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Abstract 

Background: Quantitative systems pharmacology (QSP) modeling of the host-
immune response against Mtb can inform rational design of host-directed 
therapies (HDTs). We aimed to develop a QSP framework to evaluate the effects 
of metformin-associated autophagy-induction in combination with antibiotics. 

Methods: A QSP framework for autophagy was developed by extending a model for 
host-immune response to include AMPK-mTOR-autophagy signalling. This model 
was combined with pharmacokinetic-pharmacodynamic models for metformin 
and antibiotics against Mtb. We compared the model predictions to mice infection 
experiments, and derived predictions for pathogen and host-associated dynamics 
in humans treated with metformin in combination with antibiotics. 

Results: The model adequately captured the observed bacterial load dynamics 
in mice Mtb infection models treated with metformin. Simulations for adjunctive 
metformin therapy in newly diagnosed patients suggested a limited yet dose-
dependent effect of metformin on reducing the intracellular bacterial load when 
overall bacterial load is low, late during antibiotic treatment. 

Conclusions: We present the first QSP framework for HDTs against Mtb, linking 
cellular-level autophagy effects to disease progression and adjunctive HDT 
treatment response. This framework may be extended to guide the design of HDTs 
against Mtb.
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Introduction 

The increasing burden of Mycobacterium tuberculosis (Mtb) infections is a major 
global health concern associated with approximately 1.5-2 million deaths annually1. 
Current first-line treatment to active tuberculosis (TB) disease, include a two-month 
intensive phase with rifampicin, isoniazid, pyrazinamide, and ethambutol followed 
by a four-month continuation phase with rifampicin and isoniazid (HRZE). A long 
treatment duration, common treatment failure, relapse, and emergence of multi-
drug resistant Mtb strains are key challenges to successful TB treatment2.

Host-directed therapies (HDT) aim to exploit the interplay between the pathogen 
and the host immune response3,4. HDTs are increasingly being studied for treatment 
against Mtb infections. One of the most studied HDT strategies to date is autophagy 
induction5. Autophagy is an intracellular catabolic process involving delivery of 
excessive or damaged cellular components, including bacteria, to lysosome for 
degradation to maintain homeostasis. The AMPK-mTOR signaling pathway is an 
important regulator of autophagy. Mtb activates phosphorylation of Akt, which 
stimulates phosphorylation of mTORC1. Activation of mTORC1 inhibits autophagy 
by phosphorylation of various autophagy-related proteins6. Preclinical studies have 
demonstrated involvement of mTOR signaling pathway in the host response to 
Mtb, suggesting its relevance as therapeutic target6,7. Therefore, metformin, an 
antihyperglycemic agent and mTORC1 inhibitor, has been proposed as potential 
HDT against Mtb6,7. Metformin adjunctive therapy in diabetic TB patients was found 
to be associated with an improved therapy success rate and lowered mortality8,9.

Quantitative systems pharmacology (QSP) models aim to capture mechanistic 
details of the interactions between a biological system and pharmacokinetic-
pharmacodynamic (PKPD) properties of a drug10. QSP-based characterization of 
drug-host-pathogen interactions may allow evaluation of expected treatment 
responses upon perturbation of specific targets, which may help to identify 
promising HDT targets and to evaluate different potential combination treatment 
strategies. Within the TB field, the mathematical modeling approaches have 
primarily focused on PKPD modeling focusing mostly on design of antibiotics 11,12. 
In addition, multiscale systems biology models of the host-immune response in 
response to Mtb infections have been developed13,14. The prior immune response 
model13 have been combined with PKPD models of HRZE to explore the impact of 
patient immune response on the treatment outcomes15–17. Any of these models did 
not include HDT relevant pathways; however, established a strong basis for further 
developing QSP framework to enable design of HDTs.
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To guide design and development of HDTs, relevant HDT pathways must be added to 
the QSP framework. The autophagy-regulating AMPK/mTOR pathway represents an 
important factor for HDTs. There are currently no mathematical models available in 
literature describing mTOR signaling-mediated autophagy in TB. The objectives of 
this work were, (1) to develop a QSP framework of host-immune response including 
autophagy-mediated interactions, and (2) to evaluate the effects of metformin-
associated autophagy-induction in combination with HRZE treatment. 

Methods 

The developed QSP framework (Figure 8.1) included, (1) PK models for standard 
antibiotics and metformin, (2) TB host-immune response model including PD effects 
of HRZE, and (3) autophagy model including PD effects of metformin. The QSP 
model development was facilitated by adaptations of various models presented 
in literature17–19. A set of ODEs describing dynamics of intra- and extra-cellular 
bacteria in host lungs as functions of time, and dynamics of immune-response 
components, such as macrophages, cytokines, and lymphocytes as functions of 
time and bacterial load, form the core of our QSP framework 18. The core model 
was then linked to a model describing the dynamics of AMPK-mTOR signaling 
proteins leading to autophagy19. The interactions between Mtb and autophagy 
connects these two models. Moreover, the combined TB host-immune response-
autophagy model was linked with models capturing PKPD relationships of HRZE 
and metformin.

Model development 

The details of the model development process are provided in supplementary 
materials (S8.1), and the key steps are presented below. 

Pharmacokinetics 
PK models of four antibiotics, HRZE, were reproduced from literature-based 
population PK models20,21. Plasma concentrations of HRZE following standard of 
care dosing were simulated using the PK models. HRZE intra- and extra-cellular lung 
concentrations were predicted by applying plasma to lung alveolar cells and plasma 
to lung epithelial lining fluid ratios respectively obtained from literature22. To 
predict lung concentrations of metformin, we developed a minimal physiologically 
based PK model for metformin including a lung compartment23 (S8.1.1).
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TB host-immune response and pharmacodynamics of standard antibiotics 
A published model that captured the dynamics of the host-pathogen interactions 
following Mtb infection was implemented18. This host-immune response model 
contained host-pathogen interactions in lungs, and included three population 
of macrophage (resting-, activated-, and infected-), various cytokines (IFN-γ, 
TNF-α, IL-10, IL-4, IL-12) and lymphocytes, as well as intra- and extra-cellular Mtb 
populations. An update was made to this model to add the turn-over of IL-1b and 
IL-1b-mediated bacterial elimination24 (S8.1.2).

We included two Mtb growth phases, fast and slow, as a simple implementation 
of initial rapid progression of active disease13,18. The switch from fast to slow 
growth rates was empirically set to 21 days post-infection based on mice infection 
experimental results25,26. We used the slow phase bacterial growth rate estimates 
same as the growth rate values from the reproduced TB host-immune response 
model18. The growth rates for the initial fast phase were optimized using digitized 
data from mice Mtb infection experiment25(S8.1). Bactericidal effects on intra- 
and extra-cellular bacterial population and bacteriostatic effects on growth rates 
of bacteria driven by intra- and extra-cellular lung concentrations of HRZE were 
reproduced from the literature17.

Autophagy and pharmacodynamics of metformin 
The AMPK-mTOR cell signaling network model from literature was reproduced19. 
This model captured the dynamics of key proteins involved in AMPK-mTOR 
signaling pathway and includes relative interactions between proteins involved 
in AMPK-mTOR signaling pathway, such as, insulin receptor substrate, class I 
phosphatidylinositol 3-kinases, AMPK, mTORC1, and mTOR complex 2 (mTORC2). 
This model was updated to include various Mtb- and autophagy-related 
components. The updates can be categorized into: (1) the effect of Mtb Infection 
on autophagy inhibition due to activation of AMPK-mTOR signaling and (2) the 
effect of autophagy of Mtb elimination. Gene AKT3, a key upstream regulator of 
AMPK-mTOR signaling pathway, was found to be induced 1.38-fold in Mtb-infected 
vs. uninfected mice based on differential expression in lungs of Mtb infected vs. 
uninfected mice6. This ratio was added as a proportional scaling factor in the model 
on production of AKT to simulate the presence of Mtb and its impact on key down-
stream proteins involved in AMPK-mTOR signaling, including mTORC1 (S8.1.3). Due 
to the limited data availability, time-course effects of progression of Mtb infection 
on autophagy is not included in the current model.
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The effects of AMPK-mTOR signaling on autophagy were model using a direct 
effect saturable Emax model. Autophagy at time of Mtb infection was set to 100 
% to represent a healthy state prior to infection. Then, the percent inhibition of 
autophagy due to Mtb infection and subsequent AMPK-mTOR signaling activation 
modeled. Next, the autophagy model was combined with TB host-immune 
response model by introducing autophagy-mediated intracellular bacterial killing 
and autophagy-mediated extracellular to intracellular bacterial uptake. These 
processes were incorporated as first-order processes, and the parameters were 
informed by Mtb survival data from in vitro infection experiments with and without 
metformin treatment27(S1.3). The inhibitory effect of metformin on mTORC1 
phosphorylation was incorporated using an indirect effect saturable Emax model, 
and the parameters were obtained from the literature28,29.

Model evaluations 

The combined TB-Autophagy QSP framework predictions were first compared to 
observed digitized lung bacterial load data from untreated and metformin-treated 
mice infected with Mtb27. To this end, the QSP model was scaled from humans to 
mice by applying volume differences between the species. To evaluate HRZE PKPD 
components of the combined QSP model, the predicted change in bacterial load 
over time after start of HRZE treatment was compared against reported values 
for TB patients30–32.

Sensitivity analysis 

High uncertainty existed in some parameters, especially for parameters related 
to autophagy model due to limited data availability. To further understand the 
impact of uncertainty in the parameters on model predictions, global uncertainty 
and sensitivity analysis using Latin hypercube sampling (LHS) and partial rank 
correlation coefficient method using 500 samples was performed33,34. The outcome 
used in this analysis was predicted total bacterial load. All parameters, except the 
PK and PD parameters, were evaluated in the global uncertainty and sensitivity 
analysis. The parameters ranges used for LHS were the same as the previous 
model for TB host-immune response model components and were varied by 20% 
for autophagy-related components18.
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Simulations of metformin-associated autophagy induction in 
humans 

Typical TB patient simulations were conducted using the QSP framework to predict 
the effects of autophagy induction with metformin on overall treatment outcome. 
Typical TB patient simulations were performed using parameter values presented in 
S8.2. A typical virtual TB patient was defined as a 70 kg human. No random effects 
or uncertainty components were included in the simulations. An initial extracellular 
Mtb inoculum of 100 bacteria was introduced at day 0 in all simulations. 

First, the simulations were performed to evaluate effects on bacterial load and 
on cytokine levels following HRZE therapy with and without adjunctive metformin 
treatment at three different dosing regimens starting at day 180 post-infection, 
i.e., upon diagnosis. Day 180 post-infection was selected as the approximate time 
to diagnosis and as such starting point for treatment based on prior model17. In 
these first set of simulations, metformin was added at the same time as starting 
HRZE treatment. Additional simulations were performed to predict the effects on 
total bacterial load if metformin was added at end of two months intensive HRZE 
treatment. Metformin dosing regimen used in the simulations included 250 mg, 
500 mg, and 1000 mg, all BID. HRZE regimen in the simulations included 300 mg 
isoniazid, 600 mg rifampin, 1500 mg pyrazinamide, and 1100 mg ethambutol all QD 
for 2 months, followed by the same dose of isoniazid and rifampin for 4 months. 
Next, to understand the effects of metformin on the TB disease progression in 
scenarios where diabetic patients would be receiving metformin for their glycemic 
control at the time of infection with TB8,9, simulations were performed to predict 
the effects of 500 mg BID metformin treatment starting at day 1 post-infection.

Software 

All parameter optimization and model simulations were conducted in R and RStudio 
using nlmixr and RxODE packages35. Literature model for autophagy was converted 
from SBML file to ODEs in R using IQRsbml package [https://iqrsbml.intiquan.com/
main.html].  

Results 

The QSP framework included combined host-pathogen interactions model, AMPK-
mTORC1 signaling pathway model including autophagy, and PKPD models of HRZE 
and metformin (Figure 8.1).
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The QSP framework simulations recapitulate observed in vivo 
response to metformin 

The model was evaluated by comparing predictions to the observed data. The 
model predictions for total bacterial load showed good agreement with observed 
digitized lung bacterial load data from untreated mice infected with Mtb6 (Figure 
8.2A). The simulations with standard TB therapy starting at day 180 post-infection 
in TB patients predicted previously reported change in bacterial load from baseline 
with HRZE treatment reasonably well (Figure 8.2B). Overall, these assessments 
suggested the reliability of the model for the objectives of this analysis.

Sensitivity analysis provides insights into the mechanistic 
details of the infection 

The global uncertainty and sensitivity analysis suggested that the bacterial 
load was more sensitive to the parameters of host-pathogen interaction model 
compared to those of the autophagy model (S8.3). In general, the host-pathogen 
interaction model parameters that correlated with the bacterial load the most 
were related to macrophage recruitment, macrophage activation or deactivation, 
phagocytosis, IFN-y production, or IL‑1b- or FAS-FAS-mediated apoptosis. Most of 
these parameters were identified in the sensitivity analysis in the prior models 
too18. In the prior models, these parameters were obtained either from literature 
or were estimated using in vitro or mice experiments’ data and therefore, are 
considered relatively reliable. One parameter related to the autophagy model, AKT 
dephosphorylation rate, was found positively correlated with the bacterial load, 
and thus negatively correlated with infection control. This highlights the key role of 
Mtb evasion and inhibition of autophagy on disease progression. This parameter 
was unchanged in the current model from the previous AMPK-mTOR signaling 
model. In the previous work, this parameter was estimated using experimental 
data from immunoblots and thus deem reliable. This sensitivity analysis given 
uncertainty in the parameters provide a thorough picture of the current state of 
the model (Figure S8.3).
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Figure 8.1 Combined TB-Autophagy QSP framework. The model captures the dynamics of host-
immune response in the lungs because of Mtb infection. The model consists of various species of 
macrophages, lymphocytes, and the key cytokines involved in both innate and adaptive immune response 
against Mtb. The model includes the growth of Mtb as well as immune-mediated elimination of Mtb 
affecting the overall Mtb population. The immune-mediated bacterial killing include mainly cytokine- 
and lymphocytes- mediated apoptosis as well as autophagy. The model also consists of Mtb evasion 
mechanism, such as, induction of AMPK-mTOR pathway and inhibition of autophagy. Bi=intracellular Mtb, 
Be=extracellular Mtb, Ma=activated macrophage, Mi=infected macrophage, Mr=resident macrophage, 
T80=precursor-activated CD8+ T cells, T8=sub-class (IFN-y producing) of activated CD8+ T-cells, Tc=subclass 
(cytotoxic lymphocytes) of activated CD8+ T-cells, Th0=naïve T-cells, Th1=type 1 helper T-cells, Th2=type 
2 helper T-cells. Figure created with biorender.com 
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Figure 8.2 Time course of predicted and observed lung bacterial load: (A) Mtb-infected mice treated 
or untreated with Metformin, (B) Tuberculosis patients treated with standard antibiotic regimen. 
The model predictions for total bacterial load agree well with the observed mice data treated with or 
without metformin. Additionally, model predictions for effects of standard antibiotics therapy reasonable 
agree observed change in bacterial load from baseline data from TB patients. CFU=colony-forming unit, 
Metformin was administered daily from day 7 through 35 with six days on, one day off regimen in mice, 
points represent observed and lines represent model predictions. 
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Metformin-associated autophagy induction is predicted to 
provide dose-dependent reduction in intracellular bacterial load 

The simulations for TB disease progression, i.e., prior to the start of treatment 
suggested that Mtb infection is predicted to reduce autophagy by 55% in a typical 
subject. We compared the effects of HRZE with or without adjunctive metformin 
treatment on bacterial load and cytokine levels in a typical virtual TB patient. 
These simulations considered a typical scenario where the treatment was started 
upon diagnosis of TB, which was considered around day 180 after initial infection. 
Adjunctive metformin with HRZE treatment was predicted to show limited yet 
apparent dose-dependent increase in autophagy-mediated intracellular and 
total bacterial elimination when total bacterial burden is relatively low after first 
two months of treatment (Figure 8.3a). No significant impact was predicted on 
cytokine levels in the adjunctive metformin with HRZE scenario compared to HRZE 
only scenario (Figure 8.3B). The simulations for a scenario where metformin 
was added two-months after the start of intensive phase treatment with HRZE 
predicted that adjunctive metformin may reduce overall treatment duration by 
3-5 days (Figure S8.4). Overall, we conclude that adjunctive metformin treatment 
may provide modest benefit in reducing Mtb bacterial load in TB patients during 
the continuation phase of HRZE treatment.

Metformin may delay disease progression in diabetic tb patients 

We assessed if metformin would delay TB disease progression if metformin was 
administered prior to TB diagnosis, i.e., in scenarios where diabetic patients would 
be receiving metformin for their glycemic control at the time of infection with Mtb 
(Figure 8.4a). For these simulations, metformin input was added at the same 
time as initial bacterial infection. We found that metformin use in diabetic TB 
patients would delay TB disease progression as assessed by intra-, extra-, and total-
bacterial load. Lower levels of pro-inflammatory cytokines, IL-1b, TNF-α, IFN-y, and 
IL-12, were also predicted in metformin-treated vs. no metformin-treated typical 
patient (Figure 8.4b).  Overall, these simulations suggest some protective effects 
over tissue damage of metformin use in diabetic TB patients. As these simulations 
represent scenarios prior to TB diagnosis, thy do not provide guidance in metformin 
treatment for TB patients. However, these simulations provide mechanistic insights 
into the role of autophagy on the dynamics of TB infection.
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Figure 8.3 Typical patient simulations for adjunctive Metformin to atandard antibiotics treatment 
at various dosing regimen starting at day 180 post-infection: (A) Bacterial load, (B) Cytokines. The 
simulations suggest dose-dependent effects of metformin on reduction of intracellular bacterial load. 
The reduction in intracellular bacterial elimination with adjunctive metformin treatment; however, 
does not significantly affect extracellular and thus total bacterial load compared to standard antibiotics 
only treatment when total bacterial burden is high. HRZE refers to 2 months of rifampicin, isoniazid, 
pyrazinamide, and ethambutol + 4 months of rifampicin and isoniazid regimen; vertical dashed line refers 
to end of 2 months regimen. 
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Figure 8.4 Typical patient simulations with or without 500 mg twice daily Metformin starting at day 
1 post-infection: (A) Bacterial load, (B) Cytokines. The model predicted some benefits of metformin 
use in delaying the disease progression in virtual diabetic patients receiving metformin as compared to 
non-treated patients. 
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Discussions and conclusions 

Here, we developed a first QSP framework for design and evaluation of HDTs 
focusing on autophagy. Our model was able to recapitulate results from an in 
vivo study evaluating metformin as a HDT in Mtb-infected mice. We applied the 
framework to predict treatment effects of autophagy induction by metformin in 
a typical TB patient. 

Our analysis identified a modest beneficial effect of adjunctive metformin 
treatment in a typical TB patient, after intensive phase antibiotics treatment when 
total bacillary load is predicted to be relatively low. The predictions suggested 
that overall effects of treatment with metformin would depend on extracellular-
to-intracellular bacteria ratio, which may depend on the stage of infection. The 
model also predicted some benefits of metformin use in delaying the disease 
progression in virtual diabetic patients receiving metformin. Our results agree 
with the clinical reports where lowered mortality rates were reported in diabetic 
patients receiving metformin8,9. A key Mtb survival strategy depends on provoking 
a non-sterilizing immune response, allowing for Mtb to replicate beyond reach 
of most immune mechanisms. As part of host-pathogen interactions, granuloma 
formation limits Mtb growth, but also provide niche for replication by disseminating 
Mtb to other areas36.  Metformin, and HDTs in general, may provide beneficiary 
effects early after initial infection, i.e., in newly infected TB household contacts, 
or late during treatment, i.e., after sputum has been sterilized but when small 
numbers of persisting bacteria are still present. In these scenarios, small changes 
in the survival of a rather small bacterial population may have a large effect on 
infection outcome, and future studies may consider evaluating this.

Our model provides relevant quantitative insight into the mechanistic details of 
factors contributing to autophagy-mediated bacterial elimination. Lack of predicted 
effects of metformin at doses up to 1000 mg BID on total bacterial load can also be 
attributed to its potency on AMPK-mTORC1-autophagy signaling and its distribution 
in lungs, in addition to extracellular-to-intracellular bacterial ratio. Previously, 
metformin dose-ranging study that evaluated effects of metformin at doses 100–
10000 uM on Mtb survival in human monocyte-derived macrophages showed no 
increased Mtb survival at doses up to 500 uM. In the same study, approximately 
4% reduction in total bacterial load on day 35 was noted in mice treated with 250 
mg/kg and 500 mg/kg metformin daily from day 7-35 (6 days on, 1 day off)6. Our 
mPBPK model predicted mice lungs Cmax 668 uM and 1336 uM in 250 mg/kg and 
500 mg/kg metformin dose groups, respectively. When these body weight-based 
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doses of metformin that were evaluated in mice are compared to clinically feasible 
doses, predicted lungs Cmax in humans are approximately 10- to 15-fold lower 
than those predicted in mice. As such, it would be no surprise that our predictions 
showed no significant effects of metformin on the reduction of bacterial load. In 
fact, a recently completed clinical trial evaluating adjunctive metformin treatment 
to standard treatment in TB patients reported that metformin treatment did not 
significantly reduce time to sputum conversion as compared to controls37.

The integrated QSP framework connects the complex intracellular process, 
autophagy, to disease outcome at organism-level. The model can be easily 
adapted to perform evaluations of other mTORC1 inhibitors mTORC1-independent 
autophagy inducers in the future using similar approach as ours. Some candidate 
drugs include, everolimus, statins, PI3K inhibitors, and tyrosine kinase inhibitor. The 
model can also facilitate in silico evaluations of perturbations of various proteins 
involved in autophagy and predict their effects on the outcome, as such enable 
target identification for optimal autophagy induction. For example, the model may 
be used in combination with screening assays to prioritize further development 
of potential HDTs. 

One of the limitations of our model was that it built upon a prior relatively simple TB 
host-immune response model18. In our model, we added empirical transition from 
fast- to slow- Mtb growth phase to resemble initial log-phase increase in bacterial 
load. However, growth and treatment effects on different subpopulations of Mtb, 
i.e., non-persisters and persisters, at a given time is not included in the model. 
Future work may integrate a mechanistic model with various subpopulations of 
both intra- and extra-cellular Mtb into the QSP framework. For this, measurements 
of various Mtb subpopulation from sputum or bronchoalveolar lavage fluid of 
TB patients are required. The proposed integration may also require applying 
antibiotics’ bacterial kill rates specific to the subpopulation. In general, the current 
construct of TB host-immune response model is relevant for our primary objective, 
i.e., to evaluate different treatment scenarios with and without metformin in TB 
patients when bacterial load has already reached relatively high.

Our model includes relative activity of the key proteins involved in the AMPK-
mTOR-autophagy signaling, and however, do not consider total concentrations of 
these proteins. The original data-driven AMPK-mTOR model that was adapted in 
this work was developed using immunoblot data from HeLa cells, and therefore 
considered relative activity of the proteins19. Direct measurements of these are 
not available to date. As such, uncertainty exist in parameters impacting effects of 
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AMPK-mTOR signaling on autophagy and treatment effect predictions. However, the 
current approach of using relative activities of the AMPK-mTOR signaling proteins 
to evaluate their downstream effects on autophagy provides a useful alternative 
in absence of absolute proteins data.

To summarize, we developed a QSP framework for autophagy-inducing HDT 
by integrating a previously developed models for AMPK-mTOR signaling, host-
pathogen interactions, and PKPD. We extended the framework to include 
autophagy to enable in silico evaluations of adjunctive metformin to antibiotics in 
TB patients. Our predictions suggest that metformin may provide some beneficiary 
effects when overall bacterial load, or extracellular-to-intracellular bacterial ratio is 
low. Overall, this is the first QSP that links cellular-level events affecting autophagy 
to disease progression and may further be developed to guide HDT design and 
development for treatment of TB. 
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Supplementary Materials 

The supplementary material can be accessed from the following GitHub repository: 
https://github.com/krinaj/TB_Autophagy_Metformin_Model
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