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Chapter 1 

Tuberculosis treatment landscape 

Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis 
(Mtb). TB is the oldest known infectious disease with the first documentation 
dating back to 3300 years ago although it is believed to be that Mtb existed 
even 70,000 years back1. The first isolation of Mtb by Dr. Robert Koch in 1882 
marked a key step in the fight against Mtb. Today, more than 140 years later, 
Mtb infections are still associated with approximately 1.5 – 2 million deaths 
annually2. Initiation of TB infection occurs through the respiratory route by 
inhalation of aerosols containing Mtb bacteria. In the first few days, Mtb invades 
pulmonary alveoli of the host and alveolar resident macrophages will ingest Mtb 
via phagocytosis followed by induction of the host immune response against 
Mtb. The host immune response will lead to the formation of granulomas that 
contain Mtb bacilli, where Mtb may remain in a dormant state, also known as 
latent TB. If granulomas are unable to contain Mtb because they have multiplied 
significantly, an active TB infection can develop. Approximately 5-10% of 
individuals with latent TB develop active TB3. Individuals with a weakened immune 
response, i.e., patients with co-morbid conditions, such as HIV, diabetes, and 
patients taking immunosuppressants are at higher risk of developing active TB. 
Current first-line treatment of drug-sensitive TB includes a weight-based fixed-
dose combination of four antibiotic agents, isoniazid, rifampin, pyrazinamide, and 
ethambutol. First discovered and developed in the 1960s through early 1970s, 
isoniazid and rifampin have been the most important drugs in the treatment 
of patients with TB4. Isoniazid is a potent bactericidal drug that inhibits mycolic 
acid synthesis leading to cell wall synthesis in Mtb (Figure 1.1). Rifampin is also 
bactericidal against Mtb and inhibits Mtb ribonucleic acid (RNA) polymerase. 
Pyrazinamide and ethambutol add to the anti-bacterial activity of rifampin and 
isoniazid and act through Mtb plasma membrane disruption and inhibition of cell 
wall synthesis, respectively. Overall, this first-line combination treatment regimen 
results in a reasonable cure rate in patients with drug-sensitive TB; however, 
various challenges remain as discussed further (Figure 1.2).
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Figure 1.1 Mechanism of action of anti-tuberculosis drugs. Adapted based on Zumla et al., 20134. Figure 
created with biorender.com.

Current challenges of tuberculosis therapeutics 

Mtb has evolved and developed resistance mechanisms. The key mechanism 
of resistance development against antibiotics includes a subpopulation of Mtb, 
persisters, which are phenotypically resistant against the drugs without genetic 
mutations.5,45,46 Factors contributing to Mtb developing phenotypic resistance 
against drugs include interruptions in treatment, suboptimal drug concentrations, 
and poor host immune response against Mtb. Over time, phenotypic resistance 
leads to the development of genetic mutations resulting in the proliferation and 
transmission of drug-resistant Mtb strains.5,45,46 Various forms of drug-resistant 
TB exist, including, rifampin-resistant TB (RR-TB), rifampin- and isoniazid-resistant 
TB (known as multi-drug resistant TB (MDR-TB)), and extensive form of MDR-TB 
(XDR-TB) that is resistant to rifampin, isoniazid, and one or more additional anti-TB 
drugs. Together, drug-resistant TB constitutes 450,000 TB cases globally in 2021. 
As such, drug-resistant TB is a major global health challenge6.
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Figure 1.2 Current challenges against the treatment of tuberculosis. 

Prior to availability of bedaquiline and other newer anti-TB drugs, standard 
regimens for MDR-TB included a combination of five or more drugs. These 
combination regimens against MDR-TB were associated with toxicity issues and 
had poor efficacy outcomes with approximately 20% cure rate only. Bedaquiline, 
the first newly approved anti-TB drug in 40 years, is a diarylquinoline and inhibits 
Mtb adenosine triphosphate synthesis to exert its bactericidal effect7. Bedaquiline-
containing regimens have shown reasonable efficacy in MDR-TB patients8,9. 
Increased prevalence of RR-TB and MDR-TB cases and bedaquiline development 
was followed by a revival in anti-TB research leading to the development and 
approvals of nitroimidazoles, pretomanid and delamanid, in the last decade10. The 
new, all-oral, combination regimen of bedaquiline, pretomanid, and linezolid (BPaL) 
showed approximately 90% cure rate and is now endorsed by the WHO for the 
treatment of MDR-TB11,12. Additional drug combinations including these newer drugs 
are being evaluated for the treatment of various forms of drug-resistant TB47-49.

TB primarily affects the lungs; however, Mtb may get disseminated into the 
lymphatics, distribute through systemic circulation, and infect other organs leading 
to extrapulmonary TB. Extrapulmonary TB is generally difficult to diagnose and 
treat. The most severe form of extrapulmonary TB is TB meningitis (TBM) affecting 
the central nervous system (CNS). TBM is associated with high morbidity and 
mortality with approximately half the patients suffering from severe neurologic 
disability or death13. Treatment of TB meningitis is especially challenging due 
to poor penetration of anti-TB drugs, especially rifampin, into CNS14. Standard 
treatment of TBM patients remains the same as the first-line treatment of 
pulmonary TB patients; however, high morbidity and mortality rates remain. As 
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such, the efficacy and safety of intensified dosing schedules are being evaluated 
for the treatment of patients with TBM. There has been an increasing trend in the 
prevalence of drug resistance amongst TBM patients15–18. Currently, no standard 
treatment recommendations for drug-resistant TBM, and treatment approaches 
are generally selected by treating physicians based on individual patient factors 
often including extensive treatment with more than 5 drugs. Safety concerns about 
extensive treatments and high mortality rate (69-100%) amongst drug-resistant 
TBM patients persist15.

Mtb has developed several mechanisms to evade host immune-mediated 
eradiation to allow its survival and virulence in the host, such as inhibition of 
autophagy and apoptosis, inhibition of antigen presentation, inducing changes 
in host transcriptomics and cytokine balance, development of resistance 
against anti-Mtb treatment, etc. Understanding the mechanistic details of 
host-pathogen interactions is essential to develop new treatment approaches 
against Mtb. Comorbidities, especially human immunodeficiency virus (HIV) 
infections or type II diabetes mellitus, are associated with higher morbidity 
and mortality in TB patients due to their immunosuppressive nature19,20. HIV 
co-infection has also been associated with decreased exposures to several 
key anti-TB drugs21–23. Treatment of the comorbidities further increases the 
likelihood of drug-drug interactions24. Additional studies are needed to develop 
treatment and patient management plans for TB patients with comorbidities25. 
Current treatment duration ranges from 6 to 9 months for the majority of patients, 
with some patients, especially with MDR-TB and XDR-TB, requiring treatment 
up to 18 to 24 months11. Such long treatment duration leads to safety issues, 
increased economic burden, and treatment adherence issues, and significantly 
affects patients' quality of life26. Several studies have evaluated potential shorter 
combination treatment regimens but have yielded variable results26,27,50. It has 
been suggested that the required duration of TB treatment is highly dependent 
on various patient and disease factors. Overall, further evaluations are needed 
to develop innovative, shorter, efficacious, and safer treatment optimization 
approaches against pulmonary, extra-pulmonary, drug-sensitive, drug-resistant 
Mtb infections.
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Quantitative pharmacology approaches for anti-tuberculosis 
therapeutics 

The current challenges in the fight against Mtb infections call for innovative 
drug development and treatment approaches. Quantitative pharmacology 
combines concepts from biology, pharmacology, mathematics, statistics, 
and data science to inform drug development and treatment decisions 
across various therapeutic areas, including TB28,29. Various quantitative 
approaches, ranging from population pharmacokinetic (PopPK) and population 
pharmacokinetic-pharmacodynamic (PopPKPD) modeling to quantitative 
systems pharmacology (QSP) approaches, have been employed to streamline 
and optimize anti-TB drug development and treatment approaches30–32.  
Extensive work using PopPK and PopPKPD approaches for anti-TB therapeutics has 
been performed to date33–36. These models allowed thorough characterization of PK 
and PD of various anti-TB drugs using rich clinical trial data. Population models have 
enabled the exploration and identification of the roles of covariates, i.e., intrinsic and 
extrinsic factors, on PK and PD of anti-TB drugs. Such models have played a key role 
in determining dosing regimens for many anti-TB drugs. Semi-mechanistic models 
including target site compartments allowed the quantification of biodistribution of 
several anti-TB drugs into lungs and TB lesions in lungs37–39. Semi-mechanistic multi-
state tuberculosis pharmacometrics (MTP) models describing dynamics of fast-, 
slow-, and non-replicating Mtb populations have been developed utilizing in vitro, 
mouse, and clinical data30,32. Such models allowed predictions of drug effects on the 
sub-population of Mtb rifampin35,40. The MTP model combined with PD models have 
been used to translate treatment effects from preclinical experiments to patients. 
The MTP model combined with PD interaction models to estimate optimal doses 
of individual drugs in combination therapy have been evaluated41. Physiologically-
based pharmacokinetic (PBPK) models of anti-TB have been developed to perform 
drug metabolism and drug-drug interaction evaluations42,43. Extended PBPK 
models including multi-compartment lungs have also been developed to further 
understand the target site distribution of drugs44. QSP models of capturing the 
dynamics of bacterial and key immune response markers following Mtb infections 
have also been developed and combined with PK-PD models of first-line anti-
TB drugs to explore the impact of immune effects on treatment outcomes31.  
These examples highlight how quantitative pharmacology has influenced the 
development and optimization of anti-TB therapeutics. However, several key 
challenges still persist, for example, translation of PK and efficacy from preclinical 
to patients, emergence of drug resistance, long treatment duration, poor treatment 
outcome in some patients especially with drug-resistant TB, extrapulmonary TB, 
and/or comorbidities, safety and adherence concerns, etc. (Figure 1.2).  Due to the 
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multifaceted nature of TB disease and the current challenges in its treatment, there 
is a necessity for increased efforts utilizing quantitative pharmacology approaches. 
These efforts can play a crucial role in the development of treatment strategies 
that are both more effective and safer.

Scope of the thesis 

The main objective of this thesis was to employ different quantitative 
pharmacology approaches to evaluate treatment optimization strategies for anti-
TB therapeutics. In section II and III, we demonstrated applications of modeling 
and simulations to optimize treatment of first-line anti-TB therapeutics and newer 
anti-TB therapeutics, respectively by accounting for target site exposures, patient 
covariates, translational aspects, etc. In section IV, we discuss the utilization 
of QSP modeling to guide the development of host-directed therapies against 
Mtb infections. Lastly, in section V, we discuss a summary of our quantitative 
pharmacology analyses and discuss future perspectives to help eradicate TB.  
In Section II, we focus on quantitative pharmacology approaches for first-line 
anti-TB therapeutics, ethambutol, rifampin, and isoniazid. In Chapter 2, PopPK 
analysis of ethambutol in TB patients co-infected with HIV was performed. 
Covariate analysis was performed to evaluate the impact of HIV infection on the 
PK of ethambutol in pulmonary TB patients. PK target attainment simulations 
were performed to recommend alternative ethambutol dosing in TB patients 
co-infected with HIV. In Chapter 3, a whole-body PBPK modeling approach was 
used to evaluate the role of patient pharmacogenetic variability in determining 
the site of action target attainment in TBM patients. Rifampin and isoniazid PBPK 
models that included SLCO1B1 and NAT2 effects on exposures respectively were 
developed and validated using available cerebrospinal-fluid (CSF) concentrations 
from TB patients. Simulations were conducted to evaluate the combined 
effects of pharmacogenetic and Mtb minimum inhibitory concentrations (MIC) 
variability on target attainment at the site of action, brain, in TBM patients. 
In Section III, we focused on applying quantitative pharmacology approaches 
for newer anti-TB treatment regimens, including bedaquiline and pretomanid. In 
Chapter 4, bedaquiline and pretomanid translational mPBPK models were developed 
to predict site-of-action exposures and the probability of target attainment in 
TB patients. The probability of target attainment was calculated by comparing 
predicted target-site concentrations with minimal bactericidal concentrations (MBC) 
reported in the literature. In Chapter 5, a mechanistic framework was developed 
for a new combination regimen, bedaquiline, pretomanid, and linezolid (BPaL). The 
framework included key components that play a role in the overall response to the 
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therapy, such as patient body weight, TB lesion volume, target-site drug exposures, 
and individual patient and drug MICs. Simulations were conducted to predict anti-
bacterial activity following BPaL current and alternative dosing strategies in virtual 
drug-resistant TB patients. In Chapter 6, a whole-body PBPK model with a CNS 
compartment was developed for bedaquiline and its active metabolite, M2, using 
bedaquiline and M2 PK data from plasma and CSF of TB patients. Simulations were 
conducted to predict target site drug concentrations to evaluate the feasibility of 
bedaquiline-containing regimens as a treatment option for MDR-TBM patients. 
In Section IV, we discuss innovative treatment approaches of host-directed 
therapies (HDT) for the treatment of TB. In Chapter 7, we review key host-
pathogen interaction mechanisms as the basis of HDTs against Mtb. We introduce 
the components and utility of QSP approaches to support the identification and 
optimization of host-directed treatment targets, to facilitate preclinical to human 
translation, and to design combination treatment strategies including host-directed 
therapies. In Chapter 8, we developed a quantitative systems pharmacology (QSP) 
framework to evaluate the effects of metformin-associated autophagy induction in 
combination with first-line anti-TB therapy in patients. Simulations were conducted 
for adjunctive HDT therapy with metformin in newly diagnosed TB patients. 
In Section V, we discuss a summary of the evaluations and discuss future 
perspectives in utilizing quantitative pharmacology approaches for optimization 
of treatment approaches for TB therapeutics to eradicate TB. 
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