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CHAPTER 5
The parabolic Anderson model on a
Galton-Watson tree with normalised

Laplacian

This chapter is based on the following paper:
D. Wang. The parabolic Anderson model on a Galton-Watson tree with normalised
Laplacian, 2023. Preprint, arXiv:2310.05602.

Abstract

In [12], the asymptotics of the total mass of the solution to the parabolic Anderson model
was studied on an almost surely infinite Galton-Watson tree with an i.i.d. potential having
a double-exponential distribution. The second-order contribution to this asymptotics was
identified in terms of a variational formula that gives information about the local structure
of the region where the solution is concentrated.

The present paper extends this work to the degree-normalised Laplacian. The normalisa-
tion causes the Laplacian to be non-symmetric, which leads to different spectral properties.
We find that the leading order asymptotics of the total mass remains the same, while the
second-order correction coming from the variational formula is different. We also find that
the optimiser of the variational formula is again an infinite tree with minimal degrees. Both of
these results are shown to hold under much milder conditions than for the regular Laplacian.
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§5.1 Introduction and main results

§5.1.1 The PAM and intermittency
The parabolic Anderson model (PAM) on a graph G = (V,E), is the Cauchy problem
for the heat equation with a random potential:

∂tu(x, t) = (∆u)(x, t) + ξ(x)u(x, t), x ∈ V, t > 0,
u(x, 0) = δO(x), x ∈ V,

(5.1)

where O is a vertex in V , {ξ(x)}x∈V is the random potential defined on V , and ∆ is
the normalised discrete Laplacian, defined by

(∆f)(x) := 1
deg(x)

∑
y∈V :

{x,y}∈E

[f(y) − f(x)], x ∈ V, f : V → R. (5.2)

Most of the literature has focused on Zd and we refer the reader to [29] for a
comprehensive study. Other choices include the complete graph [16], the hypercube
[5], and more recently, the regular tree [14] and the Galton-Watson tree [12], [13] and
[2]. The PAM can also be studied on continuous spaces, the most extensively studied
being Rd. On such spaces, the Laplacian and the potential are defined analogously
and we again refer the reader to [29] for more background.

The PAM may be interpreted as a system of particles such that particles are killed
with rate ξ−(x) or are split into two with rate ξ+(x) at every vertex x. At the same
time, each particle jumps independently with ∆ as generator. The solution u(x, t) can
be interpreted as the expected number of particles or mass present at vertex x at time
t when the initial condition at time 0 is δO(x). See [24, Section 1.2] for further details.

The solution is known to exhibit a phenomenon known as intermittency, meaning
that the solution concentrates on small regions of the graph known as intermittent
islands. This is well studied on Zd, where it is known that the sizes of the island(s)
depend on the distribution of the tail of the potential, and can be separated into four
classes (see [29, Section 3.4]). Throughout the paper, we work in the double-exponential
class where the potential ξ = {ξ(x)}x∈V consists of i.i.d. random variables satisfying

Assumption 5.A. [Asymptotic double-exponential potential]
For some ϱ ∈ (0,∞),

P (ξ(0) ≥ 0) = 1, P (ξ(0) > u) = e−eu/ϱ

for u large enough. (5.3)

■

The main feature of this choice is that the intermittent islands are not single vertices,
whilst also having the property that their sizes do not change with time - a critical
fact in our analysis.
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§5.1.2 The PAM on a Galton-Watson tree
The present paper analyses the PAM on the graph generated by the Galton-Watson
process. The graph is generated by taking a root O and attaching D vertices (known as
offspring), where D is a random variable. Each offspring has D− 1 offspring attached
to it, where D is an identically distributed but independent copy of D. This is repeated
forever, or until the process dies out. Let GW = (V,E,O) be the resulting graph and
let P and E denote probability and expectation with respect to GW. Similarly, let P
and E denote probability and expectation with respect to D.

Assumption 5.B. [Exponential tails]
(1) dmin := min supp(D) ≥ 2 and E [D] ∈ (2,∞).
(2) E

[
eaD

]
< ∞ for all a ∈ (0,∞). ■

Under this assumption, GW is P-a.s. an infinite tree. Moreover,

lim
r→∞

log |Br(O)|
r

= log E [D] =: ϑ ∈ (0,∞) P − a.s., (5.4)

where Br(O) ⊂ V is the ball of radius r around O in the graph distance (see e.g. [30,
pp. 134–135]). Note that this ball depends on GW and is therefore random.

The proper choice of Laplacian depends on the setting. In the case of the complete
graph and the hypercube, when the limit of the number of vertices going to infinity is
taken, only the normalised Laplacian gives a meaningful limit. In the case of regular
graphs such as Zd and the regular tree, normalising the Laplacian by the degree
simply amounts to rescaling time, and both the techniques and the results can be
easily inferred accordingly. We will focus on the Galton-Watson tree, which is not
only inhomogeneous but is also random, and hence the choice of Laplacian does play
a role. The present paper considers the normalised Laplacian, in contrast to [12], [13],
and [2], and investigate how this choice affects the results and methods used in [12].

Under Assumptions 5.A and 5.B, the criteria for existence and uniqueness of a
non-negative solution of (5.1) are met (see [24] and [13, Appendix C]) and is given by
the well-known Feynman-Kac representation. With the choice of initial condition in
(5.1) and Laplacian in (5.2), this amounts to

u(x, t) = EO

[
exp

{∫ t

0
ξ(Xs)ds

}
1l{Xt = x}

]
, (5.5)

where X = (Xt)t≥0 is the continuous-time random walk on the vertices V with jump
rate 1 on each vertex (or equivalently with jump rate equal to the inverse of the degree
along the edges E), and PO denotes the law of X given X0 = O. The quantity we will
be interested in is the total mass, given by

U(t) :=
∑
x∈V

u(x, t) = EO

[
exp

{∫ t

0
ξ(Xs)ds

}]
, (5.6)

in particular, its asymptotics as t → ∞.
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An important distinction is made between the quenched and the annealed total
mass, i.e. the total mass taken almost surely with respect to or averaged over the
sources of randomness, respectively. Since this paper aims to follow the framework of
[12], we also consider the quenched setting for both the graph and potential. We refer
to [14] for corresponding results for the annealed total mass on a regular tree. The
annealed setting for the Galton-Watson tree (averaged over just the potential or over
both the graph and potential) remains open.

§5.1.3 Main results and discussion
To state our results, we first introduce some quantities of interest pertaining to the
characteristic variational formula associated with Assumption 5.A. The latter de-
scribes the shape and profile of the solution in the intermittent islands and captures
the second-order asymptotics of the total mass. We refer to [29] for more details on
the variational formula and its relationship with the PAM.

Denote the set of probability measures on V by P(V ). For p ∈ P(V ), define

IE(p) :=
∑

{x,y}∈E

(√
p(x)

deg(x) −
√

p(y)
deg(y)

)2

, JV (p) := −
∑
x∈V

p(x) log p(x), (5.7)

and set
χG(ϱ) := inf

p∈P(V )
[IE(p) + ϱJV (p)], ϱ ∈ (0,∞). (5.8)

The first term arises from the Laplacian and coincides with the large deviation rate
function for the empirical distribution of the random walk in (5.5) (see [11, Exer-
cise IV.24], while the second term comes from the choice of the double-exponential
potential. Furthermore, define the constant

χ̃(ϱ) := inf
{
χT (ϱ) : T is an infinite tree with degrees in supp(D)

}
, (5.9)

with χG(ϱ) defined in (5.8), and abbreviate

rt = ϱt

log log t
. (5.10)

Theorem 5.1.1. [Total mass asymptotics] Subject to Assumptions 5.A–5.B,

1
t

logU(t) = ϱ log(ϑrt) − ϱ− χ̃(ϱ) + o(1), t → ∞, (P ×P)-a.s. (5.11)

The proof of Theorem 5.1.1 is given in Section 5.4. For a heuristic explanation on how
the terms in (5.11) arise and how they relate to the asymptotics of the total mass, we
refer the reader to [12, Section 1.5].

For d ≥ 2, let Td denote the infinite homogeneous tree with degree equal to d at
every vertex.

Theorem 5.1.2. [Identification of the minimiser] If ϱ ≥ 1
dmin log(dmin+1) , then χ̃(ϱ) =

χTdmin
(ϱ).
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The proof of Theorem 5.1.2 is given in Section 5.5.2.
Comparing our results to those obtained in [12] and [13], we see that the choice

of Laplacian indeed has an effect, albeit in a subtle way. The leading-order terms in
(5.11) remain unchanged, while the second-order (variational formula) term stemming
from (5.8) is different, due to IE in (5.7) being normalised by the degrees. This
normalisation was not present in [12] and [13]. In addition, normalising the Laplacian
results in a ‘slow down’ of the random walk in (5.5) compared with the analogous
formula in [12]. As will be shown later on, this leads to simplifications in several
key lemmas and leads to Theorem 5.1.1 holding under the milder tail condition in
Assumption 5.B(2).

The different Laplacian and IE function have surprisingly minimal effects on The-
orem 5.1.2: the optimal tree is still Tdmin , exactly as was found in [12]. The main
difference is that our result holds for a greater range of ϱ values compared to [12],
which required the sharper restriction ϱ ≥ 1/ log(dmin + 1). We believe that the min-
imal tree is the minimiser for all ϱ and that it is also the unique minimiser, however
this remains open. It is also worth noting that the object χ̃(ϱ) is well understood. The
case dmin = 2 corresponds to the the variational problem on Z and has been studied
in [23]. For dmin > 2 we refer the reader to [14], where the variational formula

χ̄dmin(ϱ) = inf
p∈P(V )

[ĪE(p) + ϱJV (p)], ĪE(p) =
∑

{x,y}∈E

(√
p(x) −

√
p(y)

)2
,

was studied. Clearly,
χ̃(ϱ) = 1

dmin
χ̄dmin(dminϱ).

Outline. The remainder of the paper is dedicated to the proof of Theorems 5.1.1
and 5.1.2, and follows the framework developed in [12]. Section 2.1 is novel and deals
with the spectral estimates of the Anderson Hamiltonian ∆ + ξ, which are different
due to ∆ no longer being symmetric with respect to the usual inner product. Sections
2.2 and 2.3 collect the necessary results regarding the Galton-Watson tree and the
potential from [12] and [13]. All of these results carry over directly since the Laplacian
and random walk play no role. Section 3 follows the path expansion technique from [12]
and adapts the results to the random walk in (5.5). Section 4 is dedicated to the proof
of Theorem 5.1.1, and follows [12]. Section 5 deals with the analysis of the variational
formula (5.9) including the proof of Theorem 5.1.2, which applies the gluing argument
from [12].

§5.2 Preliminaries
In this section we collect results that are needed later. Section 5.2.1 investigates how
the normalisation affects the spectral properties of the Laplacian. Section 5.2.2 collects
two vital facts about the Galton-Watson tree. Section 5.2.3 collects results regarding
the potential.
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§5.2.1 Related Spectral Problems
Recall the Rayleigh-Ritz formula for the principal eigenvalue λΛ(q;G),

λΛ(q;G) = sup
{

〈(∆ + q)ϕ, ϕ〉 : ϕ ∈ RV , suppϕ ⊂ Λ, ‖ϕ‖ = 1
}
. (5.12)

As alluded to in Section 5.1.3, ∆ (and therefore also ∆ + q) is not symmetric with
respect to the usual ℓ2 inner product, but is symmetric with respect to the degree-
weighted inner product

〈ϕ, ψ〉 :=
∑
x∈Λ

deg(x)ϕ(x)ψ(x), (5.13)

in the sense that 〈∆ϕ, ψ〉 = 〈ϕ,∆ψ〉 (see [27, Section 2] for further details). Hencefor-
ward, all inner products will be with respect to (5.13).

We introduce an alternative representation for χ in (5.8) in terms of a ‘dual’ vari-
ational formula. Fix ϱ ∈ (0,∞) and a graph G = (V,E). The functional

L(q;G) :=
∑
x∈V

eq(x)/ϱ ∈ [0,∞], q : V → [−∞,∞), (5.14)

plays the role of a large deviation rate function for the potential ξ in V (compare with
(5.3)). For Λ ⊂ V , define

χ̂Λ(G) := − sup
q : V →[−∞,∞),

L(q;G)≤1

λΛ(q;G) ∈ [0,∞), (5.15)

where λΛ(q;G) is the principal eigenvalue of the Anderson Hamiltonian ∆ + q on the
set Λ with zero boundary condition. The condition L(q;G) ≤ 1 under the supremum
ensures that the potentials q have a fair probability under the i.i.d. double-exponential
distribution.

Proposition 5.2.1. [Alternative representations for χ] For any graph G = (V,E) and
any Λ ⊂ V ,

χ̂Λ(ϱ;G) ≥ χ̂V (ϱ;G) = χG(ϱ). (5.16)

Proposition 5.2.1 is not essential in the proof of Theorem 5.1.1, but is stated here to
provide additional context to some of the results below. The proof is given in Sec-
tion 5.5.1.

Lemma 5.2.2. [Spectral bounds]
(1) For any Γ ⊂ Λ ⊂ V ,

max
z∈Γ

q(z) − 1 ≤ λΓ(q;G) ≤ λΛ(q;G) ≤ max
z∈Λ

q(z). (5.17)

(2) The eigenfunction corresponding to λΛ(q;G) can be taken to be non-negative.

114



§5.2. Preliminaries

C
hapter

5

(3) If q is real-valued and Γ ⊊ Λ is finite and connected in G, then the second
inequality in (5.17) is strict and the eigenfunction corresponding to λΛ(q;G) is
strictly positive.

Proof. Write

〈(∆ + q)ϕ, ϕ〉 = −
∑

{x,y}∈EΛ

[ϕ(x) − ϕ(y)]2 +
∑
x∈Λ

deg(x)q(x)ϕ(x)2. (5.18)

The upper bound in (5.17) follows from the estimate

〈(∆ + q)ϕ, ϕ〉 ≤
∑
x∈Λ

deg(x)q(x)ϕ(x)2 ≤ max
z∈Λ

q(z)
∑
x∈Λ

deg(x)ϕ(x)2 = max
z∈Λ

q(z).

To get the lower bound in (5.17), we use the fact that λΛ is non-decreasing in q. Let
z̄ = arg max q(z). Replacing q(z) by −∞ for every z 6= z̄ and taking the test function
ϕ̄ = 1√

deg(z̄)
δz̄, we get that

λΛ(q;G) ≥ −
∑

x,y∈Λ:
{x,y}∈EΛ

[
ϕ̄(x) − ϕ̄(y)

]2 +
∑
x∈Λ

deg(x)q(x)ϕ̄(x)2

= −
∑
y∈Λ:

{z̄,y}∈EΛ

1
deg(z̄)

+ q(z̄) = −1 + max
z∈Λ

q(z),
(5.19)

which settles the claim in (1). The claims in (2) and (3) are standard.

Inside GW, fix a finite connected subset Λ ⊂ V , and let HΛ denote the Anderson
Hamiltonian in Λ with zero Dirichlet boundary conditions on Λc = V \Λ (i.e. the
restriction of the operator HG = ∆ + ξ to the class of functions supported on Λ). For
y ∈ Λ, let uy

Λ be the solution of

∂tu(x, t) = (HΛu)(x, t), x ∈ Λ, t > 0,
u(x, 0) = δy(x), x ∈ Λ, (5.20)

and set Uy
Λ(t) :=

∑
x∈Λ u

y
Λ(x, t). Let τΛc be the hitting time of Λc and

uy
Λ(x, t) = Ey

[
exp

{∫ t

0
ξ(Xs)ds

}
1l{τΛc > t,Xt = x}

]
, (5.21)

the Feynman-Kac solution to (5.1) with Dirichlet boundary conditions on Λc. Then
uy

Λ(x, t) also admits the spectral representation

uy
Λ(x, t) =

|Λ|∑
k=1

etλk
Λϕk

Λ(y)ϕk

Λ(x), (5.22)

where λ1
Λ ≥ λ2

Λ ≥ · · · ≥ λ|Λ|
Λ and ϕ1

Λ, ϕ
2
Λ, . . . , ϕ

|Λ|
Λ are, respectively the eigenvalues and

the corresponding orthonormal eigenfunctions of ∆ + ξ restricted to Λ. These two
representations may be exploited to obtain bounds for one in terms of the other, as
shown by the following lemma.
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Lemma 5.2.3. [Bounds on the solution] For any y ∈ Λ and any t > 0,

etλ1
Λϕ1

Λ(y)2 ≤ Ey

[
e
∫ t

0
ξ(Xs)ds1l{τΛc >t,Xt=y}

]
≤ Ey

[
e
∫ t

0
ξ(Xs)ds1l{τΛc >t}

]
(5.23)

Proof. The first inequality follows from a suitable application of Parseval’s identity.
The second inequality is elementary.

Lemma 5.2.4. [Mass up to an exit time] For any y ∈ Λ, ξ ∈ [0,∞)V and γ > λΛ =
λΛ(ξ,GW),

Ey

[
e
∫ τΛc

0
(ξ(Xs)−γ) ds

]
≤ 1 + |Λ|

γ − λΛ
. (5.24)

Proof. We follow the proof of [13, Lemma 3.2] and [25, Lemma 2.18]. Define

u(x) := Ex

[
e
∫ τΛc

0
(ξ(Xs)−γ) ds

]
. (5.25)

This is the solution to the boundary value problem

(∆ + ξ − γ)u = 0 on Λ,
u = 1 on Λc.

(5.26)

Via the substitution u =: 1 + v, this turns into

(∆ + ξ − γ)v = γ − ξ on Λ,
v = 0 on Λc.

(5.27)

It is readily checked that for γ > λΛ the solution exists and is given by

v = Rγ(ξ − γ), (5.28)

where Rγ denotes the resolvent of ∆ + ξ. Hence

v(x) ≤ (Rγ1)(x) ≤ 〈Rγ1,1〉 ≤ |Λ|
γ − λΛ

, x ∈ Λ, (5.29)

where 1 denotes the constant function equal to 1, and 〈·, ·〉 denotes the weighted
inner product. To get the first inequality, we apply the lower bound in (5.17) from
Lemma 5.2.2, to get ξ−γ ≤ λΛ + 1 −γ ≤ 1 on Λ. The positivity of the resolvent gives

0 ≤ [Rγ(1 − (ξ − γ))](x) = [Rγ1](x) − [Rγ(ξ − γ)](x). (5.30)

To get the second inequality, we write

(Rγ1)(x) ≤
∑
x∈Λ

(Rγ1)(x) =
∑
x∈Λ

(Rγ1)(x)1(x) ≤
∑
x∈Λ

(Rγ1)(x)1(x) deg(x) = 〈Rγ1,1〉.

(5.31)
To get the third inequality, we use the Fourier expansion of the resolvent with respect
to the orthonormal basis of eigenfunctions of ∆ + ξ in 〈·, ·〉.
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§5.2.2 Structural properties of the Galton-Watson
tree

All of the results below can be lifted directly from [13] since the normalisation of the
Laplacian plays no role for the properties of the Galton-Watson tree. The results are
included for the sake of completeness.

Lemma 5.2.5. [Maximal degree in a ball around the root]
(a) Subject to Assumption 5.B(2), for every δ > 0,∑

r∈N

P
(
∃x ∈ B2r(O) : deg(x) ≥ δr

)
< ∞. (5.32)

Proof. See [13, Lemma 2.3].

Lemma 5.2.5 shows that P-almost surely, as r → ∞ all degrees in a ball of radius r
are eventually less than δr for any δ > 0.

Lemma 5.2.6. [Volumes of large balls] If there exists an a > 0 such that E [eaD] < ∞,
then for any Rr satisfying limr→∞ Rr/ log r = ∞,

lim inf
r→∞

1
Rr

log
(

inf
x∈Br(O)

|BRr (x)|
)

= lim sup
r→∞

1
Rr

log
(

sup
x∈Br(O)

|BRr (x)|
)

= ϑ P−a.s.

(5.33)

Proof. See [13, Lemma 2.2].

Lemmma 5.2.6 gives that P-almost surely, any ball of radius r centred within distance
r to the root also has volume erϑ+o(1) as r → ∞.

§5.2.3 Estimates on the potential
All of the results below are lifted directly from [13], since the normalisation of the
Laplacian plays no role in the properties of the potential. The results are included for
the sake of completeness. Abbreviate Lr = |Br(O)| and put

Sr := (log r)α, α ∈ (0, 1). (5.34)

For every r ∈ N there is a unique ar such that

P(ξ(0) > ar) = 1
r
. (5.35)

By Assumption 5.A, for r large enough

ar = ϱ log log r. (5.36)

For r ∈ N and A > 0, let

Πr,A = Πr,A(ξ) := {z ∈ Br(O) : ξ(z) > aLr − 2A} (5.37)
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be the set of vertices in Br(O) where the potential is close to maximal,

Dr,A = Dr,A(ξ) := {z ∈ Br(O) : dist(z,Πr,A) ≤ Sr} (5.38)

be the Sr-neighbourhood of Πr,A, and Cr,A be the set of connected components of
Dr,A in GW, which we think of as islands. For MA ∈ N, define the event

Br,A :=
{

∃ C ∈ Cr,A : |C ∩ Πr,A| > MA

}
. (5.39)

Note that Πr,A, Dr,A,Br,A depend on GW and therefore are random.

Lemma 5.2.7. [Maximum size of the islands] Subject to Assumptions 5.A–5.B, for
every A > 0 there exists an MA ∈ N such that∑

r∈N

P(Br,A) < ∞ P − a.s. (5.40)

Proof. See [13, Lemma 3.1] and [8, Lemma 6.6].

Lemma 5.2.7 implies that (P ×P)-a.s. Br,A does not occur eventually as r → ∞. Note
that P-a.s. on the event [Br,A]c,

∀ C ∈ Cr,A : |C ∩ Πr,A| ≤ MA, diamGW(C) ≤ 2MASr, |C| ≤ e2ϑMASr , (5.41)

where the last inequality follows from Lemma 5.2.6.

Lemma 5.2.8. [Maximum of the potential] Subject to Assumptions 5.A–5.B, for any
ϑ > 0, (P ×P)-a.s. eventually as r → ∞,∣∣∣∣ max

x∈Br(O)
ξ(x) − aLr

∣∣∣∣ ≤ 2ϱ log r
ϑr

. (5.42)

Proof. See [12, Lemma 2.4]. The proof carries over verbatim and uses Lemma 5.2.6.

Lemma 5.2.9. [Number of intermediate peaks of the potential] Subject to Assump-
tions 5.A and 5.B(2), for any β ∈ (0, 1) and ε ∈ (0, 1

2β) the following holds. For a
self-avoiding path π in GW, set

Nπ = Nπ(ξ) := |{z ∈ supp(π) : ξ(z) > (1 − ε)aLr
}|. (5.43)

Define the event

Br :=
{ there exists a self-avoiding path π in GW with

supp(π)∩Br(O)6=∅, | supp(π)|≥(log Lr)β and Nπ>
| supp(π)|
(log Lr)ε

}
. (5.44)

Then ∑
r∈N0

P(Br) < ∞ P − a.s. (5.45)

Proof. See [13, Lemma 3.6].
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Lemma 5.2.9 implies that (P ×P)-a.s. for r large enough, all self-avoiding paths π in
GW with supp(π) ∩Br(O) 6= ∅ and | supp(π)| ≥ (logLr)β satisfy Nπ ≤ | supp(π)|

(log Lr)ε .

Lemma 5.2.10. [Number of high exceedances of the potential] Subject to Assump-
tions 5.A and 5.B(2), for any A > 0 there is a C ≥ 1 such that, for all δ ∈ (0, 1), the
following holds. For a self-avoiding path π in GW, let

Nπ := |{x ∈ supp(π) : ξ(x) > aLr − 2A}|. (5.46)

Define the event

Br :=
{ there exists a self-avoiding path π in G with

supp(π)∩Br(O)6=∅, | supp(π)|≥C(log Lr)δ and Nπ>
| supp(π)|
(log Lr)δ

}
. (5.47)

Then
∑

r∈N0
supG∈Gr

P(Br) < ∞. In particular, (P ×P)-a.s. for r large enough, all
self-avoiding paths π in GW with supp(π) ∩ Br(O) 6= ∅ and | supp(π)| ≥ C(logLr)δ

satisfy
Nπ = |{x ∈ supp(π) : ξ(x) > aLr

− 2A}| ≤ | supp(π)|
(logLr)δ

. (5.48)

Proof. See [13, Lemma 3.7].

Lemma 5.2.11. [Principal eigenvalues of the islands] Subject to Assumptions 5.A
and 5.B(2), for any ε > 0, (P ×P)-a.s. eventually as r → ∞,

all C ∈ Cr,A satisfy : λC(ξ; GW) ≤ aLr − χ̂C(GW) + ε. (5.49)

Proof. See [13, Lemma 3.3].

Corollary 5.2.12. [Uniform bound on principal eigenvalue of the islands] Subject to
Assumptions 5.A–5.B, for ϑ as in (5.4), and any ε > 0, (P ×P)-a.s. eventually as
r → ∞,

max
C∈Cr,A

λ1
C(ξ;G) ≤ aLr − χ̃(ϱ) + ε. (5.50)

Proof. See [12, Corollary 2.8].

§5.3 Path expansions
In this section we adapt [12, Section 3] to fit with the random walk generated by the
normalised Laplacian. Section 5.3.1 proves three lemmas that concern the contribution
to the total mass in (5.6) coming from various sets of paths. Section 5.3.2 proves a key
proposition that controls the entropy associated with a key set of paths. The proof of
which is based on the three lemmas in Section 5.3.1.

We need various sets of nearest-neighbour paths in GW = (V,E,O), defined in
[12]. For ℓ ∈ N0 and subsets Λ,Λ′ ⊂ V , put

Pℓ(Λ,Λ′) :=
{

(π0, . . . , πℓ) ∈ V ℓ+1 : π0 ∈ Λ, πℓ ∈ Λ′,
{πi, πi−1} ∈ E ∀ 1 ≤ i ≤ ℓ

}
,

P(Λ,Λ′) :=
⋃

ℓ∈N0

Pℓ(Λ,Λ′),
(5.51)
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and set
Pℓ := Pℓ(V, V ), P := P(V, V ). (5.52)

When Λ or Λ′ consists of a single point, write x instead of {x}. For π ∈ Pℓ, set
|π| := ℓ. Write supp(π) := {π0, . . . , π|π|} to denote the set of points visited by π.

Let X = (Xt)t≥0 be the continuous-time random walk on G that jumps from x ∈ V

to any neighbour y ∼ x at rate 1. Denote by (Tk)k∈N0 the sequence of jump times
(with T0 := 0). For ℓ ∈ N0, let

πℓ(X) := (X0, . . . , XTℓ
) (5.53)

be the path in Pℓ consisting of the first ℓ steps of X. For t ≥ 0, let

π(X[0,t]) = πℓt(X), with ℓt ∈ N0 satisfying Tℓt
≤ t < Tℓt+1, (5.54)

denote the path in P consisting of all the steps taken by X between times 0 and t.
Recall the definitions from Section 5.2.3. For π ∈ P and A > 0, define

λr,A(π) := sup
{
λ1

C(ξ;G) : C ∈ Cr,A, supp(π) ∩ C ∩ Πr,A 6= ∅
}
, (5.55)

with the convention sup ∅ = −∞. This is the largest principal eigenvalue among the
components of Cr,A in GW that have a point of high exceedance visited by the path
π.

§5.3.1 Mass of the solution along excursions
Lemma 5.3.1. [Path evaluation] For ℓ ∈ N0, π ∈ Pℓ and γ > max0≤i<|π|{ξ(πi)−1},

Eπ0

[
e
∫ Tℓ

0
(ξ(Xs)−γ) ds

∣∣∣ πℓ(X) = π

]
=

ℓ−1∏
i=0

1
γ − [ξ(πi) − 1]

. (5.56)

Proof. The proof is identical to that of [12, Lemma 3.2], except that the random walk
now jumps with rate 1.

For a path π ∈ P and ε ∈ (0, 1), we write

Mr,ε
π :=

∣∣{0 ≤ i < |π| : ξ(πi) ≤ (1 − ε)aLr

}∣∣, (5.57)

with the interpretation that Mr,ε
π = 0 if |π| = 0.

Lemma 5.3.2. [Mass of excursions] Subject to Assumption 5.A, for every A, ε > 0,
there exists c > 0 and r0 ∈ N such that, for all r ≥ r0, all γ > aLr

− A and all
π ∈ P(Br(O), Br(O)) satisfying πi /∈ Πr,A for all 0 ≤ i < ℓ := |π|,

Eπ0

[
e
∫ Tℓ

0
(ξ(Xs)−γ) ds

∣∣∣ πℓ(X) = π

]
≤ qℓ

r,AeMr,ε
π (c−log log log Lr), (5.58)

where
qA := 1

1 +A
and c = log[2(qAεϱ)−1]. (5.59)

Note that πℓ ∈ Πr,A is allowed.
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Proof. The proof is identical to that of [12, Lemma 3.3], and uses Lemma 5.3.1.

We follow [12, Definition 3.4] and [9, Section 6.2]. Note that the distance between
Πr,A and Dc

r,A in GW is at least Sr = (logLr)α (recall (5.37)–(5.38)).

Definition 5.3.3. [Concatenation of paths] (a) When π and π′ are two paths in P
with π|π| = π′

0, we define their concatenation as

π ◦ π′ := (π0, . . . , π|π|, π
′
1, . . . , π

′
|π′|) ∈ P. (5.60)

Note that |π ◦ π′| = |π| + |π′|.

(b) When π|π| 6= π′
0, we can still define the shifted concatenation of π and π′ as π ◦ π̂′,

where π̂′ := (π|π|, π|π| + π′
1 − π′

0, . . . , π|π| + π′
|π′| − π′

0). The shifted concatenation of
multiple paths is defined inductively via associativity. ■

Now, if a path π ∈ P intersects Πr,A, then it can be decomposed into an initial
path, a sequence of excursions between Πr,A and Dc

r,A, and a terminal path. More
precisely, there exists mπ ∈ N such that

π = π̌1 ◦ π̂1 ◦ · · · ◦ π̌mπ ◦ π̂mπ ◦ π̄, (5.61)

where the paths in (5.61) satisfy

π̌1 ∈ P(V,Πr,A) with π̌1
i /∈ Πr,A, 0 ≤ i < |π̌1|,

π̂k ∈ P(Πr,A, D
c
r,A) with π̂k

i ∈ Dr,A, 0 ≤ i < |π̂k|, 1 ≤ k ≤ mπ − 1,
π̌k ∈ P(Dc

r,A,Πr,A) with π̌k

i /∈ Πr,A, 0 ≤ i < |π̌k|, 2 ≤ k ≤ mπ,

π̂mπ ∈ P(Πr,A, V ) with π̂mπ
i ∈ Dr,A, 0 ≤ i < |π̂mπ |,

(5.62)
while

π̄ ∈ P(Dc
r,A, V ) and π̄i /∈ Πr,A ∀ i ≥ 0 if π̂mπ ∈ P(Πr,A, D

c
r,A),

π̄0 ∈ Dr,A, |π̄| = 0 otherwise. (5.63)

Note that the decomposition in (5.61)–(5.63) is unique, and that the paths π̌1, π̂mπ

and π̄ can have zero length. If π is contained in Br(O), then so are all the paths in
the decomposition.

Whenever supp(π) ∩ Πr,A 6= ∅ and ε > 0, we define

sπ :=
mπ∑
i=1

|π̌i| + |π̄|, kr,ε
π :=

mπ∑
i=1

Mr,ε
π̌i +Mr,ε

π̄ , (5.64)

to be the total time spent in exterior excursions, respectively, on moderately low points
of the potential visited by exterior excursions (without their last point).

In case supp(π) ∩ Πr,A = ∅, we set mπ := 0, sπ := |π| and kr,ε
π := Mr,ε

π . Recall
from (5.55) that, in this case, λr,A(π) = −∞.

We say that π, π′ ∈ P are equivalent, written π′ ∼ π, if mπ = mπ′ , π̌′i = π̌i for all
i = 1, . . . ,mπ, and π̄′ = π̄. If π′ ∼ π, then sπ′ , kr,ε

π′ and λr,A(π′) are all equal to the
counterparts for π.
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To state our key lemma, we define, for m, s ∈ N0,

P(m,s) = {π ∈ P : mπ = m, sπ = s} , (5.65)

and denote by
Cr,A := max{|C| : C ∈ Cr,A} (5.66)

the maximal size of the islands in Cr,A.

Lemma 5.3.4. [Mass of an equivalence class] For every A, ε > 0 there exist c > 0 and
r0 ∈ N such that, for all r ≥ r0, all m, s ∈ N0, all π ∈ P(m,s) with supp(π) ⊂ Br(O),
all γ > λr,A(π) ∨ (aLr

−A) and all t ≥ 0,

Eπ0

[
e
∫ t

0
(ξ(Xu)−γ) du 1l{π(X[0,t])∼π}

]
≤
(
C

1/2
r,A

)1l{m>0}
(

1 + Cr,A

γ − λr,A(π)

)m(
qA

dmin

)s

e(c−log3 Lr)kr,ε
π . (5.67)

Proof. The proof is identical to that of [12, Lemma 3.5], except that the normalised
Laplacian gives rise to Lemma 5.2.4 and Lemma 5.3.2, which are used instead.

§5.3.2 Key proposition
The main result of this section is the following proposition.

Proposition 5.3.5. [Entropy reduction] Let α ∈ (0, 1) be as in (5.34) and κ ∈ (α, 1).
Subject to Assumption 5.B, there exists an A0 such that, for all A ≥ A0, with P-
probability tending to one as r → ∞, the following statement is true. For each x ∈
Br(O), each N ⊂ P(x,Br(O)) satisfying supp(π) ⊂ Br(O) and max1≤ℓ≤|π| distG(πℓ, x) ≥
(logLr)κ for all π ∈ N , and each assignment π 7→ (γπ, zπ) ∈ R × V satisfying

γπ ≥
(
λr,A(π) + e−Sr

)
∨ (aLr

−A) ∀ π ∈ N (5.68)

and
zπ ∈ supp(π) ∪

⋃
C∈Cr,A :

supp(π)∩C∩Πr,A 6=∅

C ∀ π ∈ N , (5.69)

the following inequality holds for all t ≥ 0:

logEx

[
e
∫ t

0
ξ(Xs)ds1l{π(X[0,t])∈N }

]
≤ sup

π∈N

{
tγπ + distG(x, zπ)(c− log log logLr)

}
.

(5.70)

Proof. The proof is based on [12, Section 3.4]. First fix c0 > 2 and define

A0 = e4c0 − 1. (5.71)

Fix A ≥ A0, β ∈ (0, α) and ε ∈ (0, 1
2β) as in Lemma 5.2.9. Let r0 ∈ N be as given

in Lemma 5.3.4, and take r ≥ r0 so large that the conclusions of Lemmas 5.2.5, 5.2.7,
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5.2.11 and 5.2.9 hold, i.e. assume that the events Br and Br,A in these lemmas do
not occur. Fix x ∈ Br(O). Recall the definitions of Cr,A and P(m,s). Note that the
relation ∼ is an equivalence relation in P(m,s), and define

P̃(m,s)
x :=

{
equivalence classes of the paths in P(x, V ) ∩ P(m,s)}. (5.72)

The following bounded on the cardinality of this set is needed.

Lemma 5.3.6. [Bound equivalence classes] Subject to Assumption 5.B, P-a.s.,|P̃(m,s)
x |

≤ (2Cr,A)m(δr)(m+s) for all m, s ∈ N0.

Proof. We can copy the proof of [12, Lemma 3.6], replacing dmax by δr.

Now take N ⊂ P(x, V ) as in the statement, and set

Ñ (m,s) :=
{

equivalence classes of paths in N ∩ P(m,s)} ⊂ P̃(m,s)
x . (5.73)

For each M ∈ Ñ (m,s), choose a representative πM ∈ M, and use Lemma 5.3.6 to
write

Ex

[
e
∫ t

0
ξ(Xu)du1l{π(X[0,t])∈N }

]
=

∑
m,s∈N0

∑
M∈Ñ (m,s)

Ex

[
e
∫ t

0
ξ(Xu)du1l{π(X[0,t])∼πM}

]

≤
∑

m,s∈N0

(2(δr)Cr,A)m(δr)s sup
π∈N (m,s)

Ex

[
e
∫ t

0
ξ(Xu)du1l{π(X[0,t])∼π}

]
(5.74)

with the convention sup ∅ = 0. For fixed π ∈ N (m,s), by (5.68), apply (5.67) and
Lemma 5.2.7 to obtain, for all r large enough and with c0 > 2 ,

(2(δr))m(δr)s Ex

[
e
∫ t

0
ξ(Xu)du1l{π(X[0,t])∼π}

]
≤ etγπ ec0mSr [qA(δr)]s ekr,ε

π (c−log log log Lr).

(5.75)

We next claim that, for r large enough and π ∈ N (m,s),

s ≥ [(m− 1) ∨ 1]Sr. (5.76)

Indeed, when m ≥ 2, | supp(π̌i)| ≥ Sr for all 2 ≤ i ≤ m. When m = 0, | supp(π)| ≥
max1≤ℓ≤|π| |πℓ − x| ≥ (logLr)κ � Sr by assumption. When m = 1, the latter as-
sumption and Lemma 5.2.7 together imply that supp(π) ∩ Dc

r,A 6= ∅, and so either
| supp(π̌1)| ≥ Sr or | supp(π̄)| ≥ Sr. Thus, (5.76) holds by the definition of Sr and s.

Note that qA < e−4c0 , so∑
m≥0

∑
s≥[(m−1)∨1]Sr

ec0mSr [qA(δr)]s

=
[qA(δr)]Sr + ec0Sr [qA(δr)]Sr +

∑
m≥2 emc0Sr [qA(δr)](m−1)Sr

1 − qAδr

≤ 3e−c0 log r

1 − qAδr
< 1

(5.77)
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for r large enough. Inserting this back into (5.74), we obtain

logEx

[
e
∫ t

0
ξ(Xs)ds1l{π(X0,t)∈N }

]
≤ sup

π∈N

{
tγπ + kr,ε

π (c− log log logLr)
}
. (5.78)

The remainder of the proof is identical to the end of [12, Section 3.4] and is included
for completeness.

The proof will be finished once we show that, for some ε′ > 0 and whp, respectively,
a.s. eventually as r → ∞,

kr,ε
π ≥ distG(x, zπ)(1 − 2(logLr)−ε′

) ∀π ∈ N . (5.79)

For each π ∈ N define an auxiliary path π⋆ as follows. First note that by using our
assumptions we can find points z′, z′′ ∈ supp(π) (not necessarily distinct) such that

distG(x, z′) ≥ (logLr)κ, distG(z′′, zπ) ≤ 2MASr, (5.80)

where the latter holds by (5.41). Write {z1, z2} = {z′, z′′} with z1, z2 ordered according
to their hitting times by π, i.e. inf{ℓ : πℓ = z1} ≤ inf{ℓ : πℓ = z2}. Define πe as the
concatenation of the loop erasure of π between x and z1 and the loop erasure of π
between z1 and z2. Since πe is the concatenation of two self-avoiding paths, it visits
each point at most twice. Finally, define π⋆ ∼ πe by replacing the excursions of πe

from Πr,A to Dc
r,A by direct paths between the corresponding endpoints, i.e. replace

each π̂i
e by |π̂i

e| = ℓi, (π̂i
e)0 = xi ∈ Πr,A, and (π̂i

e)ℓi = yi ∈ Dc
r,A by a shortest-distance

path π̃i
⋆ with the same endpoints and |π̃i

⋆| = distG(xi, yi). Since π⋆ visits each x ∈ Πr,A

at most 2 times,

kr,ε
π ≥ kr,ε

π⋆
≥ Mr,ε

π⋆
− 2| supp(π⋆) ∩ Πr,A|(Sr + 1) ≥ Mr,ε

π⋆
− 4| supp(π⋆) ∩ Πr,A|Sr.

(5.81)
Note thatMr,ε

π⋆
≥ |{x ∈ supp(π⋆) : ξ(x) ≤ (1 − ε)aLr

}|−1 and, by (5.80), | supp(π⋆)| ≥
distG(x, z′) ≥ (logLr)κ � (logLr)α+2ε′ for some 0 < ε′ < ε. Applying Lemmas 5.2.9–
5.2.10 and using (5.34) and Lr > r, we obtain, for r large enough,

kr,ε
π ≥ | supp(π⋆)|

(
1 − 2

(logLr)ε
− 4Sr

(logLr)α+2ε′

)
≥ | supp(π⋆)|

(
1 − 1

(logLr)ε′

)
.

(5.82)
On the other hand, since | supp(π⋆)| ≥ (logLr)κ, by (5.80) we have

|supp(π⋆)| =
(

|supp(π⋆)| + 2MASr

)
− 2MASr

=
(

|supp(π⋆)| + 2MASr

)(
1 − 2MASr

|supp(π⋆)| + 2MASr

)
≥ (distG(x, z′′) + 2MASr)

(
1 − 2MASr

(logLr)κ

)
≥ distG(x, zπ)

(
1 − 1

(logLr)ε′

)
,

(5.83)

where the first inequality uses that the distance between two points on π⋆ is less than
the total length of π⋆. Now (5.79) follows from (5.82)–(5.83).
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§5.4 Proof of the main theorem
Define

U∗(t) := et[ϱ log(ϑrt)−ϱ−χ̃(ϱ)], (5.84)

where we recall (5.10). To prove Theorem 5.1.1 we show that

1
t

logU(t) − 1
t

logU∗(t) = o(1), t → ∞, (P ×P)-a.s. (5.85)

The proof proceeds via upper and lower bound, proved in Sections 5.4.1 and 5.4.2,
respectively.

§5.4.1 Upper bound
We follow [12, Section 4.2]. The proof of the upper bound in (5.85) relies on two
lemmas showing that paths staying inside a ball of radius dtγe for some γ ∈ (0, 1) or
leaving a ball of radius t log t have a negligible contribution to (5.6), the total mass of
the solution.

Lemma 5.4.1. [No long paths] For any ℓt ≥ t log t,

lim
t→∞

1
U∗(t)

EO

[
e
∫ t

0
ξ(Xs)ds1l{τ[Bℓt

]c <t}

]
= 0 (P ×P) − a.s. (5.86)

Proof. We follow [12, Lemma 4.2]. For r ≥ ℓt, let

Br :=
{

max
x∈Br(O)

ξ(x) ≥ aLr
+ 2ϱ

}
. (5.87)

Since limt→∞ ℓt = ∞, Lemma 5.2.8 gives that P-a.s.⋃
r≥ℓt

Br does not occur eventually as t → ∞. (5.88)

Therefore we can work on the event
⋂

r≥ℓt
[Br]c. On this event, we write

EO

[
e
∫ t

0
ξ(Xs)ds1l{τ[Bℓt

]c <t}

]
=
∑
r≥ℓt

EO

[
e
∫ t

0
ξ(Xs)ds1l{sups∈[0,t] |Xs|=r}

]
≤ e2ϱt

∑
r≥ℓt

eϱt log r+ϱ log log(δr) PO (Jt ≥ r) , (5.89)

where Jt is the number of jumps of X up to time t, and we use that |Br(O)| ≤ (δr)r.
Next, Jt is stochastically dominated by a Poisson random variable with parameter t.
Hence

PO (Jt ≥ r) ≤ (et)r

rr
≤ exp

{
−r log

( r
et

)}
(5.90)
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for large r. Using that ℓt ≥ t log t, we can easily check that, for r ≥ ℓt and t large
enough,

ϱt log r − r log
( r

et

)
< −3r, r ≥ ℓt. (5.91)

Thus (5.89) is at most

e2ϱt
∑
r≥ℓt

e−3r+log log(δr) ≤ e2ϱt
∑
r≥ℓt

e−2r ≤ 2 e2ϱt e−2ℓt ≤ e−ℓt . (5.92)

Since limt→∞ ℓt = ∞ and limt→∞ U∗(t) = ∞, this settles the claim.

Lemma 5.4.2. [No short paths] For any γ ∈ (0, 1),

lim
t→∞

1
U∗(t)

EO

[
e
∫ t

0
ξ(Xs)ds1l{τ[Bdtγ e]c >t}

]
= 0 (P ×P) − a.s. (5.93)

Proof. We follow [12, Lemma 4.3]. By Lemma 5.2.8 with r = dtγe, we may assume
that

max
x∈Bdtγ e

ξ(x) ≤ ϱ log logLdtγ e + 2ϱ logdtγe
ϑdtγe

≤ γϱ log t+O(1), t → ∞, (5.94)

where the second inequality uses that logLdtγ e ∼ log |Bdtγ e(O)| ∼ ϑdtγe. Hence

1
U∗(t)

EO

[
e
∫ t

0
ξ(Xs)ds1l{τ[Bdtγ e]c >t}

]
≤ 1
U∗(t)

eγϱt log t+O(1) ≤ e−(1−γ)ϱt log t+Ct log log log t, t → ∞,

(5.95)
for any constant C > 1.

The proof of the upper bound in (5.85) also relies on a third lemma estimating
the contribution of paths leaving a ball of radius dtγe for some γ ∈ (0, 1) but staying
inside a ball of radius t log t. We slice to annulus between these two balls into layers,
and derive an estimate for paths that reach a given layer but do not reach the next
layer. To that end, fix γ ∈ (α, 1) with α as in (5.34), and let

Kt := dt1−γ log te, r
(k)
t := kdtγe, 1 ≤ k ≤ Kt, ℓt := Ktdtγe ≥ t log t. (5.96)

For 1 ≤ k ≤ Kt, define (recall (5.51))

N k

t :=
{
π ∈ P(O, V ) : supp(π) ⊂ Brk+1

t
(O), supp(π) ∩Bc

rk
t
(O) 6= ∅

}
(5.97)

and set
Uk(t) := EO

[
e
∫ t

0
ξ(Xs)ds1l{π[0,t](X)∈N k

t }

]
. (5.98)

Lemma 5.4.3. [Upper bound on Uk(t)] For any ε > 0, (P ×P)-a.s. eventually as
t → ∞,

sup
1≤k≤Kt

1
t

logUk

t ≤ 1
t

logU∗(t) + ε. (5.99)
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Proof. We follow [12, Lemma 4.4]. Fix k ∈ {1, . . . ,Kt}. For π ∈ N k
t , let

γπ := λrk+1
t ,A(π) + e−Sdtγ e , zπ ∈ supp(π), |zπ| > rk

t , (5.100)

chosen such that (5.68)–(5.69) are satisfied. By Proposition 5.3.5 and (5.59), (P ×P)-
a.s. eventually as t → ∞,

1
t

logUk

t ≤ γπ − |zπ|
t

(
log log(ϑr(k+1)

t )] − c+ o(1)
)
. (5.101)

Using Corollary 5.2.12 and logLr ∼ ϑr, we bound

γπ ≤ ϱ log(ϑr(k+1)
t ) − χ̃(ϱ) + 1

2ε+ o(1). (5.102)

Moreover, |zπ| > rk+1
t − dtγe and

dtγe
t

(
log log(ϑr(k+1)

t )] − c
)

≤ 1
t1−γ

log log(2t log t) = o(1). (5.103)

Hence
γπ ≤ Ft(r(k+1)

t ) − χ̃(ϱ) + 1
2ε+ o(1) (5.104)

with
Fc,t(r) := ϱ log(ϑr) − r

t

[
log log(ϑr) − c

]
, r > 0. (5.105)

The function Fc,t is maximised at any point rc,t satisfying

ϱt = rc,t log log rc,t − crc,t + rc,t

log rc,t
. (5.106)

In particular, rt = rt[1 + o(1)], which implies that

sup
r>0

Ft(r) ≤ ϱ log(ϑrt) − ϱ+ o(1), t → ∞. (5.107)

Inserting (5.107) into (5.104), we obtain 1
t

logUk

t < ϱ log(ϑrt) − ϱ− χ̃(ϱ) + ε, which is
the desired upper bound because ε > 0 is arbitrary.

Proof of the upper bound in (5.85). To avoid repetition, all statements hold (P × P)-
a.s. eventually as t → ∞. Set

U 0(t) := EO

[
e
∫ t

0
ξ(Xs)ds1l{τ[Bdtγ e]c >t}

]
, U∞(t) := EO

[
e
∫ t

0
ξ(Xs)ds1l{τ[Bdt log te]c ≤t}

]
.

(5.108)
Then

U(t) ≤ U 0(t) + U∞(t) +Kt max
1≤k≤Kt

Uk(t). (5.109)

From Lemmas 5.4.1–5.4.3 and the fact that Kt = o(t), we get

lim sup
t→∞

{
1
t

logU(t) − 1
t

logU∗(t)
}

≤ ε. (5.110)

Since ε > 0 is arbitrary, this completes the proof of the upper bound in (5.11).
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§5.4.2 Lower bound
We follow [12, Section 4.1]. Fix ε > 0. By the definition of χ̃, there exists an infinite
rooted tree T = (V ′, E′,Y) with degrees in supp(Dg) such that χT (ϱ) < χ̃(ϱ)+ 1

4ε. Let
Qr = BT

r (Y) be the ball of radius r around Y in T . By Proposition 5.2.1 and (5.15),
there exist a radius R ∈ N and a potential profile q : BT

R → R with LQR
(q; ϱ) < 1 (in

particular, q ≤ 0) such that

λQR
(q;T ) ≥ −χ̂QR

(ϱ;T ) − 1
2ε > −χ̃(ϱ) − ε. (5.111)

For ℓ ∈ N, let Bℓ = Bℓ(O) denote the ball of radius ℓ around O in GW. We will show
next that, (P× P)-a.s. eventually as ℓ → ∞, Bℓ contains a copy of the ball QR where
the potentail ξ is bounded from below by ϱ log log |Bℓ(O)| + q.

Proposition 5.4.4. [Balls with high exceedances] (P × P)-almost surely eventually
as ℓ → ∞, there exists a vertex z ∈ Bℓ with BR+1(z) ⊂ Bℓ and an isomorphism
φ : BR+1(z) → QR+1 such that ξ ≥ ϱ log log |Bℓ(O)| + q ◦ φ in BR(z). In particular,

λBR(z)(ξ; GW) > ϱ log log |Bℓ(O)| − χ̃(ϱ) − ε. (5.112)

Any such z necessarily satisfies |z| ≥ cℓ (P × P)-a.s. eventually as ℓ → ∞ for some
constant c = c(ϱ, ϑ, χ̃(ϱ), ε) > 0.

Proof. We follow [12, Proposition 4.1]. Only the last step changes as a result of the
normalised Laplacian. First note that, as a consequence of the definition of GW, it may
be shown straightforwardly that, for some p = p(T,R) ∈ (0, 1) and P-almost surely
eventually as ℓ → ∞, there exist N ∈ N, N ≥ p|Bℓ| and distinct z1, . . . , zN ∈ Bℓ such
that BR+1(zi) ∩BR+1(zj) = ∅ for 1 ≤ i 6= j ≤ N and, for each 1 ≤ i ≤ N , BR+1(zi) ⊂
Bℓ and BR+1(zi) is isomorphic to QR+1. Now, by (5.3), for each i ∈ {1, . . . , N},

P
(
ξ ≥ ϱ log log |Bℓ| + q in BR(zi)

)
= |Bℓ|−LQR

(q). (5.113)

Using additionally that |Bℓ| ≥ ℓ and 1 − x ≤ e−x, x ∈ R, we obtain

P( 6 ∃i ∈ {1, . . . , N} : ξ ≥ ϱ log log |Bℓ| + q in BR(zi)) =
(

1 − |Bℓ|−LQR
(q)
)N

≤ e−pℓ
1−LQR

(q)
,

which is summable in ℓ ∈ N, so the proof of the first statement is completed using the
Borel-Cantelli lemma. As for the last statement note that by (5.17) and Lemma 5.2.8

λBcℓ
(ξ; GW) ≤ max

x∈Bcℓ(O)
ξ(x) < aLcℓ

+ o(1) < aLℓ
+ ϱ log cϑ+ o(1) < aLℓ

− χ̃(ϱ) − ε

(5.114)
provided c > 0 is small enough.

Lemma 5.4.5. Let z ∈ GW and let vz = (vz,i)|z|
i=0 be the shortest path from O to z,

i.e. vz,0 = O, vz,|z| = z, and vz,i ∼ vz,i−1 for i = 1, . . . , |z|. Then

∑
L∈N

P

( ⋃
z∈ZL

{
L∏

i=1

1
deg(vz,i)

≤ 1
(logL)δLL

})
< ∞,

where δL satisfies lim
L→∞

δL log logL = ∞.
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Proof. For L ∈ N, let ZL be the L-th generation of GW rooted at O. For z ∈ ZL, let

Ez =

{
L∏

i=1
deg(vzi) ≥ (logL)δLL

}
.

We want to estimate
P (∪z∈ZL

Ez) .

Pick any K ∈ N and estimate

P (∪z∈ZL
Ez) ≤ P (∪z∈ZL

Ez, |ZL| > K) + P (∪z∈ZL
Ez, |ZL| ≤ K) .

Estimate

P (∪z∈ZL
Ez, |ZL| > K) ≤ P (|ZL| > K) ≤ 1

K
E(ZL) =: eL

K
.

Also estimate
P (∪z∈ZL

Ez, |ZL| ≤ K)

=
K∑

ℓ=1

P
(
∪ℓ

k=1Ezℓ
, |ZL| = ℓ

)
≤

K∑
ℓ=1

ℓ∑
k=1

P (Ezℓ
, |ZL| = ℓ)

≤
K∑

ℓ=1

ℓ∑
k=1

P (Ez1 , |ZL| = ℓ) ≤ K

K∑
ℓ=1

P (Ez1 , |ZL| = ℓ)

= KP (Ez1 , |ZL| ≤ K) ≤ KP (Ez1) =: KpL,

where zℓ is the ℓ-th vertex in ZL (say in lexicographic order), and pL is the probability
that the product of L i.i.d. copies of the degrees exceeds (logL)δLL. In the last
inequality we need not worry about the correlation between Ez1 and the event |ZL| ≤ K

because we drop the latter. Thus, for any K ∈ N we have

P (∪z∈ZL
Ez) ≤ eL

K
+KpL.

Now minimise over K. The minimising value is K =
√
eL/pL (to be rounded off to

an integer), so that we get

P (∪z∈ZL
Ez) ≤ 2√

eLpL.

Since eL = eϑL+o(L) and pL = e−LδL log log L+O(L), it follows that∑
L∈N

P (∪z∈ZL
Ez) < ∞

by the assumption on δL.

Lemma 5.4.5 implies that P-almost surely eventually as L → ∞, any path yz must
satisfy

L∏
i=1

1
deg(yz,i)

≥ 1
(logL)δLL

. (5.115)
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Proof of the lower bound in (5.11). Let z be as in Proposition 5.4.4. Write τz for the
hitting time of z by the random walk X. For s ∈ (0, t), we estimate

U(t) ≥ EO

[
e
∫ t

0
ξ(Xu) du 1l{τz≤s} 1l{Xu∈BR(z) ∀u∈[τz,t]}

]
= EO

[
e
∫ τz

0
ξ(Xu) du 1l{τz≤s} Ez

[
e
∫ v

0
ξ(Xu) du 1l{Xu∈BR(z) ∀u∈[0,v]}

]∣∣∣
v=t−τz

]
,

(5.116)
where we use the strong Markov property at time τz. We first bound the last term in
the integrand in (5.116). Since ξ ≥ ϱ log log |Bℓ| + q in BR(z),

Ez

[
e
∫ v

0
ξ(Xu) du1l{Xu∈BR(z) ∀u∈[0,v]}

]
≥ evϱ log log |Bℓ|EY

[
e
∫ v

0
q(Xu) du1l{Xu∈QR ∀u∈[0,v]}

]
≥ evϱ log log |Bℓ|evλQR

(q;T )ϕ1
QR

(Y)2

> exp
{
v (ϱ log log |Bℓ| − χ̃(ϱ) − ε)

}
(5.117)

for large v, where we use that BR+1(z) is isomorphic to QR+1 for the indicators in the
first inequality, and apply Lemma 5.2.3 and (5.111) to obtain the second and third
inequalities respectively. On the other hand since ξ ≥ 0, we have

EO

[
e
∫ τz

0
ξ(Xu) du1l{τz ≤ s}

]
≥ PO(τz ≤ s), (5.118)

and we can bound the latter probability from below by the probability that the random
walk runs along a shortest path from the root O to z within a time at most s. This
gives

PO(τz ≤ s) ≥
( |z|∏

i=1

1
deg(yz,i)

)
P
( |z|∑

i=1
Ei ≤ s

)
≥ (log |z|)−δ|z||z|Poidmins([|z|,∞)),

(5.119)
where Poiγ is the Poisson distribution with parameter γ, and P is the generic symbol
for probability. The final inequality uses Lemma 5.4.5. Summarising, we obtain

U(t) ≥ (log |z|)−δ|z||z|e−dmins (dmins)|z|

|z|!
e(t−s)[ϱ log log |Bℓ|−χ̃(ϱ)−ε]

≥ exp
{

−dmins+ (t− s) [ϱ log log |Bℓ| − χ̃(ϱ) − ε] − |z| log
(

(log |z|)δ|z|

dmin

|z|
s

)}
≥ exp

{
−dmins+ (t− s) [ϱ log log |Bℓ| − χ̃(ϱ) − ε] − ℓ log

(
(log ℓ)δℓ

dmin

ℓ

s

)}
,

(5.120)
where in the last inequality we use that s ≤ |z| and ℓ ≥ |z|. Further assuming that
ℓ = o(t), we see that the optimum over s is obtained at

s = ℓ

dmin + ϱ log log |Bℓ| − χ̃(ϱ) − ε
= o(t). (5.121)
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Note that, by Proposition 5.4.4, this s indeed satisfies s ≤ |z|. Applying (5.4) we get,
after a straightforward computation, (P × P)-a.s. eventually as t → ∞,

1
t

logU(t) ≥ ϱ log log |Bℓ| − ℓ

t
log log ℓ− ℓ

t
δℓ log log ℓ− χ̃(ϱ) − ε+O

(
ℓ

t

)
. (5.122)

Inserting log |Bℓ| ∼ ϑℓ, we get
1
t

logU(t) ≥ Fℓ − χ̃(ϱ) − ε+ o(1) +O

(
ℓ

t

)
(5.123)

with
Fℓ = ϱ log(ϑℓ) − ℓ

t
log log ℓ− ℓ

t
δℓ log log ℓ. (5.124)

The optimal ℓ for Fℓ satisfies

ϱt = ℓ[1 + δℓ + l d
dℓδℓ] log log ℓ+ ℓδℓ

log ℓ
+ ℓ

log ℓ
, (5.125)

i.e. ℓ = rt[1 + o(1)]. For this choice we obtain
1
t

logU(t) ≥ ϱ log(ϑrt) − ϱ− χ̃(ϱ) − ε+ o(1). (5.126)

Hence (P × P)-a.s.

lim inf
t→∞

{
1
t

logU(t) − 1
t

logU∗(t)
}

≥ −ε. (5.127)

Since ε > 0 is arbitrary, this completes the proof of the lower bound in (5.11).

§5.5 Analysis of the variational formula
This section is dedicated the analysis of variational formula. Proposition 5.2.1 is
proven in Section 5.5.1. Theorem 5.1.2 is proven in Section 5.5.2, which is done by
adapting the gluing argument in [12].

§5.5.1 Alternative representations for χ

The inequality is clear. For the equality we first prove that for any graph G = (V,E)
and Λ ⊂ V finite,

χ̂Λ(ϱ;G) = inf
p∈P(V ) :
supp(p)⊂Λ

[IE(p) + ϱJV (p)] . (5.128)

For this we follow [25, Lemma 2.17]. By the Rayleigh-Ritz formula,

λΛ(q;G) = sup
supp(ϕ)⊂Λ

‖ϕ‖=1

〈(∆G + q)ϕ, ϕ〉 = sup
‖ϕ‖=1

{∑
x∈Λ

deg(x)[(∆ϕ)(x) + q(x)ϕ(x)]ϕ(x)

}

= sup
‖ϕ‖=1

−
∑

{x,y}∈EΛ

[ϕ(x) − ϕ(y)]2 +
∑
x∈Λ

deg(x)q(x)ϕ(x)2

 .
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By Lemma 5.2.2(2), the eigenfunction corresponding to λΛ(q;G) may be taken to be
non-negative, and we may therefore make the substitution ϕ(x) =

√
p(x)

deg(x) so that p
with p(x) = ϕ(x)2 deg(x) is a probability measure supported on Λ. So

λΛ(q;G) = sup
p∈P(V )

supp(p)⊂Λ

{
−IEΛ(p) +

∑
x∈Λ

q(x)p(x)

}
,

and therefore

χ̂Λ(ϱ;G) = − sup
q:V →[−∞,∞)

LV (q;ϱ)=1

[
sup

p∈P(Λ)

{
−IEΛ(p) +

∑
x∈Λ

q(x)p(x)

}]

= − sup
p∈P(Λ)

[
sup

q : L(q;ϱ)=1

{∑
x∈Λ

q(x)p(x) − ϱ log
∑
x∈Λ

eq(x)/ϱ

}
− IEΛ(p)

]
.

As the expression in the curly brackets does not change by adding a constant to q(x),
the inner supremum may be taken over all q : Λ → R.

For z ∈ Λ, differentiating with respect to q(z) and setting equal to 0 we get that
the supremum is attained at q̄ satisfying

p(z) = eq̄(z)/ϱ∑
x∈Λ eq̄(x)/ϱ

for all z. Or equivalently,

q̄(z) = ϱ log p(z) + ϱ log
∑
x∈Λ

eq̄(x)/ϱ.

This gives that the value of the inner supremum is −ϱJV (p) and (5.128) follows.

Recall the definition ofBr(O) from (5.4). By (5.128), χ̂Br(O)(ϱ;G) is non-increasing
in r and therefore,

lim
r→∞

χ̂Br(O)(ϱ;G) ≥ χG(ϱ). (5.129)

It remains to show the opposite inequality. For that we show that for any p ∈ P(V )
and r ∈ N, there exists a pr ∈ P(V ) with support in Br(O) such that

lim inf
r→∞

{IE(pr) + ϱJV (pr)} ≤ IE(p) + ϱJV (p). (5.130)

We follow [12, Lemma A.2]. Simply take

pr(x) =
p(x)1lBr(O)(x)
p(Br(O))

, x ∈ V, (5.131)

i.e. the normalized restriction of p to Br(O). Then we easily see that

JV (pr) − JV (p) = − 1
p(Br(O))

∑
x∈Br(O)

p(x) log p(x) + log p(Br(O)) +
∑
x∈V

p(x) log p(x)

≤ JV (p)
p(Br(O))

(1 − p(Br(O))) −→
r→∞

0,

(5.132)
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where we use that log p(Br(O)) ≤ 0 and p(x) log p(x) ≤ 0 for every x. As for the
I-term,

IE(pr) = 1
p(Br(O))

∑
{x,y}∈E : x,y∈Br(O)

(√
p(x)

deg(x) −
√

p(y)
deg(y)

)2

+ 1
p(Br(O))

∑
{x,y}∈E : x∈Br(O), y∈Bc

r

p(x)
deg(x)

≤ IE(p)
p(Br(O))

+ p(Br−1(O)c)
dmin p(Br(O))

,

(5.133)
and therefore

IE(pr) − IE(p) ≤ IE(p)
p(Br(O))

(1 − p(Br(O))) + p(Br−1(O)c)
dmin p(Br(O))

−→
r→∞

0. (5.134)

§5.5.2 Identification of the minimiser
This section follows [12, Appendix A]. We adapt the techniques to the new IE function
defined in (5.7).

Lemma 5.5.1. [Glue two] Let Gi = (Vi, Ei), i = 1, 2, be two disjoint connected simple
graphs, and let xi ∈ Vi, i = 1, 2. Denote by G the union graph of G1, G2 with one extra
edge between x1 and x2, i.e. G = (V,E) with V := V1 ∪V2, E := E1 ∪E2 ∪ {(x1, x2)}.
Then

χG ≥ min {χG1 , χG2} . (5.135)

Proof. We follow [12, Lemma A.3]. Given p ∈ P(V ), let ai = p(Vi), i = 1, 2, and
define pi ∈ P(Vi) by putting

pi(x) :=

{
1
ai
p(x)1lVi

(x) if ai > 0,
1lxi

(x) otherwise.
(5.136)

Straightforward manipulations show that

IE(p) =
2∑

i=1
aiIEi(pi)+

(√
p(x1)

deg(x1) −
√

p(x2)
deg(x2)

)2

, JV (p) =
2∑

i=1
[aiJVi(pi) − ai log ai] ,

(5.137)
and so

IE(p) + ϱJV (p) ≥
2∑

i=1
ai

[
IEi

(pi) + ϱJVi
(pi)

]
≥ min{χG1 , χG2}. (5.138)

The proof is completed by taking the infimum over p ∈ P(V ).

Below it will be useful to define, for x ∈ V ,

χx,b

G = inf
p∈P(V ),
p(x)=b

[IE(p) + ϱJV (p)], (5.139)
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i.e. a version of χG with “boundary condition” b at x. It is clear that χx,b

G ≥ χG.
Next we glue several graphs together and derive representations and estimates for the
corresponding χ. For k ∈ N, let Gi = (Vi, Ei), 1 ≤ i ≤ k, be a collection of disjoint
graphs. Let x be a point not belonging to

⋃k
i=1 Vi. For a fixed choice yi ∈ Vi, 1 ≤ i ≤ k,

we denote byGk = (V k, Ek) the graph obtained by adding an edge from each y1, . . . , yk

to x, i.e. V k = V1 ∪ · · · ∪ Vk ∪ {x} and Ek = E1 ∪ · · · ∪ Ek ∪ {(y1, x), . . . , (yk, x)}.

Lemma 5.5.2. [Glue many plus vertex] For any ϱ > 0, any k ∈ N, and any Gi =
(Vi, Ei), yi ∈ Vi, 1 ≤ i ≤ k,

χGk
= inf

0≤ci≤ai≤1,
a1+···+ak≤1

{ k∑
i=1

ai

(
χ

yi,ci/ai

Gi
− ϱ log ai

)

+
k∑

i=1

√ ci

deg(yi)
−

√
1 −

∑k
i=1 ai

deg(x)

2

− ϱ
(

1 −
k∑

i=1
ai

)
log
(

1 −
k∑

i=1
ai

)}
.

(5.140)

Proof. We follow [12, Lemma A.4]. The claim follows from straightforward manipula-
tions with (5.7).

Lemma 5.5.2 leads to the following comparison lemma. For j ∈ N, let

(Gj
i , y

j
i ) =

{
(Gi, yi) if i < j,

(Gi+1, yi+1) if i ≥ j,
(5.141)

i.e. (Gj
i )i∈N is the sequence (Gi)i∈N with the j-th graph omitted. Let Gj

k be the
analogue of Gk obtained from Gj

i , 1 ≤ i ≤ k, i 6= j, instead of Gi, 1 ≤ i ≤ k.

Lemma 5.5.3. [Comparison] For any ϱ > 0 and any k ∈ N,

χGk+1
= inf

1≤j≤k+1
inf

0≤c≤u≤ 1
k+1

inf
0≤ci≤ai≤1,
a1+···+ak≤1

{
(1 − u)

[ k∑
i=1

ai

(
χ

yσj (i),ci/ai

Gσj (i)
− ϱ log ai

)

+
k∑

i=1

√ ci

deg(yi)
−

√
1 −

∑k
i=1 ai

deg(x)

2

− ϱ
(

1 −
k∑

i=1
ai

)
log
(

1 −
k∑

i=1
ai

)]

+ uχ
yj ,c/u

Gj
+

√ c

deg(yj)
−

√√√√ (1 − u)
(

1 −
∑k

i=1 ai

)
deg(x)


2

− ϱ [u log u+ (1 − u) log(1 − u)]

}
.

(5.142)
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Moreover,

χGk+1
≥ inf

1≤j≤k+1
inf

0≤u≤ 1
k+1

{
(1 − u)χ

G
j

k

+ inf
v∈[0,1]

{
uχ

(yj ,v)
Gj

+ 1{u(1+v)≥1}

[√
vu

deg(yj) −
√

1−u
deg(x)

]2}
− ϱ [u log u+ (1 − u) log(1 − u)]

}
.

(5.143)

Proof. See [12, Lemma A.5]. The argument still applies with the definition of IE given
in (5.7).

Lemma 5.5.4. [Propagation of lower bounds] If ϱ > 0, M ∈ R, C > 0 and k ∈ N
satisfy ϱ ≥ C/ log(k + 1) and

inf
1≤j≤k+1

χ
G

j

k
≥ M, inf

1≤j≤k+1
inf

v∈[0,1]
χ

yj ,v

Gj
≥ M − C, (5.144)

then χGk+1
≥ M .

Proof. See [12, Lemma A.6]. The proof carries over directly since IE does not appear.

The above results will be applied in the next section to minimise χ over families of
trees with minimum degrees.

Trees with minimum degrees

Fix d ∈ N. Let T̊d be an infinite tree rooted at O such that the degree of O equals
d− 1 and the degree of every other vertex in T̊d is d. Let T̊ 0

d = {T̊d} and, recursively,
let T̊ n+1

d denote the set of all trees obtained from a tree in T̊ n

d and a disjoint copy of
T̊d by adding an edge between a vertex of the former and the root of the latter. Write
T̊d =

⋃
n∈N0

T̊ n

d . Assume that all trees in T̊d are rooted at O.
Recall that Td is the infinite regular d-tree. Observe that Td is obtained from

(T̊d,O) and a disjoint copy (T̊ ′
d ,O′) by adding one edge between O and O′. Consider

Td to be rooted at O. Let T 0
d = {Td} and, recursively, let T n+1

d denote the set of all
trees obtained from a tree in T n

d and a disjoint copy of T̊d by adding an edge between
a vertex of the former and the root of the latter. Write Td =

⋃
n∈N0

T n

d , and still
consider all trees in Td to be rooted at O. Note that T n

d contains precisely those
trees of T̊ n+1

d that have Td as a subgraph rooted at O. In particular, T n

d ⊂ T̊ n+1
d and

Td ⊂ T̊d.
Our objective is to prove the following.

Proposition 5.5.5. [Minimal tree is optimal] If ϱ ≥ 1
d log(d+1) , then

χTd
(ϱ) = min

T ∈Td

χT (ϱ).
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For the proof of Proposition 5.5.5, we will need the following.

Lemma 5.5.6. [Minimal half-tree is optimal] For all ϱ ∈ (0,∞),

χT̊d
(ϱ) = min

T ∈T̊d

χT (ϱ).

Proof. See [12, Lemma A.8]. The proof carries over directly since IE does not appear.

Lemma 5.5.7. [A priori bounds] For any d ∈ N and any ϱ ∈ (0,∞),

χT̊d
(ϱ) ≤ χTd

(ϱ) ≤ χT̊d
(ϱ) + 1

d
. (5.145)

Proof. We follow [12, Lemma A.9]. The first inequality follows from Lemma 5.5.6.
For the second inequality, note that Td contains as subgraph a copy of T̊d, and restrict
the minimum in (5.8) to p ∈ P(T̊d).

Proof of Proposition 5.5.5. We follow [12, Proposition A.7]. Fix ϱ ≥ 1
d log(d+1) . It will

be enough to show that
χTd

= min
T ∈T n

d

χT , n ∈ N0. (5.146)

We will prove this by induction in n. The case n = 0 is trivial. Assume that, for some
n0 ≥ 0, (5.146) holds for all n ≤ n0. Let T ∈ T n0+1

d . Then there exists a vertex x of
T with degree k + 1 ≥ d + 1. Let y1, . . . , yk+1 be set of neighbours of x in T . When
we remove the edge between yj and x, we obtain two connected trees; call Gj the one
containing yj , and G

j

k the other one. With this notation, T may be identified with
Gk+1.

Now, for each j, the rooted tree (Gj , yj) is isomorphic (in the obvious sense) to a
tree in T̊

ℓj

d , where ℓj ∈ N0 satisfy ℓ1 + · · · + ℓk+1 ≤ n0, while Gj

k belongs to T
(nj)

d for
some nj ≤ n0. Therefore, by the induction hypothesis,

χ
G

j

k
≥ χTd

, (5.147)

while, by (5.139), Lemma 5.5.6 and Lemma 5.5.7,

inf
v∈[0,1]

χ
(yj ,v)
Gj

≥ χGj
≥ χT̊d

≥ χTd
− 1
d
. (5.148)

Thus, by Lemma 5.5.4 applied with M = χTd
and C = 1

d ,

χT = χḠk+1
≥ χTd

, (5.149)

which completes the induction step.

Proof of Theorem 5.1.2. We follow [12, Theorem 1.2]. First note that, since Tdmin has
degrees in supp(Dg), χ̃(ϱ) ≤ χTdmin

(ϱ). For the opposite inequality, we proceed as
follows. Fix an infinite tree T with degrees in supp(Dg), and root it at a vertex Y. For
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r ∈ N, let T̃r be the tree obtained from Br(O) = BT
r (Y) by attaching to each vertex

x ∈ Br(O) with |x| = r a number dmin − 1 of disjoint copies of (T̊dmin ,O), i.e. adding
edges between x and the corresponding roots. Then T̃r ∈ Tdmin and, since Br(O) has
more out-going edges in T than in T̃r, we may check using (5.128) that

χ̂Br
(ϱ;T ) ≥ χ̂Br

(ϱ; T̃r) ≥ χ
T̃r

(ϱ) ≥ χTdmin
(ϱ). (5.150)

Taking r → ∞ and applying Proposition 5.2.1, we obtain χT (ϱ) ≥ χTdmin
(ϱ). Since T

is arbitrary, the proof is complete.
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