022-34518-9
http://www.ncbi.nlm.nih.gov/pubmed/36396633
https://doi.org/10.1073/pnas.1213301109
https://doi.org/10.1016/j.devcel.2018.08.003
https://doi.org/10.1016/s0960-9822(02)00955-7
https://doi.org/10.1016/s0960-9822(02)00955-7
http://www.ncbi.nlm.nih.gov/pubmed/12176336
https://doi.org/10.1098/rstb.2000.0626
http://www.ncbi.nlm.nih.gov/pubmed/11128984
https://doi.org/10.1016/j.mod.2016.12.001
https://doi.org/10.1073/pnas.0701181104
https://doi.org/10.1103/PhysRevLett.127.198103
http://www.ncbi.nlm.nih.gov/pubmed/34797151
https://doi.org/10.1088/1478-3975/12/5/056011
https://doi.org/10.1088/1478-3975/12/5/056011
http://www.ncbi.nlm.nih.gov/pubmed/26356256
https://doi.org/10.1016/j.devcel.2021.03.030
http://www.ncbi.nlm.nih.gov/pubmed/33932333
https://doi.org/10.1016/j.bpj.2015.05.019
https://doi.org/10.1016/j.bpj.2015.05.019
http://www.ncbi.nlm.nih.gov/pubmed/26153712
https://doi.org/10.1038/nphys4219
https://doi.org/10.1038/nphys4219
http://www.ncbi.nlm.nih.gov/pubmed/30687408
https://doi.org/10.1038/nature13953
http://www.ncbi.nlm.nih.gov/pubmed/25363762
https://doi.org/10.1038/nmat4357
https://doi.org/10.1038/nmat4357
http://www.ncbi.nlm.nih.gov/pubmed/26237129
https://doi.org/10.1021/ar800202z
http://www.ncbi.nlm.nih.gov/pubmed/19331389
https://doi.org/10.1038/ncb1798
http://www.ncbi.nlm.nih.gov/pubmed/18978783
https://doi.org/10.1038/nature09566
http://www.ncbi.nlm.nih.gov/pubmed/21068726
https://doi.org/10.1038/ncb3138
http://www.ncbi.nlm.nih.gov/pubmed/25812521
https://doi.org/10.1126/science.aaw1965
http://www.ncbi.nlm.nih.gov/pubmed/31974255
https://doi.org/10.1038/nature21718
https://doi.org/10.1038/nature21718
http://www.ncbi.nlm.nih.gov/pubmed/28406198
https://doi.org/10.1016/j.mod.2020.103624


 Research article﻿﻿﻿﻿﻿﻿ Physics of Living Systems

Sknepnek et al. eLife 2023;12:e79862. DOI: https://doi.org/10.7554/eLife.79862 � 27 of 27

Sknepnek R. 2023. AJM (active junction model). swh:1:rev:02b61a131f725276e83974c1fe19401074e2ad8b. 
Software Heritage. https://archive.softwareheritage.org/swh:1:dir:e2cf9b484708e0dc03308dd183fcce9f​
bc47e9ce;origin=https://github.com/sknepneklab/ActiveJunctionModel;visit=swh:1:snp:2d81d9f49cce306f​
2075c54e71e257fda19ba74d;anchor=swh:1:rev:02b61a131f725276e83974c1fe19401074e2ad8b

Spencer MA, Jabeen Z, Lubensky DK. 2017. Vertex stability and topological transitions in vertex models of 
foams and epithelia. The European Physical Journal. E, Soft Matter 40:2. DOI: https://doi.org/10.1140/epje/​
i2017-11489-4, PMID: 28083791

Staddon MF, Cavanaugh KE, Munro EM, Gardel ML, Banerjee S. 2019. Mechanosensitive junction remodeling 
promotes robust epithelial morphogenesis. Biophysical Journal 117:1739–1750. DOI: https://doi.org/10.1016/j.​
bpj.2019.09.027, PMID: 31635790

Staple DB, Farhadifar R, Röper J-C, Aigouy B, Eaton S, Jülicher F. 2010. Mechanics and remodelling of cell 
packings in epithelia. The European Physical Journal E 33:117–127. DOI: https://doi.org/10.1140/epje/​
i2010-10677-0

Streichan SJ, Lefebvre MF, Noll N, Wieschaus EF, Shraiman BI. 2018. Global morphogenetic flow is accurately 
predicted by the spatial distribution of myosin motors. eLife 7:e27454. DOI: https://doi.org/10.7554/eLife.​
27454, PMID: 29424685

Thielicke W, Sonntag R. 2021. Particle image velocimetry for Matlab: accuracy and enhanced algorithms in 
pivlab. Journal of Open Research Software 9:12. DOI: https://doi.org/10.5334/jors.334

Thomas WE, Vogel V, Sokurenko E. 2008. Biophysics of catch bonds. Annual Review of Biophysics 37:399–416. 
DOI: https://doi.org/10.1146/annurev.biophys.37.032807.125804, PMID: 18573088

Tong S, Singh NK, Sknepnek R, Košmrlj A, Bollenbach T. 2021. Linear viscoelastic properties of the vertex model 
for epithelial tissues. PLOS Computational Biology 18:e1010135. DOI: https://doi.org/10.1371/journal.pcbi.​
1010135

Tong S, Sknepnek R, Kosmrlj A. 2022. Normal Mode Analysis of the Linear Viscoelastic Response of Dissipative 
Systems: Application to Vertex Model. arXiv. DOI: https://doi.org/10.48550/arXiv.2202.03261

Veigel C, Molloy JE, Schmitz S, Kendrick-Jones J. 2003. Load-dependent kinetics of force production by smooth 
muscle myosin measured with optical tweezers. Nature Cell Biology 5:980–986. DOI: https://doi.org/10.1038/​
ncb1060, PMID: 14578909

Voiculescu O, Bertocchini F, Wolpert L, Keller RE, Stern CD. 2007. The amniote primitive streak is defined by 
epithelial cell intercalation before gastrulation. Nature 449:1049–1052. DOI: https://doi.org/10.1038/​
nature06211, PMID: 17928866

Wang Q, Feng JJ, Pismen LM. 2012. A cell-level biomechanical model of Drosophila dorsal closure. Biophysical 
Journal 103:2265–2274. DOI: https://doi.org/10.1016/j.bpj.2012.09.036, PMID: 23283225

Weaire DL, Hutzler S. 2001. The Physics of Foams. Oxford University Press.
Wolpert L, Tickle C, Arias AM. 2015. Principles of Development. USA: Oxford University Press.
Wyatt TPJ, Harris AR, Lam M, Cheng Q, Bellis J, Dimitracopoulos A, Kabla AJ, Charras GT, Baum B. 2015. 

Emergence of homeostatic epithelial packing and stress dissipation through divisions oriented along the long 
cell axis. PNAS 112:5726–5731. DOI: https://doi.org/10.1073/pnas.1420585112, PMID: 25908119

Yan L, Bi D. 2019. Multicellular rosettes drive fluid-solid transition in epithelial tissues. Physical Review X 
9:9.011029. DOI: https://doi.org/10.1103/PhysRevX.9.011029

https://doi.org/10.7554/eLife.79862
https://archive.softwareheritage.org/swh:1:dir:e2cf9b484708e0dc03308dd183fcce9fbc47e9ce;origin=https://github.com/sknepneklab/ActiveJunctionModel;visit=swh:1:snp:2d81d9f49cce306f2075c54e71e257fda19ba74d;anchor=swh:1:rev:02b61a131f725276e83974c1fe19401074e2ad8b
https://archive.softwareheritage.org/swh:1:dir:e2cf9b484708e0dc03308dd183fcce9fbc47e9ce;origin=https://github.com/sknepneklab/ActiveJunctionModel;visit=swh:1:snp:2d81d9f49cce306f2075c54e71e257fda19ba74d;anchor=swh:1:rev:02b61a131f725276e83974c1fe19401074e2ad8b
https://archive.softwareheritage.org/swh:1:dir:e2cf9b484708e0dc03308dd183fcce9fbc47e9ce;origin=https://github.com/sknepneklab/ActiveJunctionModel;visit=swh:1:snp:2d81d9f49cce306f2075c54e71e257fda19ba74d;anchor=swh:1:rev:02b61a131f725276e83974c1fe19401074e2ad8b
https://doi.org/10.1140/epje/i2017-11489-4
https://doi.org/10.1140/epje/i2017-11489-4
http://www.ncbi.nlm.nih.gov/pubmed/28083791
https://doi.org/10.1016/j.bpj.2019.09.027
https://doi.org/10.1016/j.bpj.2019.09.027
http://www.ncbi.nlm.nih.gov/pubmed/31635790
https://doi.org/10.1140/epje/i2010-10677-0
https://doi.org/10.1140/epje/i2010-10677-0
https://doi.org/10.7554/eLife.27454
https://doi.org/10.7554/eLife.27454
http://www.ncbi.nlm.nih.gov/pubmed/29424685
https://doi.org/10.5334/jors.334
https://doi.org/10.1146/annurev.biophys.37.032807.125804
http://www.ncbi.nlm.nih.gov/pubmed/18573088
https://doi.org/10.1371/journal.pcbi.1010135
https://doi.org/10.1371/journal.pcbi.1010135
https://doi.org/10.48550/arXiv.2202.03261
https://doi.org/10.1038/ncb1060
https://doi.org/10.1038/ncb1060
http://www.ncbi.nlm.nih.gov/pubmed/14578909
https://doi.org/10.1038/nature06211
https://doi.org/10.1038/nature06211
http://www.ncbi.nlm.nih.gov/pubmed/17928866
https://doi.org/10.1016/j.bpj.2012.09.036
http://www.ncbi.nlm.nih.gov/pubmed/23283225
https://doi.org/10.1073/pnas.1420585112
http://www.ncbi.nlm.nih.gov/pubmed/25908119
https://doi.org/10.1103/PhysRevX.9.011029

	Generating active T1 transitions through mechanochemical feedback
	Editor's evaluation
	Introduction
	Results
	Single-junction model
	Vertex model with active junctions
	Single active T1 transition in a hexagonal patch
	Timescales of active T1 events and local convergence–extension strain
	Convergence–extension in a fully active random patch
	Comparison with myosin-driven intercalations observed in the sickle-shaped mesoderm precursor domain of chick embryo at the onset of gastrulation

	Discussion
	Materials and methods
	Model setup and analysis
	Single active junction
	Vertex model with active junctions
	Characterisation of T1 transitions and tissue flow
	Convergence–extension in a patch of randomly shaped active cells

	Experimental data analysis
	Experimental data


	Acknowledgements
	Additional information
	﻿Funding
	Author contributions
	Author ORCIDs
	Decision letter and Author response

	Additional files
	Supplementary files

	References


