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Abstract

Objectives: Exhaled breath analysis by electronic nose (eNose) has shown to be a 
potential predictive biomarker before start of anti-PD-1 therapy in patients with non-
small cell lung carcinoma (NSCLC). We hypothesized that the eNose could also be used 
as an early monitoring tool to identify responders more accurately at early stage of 
treatment when compared to baseline. In this proof-of-concept study we aimed to 
definitely discriminate responders from non-responders after six weeks of treatment.
Materials and Methods: This was a prospective observational study in patients with 
advanced NSCLC eligible for anti-PD-1 treatment. The efficacy of treatment was assessed 
by the Response Evaluation Criteria in Solid Tumors (RECIST) version 1.1 at 3-month 
follow-up. We analyzed SpiroNose exhaled breath data of 94 patients (training cohort 
n=62, validation cohort n=32). Data analysis involved signal processing and statistics 
based on Independent SamplesT-tests and Linear Discriminant Analysis (LDA) followed 
by Receiver Operating Characteristic (ROC) analysis.
Results: In the training cohort, a specificity of 73% was obtained at a 100% sensitivity 
level to identify objective responders. The Area under the Curve (AUC) was 0.95 (CI: 
0.89-1.00). In the validation cohort, these results were confirmed with an AUC of 0.97 
(CI: 0.91-1.00).
Conclusion: Exhaled breath analysis by eNose early during treatment allows for a highly 
accurate, non-invasive and low-cost identification of advanced NSCLC patients who 
benefit from anti-PD-1 therapy.

Keywords: non-small cell lung cancer, immunotherapy, exhaled breath analysis, non-
invasive biomarker.
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Introduction

The recent introduction of immune checkpoint inhibitors (ICIs) in daily clinical practice 
has significantly improved the 5-year survival rate in patients with metastatic non-small 
cell lung cancer (NSCLC) [248]. Nevertheless, results have shown that only a minority of 
patients experiences a relevant clinical benefit [249]. Treatment continuation is currently 
based on tumor dynamics evaluated by radiological imaging. However, tumor dynamics 
can be difficult to interpret when tumor regression occurs slowly, there is no measurable 
disease, or tumors even transiently progress due to inflammation [250, 251]. Since the 
only validated predictive biomarker tumor PD-L1 expression is fairly inaccurate, other, 
and preferably non-invasive, predictive biomarkers are being investigated to avoid losing 
valuable time and undesirable immune-related adverse events (IRAEs), and to reduce 
unnecessary costs [249, 252-256].

Recent studies have been exploring the use of exhaled breath analysis with “electronic 
noses” (eNose), which recognize gas mixtures from volatile organic compounds (VOCs). 
VOCs are defined as chemical compounds that have a high vapor pressure at room 
temperature and are a result of metabolic changes in the body [229, 257]. ENoses have 
been designed for classification of VOCs by pattern recognition, which can be used for 
probabilistic assessment of disease states. Promising results have been observed in 
different diseases, particularly in the field of respiratory medicine [258, 259]. Recently, 
De Vries et al. showed that exhaled breath analysis by eNose can be used before start 
of treatment to identify NSCLC patients that show progressive disease (PD) to anti-
PD-1 therapy with 100% specificity. This way, ineffective treatment could potentially be 
avoided in a quarter of the patients without withholding it to those who may benefit 
[260]. However, still a relevant proportion of patients will ultimately not benefit. An 
early monitoring tool for response during treatment would be helpful to identify those 
patients that are more likely to benefit from alternative options.

We hypothesized that exhaled breath patterns arising from metabolic/biochemical 
changes induced by effective anti-PD-1 therapy in patients with NSCLC can be used 
to discriminate true responders from non-responders more accurately at early stage 
of treatment when compared to baseline. According to this hypothesis, we expect 
that patients with a partial response (PR) will show greater metabolic/biochemical 
changes compared to patients with stable disease (SD) or PD, therefore resulting in a 
high predictive value in identifying true response to anti-PD-1 therapy when classifying 
patients with PR as responders and patients with SD or PD as non-responders. This 
proof-of-concept study therefore aims to determine the predictive value of exhaled 
breath analysis by eNose for the identification of advanced NSCLC patients with PR to 
anti-PD-1 therapy with 100% sensitivity after six weeks of treatment.
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Methods

Study population
This was a prospective observational study in adult patients with advanced NSCLC eligible 
for treatment with anti-PD-1 therapy. Our cohort consists of two subsets of patients: 
1) Patients included in the cohort of De Vries et al., who also had received a second 
SpiroNose measurement after six weeks of treatment (n=64), and 2) patients recruited 
after publication who were only treated with pembrolizumab (n=30) [260]. Patients 
were recruited from the thoracic oncology outpatient clinic at the Netherlands Cancer 
Institute (NKI) in Amsterdam and the Radboudumc Hospital in Nijmegen between August 
2015 and June 2019. The patients were only included if they had received SpiroNose 
measurements both at baseline (defined as 0-6 weeks prior to treatment start) as 
well as after six weeks of treatment (defined as 4-8 weeks of treatment), and received 
treatment in accordance with recent literature and local guidelines [183]. Details about 
the “full eligibility criteria for treatment with immunotherapy in NSCLC patients” have 
been described by De Vries et al. [261]. Patients received Nivolumab or Pembrolizumab 
treatment every two or three weeks, respectively (Figure 1). Patients were excluded from 
the study if they had consumed alcohol 12 hours before the measurement, or when 
they were not willing to participate. Additional restrictions in eating, drinking, smoking 
and medication were not requested in order to make exhaled breath measurements 
applicable in daily clinical practice [65].

The study was approved by the ethics review board of the NKI. Details are described in 
the Online Supplement. Patients participating in the Thoracic Oncology Biobank provided 
written informed consent according to the Thoracic Oncology Biobank study protocol. 
Measurements were not performed in patients with severe shortness of breath, inability 
to perform a vital capacity maneuver, or inability to hold breath for five seconds. Patients 
were only included if they had received SpiroNose measurements both at baseline 
(defined as 0-6 weeks prior to treatment start) as well as after six weeks of treatment 
(defined as 4-8 weeks of treatment). The choice for these cut-off periods was based on 
our aim to include as many patients as possible.

The ethics review board of the Netherlands Cancer Institute (NKI) concluded in writing 
that Dutch legislation on human participation in research was not considered to be 
applicable, given the non-invasive nature of this study that merely added exhaled breath 
analysis to standard diagnostic procedures. Other clinical data (e.g. CT scan, blood tests 
and lung function) used in this study were collected for routine clinical practice and 
were subsequently handled by complying with the Dutch Personal Data Protection Act 
(WBP). Despite the waiver that was provided by the ethics review board, the purpose 
of adding the eNose to routine diagnostics was explained to the patients who all gave 
their oral consent.

Measurements
Within two weeks before start of treatment, blood tests and spirometry were done 
for toxicity monitoring, and repeated every 2 and 6 weeks respectively. For response 
monitoring a computed tomography (CT) scan was done within 2 weeks before start of 
treatment, 6 and 12 weeks after start of treatment, and repeated every 3 months. Based 
on the Response Evaluation Criteria in Solid Tumors (RECIST) version 1.1 criteria, tumor 
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dynamics evaluated in all patients with CT-imaging at baseline and at 3-month follow-up 
were classified as partial response (PR), stable disease (SD) or progressive disease (PD) 
[105]. Patients classified as PR were categorized as objective responders, while patients 
showing SD or PD were categorized as non-responders.

Figure 1 - CONSORT flow diagram of participants through the study.
The 38 participants that did not meet the inclusion criteria had not received SpiroNose measurements both at 
baseline (defined as 0-6 weeks prior to treatment start), as well as after six weeks of treatment (defined as 4-8 
weeks of treatment).
Abbreviations: RECIST, Response Evaluation Criteria in Solid Tumors.

Study design
After response evaluation had been obtained for all patients, patients were randomized 
between a training and a validation cohort in a 2:1 ratio. Our aim was to keep both 
cohorts as representative as possible. Therefore, randomization was stratified according 
to the before mentioned response criteria at 3-month follow-up to keep an equal 
distribution in responses in both cohorts. Investigators were blinded to the exhaled 
breath data until after randomization.

In the training cohort two models for predicting response based on exhaled breath 
data were fitted: one using only baseline measurements (the “baseline model”) and 
one using both measurements collected at baseline and measurements collected after 
six weeks of treatment (the “on treatment model”). Then the performance of both 
models was evaluated in a cohort of patients not involved in the fitting of the models: 
the validation cohort.
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Exhaled breath measurements were performed using a cloud-connected eNose; 
SpiroNose® (Breathomix, Leiden, The Netherlands). The measurements took place the 
same day as the spirometry tests. The SpiroNose contains seven different cross-reactive 
metal oxide semiconductor (MOS) sensors and each sensor is present in duplicate both 
on the inside and outside of the SpiroNose. A detailed description of the SpiroNose 
measurement technology and breath sampling methods has been provided by De Vries 
et al. [234, 260]. The inner sensors measure the complete mixture of VOCs in exhaled 
breath and the outer sensors measure the ambient VOCs for background correction. 
Each sensor is used to determine two variables; 1) the highest sensor peak normalized 
to sensor 2, which is the most stable sensor, and 2) the ratio between the sensor peak 
and breath hold (BH) point [239, 261]. Measurements were performed in duplicate with 
a 2-minutes interval at baseline and after six weeks of treatment.

Data processing
Processing of the eNose sensor signals included filtering, de-trending, ambient correction 
and peak detection by the standard eNose software as described by De Vries et al. [65, 
234, 260]. A .csv file was used to store the selected parameters (sensor peak- and peak/
BH ratios) resulting from the signal processing and served as the source document for 
statistical analysis.

Statistical analysis
Patient and tumor characteristics
Data-analysis was performed using MatLab (Version 2019b) and IBM SPSS Statistics 
(Version 26) and is explained in the Online Supplement.

Patient and tumor characteristics were described and compared between responders 
and non-responders, for both cohorts separately, considering a p-value <0.05 as 
statistically significant. Continuous variables were reported as means (SD) or medians 
(IQR) for normally and non-normally distributed data, respectively. Categorical variables 
were reported as ratios. Intergroup comparisons were performed using One-way ANOVA 
tests, Kruskal Wallis tests or Chi-squared tests.

Sample size calculation
Due to logistic reasons the total number of patients in the cohort was fixed. However, a 
calculation for the training and validation cohort was possible. Our aim was to make the 
training cohort as large as possible, while still having sufficient patients in the validation 
cohort to draw meaningful conclusions. We decided on forehand that a model developed 
in the training cohort would be considered successful if the two-sided 95% DeLong 
confidence interval around the AUC as established in the validation cohort would be 
entirely above 0.70, thus clinically relevantly far removed from the null-value of 0.5. 
Furthermore, our aim was to develop a biomarker in the training cohort that would be as 
accurate as the biomarker of De Vries et al. (which had an AUC of 0.85), to show the added 
value of “on treatment” breath profiles [260]. With this in mind, we decided to randomize 
the patients in a 2:1 ratio (training cohort n=62, validation cohort n=32) if simulations 
would show that 32 patients in the validation cohort would still yield sufficient accuracy. 
In order to determine (prior to randomization) whether a validation cohort of 32 patients 
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would yield sufficient accuracy to declare a marker as accurate as the one developed by 
De Vries et al. “successful” according to the above criterion, we randomly drew 10.000 
virtual validation cohorts of 32 patient each, and computed the AUCs with confidence 
intervals of the actual De Vries et al. biomarker in each of these cohorts. The mean lower 
bound of these confidence intervals was 0.766, indicating that a 2:1 randomization would 
indeed yield a sufficiently large validation cohort according to our pre-specified criterion.

Exhaled breath analysis: training cohort
Since the model of De Vries et al. aims to identify patients classified as PD with 100% 
specificity, our training cohort was used to make a new predictive model based on 
baseline measurements only (the “baseline model”) to identify patients classified as 
PR with 100% sensitivity. Furthermore, a predictive model was composed that included 
measurements performed both at baseline and after six weeks of treatment (the “on 
treatment model”) to be able to determine the additional value of measurements 
performed early during treatment. Independent Samples T-tests and Linear Discriminant 
Analysis (LDA) were used to identify sensor values with the highest contribution to the 
discrimination of patients classified as PR and patients classified as SD or PD. For the 
baseline model, only baseline sensor values were included in both analyses. For the on 
treatment model, baseline sensor values and sensor values obtained after six weeks 
of treatment were included. The suffixes _6, _absdif and _reldif are used to indicate the 
sensor variables “value after six weeks of treatment”, “absolute difference” and “relative 
difference”, respectively. Details regarding the construction of the models are provided in 
the Online Supplement. Receiver Operating Characteristic (ROC) curves were constructed 
for the composed predictive models, and associated Area Under the Curves (AUCs) 
and specificities when focusing on a 100% sensitivity to identify patients classified as 
objective responders were calculated.

In the training cohort, two predictive models were composed to identify at baseline and 
after six weeks of treatment patients with an objective response to anti-PD-1 therapy 
with 100% sensitivity, respectively. Both models were examined in the validation cohort 
to test external validity. Variables that were considered for inclusion in the models 
were 1) all normalized sensor peaks and peak/ breath hold (BH) ratios at baseline, 
2) all normalized sensor peaks and peak/BH ratios after six weeks of treatment, and 
3) all absolute and relative differences between baseline and six weeks of treatment 
in sensor peaks and peak/BH ratios. Absolute sensor differences were calculated by 
subtracting sensor values measured after six weeks of treatment from sensor values 
measured at baseline for each sensor. Relative sensor differences were calculated by 
dividing the calculated absolute sensor differences by the sensor values measured at 
baseline for each sensor. The characters _6, _absdif and _reldif are used to indicate the 
sensor variables “value after six weeks of treatment”, “absolute difference” and “relative 
difference”, respectively.

Firstly, the values of all predictors were compared univariately between patients with a 
partial response (PR) and patients with stable disease (SD) or progressive disease (PD) 
by means of an Independent Samples T-test. Secondly, various multivariate models 
created by linear discriminant analysis (LDA) were considered. We decided to include 
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absolute over relative sensor differences in het multivariate models, since relative sensor 
differences are based on ratios and therefore more prone to potential errors. Since 
for any sensor, any two of the variables “value at baseline”, “value after six weeks of 
treatment” and “absolute difference” are sufficient to compute the remaining variable, we 
barred these variables from entering the models with more than two at a time. Variable 
selection for the final LDA models was based on the performance of the predictors in the 
univariate and multivariate models in combination with our aim of including a maximum 
of six predictors into each model to reduce the risk of overfitting.

Exhaled breath analysis: validation cohort
For each patient in the validation cohort the values of the discriminant functions given by 
the baseline model and the on treatment model (composed in the training cohort) were 
calculated. These values were used to construct ROC curves in the validation cohort. 
To test external validity, the AUCs of these ROC curves were compared to the AUCs of 
the ROC curves composed in the training cohort and to the fixed boundary of 0.7. The 
predictive accuracy of both models was established in the validation cohort based on 
AUC and on specificity when focusing on a 100% sensitivity to identify patients with an 
objective response.

Finally, the discriminant scores calculated from each model for each patient were 
converted into prediction scores to facilitate interpretation in daily clinical practice. A cut-
off point was selected in the training cohort to identify objective responders with 100% 
sensitivity after six weeks of treatment. This cut-off point was translated into a prediction 
score and examined in the validation cohort by calculating the associated sensitivity, 
specificity, positive predictive value (PPV) and negative predictive value (NPV). Survival 
analyses with Kaplan Meier curves were performed to assess the relation between our 
results and survival.

Results

In total, 94 advanced NSCLC patients were enrolled in this study (Figure 1), from who 64 
were included in the study of De Vries et al. [260]. They were randomly assigned to the 
training (n=62) or validation cohort (n=32) (Table 1), according to the before mentioned 
criteria, resulting in 62 patients in the training cohort and 32 patients in the validation 
cohort. All baseline measurements were performed with a median of 2 weeks (range: 
0-6 weeks) before treatment. The follow-up measurements were performed with a 
median of 6 weeks (range: 4-8 weeks) and 12 weeks (range: 10-14 weeks) for the eNose 
and CT-scan respectively. In the validation cohort, a significant difference was seen 
in choice of treatment between the three groups (p=0.01). Patients showing SD or PD 
after three months of treatment were more often treated with Nivolumab compared to 
Pembrolizumab. No significant differences were seen in any other baseline characteristic 
between the three groups.
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Exhaled breath analysis: training cohort

Sensor 3 (p=0.001), sensor 5_BH (p<0.001), sensor 3_6 (p<0.001), sensor 4_6 (p=0.05), 
sensor 2_BH_6 (p=0.04), sensor 5_BH_6 (p=0.005), sensor 3_reldif (p<0.001) and sensor 
3_absdif (p<0.001) significantly differed between patients classified as PR and patients 
classified as PD or SD, which is shown in Supplementary Figure S1 and Supplementary Figure 
S2 for sensor 3_absdif. Results obtained from LDA are described in the Online Supplement.

Figure 2 - ROC curves composed for the baseline model and model 2 predictive for the iden-
tification of patients showing an objective response to anti-PD-1 therapy in the validation 
cohort.
Baseline model: sensor 3, sensor 3_BH, sensor 5_BH and sensor 6_BH.
Model 2: sensor 4, sensor 6, sensor 1_6, sensor 6_6 and sensor 3_absdif.
Abbreviations: ROC, receiving operating characteristic; BH, breath hold; sensor 1_6, sensor value measured by 
sensor 1 after six weeks of treatment; sensor 6_6, sensor value measured by sensor 6 after six weeks of treatment; 
S3_absdif, sensor value difference between six weeks of treatment and baseline measured by sensor 3.

The first model (baseline model), based on baseline measurements only, reached a 
specificity of 54% when requiring 100% sensitivity and had a ROC-AUC of 0.81 (CI: 0.71-
0.92) (Figure 2). In the second model (on treatment model), that included measurements 
performed both at baseline and after six weeks of treatment, a specificity of 73% at 100% 
sensitivity and a ROC-AUC of 0.95 (CI: 0.89-1.00) was reached (Figure 2). Details on the 
composition of the two models are provided in the Online Supplement.

Exhaled breath analysis: validation cohort
In the validation cohort, the baseline model reached a specificity of 68% when requiring 
100% sensitivity and a ROC-AUC of 0.89 (CI: 0.76-1.00). The on treatment model reached 
a specificity of 84% at 100% sensitivity and a ROC-AUC of 0.97 (0.91-1.00). The baseline 
model reached a specificity of 68% at a ROC-AUC of 0.89 (CI: 0.76-1.00) (Figure 2 and 
Supplementary Table S1).
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The equation below resulted from LDA on the on treatment model and can be used 
for response prediction in future patients. Details on the baseline model and the 
mathematical derivation of the models are provided in the Online Supplement.

Prediction score (patient) on treatment model = 

The above equations were used to convert discriminant scores into prediction scores in 
the validation cohort (Figure 3). The cut-off point selected in the training cohort, aiming 
not to withhold anti-PD-1 therapy to objective responders after six weeks of treatment, 
corresponded to a prediction score of ≥0.14 for membership to the PR group. Patients 
with a prediction score below this cut-off point were classified as non-responders. In the 
validation cohort, this cut-off point showed a sensitivity of 100%, a specificity of 76%, a 
PPV of 54%, and a NPV of 100% to identify objective responders. Kaplan Meier survival 
curves are shown in Supplementary Figure S3 and Supplementary Figure S4.
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Figure 3 - Scatterplots representing the prediction scores calculated with the baseline model 
and model 2 for each patient (n=32) in the validation cohort.
A) Baseline model.
B) Model 2: All patients showing PR to anti-PD-1 therapy (n=7) are correctly classified when applying a cut-off 
point of ≥0.14 for membership to the objective response group. 5 out of 11 patients classified as SD and 1 out of 
14 patients classified as PD are incorrectly classified.
Abbreviations: PR, partial response; SD, stable disease; PD, progressive disease.
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Discussion

This prospective observational study shows that SpiroNose exhaled breath analysis can 
be used to identify advanced NSCLC patients with an objective response to anti-PD-1 
therapy more accurately at early stage of treatment when compared to baseline as 
part of routine assessment during early treatment monitoring in daily clinical practice. 
Results obtained in the training cohort were confirmed in the validation cohort with an 
AUC of 0.97 (CI: 0.91-1.00).

To the best of our knowledge, this is the first study that has applied eNose technology 
to identify advanced NSCLC patients with a PR to anti-PD-1 therapy and to investigate 
the potential additional value of SpiroNose exhaled breath measurements early during 
treatment. Our study extends the work of De Vries et al., who investigated whether 
sensitivity to anti-PD-1 therapy in patients with advanced NSCLC might be reflected by a 
distinct exhaled breathprint. They showed that SpiroNose exhaled breath analysis could 
indeed be used to discriminate at baseline patients showing PD from patients showing 
PR or SD, and with a superior predictive performance than obtained with the current 
clinical standard biomarker PD-L1.

In this study, we obtained an increased discriminative potential for the identification of 
patients with PR when applying the on treatment model when compared to the baseline 
model (Supplementary Table S1). After six weeks of treatment, patients classified as PR 
showed a distinct clustering of prediction scores towards higher probabilities of an 
objective response, while patients classified as PD showed a distinct clustering towards 
lower probabilities of an objective response when compared to baseline. Patients 
categorized as SD, on the other hand, showed an increased spread in prediction scores, 
with the majority of scores falling back to low probabilities of an objective response 
(Figure 3). Based on these results, one could argue that this increased discriminative 
potential after treatment initiation might be partly driven by VOCs that arise from 
metabolic/biochemical changes induced by anti-PD-1 therapy. This would imply that 
a direct treatment effect could be monitored through exhaled breath. We therefore 
suggest that the on treatment model could therefore not only be used as a predictive 
biomarker to identify patients exhibiting primary resistance as early as six weeks 
following treatment initiation, but also as a real-time monitoring tool for therapeutic 
efficacy during follow-up to identify patients developing secondary resistance during 
course of treatment. However, we suggest this model first to be validated in an external, 
prospective, and preferably multicenter, validation cohort to confirm the predictive 
value obtained in our study. Subsequently, application of the model in daily clinical 
practice should be investigated in combination with other current biomarkers (e.g. 
clinical condition, serum markers, radiological imaging, histopathology, etc.) to help 
therapeutic decision-making during course of treatment. We expect that this approach 
will allow for an earlier and more precise identification of non-responding patients during 
anti-PD-1 therapy when compared to current follow-up care, and subsequently help to 
avoid undesirable events of treatment and losing valuable time in a higher percentage 
of these patients.
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As eNoses have been designed for probabilistic assessment of VOCs, based on 
pattern recognition algorithms, It remains to be determined which specific metabolic/
biochemical pathways contribute to the associations between the measured VOC-
patterns and the patient response evaluation. When looking at our composed predictive 
models and the model of De Vries et al., we observe that sensor 3, which is most sensitive 
to methane and natural gas, consistently has a major contribution to the discriminative 
performance of all models [260]. The model of De Vries et al. aimed to identify patients 
showing PD with a 100% specificity, classifying patients as PR or SD as responders. Our 
study aimed to improve the applicability of SpiroNose exhaled breath analysis in daily 
clinical practice. Mean sensor values calculated for sensor 3 for each response group 
showed that patients classified as PR had the highest mean sensor value at baseline, 
while patients with PD had the lowest (Supplementary Table S3 and Supplementary 
Table S4). Furthermore, the SD group showed a mean sensor value more similar to 
the mean sensor value calculated for patients with PR. After six weeks of treatment, 
however, exhaled breath patterns distinctly differed for each response group. Patients 
categorized as PR showed a significant decrease in measured sensor values and had 
the lowest mean sensor value, while patients with PD had the highest. Interestingly, 
patients classified as SD showed a mean sensor value more similar to the mean sensor 
value calculated for the PD group. One could therefore speculate that the majority of 
patients classified as SD exhibit slow tumor progression during treatment. Classifying 
patients with PR or SD as responders during treatment would therefore have resulted in 
a smaller difference in mean sensor value between the responder and non-responder 
group, resulting in a lower predictive value in identifying true response to anti-PD-1 
therapy when applying the on treatment model. We therefore believe that the current 
classification of responders brings the evaluation of response closest to the actual 
response occurring within the patient during treatment. Applying a predictive model 
that aims to identify VOC pattern changes occurring in true responders could therefore 
be more sensitive in identifying patients within the SD group who have a delayed but 
potentially durable response to anti-PD-1 therapy. This way, patients could be classified 
as responders or non-responders instead of PR/SD/PD, facilitating the decision to 
continue, stop or adapt treatment during current and future immunotherapy options 
[262]. Furthermore, we suggest that it should be investigated which individual VOCs 
contribute to the discrimination between responders and non-responders in order to 
draw conclusions about which specific metabolic/biochemical pathways are associated 
with response. Insight into these molecular mechanisms could then be used to improve 
the SpiroNose as biomarker tool.

One could argue that pattern recognition rather than identification of VOCs is an 
intrinsic limitation of using eNoses. Exhaled breath analysis technology comprises 
multiple methods for breath sampling [229]. Different studies have been able to identify 
multiple compounds associated with lung cancer by using methods that aim to detect, 
identify, and quantify specific, individual chemical compounds in exhaled breath [263-
265]. However, these methods have shown some practical disadvantages, which makes 
them less suitable for clinical implementation yet [65, 228, 239, 260, 266]. In the present 
study, we were able to accurately identify true responders to anti-PD-1 therapy by 
using an eNose based on cross-reactive nonspecific sensor arrays without requiring 
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any restrictions except from alcohol consumption12 hours before the measurement. 
In addition, we were able to identify true responders in a relatively heterogenous 
population of patients (Table 1). This could imply that the SpiroNose identifies breath 
patterns associated with response that are not influenced by baseline characteristics 
and lifestyle of patients, which increases its external validity. Since it remains unclear 
which intrinsic and extrinsic factors determine the breath print typically for a response 
to immunotherapy and which set of VOC’s characterize this breath print, we believe 
that the use of an eNose based on pattern recognition allows for a less error-prone, 
and therefore more accurate, approach for identifying responding patients as part of 
routine assessment in daily clinical practice when compared to individual VOC detection 
methods.

A limitation of our study might be the response categorization based on conventional 
radiological response criteria. Pseudoprogression, which is defined by a transient 
increase in tumor burden followed by a delayed decrease in tumor size, is considered 
one of the unusual response patterns when assessing efficacy of immunotherapy by 
radiological imaging and might result in incorrect classification of a subset of responders 
[251, 267]. Since the incidence of pseudoprogression in NSCLC patients is thought to be 
less than 5%, we believe the risk of misclassification bias in our study to be extremely 
low [267].

Conclusions

In conclusion, results obtained in the present study show that exhaled breath analysis 
by eNose allows for a highly accurate, non-invasive and low-cost identification of 
advanced NSCLC patients with an objective response to anti-PD-1 therapy as part of 
a routine assessment during early treatment monitoring in daily clinical practice. The 
clear advantage of such an identification is that application of ineffective treatments 
can be avoided in a higher percentage of non-responding patients, thereby preventing 
undesirable events and reducing unnecessary costs. Importantly, our study also paves 
the way for optimizing the clinical application of eNose exhaled breath analysis in 
patients with advanced NSCLC.
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Supplemental material

The supplemental material:

Content included in this thesis:
Supplemental results
Figure S1 - Sensor value sensor 3 between baseline and six weeks of treatment
Figure S2 - Sensor value after six weeks of treatment
Figure S3 - Kaplan Meier curve showing the overall survival (OS)
Figure S4 - Kaplan Meier curve showing the progression free survival (PFS)
Table S1 - Predictive performance of the SpiroNose in both training and validation cohort.
Table S2 - Sensor values measured by sensor 3 and prediction scores
Table S3 - Mean sensor values calculated for S3, S3_6, and S3_absdif
Table S4 - Mean sensor values and difference in mean sensor values calculated for S3, 
S3_6, and S3_absdif

Results

Exhaled breath analysis: training cohort
Sensor 3, sensor 4, sensor 5_BH, sensor 6_BH, sensor 1_6, sensor 6_6, sensor, sensor 
3_BH_6 and sensor 6_BH_6 resulted to be the sensors with the highest discriminative 
potential based on LDA when including both baseline sensor values and sensor values 
measured after six weeks of treatment. ROC curves constructed for sensor 3_reldif and 
sensor 3_absdif showed a large overlap between both curves, justifying our decision 
to include only absolute sensor signal differences when performing LDA. The best 
predictive model (model 1) was composed with sensor 4, sensor 6, sensor 3_BH_6, sensor 
5_BH_6, sensor 6_BH_6 and S3_absdif and showed a specificity of 77% when focusing 
on a 100% sensitivity to identify patients classified with an objective response at an Area 
Under the Curve (AUC) of 0.97 (CI: 0.92-1.00). Model 2 consisted of sensor 4, sensor 6, 
sensor 1_6, sensor 6_6 and sensor 3_absdif. This model reached a specificity of 73% at 
an AUC of 0.95 (CI: 0.89-1.00) when focusing on a sensitivity of 100% to identify objective 
responders. Model 3 was composed with sensor 3_BH_6, sensor 5_BH_6 sensor 6_BH_6, 
and sensor 3_absdif, and reached a specificity of 71% at an AUC of 0.96 (CI: 0.91-1.00) 
(Supplementary Table S1).

When including only baseline sensor values, LDA showed a high contribution of sensor 
3, sensor 3_BH, and sensor 6_BH to the discrimination between patients classified as 
PR and patients classified as SD or PD. Since the performed Independent Samples 
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T-test showed that sensor 3 and sensor 5_BH significantly differed between patients 
showing PR and patients showing SD or PD at baseline, our predictive baseline model 
was composed with sensor 3, sensor 3_BH, sensor 5_BH and sensor 6_BH. This model 
reached a specificity of 54% at a ROC-AUC of 0.81 (CI: 0.71-0.92) when focusing on a 100% 
sensitivity to identify patients classified as objective responders (Supplementary Table S1).
Exhaled breath analysis: validation cohort
In the validation cohort, prediction scores were used to visualize the discriminative 
potential for the baseline model and model 2 (“on treatment model”). In the context 
of constructing a ROC curve, the calculated prediction scores contain exactly the same 
information as the discriminant scores [260].
However, prediction scores facilitate interpretation in daily clinical practice.

Figure S1 - Sensor value differences measured by sensor 3 between baseline and six weeks of 
treatment for each patient (n=94). 20 out of 21 patients classified as PR, 21 out of 32 patients clas-
sified as SD, and 8 out of 41 patients classified as PD show decreased sensor values after six weeks 
of treatment when compared to baseline. One patient classified as PR and one patient classified 
as PD show stable measured sensor values over time. All other patients show an increase in mea-
sured sensor value. Abbreviations: PR, partial response; SD, stable disease; PD, progressive disease.
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Figure S2 - Sensor values measured by sensor 3 at (A) baseline and (B) after six weeks of 
treatment for each patient (n=94). Abbreviations: PR, partial response; SD, stable disease; PD, 
progressive disease.
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Figure S3 - Kaplan Meier curve showing the overall survival (OS) analysis of the two groups 
(PR vs. SD+PD) when applying the on treatment model (with a cut-off of 0.14) of 90 advanced 
NSCLC patients.
The mean overall survival was 672 days (CI: 553-791 days) for patients classified as PR and 482 days (CI: 378-585 days) 
for patients classified as SD or PD, according to the SpiroNose test. The survival curve showed a significant difference 
with a log rank (Mantel-Cox) test between objective responders and patients classified as SD or PD according to their 
group based on the SpiroNose (p=0.03). Abbreviations: PR, partial response; SD, stable disease; PD, progressive disease; 
NSCLC, non-small cell lung cancer; CI, confidence interval.
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Figure S4 - Kaplan Meier curve showing the progression free survival (PFS) analysis of the 
two groups (PR vs. SD+PD) when applying the on treatment model (with a cut-off of 0.14) of 
90 advanced NSCLC patients.
The mean progression free survival was 586 days (CI: 449-724 days) for patients classified as PR and 275 days (CI: 189-
362 days) for patients classified as SD or PD, according to the SpiroNose test. The survival curve showed a significant 
difference with a log rank (Mantel-Cox) test between objective responders and patients classified as SD or PD according 
to their group based on the SpiroNose (p<0.001).
Abbreviations: PR, partial response; SD, stable disease; PD, progressive disease; NSCLC, non-small cell lung cancer; CI, 
confidence interval.

Table S1 - Predictive performance of the SpiroNose for the identification of patients showing 
an objective response to anti-PD-1 therapy in both training and validation cohort.

Model N Cut-off point Sensitivity 
(%)

Specificity 
(%)

AUC (95% CI)

Training

Baseline model 14 vs. 48 0.1080 100 54 0.81 (0.71-0.92)
On treatment model 14 vs. 48 -0.2770 100 73 0.95 (0.89-1.00)

Validation

Baseline model 7 vs. 25 -0.5794 100 68 0.89 (0.76-1.00)
On treatment model 7 vs. 25 -0.5575 100 84 0.97 (0.91-1.00)

Abbreviations: N, number; AUC, area under the curve; CI, confidence interval.
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Table S2 - Sensor values measured by sensor 3 and prediction scores calculated with the 
baseline model and on treatment model for each patient (PR n=7, SD n=11, PD n = 14) in the 
validation cohort.

Patient 
ID

Response S3 S3_6 S3_
absdif

P score 
baseline 

model

P score
on treatment 

model

Differencea OSb PFSb

1 PR 1.18 0.90 -0.28 0.68 0.98 +0.30 478 478
2 PR 1.15 0.90 -0.25 0.88 0.99 +0.11 106 106
3 PR 1.14 1.01 -0.13 0.46 0.64 +0.18 189 189
4 PR 1.32 1.00 -0.32 0.97 1.00 +0.03 838 838
5 PR 1.14 0.91 -0.23 0.61 0.92 +0.31 771 771
6 PR 1.17 0.95 -0.22 0.42 0.95 +0.53 228 228
7 PR 1.13 1.07 -0.06 0.30 0.22 -0.08 591 591
8 SD 1.13 0.91 -0.22 0.36 0.95 +0.59 395 372
9 SD 1.00 1.16 +0.16 0.11 0.00 -0.11 895 469
10 SD 1.11 1.01 -0.10 0.25 0.32 +0.07 511 511
11 SD 1.08 1.07 -0.01 0.18 0.09 -0.09 588 588
12 SD 1.10 1.06 -0.04 0.14 0.18 +0.04 197 180
13 SD 1.12 1.07 -0.05 0.33 0.04 -0.29 479 479
14 SD 1.16 1.03 -0.13 0.31 0.60 +0.29 343 245
15 SD 1.16 1.08 -0.08 0.38 0.32 -0.06 183 182
16 SD 1.16 1.21 +0.05 0.31 0.02 -0.29 219 139
17 SD 1.07 1.10 +0.03 0.20 0.02 -0.18 778 396
18 SD 0.99 0.96 -0.03 0.11 0.06 -0.05 - -
19 PD 1.04 1.10 +0.06 0.09 0.01 -0.08 406 36
20 PD 1.07 1.08 +0.01 0.26 0.03 -0.23 374 167
21 PD 1.00 1.19 +0.19 0.04 0.00 -0.04 112 34
22 PD 1.16 1.09 -0.07 0.36 0.21 -0.15 36 33
23 PD 1.11 1.07 -0.04 0.23 0.06 -0.17 132 39
24 PD 1.08 1.13 +0.05 0.99 0.01 -0.98 282 55
25 PD 1.08 1.11 +0.03 1.00 0.02 -0.98 211 57
26 PD 1.06 1.16 +0.10 0.05 0.01 -0.04 112 112
27 PD 1.08 1.04 -0.04 0.02 0.04 0.02 252 31
28 PD 1.09 1.12 +0.03 0.07 0.05 -0.02 127 36
29 PD 1.01 1.08 +0.07 0.01 0.00 -0.01 113 39
30 PD 1.00 1.09 +0.09 0.10 0.01 -0.09 206 43
31 PD 1.09 1.11 +0.02 0.21 0.02 -0.19 729 35
32 PD 1.04 1.15 +0.11 0.05 0.00 -0.05 187 51

Abbreviations: PR, partial response; SD, stable disease; PD, progressive disease; S3, sensor value measured by sensor 
3 at baseline; S3_6, sensor value measured by sensor 3 after six weeks of treatment; S3_absdif, absolute sensor value 
difference between sensor values measured by sensor 3 at baseline and after six weeks of treatment; P, prediction; OS, 
overall survival; PFS, progression free survival.
a Difference between prediction scores calculated with the baseline model and on treatment model.
b Time unit is days.
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Table S3 - Mean sensor values calculated for S3, S3_6, and S3_absdif for each response group.

Advanced NSCLC (N=94)
PR
S3
S3_6
S3_Absdiff

(n=21_
1.15
0.98
-0.17

SD
S3
S3_6
S3_Absdiff

(n=32)
1.11
1.09
-0.03

PD
S3
S3_6
S3_Absdiff

(n=41)
1.05
1.10
+0.05

Abbreviations: S3, sensor value measured by sensor 3 at baseline; S3_6, sensor value measured by sensor 3 after 
six weeks of treatment; S3_absdif, absolute sensor value difference between sensor values measured by sensor 
3 at baseline and after six weeks of treatment; NSCLC, non-small cell lung cancer; PR, partial response; SD, stable 
disease; PD, progressive disease.

Table S4 - Mean sensor values and difference in mean sensor values calculated for S3, S3_6, and S3_absdif 
for the group of objective responders and the group of patients classified as SD or PD.

Advanced NSCLC (n=94)
PR (n=21) SD+PD (n=73) Difference

S3 1.15 1.08 +0.07
S3_6 0.98 1.10 -0.12
S3_absdiff -0.17 0.02 -0.18

Abbreviations: S3, sensor value measured by sensor 3 at baseline; S3_6, sensor value measured by sensor 3 after 
six weeks of treatment; S3_absdif, absolute sensor value difference between sensor values measured by sensor 
3 at baseline and after six weeks of treatment; NSCLC, non-small cell lung cancer; PR, partial response; SD, stable 
disease; PD, progressive disease.
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