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Appendix of Part II



APPENDIX B
Appendix: Chapter 4

§B.1 Largest eigenvalue
We recall the Rayleigh-Ritz formula for the principal eigenvalue of the Anderson
Hamiltonian. For Λ ⊂ V and q : V → [−∞,∞), let λΛ(q;G) denote the largest
eigenvalue of the operator ∆G + q in Λ with Dirichlet boundary conditions on V \ Λ,
i.e.,

λΛ(q;G) := sup
{

〈(∆G + q)ϕ, ϕ〉ℓ2(V ) : ϕ ∈ RV , suppϕ ⊂ Λ, ‖ϕ‖ℓ2(V ) = 1
}
. (B.1)

Lemma B.1.1. [Spectral bounds]
(1) For any Γ ⊂ Λ ⊂ V ,

max
z∈Γ

q(z) −Dz̄ ≤ λΓ(q;G) ≤ λΛ(q;G) ≤ max
z∈Λ

q(z) (B.2)

with z̄ = arg maxz∈Γ q(z) and Dz̄ the degree of z̄.
(2) The eigenfunction corresponding to λΛ(q;G) can be taken to be non-negative.
(3) If q is real-valued and Γ ⊊ Λ is finite and connected in G, then the second

inequality in (B.2) is strict and the eigenfunction corresponding to λΛ(q;G) is
strictly positive.

Proof. Write

〈(∆G + q)ϕ, ϕ〉ℓ2(V ) =
∑
x∈Λ

[(∆Gϕ)(x) + q(x)ϕ(x)]ϕ(x)

=
∑
x∈Λ

∑
y∈Λ:

{x,y}∈EΛ

[ϕ(y) − ϕ(x)]ϕ(x) +
∑
x∈Λ

q(x)ϕ(x)2

= − 1
2

∑
x,y∈Λ:

{x,y}∈EΛ

[ϕ(x) − ϕ(y)]2 +
∑
x∈Λ

q(x)ϕ(x)2,

(B.3)

where the first sum in the last line runs over all ordered pairs (x, y) with (x, y) 6= (y, x),
which gives rise to the factor 1

2 . The upper bound in (B.2) follows from the estimate

〈(∆G + q)ϕ, ϕ〉 ≤
∑
x∈Λ

q(x)ϕ(x)2 ≤ max
z∈Λ

q(z)
∑
x∈Λ

ϕ(x)2 = max
z∈Λ

q(z). (B.4)
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To get the lower bound in (B.2), we use the fact that λΛ is non-decreasing in q. Hence,
replacing q(z) by −∞ for every z 6= z̄ and taking as test function ϕ = ϕ̄ = δz̄, we get
from (B.3) that

λΛ(q;G) ≥ − 1
2

∑
x,y∈Λ:

{x,y}∈EΛ

[
ϕ̄(x) − ϕ̄(y)

]2 +
∑
x∈Λ

q(x)ϕ̄(x)2

= − 1
2

∑
y∈Λ:

{z̄,y}∈EΛ

1 + q(z̄) = −Dz̄ + max
z∈Λ

q(z),
(B.5)

which settles the claim in (1). The claims in (2) and (3) are standard.

Inside GW, fix a finite connected subset Λ ⊂ V , and let HΛ denote the Anderson
Hamiltonian in Λ with zero Dirichlet boundary conditions on Λc = V \Λ (i.e., the
restriction of the operator HG = ∆G + ξ to the class of functions supported on Λ).
For y ∈ Λ, let uy

Λ be the solution of

∂tu(x, t) = (HΛu)(x, t), x ∈ Λ, t > 0,
u(x, 0) = δy(x), x ∈ Λ, (B.6)

and set Uy
Λ(t) :=

∑
x∈Λ u

y
Λ(x, t). The solution admits the Feynman-Kac representation

uy
Λ(x, t) = Ey

[
exp

{∫ t

0
ξ(Xs)ds

}
1l{τΛc > t,Xt = x}

]
, (B.7)

where τΛc is the hitting time of Λc. It also admits the spectral representation

uy
Λ(x, t) =

|Λ|∑
k=1

etλk
Λϕk

Λ(y)ϕk

Λ(x), (B.8)

where λ1
Λ ≥ λ2

Λ ≥ · · · ≥ λ|Λ|
Λ and ϕ1

Λ, ϕ
2
Λ, . . . , ϕ

|Λ|
Λ are, respectively, the eigenvalues and

the corresponding orthonormal eigenfunctions of HΛ. These two representations may
be exploited to obtain bounds for one in terms of the other, as shown by the following
lemma.

Lemma B.1.2. [Bounds on the solution] For any y ∈ Λ and any t > 0,

etλ1
Λϕ1

Λ(y)2 ≤ Ey

[
e
∫ t

0
ξ(Xs)ds1l{τΛc >t,Xt=y}

]
≤ Ey

[
e
∫ t

0
ξ(Xs)ds1l{τΛc >t}

]
≤ etλ1

Λ |Λ|1/2. (B.9)

Proof. The first and third inequalities follow from (B.7)–(B.8) after a suitable applic-
ation of Parseval’s identity. The second inequality is elementary.
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