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Abstract 

Host-directed therapies (HDT) that modulate host-pathogen interactions offer an 
innovative strategy to combat Mycobacterium tuberculosis (Mtb) infections. When 
combined with tuberculosis antibiotics, HDTs could contribute to improving 
treatment outcomes, reducing treatment duration, and preventing resistance 
development. Translation of the interplay of host-pathogen interactions leveraged 
by HDTs towards therapeutic outcomes in patients is challenging. Quantitative 
understanding of the multi-faceted nature of the host-pathogen interactions is 
vital to rationally design HDT strategies. Here, we (1) provide an overview of key 
Mtb host-pathogen interactions as basis for HDT strategies, and (2) discuss the 
components and utility of quantitative systems pharmacology (QSP) models to 
inform HDT strategies.  QSP models can be used to identify and optimize treatment 
targets, to facilitate preclinical to human translation, and to design combination 
treatment strategies.

Glossary 

Autophagy: Autophagy is an intracellular process involving the formation of a 
phagophore, elongation of the phagophore, autophagosome maturation, and 
fusion with lysosomes for degradation of the selected cellular material. 

AMPK-mTOR pathway: The AMP-activated protein kinase (AMPK) and mammalian 
target of rapamycin (mTOR) pathway involves complex interplay between various 
proteins and play a key role in autophagy regulation. 

HMG-CoA reductase pathway: HMG-CoA (3-hydroxy-3-methyl-glutaryl-CoA) 
reductase pathway is involved mainly in regulation of cholesterol synthesis but 
also known to be involved in regulation of autophagy1.

Phagocytosis: Phagocytosis is a cellular process involving engulfment of large 
particles, including bacteria, into the cells. 

PK: Pharmacokinetics (PK) describes the concentration-time profile of drugs and 
is determined by absorption, distribution, metabolism. and elimination processes. 

PD: Pharmacodynamics (PD) describes the concentration-effect-time profile of 
drugs and is determined by drug pharmacology and physiology of the organism2.  
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Host-directed therapies: leveraging the host immune 
system for treatment of tuberculosis 

Mycobacterium tuberculosis (Mtb) infections are associated with approximately 1.5-2 
million deaths annually worldwide. Two key challenges to successful tuberculosis 
(TB) treatment are long duration of treatment and emergence of drug resistant 
strains3. In the last decade, host-directed therapy (HDT) strategies have received 
increasing attention4–6 to enhance treatment outcomes, shorten treatment 
durations, and avoid resistance development. HDTs target interactions between 
the host immune response and the Mtb pathogen, which reduces the likelihood for 
Mtb to acquire resistance against HDTs. In addition, additive effects of adjunctive 
HDT treatment with conventional antibiotics on bacterial elimination could help to 
shorten treatment duration and therefore may avoid development of resistance 
to conventional antibiotics7.

The host immune response to Mtb infection is reliant on the cumulative activities 
of various defense mechanisms such as macrophage activation, phagocytosis 
(see Glossary), autophagy (see Glossary), antigen presentation, and cytokine and 
T-lymphocytes production. Genotypic and phenotypic changes in Mtb during 
infection leading to modulation of the host response allows its survival and 
virulence in the host8. Mechanistic understanding of the multiscale nature of host-
pathogen interactions is essential to identify HDT targets, to design and develop 
new HDT drugs, and to repurpose already marketed drugs as HDT strategy.

A major challenge in the discovery and development of HDTs for TB is the prediction 
of treatment responses associated with specific pharmacological modulation 
of an immune response-associated target due to complex systems-level host-
drug-pathogen interactions4. The translation of systems-level responses to HDT 
strategies from preclinical models to patients is challenged by inter-species 
differences in immune responses to Mtb pathogen. Quantitative systems 
pharmacology (QSP) modelling can serve as a valuable tool to identify relevant 
HDT targets, and to inform subsequent design of combination drug treatment 
strategies and dosing schedules9–11. The utility of quantitative modelling to improve 
treatment strategies for TB have been demonstrated for antibiotic therapies11,12. 
However, these approaches have not yet been developed to design HDTs.

Here, we review high-potential host-pathogen interactions of relevance for HDTs. 
We then outline how QSP modelling approaches can be used to predict optimal 
HDT strategies with a focus on required model components and the integration 
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with available data for application in target selection, inter-species translation, and 
treatment optimization. 

Host-pathogen interactions as basis for  
host-directed therapy strategies 

Several host-pathogen interactions of Mtb involved in its pathogenesis and immune 
system evasion offer potential targets for design of HDTs6 (Figure 7.1) and are of 
relevance to capture in QSP modelling approaches.

Induction of autophagy 

Autophagy plays an essential role in controlling Mtb infections and has been studied 
extensively as potential HDT strategy for Mtb6. Multiple intertwined pathways 
affecting glucose and cholesterol metabolism, such as AMPK-mTOR (see glossary) 
and HMG-CoA reductase pathway (see glossary), are involved in regulation of 
autophagy (Figure 7.1). AMPK plays a key role in these pathways and therefore in 
regulation of autophagy. As an evasion mechanism, Mtb inhibits phosphorylation 
of AMPK protein and inhibits autophagy13. Apart from AMPK-mediated autophagy 
regulation, intracellular cholesterol is also involved in Mtb survival leading to 
inhibition of autophagosome maturation and autophagosome-lysosome fusion1. 
Thus, autophagy induction through inhibition of mTOR complex 1 (mTORC1) or by 
inhibition of HMG-CoA reductase represent a potential HDT strategy.
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Figure 7.1 The Host-Pathogen interactions as basis for host-directed therapy strategies for the 
treatment of Mtb infections. Initiation of the host innate immune response occurs shortly after inhalation 
of aerosols containing Mtb bacteria and Mtb implantation in macrophages. Both resident and activated 
macrophages stimulate the release of pro-inflammatory cytokines, such as TNF-α and IL-1β, following 
phagocytosis and autophagy. Antigen presenting cells (macrophages and dendritic cells) that drain into local 
lymph nodes activate CD4+ and CD8+ T-cell mediated adaptive immune responses. Antigen presenting cells 
also stimulate the release of IL-12, which helps recruit additional CD4+ T-cells. CD4+ T-cells secrete IFN-γ that 
stimulate macrophage activation, IL-2, TNF-α, and IL-10 that help balance the pro-inflammatory response by 
deactivation of macrophages. CD8+ cells have cytotoxic activities. CD4+ T-cell secreted IL-2 drives further 
proliferation of CD4+ as well as CD8+ T-cells. Autophagic pathways start with parting of a section from 
endoplasmic reticulum, the phagophore, followed by the elongation of phagophore with engulfment of Mtb, 
autophagosome formation and maturation, and fusion of the autophagosome with lysosomes. Mtb activates 
mTORC1 and thus inhibits autophagy, while mTORC1 activates aerobic glycolysis. Intracellular cholesterol 
inhibits LC3, Ca2+, and LAMP3, and thus inhibits autophagy mediated Mtb killing. Mtb activates HDAC pathway 
and thus downregulates various genes responsible for innate and adaptive immune response. Potential host-
directed therapy strategies are presented in the green text. Figure created with biorender.com.
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mTORC1 inhibitors 
Metformin is the most evaluated mTORC1 inhibitor as potential HDT treatment 
for Mtb infections. Metformin inhibited the growth of intracellular Mtb in vitro 
and in mice13,14. Multiple reports suggest that metformin adjunctive therapy in 
diabetic TB patients improved therapy success rate and lowered mortality rate15,16. 
Adjunctive everolimus, an mTOR inhibitor, treatment with rifabutin-substituted 
standard TB therapy improved lung functions as measured by forced expiratory 
volume when compared to a control group in a randomized clinical trial17. A recent 
study identified protein kinase inhibitor ibrutinib as a potential mTORC1-mediated 
autophagy inducer in a mice study18. These results provide initial proof-of-concept 
and justify further evaluations of mTORC1 inhibitors in clinical trials.

HMG-CoA inhibitors 
The HMG-CoA reductase pathway has been associated with intracellular cholesterol 
reduction and autophagy induction. Therapy with HMG-CoA inhibitors, such as 
simvastatin, pravastatin, and fluvastatin, as adjunctive therapy to conventional 
anti-TB drugs improved bacterial clearance by the host and improved the efficacy 
of first-line TB drugs by promoting autophagy in macrophage cell cultures and 
in mice19,20. Several retrospective clinical studies have identified that chronic use 
of statins reduced the risk of developing TB21. On the other hand, a population-
based cohort analysis of data from newly diagnosed TB patients recognized no 
statistically significant difference in hazard ratio between patients who were using 
statins in addition to standard TB treatment as compared to patients who did 
not use statins22. As chronic use of statins leads to reduced risk of TB, it may 
be hypothesized that factors such as drug penetration in lungs and drug affinity 
may play a key role in determining its effectiveness as HDT. Overall, these results 
highlight the potential of targeting the HMG-CoA reductase pathway as autophagy 
induction strategy.

Regulation of host epigenetics 

Infection with Mtb is associated with alterations of some gene functions important 
for ensuring immune response. Two key pathways known to be involved in Mtb-
induced host epigenetic alterations are histone deacetylases1 (HDAC1) pathway and 
TLR3-BMP-miR27a pathway both of which can be pharmacologically exploited23,24.

HDAC inhibitors 
Infections with Mtb leads to upregulation of HDAC1, which leads to suppression 
of IL-12B gene expression leading to suppression of T-cell immunity (Figure 7.1). 
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Additionally, HDAC1 is known to modulate autophagy associated genes23. HDAC 
inhibitors, such as Trichostatin A, TMP195, and TMP269, reduced bacterial growth 
in macrophage cell cultures. Vorinostat, an HDAC inhibitor, promoted immune 
response in macrophage cell cultures25. In zebrafish embryos infected with 
Mycobacterium marinum (Mm), HDAC inhibition significantly reduced microbial 
burden23. HDAC inhibition significantly inhibited Mtb growth and showed increased 
production of key cytokines in mice26. These results highlight the potential of 
exploiting HDAC inhibition as HDT strategy.

Abl Tyrosine Kinase Inhibitors 
Protein Abl Tyrosine Kinase (ATK) is involved in entry and survival of Mtb within 
macrophages through TLR3-BMP-miR27a pathway. ATK also inhibits expression 
of vATPase pump-relevant genes, and thus inhibits acidification of autolysosomes 
(Figure 7.1). Pharmacological inhibition of ATK using imatinib improved containment 
of Mtb within macrophages, induced autophagy, and decreased bacterial load in 
human macrophage cell cultures and in mice6,24. Imatinib also lead to decreased 
bacterial load in macrophage culture and in mice infected with rifampin-resistant 
Mm27. A clinical study assessing effects of imatinib alone and in combination with 
conventional anti-TB drugs in drug-resistant- and HIV co-infected- TB patients is 
ongoing28. These data suggest that imatinib may prove effective as HDT towards Mtb.

Modulation of cytokine response

The kinetics of the key cytokines, such as interferon gamma (IFN-γ), tumour 
necrosis alpha (TNF-α), IL-1β, IL-10, IL-4, IL-12, and IL-2, during Mtb infections have 
been well studied in humans and in mice. IFN-γ is one of the most important 
players to the host immune response and its main role is activation of macrophages 
(Figure 7.1). Both activated and resident macrophage produce pro-inflammatory 
cytokines, TNF-α and IL-1β, that possess microbicidal properties against Mtb; 
however activated macrophage-mediated production is much more efficient29. 
Excessive production of pro-inflammatory cytokines, however, can lead to tissue 
damage in vivo30. Anti-inflammatory cytokines, IL-10 and IL-4, are also induced upon 
macrophage phagocytosis and balance pro-inflammatory cytokines by macrophage 
deactivation30. Excessive production of anti-inflammatory cytokines may result 
in limiting the immune-mediated microbicidal activities31. Thus, the fine balance 
between the pro- and anti-inflammatory cytokines may determine the overall 
outcome of the Mtb infection.
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Adjunctive treatment with IFN-y have been evaluated in various clinical studies; 
however, different patient conditions, routes of administration, and dosing regimen 
resulted in varying outcomes31. Adjunctive treatment with aerosolized IFN-y showed 
benefits in reducing cavitary lesions and induced negative sputum conversion in 
TB patients in clinical studies32. Thus, modulation of cytokine response may be a 
useful HDT strategy.

Enhancing t-cell mediated host response 

The innate immune reaction plays an important role in the initiation of adaptive 
immune response by antigen presentation and cytokines production. A few weeks 
after the initial infection, antigen-presenting cells (APCs) that drain into regional 
lymph nodes initiate adaptive T-lymphocytes-mediated immune response. Upon 
antigen presentation, the APCs via major histocompatibility molecules (MHC)-I and 
II prime CD8+ and CD4+ T-cells to initiate adaptive immune response. Both activated 
CD4+ and CD8+ T-cells secrete IFN-γ, IL-2, IL-17A, and IL-10. Mature dendritic cells 
secrete IL-12p70 which helps increasing recruitment of additional CD4+ T-cells. IL-2 
play a role in further proliferation of T-cells. CD8+ cells have direct microbicidal 
capabilities through perforin, granzymes, and granulysin or induce apoptosis 
through Fas/Fas ligand interaction. Adjunctive cytokine supplementation with IL-12 
and IL-2 have been evaluated in clinical studies but did not result in significant 
benefits. However, recombinant human IL-2 supplementation showed significant 
improvements in negative sputum culture conversion rates and in enhanced X-ray 
resolution in drug-resistant TB patients33. Therefore, the use of recombinant IL-2 
supplementation as HDT strategy for TB should be further evaluated.

Design of host-directed therapies using quantitative 
systems pharmacology modelling 

The overall outcome of Mtb disease and treatment is reliant on the integrated 
results of the molecular and cellular events, and their reflection at tissue, organ, and 
host level dynamics occurring at different time scales. As such, it can be challenging 
to predict patient responses to different HDT strategies. Species differences in 
immune response characteristics make it more challenging to translate the results 
from preclinical studies to clinical scenarios. Additionally, determination of the 
effects of treatments and disease progression in specific patient populations, 
can be challenging, i.e., in patients with weakened immune response or other 
conditions, patients with specific genotype known to affect certain pharmacology. 
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QSP modelling can address these hurdles through quantitative integration of host-
pathogen interaction mechanisms with PK (see glossary) and PD (see glossary) 
aspects of HDTs, making it a relevant tool to guide drug discovery and development 
of HDTs. Development of QSP models for HDTs against TB is the requirement for 
large amount of mechanistic quantitative data to parametrize the model, which 
may concern biological system-specific data relating to immunodynamics and 
pathogen dynamics, as well as drug-specific model related to pharmacokinetics 
and drug-target interactions. Importantly, once defined, a QSP framework for 
specific HDT mechanisms is developed, it can be applied as platform model 
towards different investigational therapeutic agents. Selection of appropriate 
experimental approaches are important to provide quantitative understanding 
about components of drug-host-pathogen interactions. Here, we briefly discuss 
key experimental models that can be of relevance for characterization of HDTs 
using QSP modelling. Then, we discuss three main components of the QSP 
framework to evaluate HDTs for Mtb infection, (1) drug PK models, (2) host immune 
response models, and (3) pathogen dynamic models (Figure 7.2). Lastly, we discuss 
applications of these models (Figure 7.3).

Experimental approaches to facilitate parameterization of the 
qsp models 

Human-derived macrophage and peripheral blood mononuclear cell cultures are 
extensively used to screen for the antibiotics but also identify compounds with HDT 
potential14,34,35. The in vitro hollow fiber infection model (HFIM) is commonly used to 
study the direct effects of antibiotics agents on Mtb, and readily allows to include 
co-cultures with macrophages. In HFIM, Mtb is cultured in a closed chemostat 
system with continuous flow of medium, while it allows simulation of concentration-
time profiles of underlying PK/PD relationships of antibiotics and HDTs36. Several 
advanced cell culture systems, such as 3D cell cultures, organoids37, and lung-on-
chip38, have been increasingly used to study host-pathogen interactions. Whilst 
these approaches are attractive for purposes of quantitative characterization 
of key mechanisms and phenotypic response profiles to be implemented in QSP 
models, these systems remain a simplified system that does not include all aspects 
related to the host immune response.

Adult zebrafish have gained increasing attention as it possess an innate immune 
system that is highly similar to that of mammals39,40. Zebrafish embryos are of 
interest due to their optical transparency and thus allowing the use of advanced 
imaging methods. Infection of zebrafish with various mycobacteria leads to 
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formation of granuloma structures that are highly similar to those observed 
in human TB patients; therefore, it has been a successful model to study the 
progression of TB and the effects of drug treatment41. Pharmacological screening of 
drugs to treat mycobacterial infection at a high throughput level is also possible42. 
Knockdown and overexpression experiments in zebrafish combined with 
translational QSP modelling would especially provide insights into contribution of 
certain component to overall immune response and anti-TB effects43. Rodents, i.e., 
mice, rabbits, and guinea-pigs, are commonly used as infection model for Mtb39. 
Even though these models incorporate a full immune system, differences between 
the human immune response remain and lead to translational challenges11. Non-
human primates (NHP) have been widely used in immunology and vaccine research. 
NHP infected with Mtb are of interest in generating HDT-relevant data due to their 
similarities to humans in basic physiology, immunology, and disease pathology. 
However, the use of these models has been limited in TB treatment research due 
to the requirements of scientific and financial resources as well as safety issues 
due to highly infectious and contagious nature of Mtb44.

Overall, data collected from a combination of various experimental models, such 
as in vitro, zebrafish, and mice, can be used to parameterize QSP models. QSP 
models can link the results from various experimental infection models, enabling 
predictions in humans. 

Components of the qsp modelling framework 

A QSP framework for HDTs should contain a combination of model components 
for PK of the drugs, host immune response, and pathogen dynamics, including 
their interactions (Figure 7.2). Depending on the type of HDT drug studied, QSP 
models may be parameterized and adapted in specific ways, e.g., to capture the 
drug-specific parameters to induce specific immune system effects.

Pharmacokinetics 
Consideration of drug concentrations-effect relationships, and therefore PK, is of 
essential value for design of HDT strategies. Physiologically based PK (PBPK) models 
describe the concentration profiles in specific tissues of interest and are informed 
by both drug- and system-specific parameters. PBPK models are of relevance to 
scale PK between preclinical species and humans in a mechanistic fashion. For 
TB, PBPK models describing lung exposure are of specific relevance. In the clinical 
phase, quantifying inter-patient variability in PK is important. Here, population 
PK models are of relevance, which capture inter-individual variation in underlying 
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parameters that can be explained by specific patient-specific covariates 45. It is 
furthermore helpful that because many HDTs involve repurposed drugs, often PK 
models are available already to characterize their PK46,47.

Figure 7.2 Components of the conceptual quantitative systems pharmacology framework to 
assess HDTs for treatment of Tuberculosis. A QSP framework for HDTs should contain a combination 
of model components for PK of the drugs, host immune response, and pathogen dynamics, including 
their interactions. Classical antibiotics and HDTs act by modulating pathogen dynamics and host immune 
response, respectively. Immune-mediated pathogen killing is dependent on interplay between the host 
immune response and pathogen evasion mechanisms, i.e., host-pathogen interactions. Key considerations 
for each model components are listed in green box. Types of studies and data that can be used to inform 
each model components are presented in purple box. Figure created with biorender.com

Immunodynamics 
Models describing the key immune response components, such as dynamics of 
macrophage counts, cytokines, and CD4+ and CD8+ lymphocytes are essential 
for QSP models to study HDTs. Systems biology models describing the host-Mtb 
interactions within the lungs48 have been previously developed, and later linked 
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with lymphatics49 and blood circulations50. The states included in these models 
were resting-, activated-, and infected-macrophages, cytokines, such as IFN-γ, IL-10, 
and IL-12, dendritic cells, CD4+ lymphocytes, and intra- and extra-cellular Mtb. 
The key feature of this model was contributions of various immune components 
on intra- and extra-cellular Mtb. The above-developed model was later expanded 
to include CD8+ cells dynamics in lungs51. The parameters in these models were 
identified from published human derived or NHP experiments or model fitting to 
experimental data. These models can be expanded to include key drug targets 
involved in Mtb HDTs and their downstream effects on functional immune response 
changes and the quantitative interaction with Mtb.

There are currently no mathematical models available in literature describing HDT-
relevant pathways, such as autophagy in Mtb infections; however, components and 
parameter estimates from single cell systems biology models52 can be adapted 
and extended using experimental data. For example, a HDT model containing key 
biological features of autophagy52 including HDAC1-related components (Figure 
7.1) may be developed. The model parameters can be informed using prior data 
available in literature52 and data from in vitro experiments23. The model may 
describe dynamics of the phagocytic cells and zebrafish infection with Mm load 
overtime in HDAC1 inhibitors exposed macrophage cell cultures as compared to 
controls to estimate the parameters relevant to HDAC1 effect. The simulations from 
the models may be compared with the experimental outcomes, preferably from 
different experimental conditions than the original experiments used for parameter 
estimation. This allows validation of the model structure and parameter estimates. 
In the above example, the simulations may be validated against data from zebrafish 
exposed to HDAC1 inhibitors (at various HDAC1 levels) experiments23. If multiple 
targets are affected by certain drugs, i.e., ATK inhibitors (Figure 1), all relevant 
mechanisms must be captured in such models.

Pathogen dynamics 
Models for the dynamics of pathogens include the effect of antibiotic drug on 
the growth and elimination of Mtb and emergence of treatment resistance. In 
vitro and in vivo infection studies have enabled our understanding of parameters 
of Mtb growth rates, bactericidal and bacteriostatic effects of conventional anti-
TB drugs36, and resistance rates of bacteria12. The incorporation of immune cell 
effects on pathogen killing is a key required step to study the effects of HDTs 
on Mtb treatment. Published host-Mtb interaction models49 can be updated to 
include contributions of key HDT components on pathogen killing, as well as 
pathogen evasion mechanisms. For example, an autophagy model may contain 
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quantitative relationship between bacterial load, mTOR, and autophagy. This will 
allow evaluations and predictions of various mTOR inhibitors on Mtb clearance by 
autophagy.

Applications of the qsp modelling framework 

QSP modelling have successfully influenced various decision making at different 
stages starting from discovery to late-phase in various therapeutic areas53 and 
offer potential for the challenges faced in translation and design of HDT strategies 
against Mtb (Figure 7.3).

Figure 7.3 Applications of the conceptual quantitative systems pharmacology framework to assess 
host-directed therapies for treatment of Tuberculosis. QSP models can guide TB HDT drug discovery and 
development at various phases depending on the model attributes. For example, a model developed based 
on experimental in vitro and/or in vivo data can be useful to study various host-pathogen interactions, 
to screen for optimal HDT targets, and to guide in vitro and/or in vivo data experimental designs. Upon 
addition of various translational factors and inter-individual variability components, the models can be 
useful to design optimal clinical studies, to identify. Figure created with biorender.com.
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Target identification, drug discovery, and drug repurposing 

QSP models integrate various host-pathogen interactions and drug PK/PD 
components; therefore, they can readily provide assessment of target engagement 
upon stimulation or inhibition of certain targets at various doses and affinities. 
This allows evaluations of the iterative process of hypotheses generation, designing 
new experiments, hypotheses validation and/or generation of new hypotheses. 
This approach can be applied to evaluate known HDT targets and molecules, to 
discover new HDT targets, and to discover new HDT molecules. With advances 
in technologies, applications of combining quantitative modelling and machine 
learning approaches are being evaluated to screen new virtual drug compounds 
with optimal characteristics54. For example, different ADME properties for a set 
of virtual compounds were used in a PBPK model combined with tumor dynamics 
model to simulate tumor size. Machine learning algorithms were then applied to the 
simulated dataset to identify the combination of ideal drug properties to provide 
desired outcome. This information may then be applied for lead prioritization54. 
Similar approaches can be applied to repurpose or reposition already marketed 
drugs using large scale drug-target interactions data55. Advanced target screening 
techniques, i.e., CRISPR-Cas9, can be also considered in combination with QSP 
models for HDT drug discovery and development in future.

Translational predictions 

With increased complexity and innovation in design of new drugs within the last two 
decades, mechanistic models are increasingly being applied to inform translation 
of the results across different experimental conditions and species. The systematic 
incorporation of system-specific parameters not only for various species, but also 
incorporation of differences between in vitro systems and in vivo models, is crucial 
to enable translation towards clinical HDT treatment designs39. In some cases, 
i.e. for scaling from HFIM to humans, such scaling is well studied36, whilst further 
studies are needed for the host’s immune response components56. Consolidating 
immune-relevant differences between preclinical models and humans56 may be 
challenging and resource intensive, as there may be varying strains of models used 
across different experiments depending on the objectives of the experiments. On 
the other hand, the shown evolutionary conservation of the metabolic responses 
to mycobacterial infection in human patients, mice, and zebrafish show that basic 
disease symptoms such as wasting syndrome are not depending on species or 
varying strains57. Gene expression analysis data across species may be used 
to inform parameters of expressions of genes responsible for certain immune 
functions58. Such expression data studies can be used to predict metabolism 
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using whole-genome metabolic network theoretical modelling approach in various 
organisms59.  Factors such as severity of infection and sensitivity of drugs to 
bacterial strains (i.e., Mtb vs. Mm) may also be applied within the QSP framework.

Variability and precision medicine 

The presentation and severity of TB is variable amongst patients, and thus 
treatment responses, especially to HDTs, are variable. Many factors such as age, 
sex, genotypes, comorbidities play role in determining the outcome of the disease 
and treatment. PopPK models have evaluated these factors’ impact on variability 
in PK/PD of antibiotics60 and can be included in QSP simulations. For example, 
known differences in PK and immune-response components for HIV co-infected 
TB patients may be incorporated in the framework, enabling extrapolation of 
results from studies in TB patients to HIV-TB patients61. In addition, considering 
immune-response relevant endotypes is important62,63. Technological advances 
within the last century enabled the generation of large-scale omics data. This data 
may enable us to better understand the inter-individual variations associated 
with the parameters of the QSP models. For example, parameters, together with 
inter-individual variations, describing the expression of baseline state of immune 
response components within lymph nodes and blood were estimated using 
data from a flow cytometry analysis of blood leukocytes and genome-wide DNA 
genotyping from humans64. Gene expression analysis of omics datasets from TB 
patients enabled stratification of the patients into two groups. One of the two 
groups was characterized by increased gene activity score for inflammatory 
response and decreased gene activity score for metabolism-relevant pathways, and 
patients in this group showed slower time to negative TB culture conversion and 
poor clinical outcome62,63. Similarly, gene expression data can be used to include 
variability in the QSP models and inform outcomes of certain HDT treatment.

Selection of optimal dosing regimens and combination 
therapies 

QSP models are well-suited to efficiently evaluate combination therapies and dosing 
schedules, which is important to combination treatment strategies of HDTs and 
classical antibiotics against Mtb. In the field of immune-oncology, such QSP models 
have been widely applied to design optimal combination treatments of immune-tar-
geting agents65. In the TB disease space, a QSP modelling approach for conventional 
antibiotic Mtb therapy has recently been applied to predict patient outcome with 
intensive dosing regimen and to explore shorter treatment duration scenarios12.
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Conclusions 

HDTs offer a unique treatment strategy to combat Mtb infections but are challenged 
by complex and multiscale interactions between drug, host, and pathogen. Several 
key mechanisms are of interest to be exploited as HDTs but are facing challenges 
in translation towards clinically effective treatment strategies. The combined use 
of innovative experimental infection models with QSP modelling approaches can 
address these translational challenges and accelerate the design of novel HDT 
(combination) treatment strategies towards patients. QSP models supporting 
HDT design include model components describing biological system specific 
host-specific immunodynamics, pathogen dynamics and drug-specific models for 
PK and PK/PD for compounds of interest. Design of QSP models for HDTs relies 
on the availability of detailed mechanistic knowledge of relevant immunological 
and pharmacological aspects related to drug-host-pathogen interactions of Mtb 
infection, with significant knowledge gaps still present. Future work should focus on 
filling these knowledge gaps, which will require close and prospective coordination 
with such investigational efforts ensuring the correct data will be collected (see 
outstanding questions). 
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