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Chapter 9

Tuberculosis (TB) is associated with high morbidity and mortality1. Current key 
challenges against treatment of TB include variability in treatment response, evasion 
of host immune response, and development of drug resistance. Quantitative 
pharmacology methods are valuable tools for developing innovative approaches to 
optimize treatment against Mtb infections to address the challenges effectively and 
efficiently2. In this thesis, we utilized diverse modeling and simulation approaches 
tailored to specific contexts of use, aiming to tackle the challenges associated with 
treatment of TB. Key learnings and future perspectives are discussed below divided 
into themes based on applications of modeling and simulation. 

Predictions of drug exposures at sites of action 

Understanding the distribution of anti-TB drugs at site-of-action tissues is 
essential to predict and optimize treatment effects. Lungs and cavitary lung lesion 
concentrations of bedaquiline and pretomanid have not been collected yet from 
humans. In Chapter 4, translational minimal physiologically-based pharmacokinetic 
(mPBPK) models of bedaquiline and pretomanid were developed using serum 
and site-of-action concentrations data from preclinical studies, and serum 
concentrations data from TB patients. Our model-based simulations suggested 
that although the currently approved dosing of bedaquiline and pretomanid may 
achieve lung exposures to exhibit bactericidal activity against replicating bacteria, 
additional treatment optimization may be required for the eradication of non-
replicating bacteria from cavitary lung lesions3.  In Chapter 6, a whole-body PBPK 
model including central nervous system (CNS) distribution for bedaquiline and its 
active metabolite, M2, was developed to predict exposures within cerebrospinal 
fluid (CSF), brain interstitial, and brain intracellular. Bedaquiline and M2 unbound 
concentrations at target sites, brain interstitial and intracellular, for TB meningitis 
(TBM) patients, were predicted to be significantly lower than predicted lung 
intracellular unbound concentrations, suggesting that bedaquiline may not 
provide an effective treatment option for patients with drug-resistant TBM. In 
Chapter 3, whole-body PBPK models allowed predictions of unbound rifampin and 
isoniazid exposures at target sites, brain interstitial and intracellular, to evaluate 
the probability of target attainment for TBM patients. For the drug-susceptible 
strains, our predictions suggested a high probability (>80%) of target attainment 
in brain interstitial and intracellular with standard dosing of rifampin and isoniazid, 
respectively4. Consistent with our work, there has been a growing focus on 
measurement and modeling of lungs and lesion drug concentrations data for anti-
TB drugs. For example, mechanistic modeling of seven anti-TB drugs data obtained 
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from nine different lung lesion types from TB patients demonstrated application of 
such approach to improve TB treatment outcomes5,27. On the other hand, although 
PBPK models have been applied to predict brain drug concentrations in other 
therapeutic areas28, PBPK approach to predict brain drug concentrations of anti-TB 
drugs have not been published prior to our work.

In the absence of observed relevant target site concentrations data, our models 
could not be compared against observed data, highlighting a key limitation of such 
modeling approach. For example, the translational mPBPK models for bedaquiline 
and pretomanid developed using mice data assumed relatively comparable drug 
partition coefficients in lungs amongst mice and humans. The CNS PBPK models 
developed for bedaquiline, rifampin, and isoniazid are reliant on serum and CSF 
data from patients, and drug distribution to brain interstitial and intracellular 
compartments is informed by physiological understanding of CNS. 

Quantitative pharmacology analyses are reliant on appropriate assumptions and 
accurate data. In general, the current standard methods for pharmacokinetic 
(PK) and pharmacodynamic (PD) data collection generally do not include site-
of-action measurements; thus, future work could focus more on innovative 
sampling and measurement methods to obtain relevant and accurate site-of-
action PK and PD data5. It is not feasible to collect site-of-action samples from 
large cohorts of patients. Quantitative pharmacology approaches may be used 
to link data measured using different sampling methods. For example, PK data 
from a relatively small but significant cohort of patients may be used along with 
PBPK model-based analyses to quantify the relationships between vascular and 
site-of-action drug concentrations of anti-TB drugs. Similarly, more refined and 
precise quantitative relationships could be developed between sputum and site of 
action Mtb bacterial load data using measurements from a larger pool of patient 
data than currently available6,7. Advancements in newer measurement techniques, 
for example, imaging techniques capable of measuring PK and PD at the site of 
action can be very valuable to increasingly support the development of quantitative 
pharmacology approaches to advance anti-TB therapeutics8,9.

To summarize, the translational minimal PBPK and whole-body PBPK modeling and 
simulations performed in this thesis provided insight into target site exposures 
and target attainment for two first-line, rifampin and isoniazid, and two newer, 
bedaquiline and pretomanid, anti-TB drugs. These findings can be used to rationally 
select treatment options for pulmonary TB and TBM patients, as appropriate. 
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Future advancements in data collection methods combined with quantitative 
pharmacology approaches are crucial. 

Addressing interindividual variability 

It is crucial to quantify the interindividual variability affecting PK and PD properties 
of drugs, as well as the factors influencing this variability. PK of drugs can be affected 
by various intrinsic factors, e.g., body weight, age, host genotype, and comorbidities, 
and extrinsic factors, e.g., drug-drug interactions, and smoking status. The PD of 
drugs is affected by drug exposure at the site-of-action, pathogen genotype, disease 
severity, etc. Modeling and simulation of anti-TB drugs provide valuable insights 
into factors affecting interindividual variability to inform treatment optimization 
approaches2. In Chapter 2, a top-down population PK modeling approach of 
ethambutol suggested significant impact of human immunodeficiency virus (HIV) 
co-infection on reduction in oral bioavailability of ethambutol in pulmonary TB 
patients. Model-based simulations suggested that a supplementary 400 mg QD 
ethambutol dosing among HIV/TB co-infected patients may provide a strategy to 
optimize anti-TB treatment regimens in this high-risk population10. 

In Chapter 3, using a bottom-up modeling approach, whole-body PBPK models 
for rifampin and isoniazid were developed to predict the impact of solute carrier 
organic anion transporter family member 1B1 (SLCO1B1) genotype on rifampin 
and N-acetyltransferase 2 (NAT2) genotype on isoniazid, and minimum inhibitory 
concentrations (MIC) on CNS target attainment following standard and intensified 
dosing regimen in patients with TBM. The combined effects of genotype and MIC 
were potent determinants of CNS target attainment of rifampin and isoniazid, 
providing a direction for future evaluations of precision dosing of rifampin and 
isoniazid in TBM patients4. In Chapter 4, translational mPBPK model–based 
simulations for bedaquiline and pretomanid suggested no significant effects of 
the size of cavitary lung lesions and body weight on target attainment within lungs 
and lung lesions in pulmonary TB patients3. In Chapter 5, the translational mPBPK 
models of bedaquiline and pretomanid were incorporated within a mechanistic 
modeling framework to simulate the anti-bacterial efficacy of the combination 
regimen BPaL. The framework included the dynamics of TB disease progression, 
drug distribution and available effective fraction into lung and lesions, individual 
drug effects, PD drug interactions, and the effect of MIC. Our framework predicted 
no significant impact of covariates, body weight, and MIC, on the overall efficacy of 
the BPaL combination11. In the recent years, mechanistic model-based evaluations 
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of variability in anti-TB drugs’ PK and effects have been performed27,29-31. For 
example, similar to our findings, a published mechanistic model including TB 
granuloma size predicted no significant impact of granuloma size on duration to 
granuloma sterilization31.

The majority of approaches for quantification of covariate effects and 
interindividual variability have relied on top-down empirical modeling2. In this 
thesis, we also explored how mechanistic model-based approaches can be used 
to identify covariates that may affect the variability in PK and anti-TB treatment 
outcome. A key constraint to using mechanistic modeling approach to evaluate 
interindividual variability is that full mechanistic details of factors that may affect 
interindividual variability are often not understood a priori. Additionally, models 
to identify factors affecting interindividual variability are best developed when 
a large amount of patient level data is available. Moreover, analysis of larger 
pool of data within mechanistic modeling framework is computationally costly. 
Future work may consider applications of advanced computational methods, such 
as Bayesian approaches and machine learning methods using a larger pool of 
relevant clinical data, along with mechanistic models for robust characterization of 
covariate–parameter relationships12,13. Additionally, various patient data collection 
methods, including the incorporation of real-world evidence, electronic health 
records, wearables, etc may be used to support the development of the proposed 
models. Predictions using such models can be used to rationally guide treatment 
optimization approaches against TB. 

To conclude, the evaluations of the factors affecting PK and PD of anti-TB drugs were 
demonstrated using top-down and bottom-up modeling approaches depending on 
available data. These results can be useful to evaluate model-informed precision 
dosing options. Future efforts should increasingly consider evaluations of data from 
a variety of sources using mechanistic modeling approaches to guide treatment 
optimization approaches based on patient factors affecting variability. 

Translation from experiments to patients 

Accurate translation of PK and PD of new anti-TB drugs from preclinical 
experiments to patients is essential to rationally design clinical studies. In Chapter 
4, predictions of exposures in lungs and lesions of TB patients were performed 
using data from PK studies in mice3. This demonstrated the usefulness of the 
PBPK model-based approach to predict the site of action distribution of anti-TB 
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drugs, although the predictive power of these models could not be evaluated due 
to the lack of human lungs and lesion PK data for bedaquiline and pretomanid to 
date. In Chapter 5, translational mPBPK models were extended into a quantitative 
modeling framework for bedaquiline, pretomanid, and linezolid (BPaL) combination 
regimen using a variety of in vitro experimental data, such as time-kill experiments 
in culture, hollow-fiber infection model (HFIM)m, and in vitro PD interaction studies, 
and PK and early-bactericidal activities data from clinical studies in TB patients. 
The quantitative framework–based simulations for the combination therapy effects 
in multidrug resistant TB (MDR-TB) patients matched reasonably well with the 
observed clinical trial data11. In Chapter 8, lung bacterial load data from a mice 
infection study were used to inform metformin-induced autophagy effects within 
the host-pathogen interactions model. The model-based simulations suggested 
that adjunctive metformin therapy to first-line anti-TB therapy in TB patients would 
provide limited effect on reducing the bacterial load. More importantly, the model 
provided insights into the differences in the overall effects of adjunctive metformin 
therapy between mice and TB patients (Chapter 8 Section 8.4)14. Similar to our 
work, application of quantitative framework has also recently been published to 
efficiently translate effects of anti-TB drugs effects from preclinical to clinical32,33.

Efficient and accurate preclinical data collection methods are crucial to study 
the PK and PD of anti-TB drugs and to construct a quantitative framework. 
Data from preclinical in vivo studies, for example, site of action distribution and 
immunodynamics data for host-directed therapy (HDTs), sometimes do not directly 
translate to patients; thus, increasing evaluations of alternative experimental 
methods combined with modeling and simulations may be beneficial in future. 
For example, multiple vascularized organ chips may be developed, and data from 
such a model along with PBPK modeling can be used to predict human serum 
and target site of action PK of anti-TB drugs efficiently and accurately15. Target 
site PK predictions can then be used along with time-kill experiments at varying 
drug concentrations from HFIM or in vitro culture experiments to predict early 
bactericidal activities in patients. Omics experimental data combined with artificial 
intelligence methods may be evaluated to parameterize QSP models of host-
pathogen interactions16.

In conclusion, we demonstrated the importance of quantitative approaches 
to compile the findings from various preclinical data into a decision-making 
framework. It is important to continue to develop innovative data collection 
methods and to use model-informed approaches to overcome preclinical to patient 
translational challenges. 
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Treatment of multi-drug resistant tuberculosis 

MDR-TB is caused by Mtb strains resistant against both rifampin and isoniazid, 
two key first-line anti-TB drugs. The recent approval of the new combination 
regimen BPaL against MDR-TB has been a key step towards the resolution of the 
global health challenge of drug-resistant tuberculosis. Some safety and adherence 
concerns remain with the BPaL-approved dosing schedules17,18. In Chapter 5, a 
quantitative modeling framework was developed for the BPaL combination regimen. 
The framework adequately described the observed antibacterial activity data in 
patients following monotherapy for each drug and approved BPaL dosing. The 
simulations for approved and alternative dosing regimens suggested that similar 
efficacy could be attained by using alternative dosages of bedaquiline and linezolid 
in the BPaL combination. The alternative dosage has the potential to enhance safety 
and adherence. Additionally, the simulations provided insights into the approximate 
treatment duration required for the eradication of both replicating and non-
replicating Mtb from lung lesions. The BPaL quantitative platform can be used to 
assess treatment optimization approaches, including dosing regimen and duration 
of treatment predictions to eradicate both replicating- and non-replicating bacteria 
from lungs and lesions to ensure appropriate treatment and to avoid relapse of 
MDR-TB patients.11 In alignment with our predictions, recently published clinical 
data and top-down model-based analysis of the data evaluating the approved and 
alternative linezolid dosing predicted no significant difference in efficacy between 
the approved and alternative linezolid doses in MDR-TB patients18,29.

To eradicate TB in the future, treatment approaches should consider not only 
treatment of drug-resistant TB but also prevention of resistance development. 
To accomplish this goal, exploration of rigorous treatment approaches could 
be employed. As discussed, quantitative platforms could be used to guide the 
optimization of dosing regimens and treatment duration based on patient factors. 
For example, individual drugs' MIC, could be used to guide dosing and treatment 
duration to ensure eradication of both replicating- and non-replicating Mtb. Models 
can be used to ensure optimal exposures at the target site of action to ensure 
adequate efficacy, to prevent the development of drug resistance, and to manage 
safety concerns19,20. This may help increase patient adherence and avoid treatment 
interruptions that play a crucial role in achieving overall positive treatment 
outcomes in MDR-TB patients. Additionally, future work could consider extension 
of our BPaL quantitative framework to include PK and PD of additional drugs to 
guide the selection of optimal combination regimens based on patient factors21. 
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To summarize, we presented a quantitative framework for predicting dosing 
regimens of BPaL combination treatment in MDR-TB patients. The framework can 
be used to evaluate treatment optimization approaches for the BPaL combination. 
We propose future development and use of quantitative frameworks to support 
the development of new treatment approaches against MDR-TB. 

Treatment of tuberculosis meningitis 

Relatively rare but the most severe form of TB, TBM, is associated with high 
morbidity and mortality rates to date. In this thesis, model-based approaches 
to predict PK exposures within CNS to evaluate intensified dosing schedules 
were explored (Section 91.1). As discussed in Chapter 3, intensified dosing 
schedules of rifampin and isoniazid are required for a subset of patients based on 
pharmacogenetics and Mtb MIC to achieve therapeutically desirable exposures 
within the brain for the treatment of TBM. Additionally, the cases of rifampin- and 
isoniazid-resistant TBM are on the rise and there is no standard-of-care treatment 
regimen that is safe and efficacious for those patients. Therefore, newer anti-TB 
drugs, such as bedaquiline, are being evaluated as a treatment option for such 
cases9,22. In Chapter 6, we predicted bedaquiline unbound concentrations within 
brain intracellular compartments to be significantly lower than predicted lung 
intracellular concentrations range using a whole-body PBPK modeling approach. 
This suggested that bedaquiline may not be suitable for the treatment of drug-
resistant TBM and that additional newer anti-TB drugs should be evaluated for 
this population. 

In this thesis, we introduced PBPK approach to predict brain drug concentrations of 
anti-TB drugs for the treatment of TBM. A limitation of this approach is that it is not 
feasible to collect samples from patients to be able to compare model predictions 
against. However, as we showcased, observed CSF drug concentrations combined 
with PBPK approach and in vitro MIC data may provide a broader view of overall 
effects of anti-TB drugs for treatment of TBM. 

The current first-line treatment regimen against TBM is ineffective in a high number 
of patients and intensified rifampin and/or isoniazid dosing is often required23,24. 
Future work may focus on the implementation of a PBPK-based modeling 
framework to guide dose and dosing regimen optimization, including intensified 
dosing as needed, to ensure optimal CNS exposure based on patient factors, 
such as patient genotype, individual MIC, body weight, etc. Although intensified 
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rifampin and isoniazid dosing provide improved efficacy in TBM patients compared 
to standard dosing, they can be associated with increased safety concerns. There 
seems to be an apparent need to further evaluate current newer anti-TB drugs for 
TBM patients, and increasing the use of quantitative pharmacology methods could 
offer an efficient and reliable strategy. In silico approaches can also help identify 
desired physicochemical and kinetic properties to guide the discovery of new anti-
TB drugs with high CNS penetration and anti-TB efficacy. 

To conclude, the use of PBPK models to predict brain target attainment for rifampin 
and isoniazid to identify TBM patient populations who may require intensified 
treatment approaches. Additionally, the use of the PBPK approach to predict the 
suitability of newer drugs, such as bedaquiline, for the treatment of TBM was 
demonstrated. Further efforts in the discovery and development of treatment 
approaches for the effective treatment of TBM, especially drug-resistant TBM, are 
essential. 

Host-directed therapies to harness the power of 
immune response to fight against tuberculosis 

HDTs that modulate host-pathogen interactions to enhance the effect of host 
immune response against Mtb offer innovative treatment options and are being 
evaluated. In Chapter 7, key HDT mechanisms were reviewed, such as autophagy 
induction, regulation of host epigenetics, and modulation of cytokine and T-cell 
responses. Next, the use of QSP modeling approaches was proposed to facilitate 
the design of novel HDT combination treatment strategies and discussed the 
components of QSP models14. In Chapter 8, we exhibited an example of using QSP 
modeling with experimental data to predict the effects of metformin-associated 
autophagy induction combined with first-line anti-TB treatment in patients. The 
model-based simulations for adjunctive metformin therapy in newly diagnosed 
patients suggested a limited yet dose-dependent effect of metformin on reducing 
the intracellular bacterial load when overall bacterial load is low, and late during 
antibiotic treatment14. This framework may be extended to guide the design of 
HDTs against Mtb. Literature-based examples of evaluations of host-pathogen 
interactions mathematical models to evaluate vaccine candidates are available; 
however, such models have not been utilized to support evaluations of HDTs prior 
to our work34.
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Future work could consider an extension of the QSP framework (Chapter 8) with 
additional HDT pathways as illustrated in Chapter 7. Simulations using such models 
can be used to identify HDT targets to evaluate and design treatment approaches. 
Moreover, integrating the HDT QSP model with the extended multistate 
tuberculosis pharmacometrics model - PKPD quantitative framework (Chapter 
5) may be valuable in designing optimal HDT and anti-TB antibiotic combinations 
to fight against MDR-TB and to prevent the development of resistance against 
anti-TB drugs25,26. As the development of QSP models for HDTs in the context of 
drug-host-pathogen interactions is contingent upon comprehensive mechanistic 
understanding, future work could focus on addressing the current knowledge gaps 
through efforts to collect relevant experimental data and using QSP in learn-and-
confirm paradigm35.

In conclusion, the content and applications of QSP models to efficiently evaluate 
HDT treatment approaches against Mtb were discussed. Then, an example of the 
proposed QSP model-based approach was demonstrated using metformin as an 
autophagy induced combined with first-line anti-TB treatment. 

Conclusions 

In this thesis, we demonstrated that it is imperative to increasingly employ 
model-informed drug development and treatment optimization methodologies 
to effectively combat TB. We applied modeling and simulation approaches to tackle 
key TB treatment challenges, including target site exposures, factors affecting 
interindividual variability, translation of experimental findings to patients, and 
enhancing treatment of drug resistance TB and TBM. Several takeaways were 
derived from this work. For instance, PBPK model-based predictions of target 
site exposures after accounting for intrinsic and extrinsic factors affecting 
interindividual variability in PK can be useful to optimize dosing schedules 
anti-TB drugs to attain optimal Mtb killing. PBPK models are also well suited to 
understand tissue distribution and binding characteristics of drugs enabling 
translational prediction of a drug's viability for treating different forms of TB, 
including, pulmonary TB and TBM. Similarly, quantitative frameworks, e.g., BPaL 
combination framework, can be useful to develop new combination regimens and 
to evaluate treatment optimization approaches for combination regimens against 
TB, especially drug-resistant TB. Moreover, we discussed leveraging host-pathogen 
interactions for treatment of TB and showcased the use of QSP for evaluating 
adjunctive HDTs for TB treatment. A key limitation to applying quantitative 
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pharmacology approaches to inform anti-TB treatment approaches is often the 
availability of relevant mechanistic information and data. Future efforts should 
consider collecting and incorporating data from diverse sources into mechanistic 
modeling frameworks to guide treatment approaches against TB more effectively 
and efficiently. 
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