

Putting dental calculus under the microscope Bartholdy, B.P.

Citation

Bartholdy, B. P. (2024, May 30). *Putting dental calculus under the microscope*. Retrieved from https://hdl.handle.net/1887/3755785

Version:	Publisher's Version
License:	Licence agreement concerning inclusion of doctoral thesis in the Institutional Repository of the University of Leiden
Downloaded from:	https://hdl.handle.net/1887/3755785

Note: To cite this publication please use the final published version (if applicable).

Putting Dental Calculus Under the Microscope

Proefschrift

ter verkrijging van

de graad van Doctor aan de Universiteit Leiden, op gezag van Rector Magnificus prof.dr.ir. H. Bijl, volgens besluit van het College voor Promoties te verdedigen op Donderdag 30 Mei 2024 klokke 11.15 uur

door

Bjørn Peare Bartholdy

Promotor	Dr. Amanda G. Henry
Second Promotor	Prof.dr. Annelou van Gijn
Committee	Prof.dr. Patrick Degryse Leiden University Katholieke Universiteit Leuven
	Prof.dr. Matthew James Collins University of Copenhagen University of Cambridge
	Dr. Alison Crowther University of Queensland
	Prof.dr. Carla Lancelotti Universitat Pompeu Fabra and ICREA
	Dr. Christina Warinner Max Planck Institute for Evolutionary Anthropology Harvard University

Cover: Design by Krijn Boom and image by Petra Korlevic

Funding: This research has received funding from the European Research Council under the European Union's Horizon 2020 research and innovation program, grant agreement number STG-677576 ("HARVEST").

Print version: 2024.04.1

Printed by: Gildeprint

En bar røv at trutte i Jan Bartholdy

Table of contents

Pr	eface		1
Ac	know	ledgements	5
Op	en S	cience Statement	7
1	Intr	oduction	9
	1.1	Dental calculus in archaeology	11
	1.2	What is dental calculus?	15
	1.3	The study of dental calculus	17
	1.4	The challenges of studying dental calculus	20
	1.5	Aims	23
	1.6	Thesis outline and structure	24
	Refe	rences cited	26
2	Bac	caround	37
	2.1	Oral biofilms	38
		2.1.1 Dental plaque	39
		21.2 Dental calculus	45
	2.2	Oral biofilm models	48
	Refe	rences cited	52
3	Arti	cle 1	61
-	3.1	Introduction	62
	3.2	Materials and methods	65
		3.2.1 Biofilm growth	65

iv table of contents

		3.2.2	Metagenomics	68
		3.2.3	FTIR	72
		3.2.4	Statistics	74
	3.3	Result	S	74
		3.3.1	Metagenomic analysis	74
		3.3.2	Samples show an increased mineralisation over the	
			course of the experiment	85
		3.3.3	Model calculus has a similar mineral composition to nat-	
			ural calculus	86
		3.3.4	Samples show similar crystallinity and order to reference	
		0.011	calculus	86
	34	Discus		89
	0.1	341	Microhiome	80
		342	Mineralisation	90
		343	Replicability	01
		311		02
		315		72
	35	Conclu		9J 04
	3.5	Poforo	$\frac{1}{2} = \frac{1}{2} = \frac{1}$	94 04
	5.0	Releie		74
4	Arti	cle 2		105
4	Arti 4.1	cle 2 Introd	uction	105 106
4	Arti 4.1 4.2	cle 2 Introd Materi	uction	105 106 108
4	Arti 4.1 4.2	cle 2 Introd Materi 4.2.1	uction	105 106 108 108
4	Arti 4.1 4.2	cle 2 Introd Materi 4.2.1 4.2.2	uction	105 106 108 108 110
4	Arti 4.1 4.2	cle 2 Introd Materi 4.2.1 4.2.2 4.2.3	uction	105 106 108 108 110 110
4	Arti (4.1 4.2	cle 2 Introd Materi 4.2.1 4.2.2 4.2.3 4.2.4	uction	105 106 108 108 110 111 111
4	Arti 4.1 4.2	cle 2 Introd Materi 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5	uction	105 106 108 108 110 111 111 112
4	Arti (4.1 4.2 4.3	cle 2 Introd Materi 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 Result	uction	105 106 108 108 110 111 111 112 112
4	Arti 4.1 4.2 4.3	cle 2 Introd Materi 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 Result 4.3.1	uction	105 106 108 108 110 111 111 112 112 112
4	Arti 4.1 4.2 4.3	cle 2 Introd Materi 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 Result 4.3.1 4.3.2	uction	105 106 108 108 110 111 111 112 112 114 114
4	Arti 4.1 4.2	cle 2 Introd Materi 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 Result 4.3.1 4.3.2 4.3.3	uction	105 106 108 108 110 111 112 112 112 114 114
4	Arti 4.1 4.2 4.3	cle 2 Introd Materi 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 Result 4.3.1 4.3.2 4.3.3 Discus	uction	105 106 108 108 110 111 112 112 112 114 114 114 114
4	Arti (4.1 4.2 4.3 4.3 4.4 4.5	cle 2 Introd Materi 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 Result 4.3.1 4.3.2 4.3.3 Discus Conclu	uction	105 106 108 108 110 111 112 112 112 114 114 114 114 119 124
4	Arti (4.1 4.2 4.3 4.3 4.4 4.5 Refe	cle 2 Introd Materi 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 Result 4.3.1 4.3.2 4.3.3 Discus Conclu	uction als and Methods Biofilm formation Amylase activity detection Treatment solutions Extraction method Statistical analysis s No amylase activity detected in the model Treatment type had minimal effect on biofilm growth Starch counts usion usion	105 106 108 108 110 111 112 112 114 114 114 114 119 124 125
4	Arti 4.1 4.2 4.3 4.4 4.5 Refe	cle 2 Introd Materi 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 Result 4.3.1 4.3.2 4.3.3 Discus Conclu	uction als and Methods Biofilm formation Amylase activity detection Treatment solutions Extraction method Statistical analysis s No amylase activity detected in the model Treatment type had minimal effect on biofilm growth Starch counts usion cited	105 106 108 108 110 111 112 112 114 114 114 119 124 125
4	Arti 4.1 4.2 4.3 4.4 4.5 Refe Arti	cle 2 Introd Materi 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 Result 4.3.1 4.3.2 4.3.3 Discus Conclu rences	uction	105 106 108 108 110 111 112 112 114 114 114 114 124 125 135
4	Arti 4.1 4.2 4.3 4.4 4.5 Refe Arti 5.1	cle 2 Introd Materi 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 Result 4.3.1 4.3.2 4.3.3 Discus Conclu rences cle 3 Introd	uction	105 106 108 108 110 111 112 112 114 114 114 124 125 135 136

table of contents v

	5.3	Metho	ds	. 138	,
		5.3.1	Skeletal analysis	. 138	5
		5.3.2	Calculus sampling	. 141	
		5.3.3	UHPLC-MS/MS	. 141	
		5.3.4	Statistical analysis	. 142	2
	5.4	Result	S	. 143	;
		5.4.1	Correlations between detected alkaloids and diseases .	. 145	,
	5.5	Discus	sion	. 148	5
	5.6	Conclu	usion	. 156	j
	Refe	rences	cited	. 157	'
r				407	,
0		ussion	i Antol colouluo model	10/	` `
	0.1			. 105 170	, ,
		0.1.1		. 1/2	
		612		. 175	
		614	Potential biofilm model applications in archaeology	. 170	:
	62	Dontal	Following in archaeology and future challenges	. 170	'
	0.2	6 2 1	Incorporation pathways	170)
		622	Identification of fragmented remains	181	
		623	Contamination and lab processing	183	2
		624	Deliberate and efficient sampling and analysis	187	,
	63	Thoug	hts on the future	196)
	64	Conclu	Iding remarks	194	Ĺ
	Refe	rences	cited	. 196	5
c	nnla	montor	w Information	211	
3 u	ippre	nentar	y information	211	
Su	ımma	ry		213	;
Sa	Samenvatting 217			217	,
Cι	Curriculum Vitae 22			221	

List of Figures

1.1 1.2	Plot of the number of articles per year in bioarchaeology and clin- ical dentistry with the term 'dental calculus' in the title Word cloud of most common dental terms in articles. Figure is from Pilloud & Fancher (2019), Figure 1	12 14
2.1	A simplified overview of biofilm formation stages. Created with BioRender.com.	40
2.2	General structure of a bacterial cell. Common features of gram- negative bacteria on the left, and common features of gram- positive bacteria on the right. Created with BioRender.com	42
3.1	Overview of the protocol for biofilm growth. The samples for metagenomic analysis were grown in a separate experimental plate than the FTIR samples under the same experimental con- ditions. Biofilm (B) and calculus (C) samples were used for FTIR spectroscopy, and saliva (S), artificial saliva (M), and calculus sam-	
3.2	ples were used for metagenomic analysis	66
3.3	model = model calculus samples from day 24	75
	loadings on PC2 (B), and species loadings on PC1 (C)	77

viii list of figures

3.4 Li ri ar	og-fold changes between sample types. Circles are species en- iched in the medium, triangles are enriched in model calculus, and diamonds are enriched in saliva. Lines are standard error.	
P C	lot shows the top 30 absolute log-fold changes between model alculus and saliva	78
3.5 S	Shannon Index for model calculus and medium samples, as well	80
3.6 C	Core genera within the different types of samples represented is mean relative abundances at the genus level. Other = other	00
g	jenera present in lower than 5% relative abundance	81
3.7 sl sa	PCA on species-level counts from model calculus and reference amples. Figure shows (A) the main sPCA plot, (B) the species	
lc 3.8 L	badings from PC2, and (C) species loadings on PC1	82
d si	liamonds are enriched in subgingival plaque, and squares in upragingival plaque. Plot shows the top 30 loadings (absolute	
Vá	alue) in PC1 (A) and PC2 (B) between model calculus and other	
Sa	ample types, ordered by decreasing log-fold change. Bars rep-	~ 4
3.9 S d	Select spectra from all experiment sampling days; (A) day 7, (B) lay 12, (C) day 16, and (D) day 24. Absorbance bands in stretch-	84
r si	is ID for model samples is constructed as: Elday sampled [well	
sa 3.10 G	ampled]_[grind sample]	87
p (c	bublished trendlines (dashed light grey lines) for archaeological dotted line) and modern (dashed line) enamel.	88
4.1 O 4.2 №	Overview of experiment protocol including the plate setup	110
st	tarch solutions. Starch granules can be seen within bacterial communities and isolated. Scale bar = 20 µm.	113
4.3 P	Proportion of sizes of starch granules from solutions (outer ring) and treatment samples (inner ring) in separated wheat (A) and poteto (B) treatments and mixed wheat (C) and poteto (D) treat	5
p m		118

- 4.4 Scatter plots of (A) sample weight in mg and standardised starch count by z-score for separated treatments, and (B) sample weight in mg and standardised count of starch grains per mg calculus.
 119

- 5.4 Plot of the polychoric correlations (*rho*). Larger circles and increased opacity indicates a stronger correlation coefficient. OA = osteoarthritis; VOP = vertebral osteophytosis; SN = Schmorl's nodes; DDD = degenerative disc disease; CO = cribra orbitalia; CMS = chronic maxillary sinusitis; SA = salicylic acid. 149

List of Tables

3.1	Number of samples taken during the experiment, separated by sampling day and sample type
3.2	Summary of samples used in FTIR analysis, including type of sample, sampling day, number of samples (n), and mean weight in mg. 72
4.1	Summary statistics for biofilm dry-weights (in mg) by treatment 114
4.2	Mean starch counts from solutions, including the proportional makeup of the different sizes of granules
4.3	Mean starch counts extracted from samples with standard devi- ation (SD), including the proportion of granule sizes of the total
	count
4.4	The mean percentage of starches from the solutions that were incorporated into the samples
4.4	The mean percentage of starches from the solutions that were incorporated into the samples
5.1	Target compound including whether it was detected (TRUE) or not (FALSE) in each batch, as well as the lower limit of quantita- tion (LLOQ) in ng. CBD = cannabidiol; CBN = cannabinol; THC = tetrahydrocannabinol; THCA-A = tetrahydrocannabinolic acid A; THCVA = tetrahydrocannabivarin acid 143

xii list of tables

Preface

This is not a traditional dissertation, which was a conscious choice on my part. First of all, it's not very common for a dissertation in my faculty to have a preface, which is why I have prefaced this preface with an explanation for why I need a preface. This mainly explains decisions regarding the format and style of my dissertation rather than the scientific content, which is why you won't see the phrase 'dental calculus' here. Oh, shoot...

Feel free to jump directly to Chapter 1 if you don't want to read this.

When I started my PhD research I had no intentions of shaking things up. I was going to put my head down and do my research, publish my articles in traditional journal venues, create a traditional article-based dissertation, and finish in the allotted four years. Six years later, and I accomplished... well, none of the above. Along the way I got a look behind the curtain of academic publishing. I didn't like what I saw. Not even a little bit. This was fueled by an introduction to Open Science. Science in the context of Open Science just made sense to me. This caused some delays as I dove head first into an Open Science rabbit hole. Also, covid. At first I vowed (to myself and those around me who would listen) never to publish any of my papers in Evilseer. Then, I took it a step further and vowed the same for more major publishers, including Springer and Wiley. Why do we pay publishers to take our copyright, publish our research, then pay extra so we're allowed read it? You may not be paying out of pocket, but your library is likely

2 preface

covering those costs with expensive subscriptions. I'm sure they would much rather use that money on more useful stuff. All this to say, you won't find any of my PhD papers in the traditional journals. I wanted to try different platforms, like preprint servers and PCI_Archaeology.

Around the beginning of my PhD research I was also introduced to R statistical software. I can no longer remember how this came about, but after many months of rage-quitting and returning to SPSS, vowing never to open R again, I started to see the value of using scripting languages (and free, open-source software) for statistical analysis. It turns out when you have a document outlining every step you made in the analysis, it's easy to reproduce; both by yourself and others. Who knew? No need for the same 'point and click' all over again. I used R Markdown for most of my output, website, presentations, articles, etc. Then I took it a step further and started writing my dissertation in R Markdown (and eventually Quarto). My dissertation was now fully reproducible, and could be rendered in different formats with little change to the documents with the actual content. One of these formats was HTML. I could turn my dissertation into a website. That was pretty cool. I could have a dynamic, outward-facing dissertation easily modified when needed. This series of events led me to publishing my dissertation online, before it was completed, as a way to show the progress to the world. Of course most of the world didn't actually care, but a few people thought it was a pretty cool idea; and, more importantly, it made the writing part enjoyable. Or at least as enjoyable as something that's not very enjoyable in the first place. It definitely motivated me to make continuous progress. The (theoretically) wide availability of my dissertation made me start thinking about accessibility. This means increasing the readability and legibility of the dissertation, not only with the formatting, but with the language used. This doesn't necessarily mean that it can be easily picked up by someone with limited knowledge of the field. Writing 'academically' is not just exclusionary to members of the public, but also to those for whom English does not come naturally. Plus, I've found it to be a tedious read, even as a native English speaker. In my experience, writing more accessibly also requires a deeper understanding of the

preface 3

subject matter.

Open Science is a priority in all of my work and will be reflected in this dissertation; sometimes directly, sometimes indirectly. Admittedly this is occasionally taken to an extreme: A fully reproducible dissertation, publishing everything before it's actually done, and avoiding traditional journals. Ultimately I was just fed up with the status quo. We as researchers need to do better. Contributing to knowledge requires more than having a paper accepted in a 'prestigious' journal. We need to ask ourselves why we are doing science, and for whom we are doing it.

Acknowledgements

Where to begin? So many people helped shape this thesis, and therefore I do not take full responsibility for the quality (or lack thereof) of this work.

First of all, my understanding supervisor, Dr. Amanda Henry, who waited patiently through delays caused by covid and two kids. Not to mention supporting all my non-traditional ventures in the name of Open Science and accessibility. prof. dr. Annelou van Gijn for providing feedback on experiment design and dissertation drafts.

Dr. Shira Gur-Arieh for endless encouragement and moral support, as well as FTIR analysis on the model calculus. Dr. James Fellows Yates and Dr. Zandra Fagernäs were always able to reignite my excitement for the project when I occasionally felt it slipping away. Their enthusiasm was always appreciated. James was also an important contributor to the main biofilm model paper, as I struggled to implement the EAGER pipeline, not to mention an inspiration on how to PhDad.

Dr. Ben Marwick and Dr. Esther Plomp, whose passion and commitment to Open Science inspired me to make all of my work as open and transparent as possible. This also likely contributed to some of the delays; so, thanks for that.

My colleagues at TU Delft (Yasemin and the Data Steward team, especially) who were very encouraging about finishing my dissertation while working a part-time

6 acknowledgements

job. Some Figures were created on Biorender using the TU Delft institutional subscription.

Anouk, Marie, Supriya, and Nina for having the patience to be friends with a PhD student with two small children. Femke and Maia for being great and motivating office mates.

Of course, I have to acknowledge my family for their moral support, and since they are the most likely to read this. Liam and Oliver, for making everything a bit more of a challenge.

Finally, my dad. An unlimited source of support and guidance through the whole process. I couldn't have done it without you. I only wish you could have been here to see me finish it.

Open Science Statement

All materials and data, including the source code for the dissertation itself, are made available to the best of my ability. All articles in association with the dissertation are/will be Open Access.

All outputs can be found, either directly or indirectly, on the Open Science Framework (DOI: 10.17605/OSF.IO/3YX8M).

