Universiteit

Leiden
The Netherlands

The parabolic Anderson model on Galton-Watson trees Wang, D.

Citation

Wang, D. (2024, May 28). The parabolic Anderson model on Galton-Watson trees. Retrieved from https://hdl.handle.net/1887/3754826

Version:	Publisher's Version Licence agreement concerning inclusion of doctoral
License:	thesis in the Institutional Repository of the University of
Downloaded from:	Leiden

Note: To cite this publication please use the final published version (if applicable).

Appendix of Part II

APPENDIX

Appendix: Chapter 4

§B. 1 Largest eigenvalue

We recall the Rayleigh-Ritz formula for the principal eigenvalue of the Anderson Hamiltonian. For $\Lambda \subset V$ and $q: V \rightarrow[-\infty, \infty)$, let $\lambda_{\Lambda}(q ; G)$ denote the largest eigenvalue of the operator $\Delta_{G}+q$ in Λ with Dirichlet boundary conditions on $V \backslash \Lambda$, i.e.,

$$
\begin{equation*}
\lambda_{\Lambda}(q ; G):=\sup \left\{\left\langle\left(\Delta_{G}+q\right) \phi, \phi\right\rangle_{\ell^{2}(V)}: \phi \in \mathbb{R}^{V}, \operatorname{supp} \phi \subset \Lambda,\|\phi\|_{\ell^{2}(V)}=1\right\} \tag{B.1}
\end{equation*}
$$

Lemma B.1.1. [Spectral bounds]
(1) For any $\Gamma \subset \Lambda \subset V$,

$$
\begin{equation*}
\max _{z \in \Gamma} q(z)-D_{\bar{z}} \leq \lambda_{\Gamma}(q ; G) \leq \lambda_{\Lambda}(q ; G) \leq \max _{z \in \Lambda} q(z) \tag{B.2}
\end{equation*}
$$

with $\bar{z}=\arg \max _{z \in \Gamma} q(z)$ and $D_{\bar{z}}$ the degree of \bar{z}.
(2) The eigenfunction corresponding to $\lambda_{\Lambda}(q ; G)$ can be taken to be non-negative.
(3) If q is real-valued and $\Gamma \subsetneq \Lambda$ is finite and connected in G, then the second inequality in (B.2) is strict and the eigenfunction corresponding to $\lambda_{\Lambda}(q ; G)$ is strictly positive.

Proof. Write

$$
\begin{align*}
\left\langle\left(\Delta_{G}+q\right) \phi, \phi\right\rangle_{\ell^{2}(V)} & =\sum_{x \in \Lambda}\left[\left(\Delta_{G} \phi\right)(x)+q(x) \phi(x)\right] \phi(x) \\
& =\sum_{x \in \Lambda} \sum_{\substack{y \in \Lambda^{*} \\
\{x, y\} \in E_{\Lambda}}}[\phi(y)-\phi(x)] \phi(x)+\sum_{x \in \Lambda} q(x) \phi(x)^{2} \tag{B.3}\\
& =-\frac{1}{2} \sum_{\substack{x, y \in \Lambda: \\
\{x, y\} \in E_{\Lambda}}}[\phi(x)-\phi(y)]^{2}+\sum_{x \in \Lambda} q(x) \phi(x)^{2},
\end{align*}
$$

where the first sum in the last line runs over all ordered pairs (x, y) with $(x, y) \neq(y, x)$, which gives rise to the factor $\frac{1}{2}$. The upper bound in (B.2) follows from the estimate

$$
\begin{equation*}
\left\langle\left(\Delta_{G}+q\right) \phi, \phi\right\rangle \leq \sum_{x \in \Lambda} q(x) \phi(x)^{2} \leq \max _{z \in \Lambda} q(z) \sum_{x \in \Lambda} \phi(x)^{2}=\max _{z \in \Lambda} q(z) \tag{B.4}
\end{equation*}
$$

To get the lower bound in (B.2), we use the fact that λ_{Λ} is non-decreasing in q. Hence, replacing $q(z)$ by $-\infty$ for every $z \neq \bar{z}$ and taking as test function $\phi=\bar{\phi}=\delta_{\bar{z}}$, we get from (B.3) that

$$
\begin{align*}
\lambda_{\Lambda}(q ; G) & \geq-\frac{1}{2} \sum_{\substack{x, y \in \Lambda: \\
\{x, y\} \in E_{\Lambda}}}[\bar{\phi}(x)-\bar{\phi}(y)]^{2}+\sum_{x \in \Lambda} q(x) \bar{\phi}(x)^{2} \tag{B.5}\\
& =-\frac{1}{2} \sum_{\substack{y \in \Lambda: \\
\{\bar{z}, y\} \in E_{\Lambda}}} 1+q(\bar{z})=-D_{\bar{z}}+\max _{z \in \Lambda} q(z),
\end{align*}
$$

which settles the claim in (1). The claims in (2) and (3) are standard.
Inside $\mathcal{G} \mathcal{W}$, fix a finite connected subset $\Lambda \subset V$, and let H_{Λ} denote the Anderson Hamiltonian in Λ with zero Dirichlet boundary conditions on $\Lambda^{c}=V \backslash \Lambda$ (i.e., the restriction of the operator $H_{G}=\Delta_{G}+\xi$ to the class of functions supported on Λ). For $y \in \Lambda$, let u_{Λ}^{y} be the solution of

$$
\begin{array}{lll}
\partial_{t} u(x, t) & =\left(H_{\Lambda} u\right)(x, t), & \\
u \in \Lambda, t>0, \tag{B.6}\\
u(x, 0) & =\delta_{y}(x), & \\
x \in \Lambda,
\end{array}
$$

and set $U_{\Lambda}^{y}(t):=\sum_{x \in \Lambda} u_{\Lambda}^{y}(x, t)$. The solution admits the Feynman-Kac representation

$$
\begin{equation*}
u_{\Lambda}^{y}(x, t)=\mathbb{E}_{y}\left[\exp \left\{\int_{0}^{t} \xi\left(X_{s}\right) \mathrm{d} s\right\} \mathbb{1}\left\{\tau_{\Lambda^{c}}>t, X_{t}=x\right\}\right], \tag{B.7}
\end{equation*}
$$

where $\tau_{\Lambda^{c}}$ is the hitting time of Λ^{c}. It also admits the spectral representation

$$
\begin{equation*}
u_{\Lambda}^{y}(x, t)=\sum_{k=1}^{|\Lambda|} \mathrm{e}^{t \lambda_{\Lambda}^{k}} \phi_{\Lambda}^{k}(y) \phi_{\Lambda}^{k}(x) \tag{B.8}
\end{equation*}
$$

where $\lambda_{\Lambda}^{1} \geq \lambda_{\Lambda}^{2} \geq \cdots \geq \lambda_{\Lambda}^{|\Lambda|}$ and $\phi_{\Lambda}^{1}, \phi_{\Lambda}^{2}, \ldots, \phi_{\Lambda}^{|\Lambda|}$ are, respectively, the eigenvalues and the corresponding orthonormal eigenfunctions of H_{Λ}. These two representations may be exploited to obtain bounds for one in terms of the other, as shown by the following lemma.

Lemma B.1.2. [Bounds on the solution] For any $y \in \Lambda$ and any $t>0$,

$$
\begin{align*}
& \mathrm{e}^{t \lambda_{\Lambda}^{1}} \phi_{\Lambda}^{1}(y)^{2} \leq \mathbb{E}_{y}\left[\mathrm{e}^{\int_{0}^{t} \xi\left(X_{s}\right) \mathrm{d} s} \mathbb{1}_{\left\{\tau_{\Lambda^{c}}>t, X_{t}=y\right\}}\right] \\
& \leq \mathbb{E}_{y}\left[\mathrm{e}^{\int_{0}^{t} \xi\left(X_{s}\right) \mathrm{ds}} \mathbb{1}_{\left\{\tau_{\Lambda^{c}}>t\right\}}\right] \leq \mathrm{e}^{t \lambda_{\Lambda}^{1}}|\Lambda|^{1 / 2} \tag{B.9}
\end{align*}
$$

Proof. The first and third inequalities follow from (B.7)-(B.8) after a suitable application of Parseval's identity. The second inequality is elementary.

